Galois Cohomology (Study Group)

1 Some *P*-adic Hodge Theory (by Chris Williams)

1.1 *p*-adic Hodge Theory

Aim: Study local Galois representation in the case l = p.

Notation. Let K/\mathbb{Q}_p be a finite extension, V/\mathbb{Q}_l a finite dimensional vector space with continuous action of $G_K := \operatorname{Gal}(\overline{K}/K)$

In the case $l \neq p$, the topologies are not compatible - there are not many representations and they are of algebraic nature.

In the case l = p, the topologies are compatible - we end up with far too many representations! So the study of them becomes *p*-adic analytic

Example. Let χ be the cyclotomic character. Define weight space $\mathcal{W} := \operatorname{Hom}_{\operatorname{cts}}(\mathbb{Z}_p^{\chi}, \mathbb{C}_p^{\chi}) = \coprod_{p-1 \text{ copies}} \mathbb{Z}_p \supset \mathbb{Z}$. Then for all $s \in \mathcal{W}, \chi^s$ is a *p*-adic representations. We are only really "interested" in χ^s where $s \in \mathbb{Z}$.

Idea: Isolate "interesting" subcategories.

Fontaine's Strategy: Define *ring of periods*, i.e., topological \mathbb{Q}_p -algebra B with a continuous action of G_K . The idea is for some p-adic representation V, the invariant $D_B(V) := (V \otimes_{\mathbb{Q}_p} B)^{G_K}$.

Fact. With stronger assumptions of B (G_K -regular) we have $\dim_{B^{G_k}} D_B(V) \leq \dim_{\mathbb{Q}_p} V$. (The stronger assumption will always be met in this section)

We say that V is *B*-admissible if we have an equality. Question: What are good choices of B?

Theorem. There exists a ring of periods \mathbb{B}_{dR} such that

- 1. There is a natural filtration $\operatorname{Fil}^{i}\mathbb{B}_{\mathrm{dR}}, i \in \mathbb{Z}$
- 2. A p-adic representation V is \mathbb{B}_{dR} -admissible if it "comes from geometry"

We call such representation de Rham.

Example. Let *E* be an elliptic curve over \mathbb{Q}_p , $V_pE := T_pE \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$. Then V_pE is de Rham Let *X* be a proper, smooth variety over *K*, then $H^i_{\text{ét}}(X_{\overline{K}}, \mathbb{Q}_p)$ are de Rham.

Theorem. There exists a ring of periods $\mathbb{B}_{crys} \subset \mathbb{B}_{dR}$ such that

- 1. There exists a natural Frobenius operator ϕ , and
- 2. A p-adic representation V is \mathbb{B}_{crys} -admissible is de Rham, and representation that comes from geometry "with" good reduction at p are \mathbb{B}_{crys} -admissible.

We call such representation Crystalline.

Example. V_pE is crystalline if and only if E has good reduction at p.

Remark.

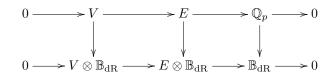
- 1. \mathbb{B}_{dR} and \mathbb{B}_{crys} are <u>huge</u> (in fact, they surject onto $\mathbb{C}_p = \overline{\overline{K}}$)
- 2. $\mathbb{B}_{dR}^{G_K} = K$ and $\mathbb{B}_{crvs}^{G_K} = K_0$ = maximal unramified subfield of K.
- 3. We said \mathbb{B}_{dR} , \mathbb{B}_{crys} had extra structure. This passes to $\mathbb{D}_{dR}(V) := D_{\mathbb{B}_{dR}}(V) = (V \otimes \mathbb{B}_{dR})^{G_K}$ and $\mathbb{D}_{crys}(V) := D_{\mathbb{B}_{crys}}(V) = (V \otimes \mathbb{B}_{crys})^{G_K}$.

1.2 Relation to Galois Cohomology

1.2.1 The group $H^1_*(K, V)$

Recall: Elements of $H^1(K, V)$ bijects with isomorphism classes of extension $0 \to V \to E \to \mathbb{Q}_p \to 0$ of the trivial representation by V. (Recap: given such an extension, we take the Galois cohomology, get $0 \to V^{G_K} \to E^{G_K} \to \mathbb{Q}_p \xrightarrow{\delta} H^1(K, V)$, and E correspond to $\delta(1) \in H^1(K, V)$.

