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Abstract. These are rough notes covering the third block of lectures in the “Ele-

mentary Methods in Analytic Number Theory” course. In these lectures we use sieve

weights to prove versions of Selberg’s Fundamental Lemma/Symmetry Formula, and

sketch how this leads to an elementary proof of the Prime Number Theorem. We also

discuss the work of Goldston–Pintz–Yıldırım, of Zhang, and of Maynard and Tao on

small gaps between primes.

(No originality is claimed for any of the contents of these notes. In particular, they

borrow from the book of Montgomery and Vaughan [3].)

8. An elementary proof of the Prime Number Theorem

In this section we shall prove the following fundamental result.

Theorem 8.1 (Prime Number Theorem, Hadamard, de la Vallée Poussin, 1896). We

have

π(x) := #{p ≤ x : p prime} ∼ x

log x
as x→∞.

Equivalently, we have

Ψ(x) :=
∑
n≤x

Λ(n) ∼ x as x→∞,

where Λ(n) is the von Mangoldt function.

To see that the two statements are equivalent, note that

Ψ(x) =
∑
√
x≤p≤x

log p+O(
√
x log x) = π(x) log x−

∑
√
x≤p≤x

log(x/p) +O(
√
x log x)

= π(x) log x+O(
∑

1≤k≤ log x
2 log 2

+1

∑
x/2k≤p≤x/2k−1

k +
√
x log x)

= π(x) log x+O(
x

log x

∑
1≤k≤ log x

2 log 2
+1

k

2k
+
√
x log x),

where the final equality uses Chebychev’s estimate that
∑

p≤x/2k−1 1� x/(2k−1 log(x/2k−1))�
x/(2k log x). Since the “big Oh” term is O(x/ log x), we see that Ψ(x) ∼ x if and only if

π(x) ∼ x/ log x. We shall actually prove the theorem in the form Ψ(x) ∼ x as x→∞.
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Hadamard and de la Vallée Poussin’s proofs used the Riemann zeta function, and

for a long time it was thought that no really different proof was possible. In 1921,

Hardy famously remarked that “A proof... not fundamentally dependent on the theory

of functions, seems to me extraordinarily unlikely...”. But in 1948-49, Erdős and Selberg

found beautiful “elementary” proofs of the Prime Number Theorem.

One can think of the Riemann zeta function as providing a kind of precise averaged

information about the distribution of the primes (actually a different average at each

complex number s), from which one can deduce the Prime Number Theorem using

complex analysis. For the elementary proofs we also need to start with some averaged

information, which you have seen before on the first problem sheet.

Proposition 8.2. Let x ≥ 1 and let T (x) :=
∑

n≤x Ψ(x/n). Then

T (x) =
∑
n≤x

log n = x log x− x+O(log(x+ 1)).

Note that
∑

n≤x
x
n

= x log x+ γx+O(1), where γ is Euler’s constant, so the Propo-

sition is at least consistent with the Prime Number Theorem. Note also that we cannot

hope to improve the “big Oh” term in the Proposition, since when x changes from being

just smaller than an integer to just larger than an integer the left hand side will increase

by about log x, whereas x log x− x can change by an arbitrarily small amount.

Now if (λn)n∈N is any real sequence, we have∑
n≤x

Ψ(x/n)
∑
d|n

λd =
∑
d≤x

λd
∑
m≤x/d

Ψ(x/md) =
∑
d≤x

λdT (x/d)

=
∑
d≤x

λd

(
x log(x/d)

d
− x

d
+O(log(x/d+ 1))

)
.

If x ≥ 2, and if we choose λ1 = 1, λ2 = −2, and λn = 0 for all n ≥ 3, then we obtain∑
n≤x

Ψ(x/n)(−1)n+1 = (x log x−x)−2((x/2) log(x/2)−x/2)+O(log x) = x log 2+O(log x).

