Galois Cohomology (Study Group)

1 Cohomology of Arithmetic Groups and Eichler - Shimura Isomorphism

In <u>nice cases</u> we can define an arithmetic group as follow. Let K be a number field. "An *arithmetic group* is a subgroup of G(K) that is commensurable with $G(\mathcal{O}_K)$. (Where G is the general linear group)"

Remark. Γ_1 and Γ_2 are commensurable if $\Gamma_1 \cap \Gamma_2$ have finite index in Γ_1 and Γ_2 . This is an equivalence relation

Example. $\operatorname{GL}_n(\mathcal{O}_K)$, $\operatorname{SL}_n(\mathcal{O}_K)$

In particular, we will work with $SL_2(\mathbb{Z})$, $PSL_2(\mathbb{Z})$ and finite index subgroup of them.

Let $\Gamma \leq SL_2(\mathbb{Z})$ be of finite index. We want to have a Γ -module so that we can consider cohomology.

Definition 1.1. $V_k(\mathbb{C}) = \{\text{homogenous degree } k \text{ polynomial in } \mathbb{C}[X, Y]\}$. We will say that this has "weight" k + 2.

This has a Γ -action defined by: for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ $P|_{\gamma}(X,Y) = P(aX + cY, bX + dY)$

Aside: You can define the other action by $P|_{\gamma}(X,Y) = P(dX - cY, -bX + aY)$ Note. $V_0(\mathbb{C}) \cong \mathbb{C}$

Fact. For $\Gamma \leq \text{SL}_2(\mathbb{Z})$ of finite index we have that $H^i(\Gamma, V_k(\mathbb{C})) = 0$ for all $i \geq 2$. (This use M-V and the fact that $\text{SL}_2(\mathbb{Z}) \cong C_4 *_{C_2} C_6$)

So we are interested in $H^1(\Gamma, V_k(\mathbb{C}))$. Recall the space $M_k(\Gamma) = \{f : \mathcal{H} \to \mathbb{C} : (f|_k\gamma)(z) = (cz+d)^k f(\gamma z) = f(z) \forall \gamma \in \Gamma\}$ and $S_k(\Gamma) \subset M_k(\Gamma)$.

Definition 1.2. The space of antiholomorphic cusp form $\overline{S_k(\Gamma)}$ consists of functions $\overline{f}(z) := \overline{f(z)}$ with $f \in S_k(\Gamma)$

Eichler - Shimura Isomorphism. Let $k \geq 2$ and $\Gamma \leq SL_2(\mathbb{Z})$ be of finite index. We have the map

$$M_k(\Gamma) \oplus S_k(\Gamma) \to H^1(\Gamma, V_{k-2}(\mathbb{C}))$$
 (†)

is an isomorphism.

To define the map, we need to introduce some more notation. Fix $z_0 \in H$, let $f \in M_k(\Gamma)$ with $k \geq 2$ and $g, h \in SL_2(\mathbb{Z})$. Define

$$I_{f}(gz_{0}, hz_{0}) := \int_{gz_{0}}^{hz_{0}} f(z)(Xz+Y)^{k-2}dz \in V_{k-2}(\mathbb{C})$$
$$I_{\overline{f}}(gz_{0}, hz_{0}) := \int_{gz_{0}}^{hz_{0}} \overline{f(z)}(Xz+Y)^{k-2}dz \in V_{k-2}(\mathbb{C})$$

The map (\dagger) is defined as

$$(f,\overline{g})\mapsto (\gamma\mapsto I_f(z_0,\gamma z_0)+I_{\overline{g}}(z_1,\gamma z_1))$$

One needs to check that this map is independent of the choice of z_0 and z_1 (and it is in fact an isomorphism)

Definition 1.3. We define the parabolic cohomology group (or cusp cohomology) via the kernel of the restriction map in

$$0 \to H^1_{\mathrm{par}}(\Gamma, V_k(\mathbb{C})) \to H^1(\Gamma, V_k(\mathbb{C})) \xrightarrow{\mathrm{res}} \prod_{c \in \Gamma \setminus \mathbb{P}^1(\mathbb{Q})} H^1(\Gamma_c, V_k(\mathbb{C}))$$

where Γ_c is the stabilizer of the cusp c in Γ .

