Galois Cohomology (Study Group)

1 Galois Cohomology and applications (Angelos Koutsianas)

1.1 Tate's Theorem

Theorem 1.1. Suppose $i>0$ and $T=\lim _{n} T_{n}$ where each T_{n} is a finite (discrete) G-module. If $H^{i-1}\left(G, T_{n}\right)$ is finite for all n, then $H^{i}(G, T)=\lim _{{ }_{幺}} H^{i}\left(G, T_{n}\right)$

Theorem 1.2. If T is a finitely-generated \mathbb{Z}_{p}-module, then for every $i \geq 0 H^{i}(G, T)$ has no divisible elements and $H^{i}(G, T) \otimes \mathbb{Q}_{p} \xrightarrow{\sim} H^{i}\left(G, T \otimes \mathbb{Q}_{p}\right)$.

Principle: "If G satisfies the condition that $H^{i}(G, M)$ is finite for finite M, we have nice theorems"

1.2 Hilbert's 90, Kummer Theorem and more.

Let $K \subset L$ be field extensions such that L / K is Galois, and denote $G_{L / K}:=\operatorname{Gal}(L / K)$. Then $G_{L / K}$ is profinite.

$$
H^{i}\left(G_{L / K}, L^{*}\right) \cong \underset{L \supset M \supset K, \text { finite, Galois }}{\underset{\lim }{ }} H^{i}\left(G_{M / K}, M^{*}\right)
$$

Theorem 1.3 (Hilbert's 90). We have $H^{1}\left(G_{L / K}, L^{*}\right)=1$.
General case: $H^{1}\left(G_{L / K}, \operatorname{GL}_{n}(L)\right)=1$.
Let us assume \bar{K} is separable. We have the following short exact sequence

$$
1 \longrightarrow \mu_{N} \longrightarrow \bar{K}^{*} \xrightarrow{N} \bar{K}^{*} \longrightarrow 1
$$

where μ_{N} is the group which are N-th root of unity. We assume $\mu_{N} \subseteq K^{*}$. We get

$$
1 \longrightarrow \mu_{N} \longrightarrow K^{*} \xrightarrow{N} K^{*} \longrightarrow{ }^{\delta} H^{1}\left(G_{\bar{K} / K}, \mu_{N}\right) \longrightarrow H^{1}\left(G_{\bar{K} / K}, \bar{K}^{*}\right) \longrightarrow \ldots
$$

Since $H^{1}\left(G_{\bar{K} / K}, \bar{K}^{*}\right)=1$ (by Hilbert's 90), we have that δ is surjective. Hence we get:
Theorem 1.4 (Kummer). $\operatorname{Hom}_{\operatorname{ctn}}\left(G_{\bar{K} / K}, \mu_{n}\right)=H^{1}\left(G_{\bar{K} / K}, \mu_{N}\right) \cong K^{*} /\left(K^{*}\right)^{N}$
Definition 1.5. Let p be a prime then $\mathbb{Z}_{p}(1):=\lim _{{ }_{n}} \mu_{p^{n}}$
Since $H^{0}\left(G_{\bar{K} / K}, \mu_{p^{n}}\right)=\mu_{p^{n}} \cap K<\infty$ for all $n \in \mathbb{N}$, we can use Tate's theorem to get $H^{1}\left(G_{\bar{K} / K}, \mathbb{Z}_{p}(1)\right) \cong$ $K^{*} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$.

Let E / K be an elliptic curve, with K a number field. We have the following short exact sequence

$$
0 \longrightarrow E[m] \longrightarrow E(\bar{K}) \xrightarrow{m} E(\bar{K}) \longrightarrow 0 .
$$

This gives us the following long exact sequence

$$
0 \longrightarrow E(K)[m] \longrightarrow E(K) \xrightarrow{m} E(K) \longrightarrow H^{\delta}\left(G_{\bar{K} / K}, E[m]\right) \longrightarrow H^{1}\left(G_{\bar{K} / K}, E(\bar{K})\right) \longrightarrow \ldots
$$

$$
0 \longrightarrow E(K) / m E(K) \xrightarrow{\delta} H^{1}\left(G_{\bar{K} / K}, E[m]\right) \longrightarrow H^{1}\left(G_{\bar{K} / K}, E(\bar{K})\right)[m] \longrightarrow 0
$$

