Galois Cohomology (Study Group)

1 Cohomology of Local Fields (by Pedro Lemos)

Notation.
e For a field K, G will be the absolute Galois group

e If K is a non-archimedean local field (characteristic 0), write G} = Gal(Kyn,/K)

1.1 Finiteness of Cohomology and Tate’s Duality

Definition 1.1. If G is a group (respectively profinite groups), the cohomological dimension of G is the smallest
non-negative integer m such that H*(G, A) = 0 for all i > m, for all A G-module (respectively discrete G-modules).
We denote this by ¢dG

For a prime p, we define the cohomological p-dimension of G to be the smallest non-negative integer m such
that H'(G, A)(p) = 0 for all i > m, for all A G-module (respectively discrete G-modules). We denote this by c¢d,G

Theorem 1.2. Let K be a non-archimedean local field of characteristic 0.

1. For any prime p, we have c¢d,Gx = 2. Also, if L/K is of degree p> then c¢d,G < 1.

K*)(K9)™ i=1
2. H(Gg,pm) =< 172/Z i=2
0 i>3

3. If A is a finite G -module, then H (G, A) is finite, for all i > 0.
Given a non-archimedean local field K, set A* = Hom(A4,Q/Z) and A’ = Hom(A, u).

Theorem 1.3 (Tate’s Duality). Let K be a finite field extension of Q, and A a finite G x-module. Then the cup
product gives us H'(K, A') x H*>7{(K, A) 5 H?*(K,p) = Q/Z which, for i € {0,1,2}, induces an isomorphism
HY(K,A") — H> (K, A)*.

We have a representation p : Gx — Aut(A). We say that this representation is unramified if the inertia subgroup
I of G is contained in ker p. Equivalently A? = A. Notice that I = Gal(K, Kun;).

Definition 1.4. For a Gg-module A, we define H! (K, A) = im (Hi(G%‘r,AJ) xf Hi(GK,A)>. We call this
group the ith unramified cohomology group.

Remark. We have HO

unr

(K, A) = HO(K, A).

Theorem 1.5. Let A be a finite G i -module with |A| coprime with the characteristic of the residue field, where K
is a finite field extension of Q. Then the groups H. (K, A’) and H:'(K, A') annihilate each others in the pairing

unr unr

Hi(K,A') x H* (K, A) = H%(K, 1) = Q/Z. Moreover, they are mutually orthogonal complements.



1.2 Euler - Poincaré characteristic
Set h'(K,A) = |H'(K, A)|.

Definition 1.6. The Euler - Poincaré characteristic of A is given by x(K, A) = [, h*(K, A)(*l)i.

Remark. In our case x(K,A) = %

Theorem 1.7 (Tate). For any finite Gx-module A of order a, we have x(K, A) = |a|,, where | | is a normalised
absolute value on K.

1.3 Tate modules of Elliptic curves

Definition 1.8. If E is an elliptic curve over K, and we take [ to be a prime with [ # charK . The l-adic Tate
module of E is T)(E) = lim E(K)[I"].

If m # charK, we know that E(K)[m] = (Z/mZ). We get a continuous representation p : Gx — GL | T}(E) ®z, Q; | =
[ ——

Vi(E)
GL2(Qy).
Aim: To study the cohomology of V;(E).
Let us look at an elliptic curve over F,,. Gy, is topologically generated by the Frobenius automorphism ¢,.

Fact. The characteristic polynomial of p(¢,) is x* — a,(E)x + p, where ay,(E) = p+ 1 — |E(F,)|. We know that
|lap(E)| < 24/p.

So, HO(Fp, Vi(E)) = Vi(E)% = 0. We have H'(Cy,, A) = 20 whege N :A— Ais defined by a = Y _ s 0a.
We compute H'(F,, Vi(E)) = wkl% =~ Vi(E)/Vi(E) = 0. Finally HZ(F,,, Vi(E)) =0 for i > 2.

Consider E an elliptic curve of good reduction over Q,. We have H}  (Gq,,Vi(E)) = 0 for i € {0,1,2}, this is
due to the fact H,.(Gg,, Vi(E)) = Hi(Gé‘;r, Vi(E)).

HO(Gg,  Vi(E)) = HY,,(Ga,, Vi(E)).

Theorem 1.9 (Néron - Ogg - Shaferenich). ¢ For an elliptic curve E over Q,, E has good reduction if and only if
there exists a prime | # p such that T E is unramified.

We let [ and p be primes for the rest of this section

Theorem 1.10. Let V be a finite Gg, -module which is also a Q; -vector space. Then H'(Qy, V) is finite dimensional
Vi >0 and H(Q,,V) =0 for all i > 3.

We define Ql(l) =Q Xz, Zl(l).
Theorem 1.11. Let V be as above. The cup product gives us again an isomorphism H'(Q,, V') = H?7(Q,,V)*,
where V' = Hom(V,Q;(1)) and V* = Hom(V,Q;). Furthermore, H} (Q,, V') and H., (Qp, V) are mutually
orthogonal.
Euler - Binearo characteristic. x(Q,,V) = .(—1)"dimg, H(Q,,V).
Theorem 1.12. Let V be as above, then for l # p we have x(Q,, V) = 0.

Let E be an elliptic curve over Q, with good reduction, and [ # p be a prime. We have HO(G(‘@?,Vl(E)) =
HO(Gr,, Vi(E)) = 0, H(Qy, Vi(E)) = HY,,:(Qy, Vi(E)) = 0.



There is a pairing (Weil pairing) Vi(E) x Vi(E) — @Q;(1), which is non-degenerate, Galois invariant, bilinear.
This means that V;(E) =2 Vi(E)". So

0 = HQ,Vi(E))

H°(Qp, Vi(E))

= H*(Qp Vi(E))”
= H*(Q,,Vi(E)) =0

So the Euler - Poincaré implies H*(Q,, Vi(E)) = 0.

Hence: If E is an elliptic curve over Q, with good reduction, then H*(Q,, V;(E)) = 0 for all i > 0.

Now consider an elliptic curve E over Q,, with split multiplicative reduction. We have dimg, H°(Q,, Vi(E)) < 1.
The reduction mod p induces amap « : Vi(E) — Vi(Eys). We know that E,s(F,) = F;, Ens(Fp)[I™] = F; [I™] = pym,
hence we have Vi(Eys) = Q(1). We have a map Vi(E) — Q(1), the cyclotomic character x; : Gg, — Qj and
Vi(E)/ker a = Q;(1). Turns out that the determinant of p : Gg, — GL(V;(E)) is also x;. So dimg, H(Q,, Vi(E)) =
1. By Tate’s duality, dim H?(Q,, V;(F)) = 1 and by Euler - Poincaré: dim H*(Q,, Vi(E)) = 2.

Remark. For any other case of bad reduction we have H*(Q,, V;(E)) = 0 for all i > 0.