In weight 2 we can do this topologically. Let $Y_{\Gamma} = \Gamma \setminus \mathcal{H}$, then $Y_{\Gamma} = k(\Gamma, 1)$ (as described in Matthew's talk). Hence $H^1(\Gamma, \mathbb{C}) \cong H^1(Y_{\Gamma}, \mathbb{C})$, but we are actually interested in the Borel - Serre compactification of Y_{Γ} , call it X_{Γ} . Then $H^1(Y_{\Gamma}, \mathbb{C}) \cong H^1(X_{\Gamma}, \mathbb{C})$ and we define the cusp cohomology as

 $0 \to H^1_{\mathrm{cusp}}(X_{\Gamma}, \mathbb{C}) \to H^1(X_{\Gamma}, \mathbb{C}) \xrightarrow{\mathrm{res}} H^1(\partial X_{\Gamma}, \mathbb{C})$

Hence topologically, $H^1_{\text{cusp}}(\Gamma, \mathbb{C}) = \{f : \Gamma \to \mathbb{C} | f \text{ vanishes at every cusp} \}$

Proposition 1.4. The Kernel of the composition of the Eichler - Shimura map with the restriction map

$$M_k(\Gamma) \oplus \overline{S_k(\Gamma)} \to H^1(\Gamma, V_{k-2}(\mathbb{C})) \to \prod_{c \in \Gamma \setminus \mathbb{P}^1(\mathbb{Q})} H^1(\Gamma_c, V_{k-2}(\mathbb{C}))$$

is equal to $S_k(\Gamma) \oplus \overline{S_k(\Gamma)}$

Corollary 1.5. If $\Gamma \leq SL_2(\mathbb{Z})$ has finite index, then $H^1_{par}(\Gamma, V_k(\mathbb{C})) \cong S_k(\Gamma) \oplus \overline{S_k(\Gamma)}$

1.0.1 Hecke Operators

We now restrict ourselves to $\Gamma_0(N) = \left\{ A \in \mathrm{SL}_2(\mathbb{Z}) : A \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod N \right\}$ and $\Gamma_1(N) = \left\{ A \in \mathrm{SL}_2(\mathbb{Z}) : A \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod N \right\}$ We need to define the following objects:

•
$$\Delta_0^n(N) = \{A \in M_2(\mathbb{Z}) : A \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod N, \det A = n, \gcd(a, n) = 1\}$$

•
$$\Delta_1^n(N) = \{A \in M_2(\mathbb{Z}) : A \equiv \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \mod N, \det A = n\}$$

•
$$\Delta_0(N) = \bigcup_{n \in \mathbb{N}} \Delta_0^n$$

• $\Delta_1(N) = \bigcup_{n \in \mathbb{N}} \Delta_1^n$

From now on Δ , Γ will refer to either the pair $\Delta_1(N)$, $\Gamma_1(N)$ or $\Delta_2(N)$, $\Gamma_2(N)$.

Definition 1.6. Let $\alpha \in \Gamma$, define $\Gamma_{\alpha} = \Gamma \cap \alpha^{-1} \Gamma \alpha$ and $\Gamma^{\alpha} = \Gamma \cap \alpha \Gamma \alpha^{-1}$

Note. $\Gamma, \alpha^{-1}\Gamma\alpha$ and $\alpha\Gamma\alpha^{-1}$ are all pairwise commensurable Notation. If $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ we let $\alpha^{\iota} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \det(\alpha) \cdot \alpha^{-1}$

Definition 1.7. Let $\alpha \in \Delta$. The Hecke operator τ_{α} on a group cohomology is the composite

$$\begin{array}{c|c} H^{1}(\Gamma, V_{k}(\mathbb{C})) - \xrightarrow{\gamma_{\alpha}} \succ H^{1}(\Gamma_{1}, V_{k}(\mathbb{C})) \\ & \text{res} \\ & & \uparrow \\ H^{1}(\Gamma^{\alpha}, V_{k}(\mathbb{C})) \xrightarrow{\text{conj}_{\alpha}} H^{1}(\Gamma_{\alpha}, V_{k}(\mathbb{C})) \end{array}$$

where $\operatorname{conj}_{\alpha}$ is defined by $c \mapsto (g_{\alpha} \mapsto \alpha^{\iota} \cdot c(\alpha g_{\alpha} \alpha^{-1}))$

We can in fact explicitly write down how τ_{α} acts on H^1 .