Let V be de Rham. Then consider the complex



We can take Galois cohomology:

E is de Rham if and only if

$$\dim_{K} \mathbb{D}_{dR}(E) = \dim_{\mathbb{Q}_{p}}(E)$$
$$= \dim_{\mathbb{Q}_{p}} V + 1$$
$$= \dim_{K} \mathbb{D}_{dR}(V) + 1$$

if and only if $0 \to \mathbb{D}_{dR}(V) \to \mathbb{D}_{dR}(E) \to K \to 0$ is exact, if and only if, γ is identically 0.

E correspond to $\phi = \delta(1) \in H^1(K, V)$. Now $\beta(\phi) = \beta\delta(1) = \gamma\alpha(1)$. So *E* is de Rham implies $\beta(\phi) = 0$. Conversely, if $\beta(\phi) = 0$, then $\delta\alpha(1) = 0$, but α is the inclusion, hence δ is identically 0.

So E is de Rham if it is in the kernel of β .

Definition. We set:

- $H^1_q(K, V) = \ker(H^1(K, V) \to H^1(K, V \otimes \mathbb{B}_{\mathrm{dR}}))$
- $H^1_f(K, V) = \ker(H^1(K, V) \to H^1(K, V \otimes \mathbb{B}_{crys}))$
- $H^1_e(K,V) = \ker(H^1(K,V) \to H^1(K,V \otimes \mathbb{B}^{\phi=1}_{\mathrm{crvs}}))$

Note. We have $H^1_q(K,V) \supset H^1_f(K,V) \supset H^1_e(K,V)$.

Proposition. Let V be de Rham (respectively crystalline), and $0 \to V \to E \to \mathbb{Q}_p \to 0$ be an exact sequence corresponding to $\phi \in H^1(K, V)$. Then E is de Rham (respectively crystalline) if and only if $\phi \in H^1_g(K, V)$ (respectively in $H^1_f(K, V)$).

1.2.2 Tate's Duality.

Recall: $V^* = \operatorname{Hom}_{\mathbb{Q}_p}(V, \mathbb{Q}_p)$, and $V(1) = V \otimes \chi = V \otimes \varprojlim_{p^n} \mu_{p^n}$. There exists a natural pairing $V \times V^*(1) \to \mathbb{Q}_p(1)$ given by $(v, \mu) \mapsto \mu(v)$. Under cup product, we get a perfect pairing, $H^i(K, V) \times H^{2-i}(K, V^*(1)) \to H^2(K, \mathbb{Q}_p(1)) \cong \mathbb{Q}_p.$

Theorem (Bloch - Kato). Under this pairing:

- $H^1_a(K,V)$ and $H^1_e(K,V^*(1))$ are exact annihilators
- $H^1_f(K, V)$ and $H^1_f(K, V^*(1))$ are exact annihilators
- $H^1_e(K, V)$ and $H^1_a(K, V^*(1))$ are exact annihilators.

Example. For $V = V_p E$, dim $H^1(K, V_p E) = 2$, by the above theorem, dim $H_g^1 = \dim H_f^1 = \dim H_e^1 = 1$. Hence $H_g^1 = H_f^1 = H_e^1$ in this case. (In fact, this happens for a large class of examples in which we are interested)

1.2.3 The exponential map

Fact. There exists an exact sequence $0 \to \mathbb{Q}_p \to \mathbb{B}_{crys}^{\phi=1} \to \mathbb{B}_{dR}/\mathrm{Fil}^0\mathbb{B}_{dR} \to 0$.

If we tensor with V and then taking Galois cohomology, we get

$$0 \longrightarrow H^{0}(K, V) \longrightarrow \mathbb{D}_{\operatorname{crys}}^{\phi=1}(V) \longrightarrow \mathbb{D}_{\operatorname{dR}}(V) / \operatorname{Fil}^{0} \mathbb{D}_{\operatorname{dR}}(V) \xrightarrow{\exp} H^{1}(K, V) \longrightarrow H^{1}(K, V \otimes \mathbb{B}_{\operatorname{crys}}^{\phi=1})$$

Conclusion: We get a map $\exp : \mathbb{D}_{\mathrm{dR}}(V) / \mathrm{Fil}^0 \mathbb{D}_{\mathrm{dR}} \twoheadrightarrow H^1_e(K, V).$

Remark. Usually, $\mathbb{D}_{crys}^{\phi=1}(V)$ is trivial, which implies exp is an isomorphism.