As you saw on the first problem sheet, this is sufficient to deduce Chebychev’s bounds

for Ψ(x), or more precisely that

(log 2)x+O(log x) ≤ Ψ(x) ≤ (2 log 2)x+O(log x) ∀x ≥ 2.

Another obvious choice is to take λn = µ(n) for all n, since then
∑

d|n λd =
∑

d|n µ(d) =

1n=1, and we obtain

Ψ(x) =
∑
d≤x

µ(d)

(
x log(x/d)

d
− x

d
+O(log(x/d+ 1))

)
.
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But this is not really useful, because the contribution from the “big Oh” terms is

O(
∑

d≤x log(x/d+ 1)), which is O(x). This is too big to be an error term in the Prime

Number Theorem.

Our first key idea, motivated by the Selberg sieve, is to choose the weights λn to be

a “smoothed out” version of the Möbius function µ(n). There are various such choices

that will give an acceptable error term and still kill off most of the summands Ψ(x/n)

on the left hand side.

Proposition 8.3 (Selberg’s Fundamental Lemma/ Symmetry Formula, 1949). Define

the remainder R(x) := Ψ(x)− x. For any x ≥ 2 we have

Ψ(x)+
∑
n≤x

Ψ(x/n)
Λ(n)

log x
= 2x+O

(
x

log x

)
, and R(x)+

∑
n≤x

R(x/n)
Λ(n)

log x
= O

(
x

log x

)
.

In addition, we have

R(x) +
∑
n≤x

R(x/n)
Λ(n)2

log2 x
− 2

∑
pkql≤x,
p6=q

R(x/pkql)
log p log q

log2 x
= O

(
x

log x

)
,

where the second sum is over numbers that are a product of two powers of distinct

primes.

Proof of Proposition 8.3. To prove the first two statements we choose λd = µ(d) log(x/d)
log x

in the preceding discussion. On the one hand we have∑
d|n

λd =
∑
d|n

µ(d)
log(x/n) + log(n/d)

log x
= 1n=1 +

Λ(n)

log x
,

since
∑

d|n µ(d) = 1n=1 and
∑

d|n µ(d) log(n/d) = Λ(n). Therefore we have

Ψ(x)+
∑
n≤x

Ψ(x/n)
Λ(n)

log x
=
∑
n≤x

Ψ(x/n)
∑
d|n

λd =
∑
d≤x

λd

(
x log(x/d)

d
− x

d
+O(log(x/d+ 1))

)
.

Here the contribution from the “big Oh” terms is

� 1

log x

∑
d≤x

log2(x/d+1)� 1

log x

∑
1≤k≤ log x

log 2
+1

∑
x/2k≤d≤x/2k−1

k2 � x

log x

∑
1≤k≤ log x

log 2
+1

k2

2k
� x

log x
,

which is acceptable.

To determine the size of the other terms on the right hand side, we can employ a

neat comparison trick. Note that if we define U(x) :=
∑

n≤x(
x
n
− (1 + γ)) for all x,

where γ is Euler’s constant, then we have U(x) = x log x− x + O(1). So if we run the

same argument as above, with x
n
− (1 + γ) replacing Ψ(x/n) and U(x) replacing T (x),
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we obtain that

(x− (1 + γ)) +
∑
n≤x

(x/n− (1 + γ))
Λ(n)

log x
=
∑
d≤x

λd

(
x log(x/d)

d
− x

d
+O(1)

)
,

and therefore∑
d≤x

λd

(
x log(x/d)

d
− x

d

)
= (x− (1 + γ)) +

∑
n≤x

(x/n− (1 + γ))
Λ(n)

log x
+O

(
x

log x

)

= x+
∑
n≤x

x

n

Λ(n)

log x
+O

(
x

log x

)
= 2x+O

(
x

log x

)
,

by the estimates of Chebychev and Mertens (Facts 1 and 2 from Chapter 0). Inserting

this above gives the desired equality

Ψ(x) +
∑
n≤x

Ψ(x/n)
Λ(n)

log x
= 2x+O

(
x

log x

)
,

or instead subtracting it gives that R(x) +
∑

n≤xR(x/n)Λ(n)
log x

= O
(

x
log x

)
.

