Galois Cohomology (Study Group)

1 Group Cohomology (by Chris Birkbeck)

1.1 Definition of group cohomology

Let G be a group

Definition 1.1. A *G*-module M, is an abelian group with an action of G. I.e., there is an homomorphism $\theta: G \to \operatorname{Aut}(M)$. Usual, we take $g \in G, m \in M$ and define $\phi(g)m = g \cdot m$ with the properties

- $g(m_1 + m_2) = gm_1 + gm_2$
- g(g'm) = (gg')m

We can extend this action to an action of $\mathbb{Z}[G]$ on M.

Definition 1.2. For a *G*-module M, let $M^G = \{m \in M | gm = m \forall g \in G\}$

Fact. $M^G = \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, M)$. We have a functor $(-)^G$ defined by $\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, -)$.

Let A, B, C be G-modules with the short exact sequence $0 \to A \to B \to C \to 0$. Apply $(-)^G$ to get an exact sequence $0 \to A^G \to B^G \to C^G$.

Definition 1.3. Let G be as above, M a G-module. For $i \ge 0$, define $C^i(G, A)$ to be Maps (G^i, M) with $G^0 = \{1\}$.

Note that $C^0(G, M) \cong M$. We give $C^i(G, M)$ a group structure pointwise and $(g\phi)(x_1, \ldots, x_n) = g(\phi(x_1, \ldots, x_n))$.

Definition 1.4. We define co-boundary homomorphism $d_n : C^n(G, M) \to C^{n+1}(G, M)$ as follows. Let $f \in C^n(G, M), g_i \in G$, then, $d_{-1} = 0$ and for $n \ge 0$

$$d_n(f)(g_1, \dots, g_{n+1}) = g_1 f(g_2, \dots, g_{n+1}) + \sum_{i=1}^n (-1)^i f(g_1, \dots, g_{i-1}, g_i g_{i+1}, g_{i+2}, \dots, g_{n+1}) + (-1)^{n+1} f(g_1, \dots, g_n)$$

 $n = 0 \qquad d_0 f(g) = gf - f$

$$n = 1$$
 $d_1(f)(g_1, g_2) = g_1 f(g_2) - f(g_1 g_2) + f(g_1)$

Exercise: Show that $0 \xrightarrow{d_{-1}} C^0(G, M) \xrightarrow{d_0} C^1(G, M) \xrightarrow{d_1} \dots$ is a cochain complex.

Let $Z^n(G, M) = \ker d_n$. These are called *n*-cocycles

Let $B^n(G, M) = \operatorname{im} d_{n-1}$. These are called *n*-coboundaries.

Define the *n*th *Cohomology group* to be

$$H^n(G,M)=\frac{Z^n(G,M)}{B^n(G,M)} \text{ for } n\geq 0$$

n = 0 We have $B^0(G, M) = \{0\}, Z^0(G, M) = \{f \in C^0(G, M) | gf = f \forall g \in G\}$, hence $H^0(G, M) = M^G$

 $\begin{array}{l} n=1 \qquad \text{We have } B^1(G,M)=\{f|f(g)=ga-a \text{ for some } a\in M\}, \text{ and } Z^1(G,M)=\{f|f(g_1,g_2)=g_1f(g_2)+f(g_1)\}, \\ \text{ and } H^1(G,M)=Z^1/B^1. \text{ If } G \text{ acts trivially then } H^1=\text{Hom}(G,M). \end{array}$

1.2 Topological groups

Let G be a topological (profinite group) and T a topological G-module (i.e., T is an topological abelian group with continuous G-action)

Definition 1.5. We define $C^i_{cts}(G,T) = CtsMaps(G^i,T)$.

Take T, T', T'' to be topological *G*-modules and let $0 \to T' \to T \to T'' \to 0$ be a short exact sequence. Furthermore let $S: T'' \to T$ be a continuous section (as spaces). We get $0 \to C^i_{\text{cts}}(G,T') \to C^i_{\text{cts}}(G,T) \to C^i_{\text{cts}}(G,T') \to 0$ is exact for all $i \ge 0$. We define $d_n: C^n_{\text{cts}}(G,T) \to C^{n+1}_{\text{cts}}(G,T)$ as before and then we get a long exact sequence

 $\cdots \to H^n_{\mathrm{cts}}(G,T') \to H^n_{\mathrm{cts}}(G,T) \to H^n_{\mathrm{cts}}(G,T'') \to H^{n+1}_{\mathrm{cts}}(G,T') \to \dots$

1.3 Maps between cohomology groups

Definition 1.6. Let G, G' be groups and M (respectively M') be a G-module (respectively G'-module). We say $\phi: G' \to G$ and $\psi: M \to M'$ are *compatible* if for $g' \in G'$, $a \in M$, $\psi(\phi(g')a) = g'\psi(a)$.

These induces a map $C^i(G, M) \to C^i(G', M')$ which in turn give a map $H^i(G, M) \to H^i(G', M')$

Example.

- Let $H \leq G$, $\phi: H \hookrightarrow G$ and $\psi = id: M \to M$. We get (restriction) Res: $H^n(G, M) \to H^n(H, M)$ defined by $[f] \mapsto [f|_H]$.
- Let $H \leq G$, $\phi: G \to G/H$, $\psi: M^H \hookrightarrow M$. Then we get (*inflation*) Inf: $H^n(G/H, M^H) \to H^n(G, M)$ defined by $\inf(f)(g) = f(\overline{g})$ for $f \in Z^n(G/H, M^H)$.
- We have an exact sequence

$$0 \to H^1(G/H, M^H) \stackrel{\text{inf}}{\to} H^1(G, M) \stackrel{\text{res}}{\to} H^1(H, M)^{G/H} \stackrel{\text{trans}}{\to} H^2(G/H, M^H) \stackrel{\text{inf}}{\to} H^2(G, M) \to H^1(G, M) \stackrel{\text{res}}{\to} H^1(G, M) \stackrel$$

1.4 H^1 extension

Let A, B be G-modules, give $A \otimes_{\mathbb{Z}} B$ a G-action. There exists a family of maps $C^n(G, A) \otimes C^n(G, B) \xrightarrow{\cup} C^{n+m}(G, A \otimes B)$. B). For $n = 0, A^G \otimes B^G \to (A \otimes B)^G$. This will extend to a map on H^n .

We also get $d(f \cup g) = df \cup g + (-1)^n (f \cup dg).$