Galois Cohomology (Study Group)

1 Cohomology of global fields and Poitou-Tate duality (Marc Masdeu)

Notation.
e K is a global field (think number field).

e S aset of places of K containing ooy (the infinite place of K) (Mostly S will be finite: if not H*(Gg,Z/pZ) =
Hom(Gg, Z/27Z), which by class field theory, is the dual of Q*/Q*? everywhere finite)

e K5 C K is the maximal subextension which is unramified outside S. If S = {cox} then Kg = K", if
S = pk then Kg = K.

o Rgks={a€ K :ordy(a) >0Vv € S}. If S = {ocok} then Rig s = Ok, if S = pux then R s = K.
e Fix embeddings of K — K, for all v € S. This gives embeddings G, = D, < G — Gg := Gal(Ks/K)

1.1 Localisation

Let M be any Gg-module (finite). We have maps H"(Gg, M) — H"(K,, M) for all v.

Definition 1.1. P{(K, M) = [[, s H"(K,, M) = {(c)) € [I,cs H"(K,, M) : ¢, € Hl,.(K,, M)almostallv}.
(Convention for v archimedean, (r = 0), take H% = H°/NgH? instead (Tate cohomology groups)).

o PY=1],cs H'(K,, M)
o Pi=T1],cs H'(K,, M)
o P2 =,csH*(K,,M)

Since each class in H"(Gg, M) arises from H"(Gal(L/K), M) for some L, localisations induces a map: (" :

H"(Gg, M) — P§(K,M). We define IIT by the following short exact sequence 0 — I (K, M) — H"(Gs, M) g,

Pg(K, M). Dualising (and if M is finite, #M € R} 5) we get

P2(K,MP)* ——= H?>"(Gs, MP)* —= 1115 " (K, MP)*
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The upshot is there exists maps:
ape PL(K, M) L Hr (G, MP)Y o 2T (K, MP) ——> 0

Assume M is finite.



Proposition 1.2. The map (1 : H'(Gs, M) — P{(K, M) is proper (i.e., preimages of compact is compact). (Note
the topology in H' is the discrete topology and the topology of Pé is induced from the product topology)

Proof. Any compact in P{ is contained in some Pr = [Lesvr H} (K, M) x [1,cq H'(K,, M) (where T C S is
finite). Let Xt = (8%)~!(Pr), we want Xr is finite. First there exists a finite extension L/K such that Gpacts
trivially on M, H* (G, M) — H*(Gp, M) has finite kernel. Without loss of generality assume M has trivial action.
Then H'(Gg, M) = Hom(Gg, M) > f, this gives Ly = ngr(f), so f € Xy if and only if L;/K is unramified outside
T O

Hermite - Minkowski. Given n and finite T, there exists finitely many extension L/K such that [L : K| = n and
L is unramified outside T .

Theorem 1.3. Let M be finite, #M € Rj; g
1. There exists a canonical nondegenerate pairing (, ) : L5 (K, M) x 14 (K, MP) — Q/Z.
2. For allrT >3, B" is a bijection, 57 : H"(Gg, M) = [, aven H" (K0, M)

3. There exists a g-term exact sequence:

0 0
0~ H%Gs, M) —— PY(K, M) — > H?(Gs, MP)*
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() IIL(K, M) = % (K, MP)*

1L (K, MP)* ()
/ \ p ]
H?*(Gg, M) —— P3(K,M) —"> H(Gs, MP)* 0

Remark. NS (K, M) =0
LI (K, M) is finite because it is equal to (81)71({1})
By duality, III%(K, M) is also finite.

1.2 Euler - Poincaré pairing

Warning: H"(Gg, M) may be non zero for infinitely many r!
M) = #H®(Gs,M)#H?(Gs,M)
#H'(Gs,M)

So we look at x*(Gg, . We now assume S is finite.

Theorem 1.4. We have

GSv

|#M|, 1L; #HE(Gy,M7) if K isanumber field

11 #H(G,, M) {1 if K is function field
vinf #HO(GWMD)

vinf

M/ \



1.3 Applications

Let E be an elliptic curve over Q and fix a prime p > 3. S be a finite set containing {co, 2, p, prime of bad reductions} .
Set G = Gs and V = V,(F) = Q, ®z, @1 E[p"™]. Note that M, is finite, #M,, = p*® and MP = M,,. We get
LR

=M,
#H(G, M, )#H*(G,M,)  #H}(R,M,)
#H(G, M,) ~ #HO(R,M,)
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Note that “in the limit” #H°(G, M,,) will stabilise. Hence we get dim H' (G, V,,(E)) — dim H?(G, V,(E)) = 1.

Let us look back at (, ) : HI§ (K, M) x IN%(K, MP) — Q/Z. Take a € II5(K, M) and o’ € 1% (K, MP). So
a correspond to o € H'(Gg, M), a,, = df3, for all v, and a’ correspond to o/ € H*(Gs, MP), o/, = 0dj3/, for all v.
Check that > inv, (8, Ua), —€,) =: (a,ad’) € Q/Z, where a U o/ = de.