Proposition 1.8. Let $\alpha \in \Delta$, and suppose that $\Gamma \alpha \Gamma = \bigsqcup_{i=1}^{n} \Gamma \beta_i$ (which can always be done). Then τ_{α} acts on H^1 and H^1_{cups} by sending non-homogeneous cocycle c to $\tau_{\alpha}c$ which is defined by

$$(\tau_{\alpha}c)(g) = \sum_{i=1}^{n} \beta_i c(\beta_i g \beta_{\sigma_g(i)}^{-1})$$

where $\sigma_g(i)$ is such that $\beta_i g \beta_{\sigma_g(i)}^{-1} \in \Gamma$.

Definition 1.9. For a positive integer n, the Hecke operator T_n is defined as

$$\sum_{\alpha \in \Gamma \setminus \Delta^n / \Gamma} \tau_c$$

Note. If p is a prime not dividing N, then T_p is τ_{α} for $\alpha = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}$.

Definition 1.10. We can also define the diamond operator for *a* coprime to *N*, $\langle a \rangle$, as τ_{α} where α is such that $\alpha \equiv \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix} \mod N$

Proposition 1.11. The Eichler - Shimura isomorphism is compatible with Hecke operators

In particular we have $S_k(\Gamma) \oplus \overline{S_k(\Gamma)} \cong H^1_{\text{cusp}}(\Gamma, V_{k-2}(\mathbb{C}))$ as Hecke modules. Note that $H^1_{\text{cusp}}(\Gamma, V_k(\mathbb{Z})) \subset H^1_{\text{cusp}}(\Gamma, V_k(\mathbb{C}))$ and that (as the defining diagram make sense), it is stable under the Hecke operators. That is, we have a lattice (H^1/Tor) in $S_k(\Gamma) \oplus \overline{S_k(\Gamma)}$ that is stable under the Hecke operators, so after fixing a basis, we have that a Hecke operator acts $T: \mathbb{Z}^d \to \mathbb{Z}^d$. Hence the characteristic polynomial of a Hecke operator is integral.

Let $\chi : (\mathbb{Z}/n\mathbb{Z})^* \to \mathbb{C}^*$ be a Dirichlet character. Then if a \mathbb{C} -vector space V admits an action of $(\mathbb{Z}/n\mathbb{Z})^*$ we define

 $V^{\chi} = \{ v \in V : g \cdot v = \chi(g) \cdot v \forall g \in (\mathbb{Z}/n\mathbb{Z})^* \}$

We define $M_k(\Gamma_1(N), \chi)$ as the χ -eigenspace $M_k(\Gamma_1(N))^{\chi}$.

Theorem 1.12 (Eichler - Shimura). Let $N \ge 1$, $k \ge 2$ and $\chi : (\mathbb{Z}/N\mathbb{Z})^* \to \mathbb{C}^*$ be a Dirichlet character. Then the Eichler - Shimura map gives an isomorphism

$$\begin{split} M_k(\Gamma_1(N),\chi) \oplus \overline{S_k(\Gamma_1(N),\chi)} &\cong & H^1(\Gamma_0(N), V_{k-2}^{\chi}(\mathbb{C})) \\ S_k(\Gamma_1(N),\chi) \oplus \overline{S_k(\Gamma_1(N),\chi)} &\cong & H^1_{\text{cusp}}(\Gamma_0(N), V_{k-2}^{\chi}(\mathbb{C})) \end{split}$$