Galois Cohomology (Study Group)

1 Some P-adic Hodge Theory (by Chris Williams)

$1.1 \quad p$-adic Hodge Theory

Aim: Study local Galois representation in the case $l=p$.
Notation. Let K / \mathbb{Q}_{p} be a finite extension, V / \mathbb{Q}_{l} a finite dimensional vector space with continuous action of $G_{K}:=$ $\operatorname{Gal}(\bar{K} / K)$

In the case $l \neq p$, the topologies are not compatible - there are not many representations and they are of algebraic nature.

In the case $l=p$, the topologies are compatible - we end up with far too many representations! So the study of them becomes p-adic analytic

Example. Let χ be the cyclotomic character. Define weight space $\mathcal{W}:=\operatorname{Hom}_{\text {cts }}\left(\mathbb{Z}_{p}^{\chi}, \mathbb{C}_{p}^{\chi}\right)=\coprod_{p-1 \text { copies }} \mathbb{Z}_{p} \supset \mathbb{Z}$. Then for all $s \in \mathcal{W}, \chi^{s}$ is a p-adic representations. We are only really "interested" in χ^{s} where $s \in \mathbb{Z}$.

Idea: Isolate "interesting" subcategories.
Fontaine's Strategy: Define ring of periods, i.e., topological \mathbb{Q}_{p}-algebra B with a continuous action of G_{K}. The idea is for some p-adic representation V, the invariant $D_{B}(V):=\left(V \otimes_{\mathbb{Q}_{p}} B\right)^{G_{K}}$.

Fact. With stronger assumptions of $B\left(G_{K}\right.$-regular) we have $\operatorname{dim}_{B^{G_{k}}} D_{B}(V) \leq \operatorname{dim}_{\mathbb{Q}_{p}} V$. (The stronger assumption will always be met in this section)

We say that V is B-admissible if we have an equality.
Question: What are good choices of B ?
Theorem. There exists a ring of periods \mathbb{B}_{dR} such that

1. There is a natural filtration $\mathrm{Fil}^{\mathrm{i}} \mathbb{B}_{\mathrm{dR}}, i \in \mathbb{Z}$
2. A p-adic representation V is \mathbb{B}_{dR}-admissible if it "comes from geometry"

We call such representation de Rham.
Example. Let E be an elliptic curve over $\mathbb{Q}_{p}, V_{p} E:=T_{p} E \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$. Then $V_{p} E$ is de Rham
Let X be a proper, smooth variety over K, then $H_{\text {et }}^{i}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right)$ are de Rham.
Theorem. There exists a ring of periods $\mathbb{B}_{\text {crys }} \subset \mathbb{B}_{\mathrm{dR}}$ such that

1. There exists a natural Frobenius operator ϕ, and
2. A p-adic representation V is $\mathbb{B}_{\text {crys }}$-admissible is de Rham , and representation that comes from geometry "with" good reduction at p are $\mathbb{B}_{\text {crys }}$-admissible.
We call such representation Crystalline.
Example. $V_{p} E$ is crystalline if and only if E has good reduction at p.

Remark.

1. \mathbb{B}_{dR} and $\mathbb{B}_{\text {crys }}$ are huge (in fact, they surject onto $\mathbb{C}_{p}=\widehat{\bar{K}}$)
2. $\mathbb{B}_{\mathrm{dR}}^{G_{K}}=K$ and $\mathbb{B}_{\text {crys }}^{G_{K}}=K_{0}=$ maximal unramified subfield of K.
3. We said $\mathbb{B}_{\mathrm{dR}}, \mathbb{B}_{\text {crys }}$ had extra structure. This passes to $\mathbb{D}_{\mathrm{dR}}(V):=D_{\mathbb{B}_{\mathrm{dR}}}(V)=\left(V \otimes \mathbb{B}_{\mathrm{dR}}\right)^{G_{K}}$ and $\mathbb{D}_{\text {crys }}(V):=$ $D_{\mathbb{B}_{\text {crys }}}(V)=\left(V \otimes \mathbb{B}_{\text {crys }}\right)^{G_{K}}$.

1.2 Relation to Galois Cohomology

1.2.1 The group $H_{*}^{1}(K, V)$

Recall: Elements of $H^{1}(K, V)$ bijects with isomorphism classes of extension $0 \rightarrow V \rightarrow E \rightarrow \mathbb{Q}_{p} \rightarrow 0$ of the trivial representation by V. (Recap: given such an extension, we take the Galois cohomology, get $0 \rightarrow V^{G_{K}} \rightarrow E^{G_{K}} \rightarrow$ $\mathbb{Q}_{p} \xrightarrow{\delta} H^{1}(K, V)$, and E correspond to $\delta(1) \in H^{1}(K, V)$.