To prove the other statement we instead choose λd = µ(d)(1 − log2 d
log2 x

), for which we

have∑
d|n

λd =
∑
d|n

µ(d)− 1

log2 x

∑
d|n

µ(d)(
∑
t|d

Λ(t))2 = 1n=1−
1

log2 x

∑
t1,t2|n

Λ(t1)Λ(t2)
∑
d|n,

[t1,t2]|d

µ(d),

where [t1, t2] denotes the least common multiple. Here the sum
∑

d|n,
[t1,t2]|d

µ(d) vanishes

unless [t1, t2] is squarefree and n has no prime factors other than those of [t1, t2], so we

see ∑
d|n

λd = 1n=1 + 1n=pk
log2 p

log2 x
− 21n=pkql,q 6=p

log p log q

log2 x
.

Inserting this expression yields the result, the right hand side being handled as before

by subtracting the corresponding expression for x/n− (1 + γ) and U(x). �

Remark 8.4. It may not be clear that the choices of λd that we made when proving

Proposition 8.3 really are like Selberg sieve weights. However, if we take P to be all

primes and g(d) = 1/d in the “Optimal” Λ2 construction (Lemma 2.5) then we get

ρd = µ(d)
∏
p|d

(1−1

p
)−1· 1

J

∑
t≤
√
D/d,

t squarefree,(t,d)=1

1

t

∏
p|t

(1−1

p
)−1, where J =

∑
t≤
√
D,

t squarefree

1

t

∏
p|t

(1−1

p
)−1.

If we ignore the products over primes and coprimality and squarefreeness conditions

(whose effects roughly cancel each other out), we see that

ρd ≈ µ(d)

∑
t≤
√
D/d 1/t∑

t≤
√
D 1/t

≈ µ(d)
log(
√
D/d)

log(
√
D)

,
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as in Proposition 8.3.

Now we need to deduce the Prime Number Theorem from the Fundamental Lemma

(Proposition 8.3). It will suffice to prove that R(x) = o(x) as x → ∞, so suppose

we knew that |R(t)| ≤ βt + O(1) for all t ≤ x/2, for some fixed β > 0. Then the

Fundamental Lemma implies that

|R(x)| ≤
∑
n≤x

|R(x/n)|Λ(n)

log x
+O

(
x

log x

)
≤ β

∑
n≤x

x

n

Λ(n)

log x
+O

(
x

log x

)
= βx+O

(
x

log x

)
,

where we again used the estimates of Chebychev and Mertens. If we could replace β here

by any smaller constant then we would be able to prove the Prime Number Theorem by

induction on x, so this obvious argument just fails (i.e. using the Selberg-type weights

has removed almost enough terms for things to work out).

The second formula in the Fundamental Lemma fails in the same way, but it has

the crucial advantage of a difference in signs between the two sums, so we have the

possibility of extracting a little bit more cancellation. This is the second key idea in

the elementary proof of the Prime Number Theorem (and is due originally, in various

forms, to Erdős and Selberg).

Sketch proof of Theorem 8.1. Let x be large, and suppose β > 0 is such that |R(t)| =

|Ψ(t) − t| ≤ βt + O(1) for all t ≤ x/2. In view of Chebychev’s estimates we may start

by taking β = 1/2, and we will show that under these hypotheses we have

|R(x)| ≤ (β − 0.007β2)x+O(1).

Then inductively we can replace β by β − 0.007β2 (for x large enough), and repeating

the argument obtain that R(t) = o(t) as t→∞.

