
Galois Cohomology (Study Group)

1 Cohomology of global �elds and Poitou-Tate duality (Marc Masdeu)

Notation.

• K is a global �eld (think number �eld).

• S a set of places of K containing∞K (the in�nite place of K) (Mostly S will be �nite: if not H1(GQ,Z/pZ) =
Hom(GQ,Z/2Z), which by class �eld theory, is the dual of Q∗/Q∗2 everywhere �nite)

• KS ⊂ K is the maximal subextension which is unrami�ed outside S. If S = {∞K} then KS = Kunr, if
S = µK then KS = K.

• RK,S = {a ∈ K : ordν(a) ≥ 0∀ν ∈ S}. If S = {∞K} then RK,S = OK , if S = µK then RK,S = K.

• Fix embeddings of K ↪→ Kν for all ν ∈ S. This gives embeddings GKν
∼= Dν ↪→ GK → GS := Gal(KS/K)

1.1 Localisation

Let M be any GS-module (�nite). We have maps Hr(GS ,M)→ Hr(Kν ,M) for all ν.

De�nition 1.1. P rS(K,M) =
∏′
ν∈S H

r(Kν ,M) = {(cν) ∈
∏
ν∈S H

r(Kν ,M) : cν ∈ Hr
unr(Kν ,M) almost all ν}.

(Convention for ν archimedean, (r = 0), take H0
T = H0/NGH

0 instead (Tate cohomology groups)).

• P 0
S =

∏
ν∈S H

0(Kν ,M)

• P 1
S =

∏
ν∈S H

1(Kν ,M)

• P 2
S = ⊕ν∈SH2(Kν ,M)

Since each class in Hr(GS ,M) arises from Hr(Gal(L/K),M) for some L, localisations induces a map: βr :

Hr(GS ,M) → P rS(K,M). We de�ne X by the following short exact sequence 0 →Xr
S(K,M) → Hr(GS ,M)

βr→
P rS(K,M). Dualising (and if M is �nite, #M ∈ R∗K,S) we get

P 2
S(K,MD)∗

βr∗ //

see Pedro′s talk ∼=
��

H2−r(GS ,M
D)∗ //X2−r

S (K,MD)∗

P rS(K,M)

γn(K,M)

66

The upshot is there exists maps:

4pc P rS(K,M)
γr(K,M)// H2−r(GS ,M

D)∗ //X2−r
S (K,MD) // 0

Assume M is �nite.
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Proposition 1.2. The map β1 : H1(GS ,M)→ P 1
S(K,M) is proper (i.e., preimages of compact is compact). (Note

the topology in H1 is the discrete topology and the topology of P 1
S is induced from the product topology)

Proof. Any compact in P 1
S is contained in some PT =

∏
ν∈S\T H

1
unr(Kν ,M) ×

∏
ν∈T H

1(Kν ,M) (where T ⊂ S is

�nite). Let XT = (β1)−1(PT ), we want XT is �nite. First there exists a �nite extension L/K such that GLacts
trivially onM , H1(GK ,M)→ H1(GL,M) has �nite kernel. Without loss of generality assumeM has trivial action.

Then H1(GS ,M) = Hom(GS ,M) 3 f , this gives Lf = K
ker(f)
S , so f ∈ XT if and only if Lf/K is unrami�ed outside

T

Hermite - Minkowski. Given n and �nite T , there exists �nitely many extension L/K such that [L : K] = n and
L is unrami�ed outside T .

Theorem 1.3. Let M be �nite, #M ∈ R∗K,S.

1. There exists a canonical nondegenerate pairing 〈 , 〉 : X1
S(K,M)×X2

S(K,MD)→ Q/Z.

2. For all r ≥ 3, βr is a bijection, βr : Hr(GS ,M)→
∏
ν archH

r(Kν ,M)

3. There exists a g-term exact sequence:

0 // H0(GS ,M)
β0

// P 0
S(K,M)

γ0

// H2(GS ,M
D)∗

++
〈 , 〉

��

0

tt
X1

s(K,M) ∼= X2
S(K,MD)∗

ss **0

((

H1(GS ,M
D)∗

tt
〈 , 〉

��

P 1
S(K,M)

γ1
oo H1(GS ,M)

β1
oo 0

X1
S(K,MD)∗

vv
**

0 H2(GS ,M)
β2

// P 2
S(K,M)

γ2

// H0(GS ,M
D)∗ // 0

Remark. X0
S(K,M) = 0

X1
S(K,M) is �nite because it is equal to (β1)−1({1})

By duality, X2
S(K,M) is also �nite.

1.2 Euler - Poincaré pairing

Warning: Hr(GS ,M) may be non zero for in�nitely many r!

So we look at χ∗(GS ,M) = #H0(GS ,M)#H2(GS ,M)
#H1(GS ,M) . We now assume S is �nite.

Theorem 1.4. We have

χ∗(GS ,M) =
∏
ν inf

#H0(Gν ,M)

|#M |ν
=

{
1 if K is function field∏
ν inf

#H0
T (Gν ,M

D)
#H0(Gν ,MD)

if K is a number field
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1.3 Applications

Let E be an elliptic curve overQ and �x a prime p ≥ 3. S be a �nite set containing {∞, 2, p,prime of bad reductions} .
Set G = GS and V = Vp(E) = Qp ⊗Zp lim←−nE[pn]︸ ︷︷ ︸

=:Mn

. Note that Mn is �nite, #Mn = p2n and MD
n = Mn. We get

#H0(G,Mn)#H2(G,Mn)

#H1(G,Mn)
=

#H0
T (R,Mn)

#H0(R,Mn)

=
1

#(1 + c)Mn

=
1

pn

Note that �in the limit� #H0(G,Mn) will stabilise. Hence we get dimH1(G,Vp(E))− dimH2(G,Vp(E)) = 1.
Let us look back at 〈 , 〉 : X1

S(K,M) ×X2
S(K,MD) → Q/Z. Take a ∈X1

S(K,M) and a′ ∈X2
S(K,MD). So

a correspond to α ∈ H1(GS ,M), αν = dβν for all ν, and a′ correspond to α′ ∈ H2(GS ,M
D), α′ν = 0dβ′ν for all ν.

Check that
∑
ν invν(βν ∪ α′ν − εν) =: 〈a, a′〉 ∈ Q/Z, where α ∪ α′ = dε.
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