Galois Cohomology (Study Group)

1 Cohomology of Local Fields (by Pedro Lemos)

Notation.

- For a field K, G_{K} will be the absolute Galois group
- If K is a non-archimedean local field (characteristic 0), write $G_{K}^{\mathrm{unr}}=\operatorname{Gal}\left(K_{\mathrm{unr}} / K\right)$

1.1 Finiteness of Cohomology and Tate's Duality

Definition 1.1. If G is a group (respectively profinite groups), the cohomological dimension of G is the smallest non-negative integer m such that $H^{i}(G, A)=0$ for all $i>m$, for all $A G$-module (respectively discrete G-modules). We denote this by $\operatorname{cd} G$

For a prime p, we define the cohomological p-dimension of G to be the smallest non-negative integer m such that $H^{i}(G, A)(p)=0$ for all $i>m$, for all $A G$-module (respectively discrete G-modules). We denote this by $\operatorname{cd}_{\mathrm{p}} G$

Theorem 1.2. Let K be a non-archimedean local field of characteristic 0 .

1. For any prime p, we have $\operatorname{cd}_{p} G_{K}=2$. Also, if L / K is of degree p^{∞} then $\operatorname{cd}_{p} G_{L} \leq 1$.
2. $H^{i}\left(G_{K}, \mu_{m}\right)= \begin{cases}K^{*} /\left(K^{*}\right)^{m} & i=1 \\ \frac{1}{m} \mathbb{Z} / \mathbb{Z} & i=2 \\ 0 & i \geq 3\end{cases}$
3. If A is a finite G_{K}-module, then $H^{i}\left(G_{K}, A\right)$ is finite, for all $i \geq 0$.

Given a non-archimedean local field K, set $A^{*}=\operatorname{Hom}(A, \mathbb{Q} / \mathbb{Z})$ and $A^{\prime}=\operatorname{Hom}(A, \mu)$.
Theorem 1.3 (Tate's Duality). Let K be a finite field extension of \mathbb{Q}_{p} and A a finite G_{K}-module. Then the cup product gives us $H^{i}\left(K, A^{\prime}\right) \times H^{2-i}(K, A) \xrightarrow{\cup} H^{2}(K, \mu) \cong \mathbb{Q} / \mathbb{Z}$ which, for $i \in\{0,1,2\}$, induces an isomorphism $H^{i}\left(K, A^{\prime}\right) \rightarrow H^{2-i}(K, A)^{*}$.

We have a representation $\rho: G_{K} \rightarrow \operatorname{Aut}(A)$. We say that this representation is unramified if the inertia subgroup I of G_{K} is contained in ker ρ. Equivalently $A^{I}=A$. Notice that $I \cong \operatorname{Gal}\left(\bar{K}, K_{\text {unr }}\right)$.
Definition 1.4. For a G_{K}-module A, we define $H_{\text {unr }}^{i}(K, A)=\operatorname{im}\left(H^{i}\left(G_{K}^{\text {unr }}, A^{J}\right) \xrightarrow{\text { inf }} H^{i}\left(G_{K}, A\right)\right)$. We call this group the ith unramified cohomology group.
Remark. We have $H_{\mathrm{unr}}^{0}(K, A)=H^{0}(K, A)$.
Theorem 1.5. Let A be a finite G_{K}-module with $|A|$ coprime with the characteristic of the residue field, where K is a finite field extension of \mathbb{Q}_{p}. Then the groups $H_{\mathrm{unr}}^{i}\left(K, A^{\prime}\right)$ and $H_{\mathrm{unr}}^{2-i}\left(K, A^{\prime}\right)$ annihilate each others in the pairing $H^{i}\left(K, A^{\prime}\right) \times H^{2-i}(K, A) \xrightarrow{\hookrightarrow} H^{2}(K, \mu) \cong \mathbb{Q} / \mathbb{Z}$. Moreover, they are mutually orthogonal complements.

1.2 Euler - Poincaré characteristic

Set $h^{i}(K, A)=\left|H^{i}(K, A)\right|$.
Definition 1.6. The Euler-Poincaré characteristic of A is given by $\chi(K, A)=\prod_{i} h^{i}(K, A)^{(-1)^{i}}$.
Remark. In our case $\chi(K, A)=\frac{h^{0}(K, A) h^{2}(K, A)}{h^{1}(K, A)}$
Theorem 1.7 (Tate). For any finite G_{K}-module A of order a, we have $\chi(K, A)=|a|_{K}$, where $\left|\left.\right|_{K}\right.$ is a normalised absolute value on K.