Again by Tate we have

$$
E(K) \otimes \mathbb{Z}_{p}=\varliminf_{\varliminf_{n}} \frac{E(K)}{p^{n} E(K)} \stackrel{\delta}{\hookrightarrow} H^{1}\left(G_{\bar{K} / K}, T_{p}(E)\right)
$$

where $T_{p}(E):=\lim _{{ }_{n}} E\left[p^{n}\right]$.

1.3 Milnor K-group

Let K be a local field, the Hilbert symbol is a bilinear function $K^{*} \times K^{*} \rightarrow \mu_{n}$ such that $(a, 1-a)=1$ when $a, 1-a \in K^{*}$.
$n=2 \quad$ In this case the Hilbert symbol is defined as $(a, b)=\left\{\begin{array}{ll}1 & z^{2}=a x^{2}+b y^{2} \text { has non trivial solution on } K^{3} . \\ -1 & \text { else }\end{array}\right.$.
Definition 1.6. We define the n-th Milnor K-group of the field F (for $n \geq 1$) to be

$$
K_{n}^{M}(F)=\overbrace{\left(F^{*} \otimes \cdots \otimes F^{*}\right)}^{n \text { times }} / F_{n}
$$

where

$$
F_{n}=\left\langle a_{1} \otimes \cdots \otimes a_{n}: \exists i \neq j \text { with } a_{i}+a_{j}=1\right\rangle
$$

We have the following map $F^{*} \times \cdots \times F^{*} \rightarrow K_{n}^{M}(F)$ defined by $\left(a_{1}, \ldots, a_{n}\right) \mapsto\left\{a_{1}, \ldots, a_{n}\right\}:=a_{1} \otimes \cdots \otimes a_{n}$ $\bmod F_{n}$. Observing that $F_{n} \otimes \overbrace{F \otimes \cdots \otimes F}^{n}$ and $\overbrace{F \otimes \cdots \otimes F}^{m} \otimes F_{n}$ are both in F_{n+m}, we can define $K_{n}^{M}(F) \times$ $K_{m}^{M}(F) \rightarrow K_{n+m}^{M}(F)$ by $\left(\left\{a_{1}, \ldots, a_{n}\right\},\left\{b_{1}, \ldots, b_{m}\right\}\right) \rightarrow\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\}$. Hence we have a graded ring $K^{M}(F)=\oplus_{n \geq 0} K_{n}^{M}(F)$ where we define $K_{0}^{n}(F)=\mathbb{Z}$.

We have a short exact sequence

$$
\begin{gathered}
1 \longrightarrow \mu_{N} \longrightarrow \bar{F}^{*} \xrightarrow{N} \bar{F}^{*} \longrightarrow 1 \\
\delta_{F}: F^{*} \longrightarrow H^{1}\left(G_{\bar{F} / F}, \mu_{N}\right)
\end{gathered}
$$

Recall that we have the cup product:

$$
\underbrace{H^{1}\left(G_{\bar{F} / F}, \mu_{N}\right) \times \cdots \times H^{1}\left(G_{\bar{F} / F}, \mu_{N}\right)}_{n} \xrightarrow{\cup} H^{n}\left(G_{\bar{F} / F}, \mu_{n}^{\otimes n}\right)
$$

Theorem 1.7. The map $\cup \circ \delta$ induces a homomorphism $h_{F}: K_{n}^{M}(F) \rightarrow H^{n}\left(G_{\bar{F} / F}, \mu_{N}^{\otimes n}\right)$.
Bloch - Kato - Voevodsky's Theorem (Fields Medal). For every field F and $(N, \operatorname{char} F)=1$, then h_{F} gives an isomorphism

$$
h_{F}: K_{n}^{M}(F) / N K_{n}^{M}(F) \xrightarrow{\sim} H^{n}\left(G_{\bar{F} / F}, \mu_{N}^{\otimes n}\right)
$$

for all $n \geq 1$.