By the Fundamental Lemma and the triangle inequality we have

|R(x)| ≤
∑

0≤k≤ log x
log 16

∣∣∣∣∣∣∣∣∣−
∑

x

16k+1<n≤
x

16k

R(x/n)
Λ(n)2

log2 x
+ 2

∑
x

16k+1<p
kql≤ x

16k
,

p 6=q

R(x/pkql)
log p log q

log2 x

∣∣∣∣∣∣∣∣∣+O
(

x

log x

)
,

and if we just bounded every term by its absolute value, and used the assumption that

|R(t)| ≤ βt for t ≤ x/2, we would obtain (Exercise) that |R(x)| ≤ βx+O
(

x
log x

)
. So we

need to find an extra saving of 0.007β2x. In fact we will find an extra saving of order

β2x/ log x from each value 0 ≤ k ≤ (log x)/2 log 16, say.

Now for any k, if we knew that R(t) ≤ βt/2 for all 16k ≤ t ≤ 4 · 16k then we could

gain a term of order βx/ log x in our estimate for the contribution from that k. Notice

that even though our assumption on R(t) is just a one-sided inequality, we get a saving
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in absolute value because we have two sums with different signs. Similarly, we could

gain a term of order βx/ log x if we knew that R(t) ≥ −βt/2 for all 4 · 16k ≤ t < 16k+1.

So suppose that R(t1) > βt1/2 for some 16k ≤ t1 ≤ 4 · 16k and R(t2) < −βt2/2 for

some 4 · 16k ≤ t2 < 16k+1. Since R(t) =
∑

n≤t Λ(n)− t is right continuous, if we define

t1 ≤ t̃2 := inf{t ≥ t1 : R(t) ≤ −βt/2} ≤ t2

then we must have R(t̃2) ≤ −βt̃2/2. Moreover, in fact for any 1−β/2
1+β/2

t̃2 ≤ t ≤ t̃2 we have

R(t) ≤ R(t̃2) + (t̃2 − t) ≤ (1− β/2)t̃2 − t ≤ (1 + β/2)t− t = βt/2,

and also R(t) ≥ −βt/2 by definition of t̃2. Here the interval [1−β/2
1+β/2

t̃2, t̃2] has length

� β16k, and we have a saving of at least βt/2 in our bound for |R(t)| (compared with

the “trivial” bound |R(t)| ≤ βt + O(1)), so now once again we can gain a term of

order β2x/ log x. (Because the interval we are looking at is now fairly small we actually

need to use Selberg’s Fundamental Lemma again to estimate the sum of Λ(n) and of

log p log q in the interval.) �

9. Bounded gaps between primes

The twin prime conjecture is an ancient problem, but until recently it seemed fairly

unattackable— the best known result was a 1973 theorem of Chen showing that �
x/ log2 x of the primes p ≤ x are such that p + 2 has one or two prime factors. Chen’s

proof applied sieve methods to the sequence of shifted primes p + 2, and the fact that

he could only show p+ 2 has at most two prime factors is a manifestation of the Parity

Problem from section 4.

About ten years ago (but finally published more recently), a great advance was made

by Goldston, Pintz and Yıldırım.

Theorem 9.1 (Goldston, Pintz and Yıldırım, 2009). Suppose there is some θ > 1/2

such that the following is true: for any fixed A > 0 and all large x,∑
q≤xθ

max
(a,q)=1

∣∣∣∣π(x; q, a)− 1

φ(q)

∫ x

2

dt

log t

∣∣∣∣�A
x

logA x
.

Then there exists a constant C = C(θ) such that the gap between primes is ≤ C infinitely

often.

Note that the Bombieri–Vinogradov theorem is just insufficient to satisfy the hy-

potheses of the theorem (it allows any θ < 1/2), but before the work of Goldston, Pintz

and Yıldırım it was believed that even if one could take θ ≈ 1 (which is the maximum

possible) this wouldn’t imply bounded gaps. Goldston, Pintz and Yıldırım also showed
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unconditionally, using the Bombieri–Vinogradov theorem, that

lim inf
n→∞

pn+1 − pn
log pn

= 0,

where pn denote the primes in increasing order. Note that the Prime Number Theorem

implies the average size of pn+1 − pn is ∼ log pn.