1.3 Tate modules of Elliptic curves

Definition 1.8. If E is an elliptic curve over K, and we take l to be a prime with $l \neq \operatorname{char} K$. The l-adic Tate module of E is $T_{l}(E)=\varliminf_{\varliminf_{n}} E(\bar{K})\left[l^{n}\right]$.

If $m \neq \operatorname{char} K$, we know that $E(\bar{K})[m] \cong(\mathbb{Z} / m \mathbb{Z})$. We get a continuous representation $\rho: G_{K} \rightarrow \mathrm{GL}(\underbrace{T_{l}(E) \otimes_{\mathbb{Z}_{l}} \mathbb{Q}_{l}}_{V_{l}(E)}) \cong$ $\mathrm{GL}_{2}\left(\mathbb{Q}_{l}\right)$.

Aim: To study the cohomology of $V_{l}(E)$.
Let us look at an elliptic curve over \mathbb{F}_{p}. $G_{\mathbb{F}_{p}}$ is topologically generated by the Frobenius automorphism ϕ_{p}.
Fact. The characteristic polynomial of $\rho\left(\phi_{p}\right)$ is $x^{2}-a_{p}(E) x+p$, where $a_{p}(E)=p+1-\left|E\left(\mathbb{F}_{p}\right)\right|$. We know that $\left|a_{p}(E)\right| \leq 2 \sqrt{p}$.

So, $H^{0}\left(\mathbb{F}_{p}, V_{l}(E)\right)=V_{l}(E)^{\phi_{p}}=0$. We have $H^{1}\left(C_{m}, A\right) \cong \frac{\mathrm{ker} N}{(g-1) A}$ where $N: A \rightarrow A$ is defined by $a \mapsto \sum_{\sigma \in G} \sigma a$. We compute $H^{1}\left(\mathbb{F}_{p}, V_{l}(E)\right) \cong \frac{\text { ker } N}{\left(\phi_{p}-1\right) V_{l}(E)} \cong V_{l}(E) / V_{l}(E)=0$. Finally $H^{i}\left(\mathbb{F}_{p}, V_{l}(E)\right)=0$ for $i \geq 2$.

Consider E an elliptic curve of good reduction over \mathbb{Q}_{p}. We have $H_{\text {unr }}^{i}\left(G_{\mathbb{Q}_{p}}, V_{l}(E)\right)=0$ for $i \in\{0,1,2\}$, this is due to the fact $H_{\mathrm{unr}}^{i}\left(G_{\mathbb{Q}_{p}}, V_{l}(E)\right)=H^{i}\left(G_{\mathbb{Q}_{p}}^{\mathrm{unr}}, V_{l}(E)\right)$.

$$
H^{0}\left(G_{\mathbb{Q}_{p}}, V_{l}(E)\right)=H_{\mathrm{unr}}^{0}\left(G_{\mathbb{Q}_{p}}, V_{l}(E)\right) .
$$

Theorem 1.9 (Néron-Ogg - Shaferenich). t For an elliptic curve E over \mathbb{Q}_{p}, E has good reduction if and only if there exists a prime $l \neq p$ such that $T_{l} E$ is unramified.

We let l and p be primes for the rest of this section
Theorem 1.10. Let V be a finite $G_{\mathbb{Q}_{l}}$-module which is also a \mathbb{Q}_{l}-vector space. Then $H^{i}\left(\mathbb{Q}_{p}, V\right)$ is finite dimensional $\forall i \geq 0$ and $H^{i}\left(\mathbb{Q}_{p}, V\right)=0$ for all $i \geq 3$.

We define $\mathbb{Q}_{l}(1):=\mathbb{Q}_{l} \otimes_{\mathbb{Z}_{l}} \mathbb{Z}_{l}(1)$.
Theorem 1.11. Let V be as above. The cup product gives us again an isomorphism $H^{i}\left(\mathbb{Q}_{p}, V^{\prime}\right) \xrightarrow{\sim} H^{2-i}\left(\mathbb{Q}_{p}, V\right)^{*}$, where $V^{\prime}=\operatorname{Hom}\left(V, \mathbb{Q}_{l}(1)\right)$ and $V^{*}=\operatorname{Hom}\left(V, \mathbb{Q}_{l}\right)$. Furthermore, $H_{\mathrm{unr}}^{1}\left(\mathbb{Q}_{p}, V^{\prime}\right)$ and $H_{\mathrm{unr}}^{1}\left(\mathbb{Q}_{p}, V\right)$ are mutually orthogonal.