Let V be de Rham. Then consider the complex

We can take Galois cohomology:

E is de Rham if and only if

$$
\begin{aligned}
\operatorname{dim}_{K} \mathbb{D}_{\mathrm{dR}}(E) & =\operatorname{dim}_{\mathbb{Q}_{p}}(E) \\
& =\operatorname{dim}_{\mathbb{Q}_{p}} V+1 \\
& =\operatorname{dim}_{K} \mathbb{D}_{\mathrm{dR}}(V)+1
\end{aligned}
$$

if and only if $0 \rightarrow \mathbb{D}_{\mathrm{dR}}(V) \rightarrow \mathbb{D}_{\mathrm{dR}}(E) \rightarrow K \rightarrow 0$ is exact, if and only if, γ is identically 0 .
E correspond to $\phi=\delta(1) \in H^{1}(K, V)$. Now $\beta(\phi)=\beta \delta(1)=\gamma \alpha(1)$. So E is de Rham implies $\beta(\phi)=0$. Conversely, if $\beta(\phi)=0$, then $\delta \alpha(1)=0$, but α is the inclusion, hence δ is identically 0 .

So E is de Rham if it is in the kernel of β.
Definition. We set:

- $H_{g}^{1}(K, V)=\operatorname{ker}\left(H^{1}(K, V) \rightarrow H^{1}\left(K, V \otimes \mathbb{B}_{\mathrm{dR}}\right)\right)$
- $H_{f}^{1}(K, V)=\operatorname{ker}\left(H^{1}(K, V) \rightarrow H^{1}\left(K, V \otimes \mathbb{B}_{\text {crys }}\right)\right)$
- $H_{e}^{1}(K, V)=\operatorname{ker}\left(H^{1}(K, V) \rightarrow H^{1}\left(K, V \otimes \mathbb{B}_{\text {crys }}^{\phi=1}\right)\right)$

Note. We have $H_{g}^{1}(K, V) \supset H_{f}^{1}(K, V) \supset H_{e}^{1}(K, V)$.
Proposition. Let V be de Rham (respectively crystalline), and $0 \rightarrow V \rightarrow E \rightarrow \mathbb{Q}_{p} \rightarrow 0$ be an exact sequence corresponding to $\phi \in H^{1}(K, V)$. Then E is de Rham (respectively crystalline) if and only if $\phi \in H_{g}^{1}(K, V)$ (respectively in $H_{f}^{1}(K, V)$).

1.2.2 Tate's Duality.

Recall: $V^{*}=\operatorname{Hom}_{\mathbb{Q}_{p}}\left(V, \mathbb{Q}_{p}\right)$, and $V(1)=V \otimes \chi=V \otimes \lim \mu_{p^{n}}$.
There exists a natural pairing $V \times V^{*}(1) \rightarrow \mathbb{Q}_{p}(1) \underset{\text { Tate }}{\text { given }}$ by $(v, \mu) \mapsto \mu(v)$. Under cup product, we get a perfect pairing, $H^{i}(K, V) \times H^{2-i}\left(K, V^{*}(1)\right) \rightarrow H^{2}\left(K, \mathbb{Q}_{p}(1)\right) \cong \mathbb{Q}_{p}$.

Theorem (Bloch - Kato). Under this pairing:

- $H_{g}^{1}(K, V)$ and $H_{e}^{1}\left(K, V^{*}(1)\right)$ are exact annihilators
- $H_{f}^{1}(K, V)$ and $H_{f}^{1}\left(K, V^{*}(1)\right)$ are exact annihilators
- $H_{e}^{1}(K, V)$ and $H_{g}^{1}\left(K, V^{*}(1)\right)$ are exact annihilators.

Example. For $V=V_{p} E$, $\operatorname{dim} H^{1}\left(K, V_{p} E\right)=2$, by the above theorem, $\operatorname{dim} H_{g}^{1}=\operatorname{dim} H_{f}^{1}=\operatorname{dim} H_{e}^{1}=1$. Hence $H_{g}^{1}=H_{f}^{1}=H_{e}^{1}$ in this case. (In fact, this happens for a large class of examples in which we are interested)

1.2.3 The exponential map

Fact. There exists an exact sequence $0 \rightarrow \mathbb{Q}_{p} \rightarrow \mathbb{B}_{\text {crys }}^{\phi=1} \rightarrow \mathbb{B}_{\mathrm{dR}} / \mathrm{Fil}^{0} \mathbb{B}_{\mathrm{dR}} \rightarrow 0$.
If we tensor with V and then taking Galois cohomology, we get

$$
0 \longrightarrow H^{0}(K, V) \longrightarrow \mathbb{D}_{\text {crys }}^{\phi=1}(V) \longrightarrow \mathbb{D}_{\mathrm{dR}}(V) / \operatorname{Fil}^{0} \mathbb{D}_{\mathrm{dR}}(V) \xrightarrow{\exp } \longrightarrow H^{1}(K, V) \longrightarrow H^{1}\left(K, V \otimes \mathbb{B}_{\text {crys }}^{\phi=1}\right)
$$

Conclusion: We get a map $\exp : \mathbb{D}_{\mathrm{dR}}(V) / \operatorname{Fil}^{0} \mathbb{D}_{\mathrm{dR}} \rightarrow H_{e}^{1}(K, V)$.
Remark. Usually, $\mathbb{D}_{\text {crys }}^{\phi=1}(V)$ is trivial, which implies exp is an isomorphism.