Euler - Binearo characteristic. $\chi\left(\mathbb{Q}_{p}, V\right)=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{Q}_{l}} H^{i}\left(\mathbb{Q}_{p}, V\right)$.
Theorem 1.12. Let V be as above, then for $l \neq p$ we have $\chi\left(\mathbb{Q}_{p}, V\right)=0$.
Let E be an elliptic curve over \mathbb{Q}_{p} with good reduction, and $l \neq p$ be a prime. We have $H^{0}\left(G_{\mathbb{Q}_{p}}^{\mathrm{unr}}, V_{l}(E)\right)=$ $H^{0}\left(G_{\mathbb{F}_{p}}, V_{l}(\bar{E})\right)=0, H^{0}\left(\mathbb{Q}_{p}, V_{l}(E)\right)=H_{\mathrm{unr}}^{0}\left(\mathbb{Q}_{p}, V_{l}(E)\right)=0$.

There is a pairing (Weil pairing) $V_{l}(E) \times V_{l}(E) \rightarrow \mathbb{Q}_{l}(1)$, which is non-degenerate, Galois invariant, bilinear. This means that $V_{l}(E) \cong V_{l}(E)^{\prime}$. So

$$
\begin{aligned}
0 & =H^{0}\left(\mathbb{Q}_{p}, V_{l}(E)\right) \\
& =H^{0}\left(\mathbb{Q}_{p}, V_{l}(E)^{\prime}\right) \\
& \cong H^{2}\left(\mathbb{Q}_{p}, V_{l}(E)\right)^{*} \\
& \Rightarrow H^{2}\left(\mathbb{Q}_{p}, V_{l}(E)\right)=0
\end{aligned}
$$

So the Euler - Poincaré implies $H^{1}\left(\mathbb{Q}_{p}, V_{l}(E)\right)=0$.
Hence: If E is an elliptic curve over \mathbb{Q}_{p} with good reduction, then $H^{i}\left(\mathbb{Q}_{p}, V_{l}(E)\right)=0$ for all $i \geq 0$.
Now consider an elliptic curve E over \mathbb{Q}_{p} with split multiplicative reduction. We have $\operatorname{dim}_{\mathbb{Q}_{l}} H^{o}\left(\mathbb{Q}_{p}, V_{l}(E)\right) \leq 1$. The reduction mod p induces a map $\alpha: V_{l}(E) \rightarrow V_{l}\left(\bar{E}_{\text {ns }}\right)$. We know that $\bar{E}_{\mathrm{ns}}\left(\overline{\mathbb{F}}_{p}\right) \cong \overline{\mathbb{F}}_{p}^{*}, \bar{E}_{\mathrm{ns}}\left(\overline{\mathbb{F}}_{p}\right)\left[l^{m}\right] \cong \overline{\mathbb{F}}_{p}^{*}\left[l^{m}\right] \cong \mu_{l^{m}}$, hence we have $V_{l}\left(\bar{E}_{\mathrm{ns}}\right) \cong \mathbb{Q}_{l}(1)$. We have a map $V_{l}(E) \rightarrow \mathbb{Q}_{l}(1)$, the cyclotomic character $\chi_{l}: G_{\mathbb{Q}_{p}} \rightarrow \mathbb{Q}_{l}^{*}$ and $V_{l}(E) / \operatorname{ker} \alpha \cong \mathbb{Q}_{l}(1)$. Turns out that the determinant of $\rho: G_{\mathbb{Q}_{p}} \rightarrow \operatorname{GL}\left(V_{l}(E)\right)$ is also χ_{l}. $\operatorname{So~}_{\operatorname{dim}_{\mathbb{Q}_{l}} H^{0}\left(\mathbb{Q}_{p}, V_{l}(E)\right)=}$ 1. By Tate's duality, $\operatorname{dim} H^{2}\left(\mathbb{Q}_{p}, V_{l}(E)\right)=1$ and by Euler - Poincaré: $\operatorname{dim} H^{1}\left(\mathbb{Q}_{p}, V_{l}(E)\right)=2$.

Remark. For any other case of bad reduction we have $H^{i}\left(\mathbb{Q}_{p}, V_{l}(E)\right)=0$ for all $i \geq 0$.