In the last couple of years, Zhang made a further breakthrough.

Theorem 9.2 (Zhang, 2014). There exists a constant C such that the gap between

primes is ≤ C infinitely often.

Zhang’s argument is organised in the same basic way as Goldston, Pintz and Yıldırım’s.

His crucial new ingredient was a (slightly weaker) Bombieri–Vinogradov type theorem

with θ just larger than 1/2, which he proved with great effort and showed was still

sufficient to obtain the bounded gaps consequence.

In this section we will discuss even more recent work of Maynard and Tao (indepen-

dently), which reproves Zhang’s theorem without needing his sophisticated Bombieri–

Vinogradov type result. This work is again organised like Goldston, Pintz and Yıldırım’s,

but with a new and very powerful choice of weights. In fact, the work of Maynard and

Tao shows that having the Bombieri–Vinogradov theorem for any small positive θ is

sufficient to obtain bounded gaps.

Let H = {h1, ..., hk} be a set of non-negative integers such that for all primes p, the

elements of H occupy at most p− 1 residue classes mod p. Thus there is no congruence

obstruction mod p to all of the numbers (n − h)h∈H being prime, for some n. For

example, we could take H = {0, 2, 6}, although in practice one needs to choose k and

the hi somewhat larger to make the argument work.

The idea of Goldston, Pintz and Yıldırım is to compare the sizes of

S1 :=
∑

N/2<n≤N

wn and S2 :=
∑

N/2<n≤N

wn
∑
h∈H

1n−h∈P ,

where N is large and the wn are non-negative weights, and where P here denotes the

set of all primes. If we can choose the weights wn such that S2 > S1, then there must

exist some N/2 < n ≤ N for which∑
h∈H

1n−h∈P > 1,

in other words there must exist some n for which at least two of the numbers (n−h)h∈H

are prime. Note that if we add more elements to H then it should be easier to achieve

S2 > S1, but the consequence is weaker because the two prime values in (n − h)h∈H

might be further apart (up to the maximum difference between elements of H).
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To give themselves the best chance of showing that S2 > S1, Goldston, Pintz and

Yıldırım chose the weights wn to be Selberg-type sieve weights for the sequence of

products (
∏

h∈H(n − h))N/2<n≤N . This choice was designed to concentrate the wn on

those values of n where
∏

h∈H(n− h) at least doesn’t have too many prime factors. We

shall be more general and suppose that wn =
∑

d|
∏
h∈H(n−h) λd, where the λd are a real

sequence supported on those squarefree d ≤ D. For convenience we also suppose that

D < N/2−maxH h.

Proposition 9.3. With the above choice of wn, we have

S1 =
N

2

∑
d≤D

λd
d

∏
p|d

ωH(p) +O(
∑
d≤D

|λd|
∏
p|d

ωH(p)),

where ωH(p) denotes the number of residue classes mod p occupied by the elements of

H.

We also have

S2 =
∑
h∈H

(∫ N−h

N/2−h

dt

log t

)∑
d≤D

λd
φ(d)

∏
p|d

(ωH(p)− 1) +

+O(
∑
h∈H

∑
d≤D

|λd|
∏
p|d

(ωH(p)− 1) max
(a,d)=1

∣∣∣∣π(N − h; d, a)− π(N/2− h; d, a)− 1

φ(d)

∫ N−h

N/2−h

dt

log t

∣∣∣∣).
Proof of Proposition 9.3. By definition we have

S1 =
∑

N/2<n≤N

∑
d|

∏
h∈H(n−h)

λd =
∑
d≤D

λd
∑

N/2<n≤N,
d|

∏
h∈H(n−h)

1.

If d is squarefree (which we may assume, since otherwise λd = 0 anyway) then d|
∏

h∈H(n−
h) if and only if each prime factor of d divides

∏
h∈H(n− h), which happens if and only

if n lies in one of ωH(p) residue classes mod p for each prime p | d. By the Chinese

Remainder Theorem, this is equivalent to asking for n to lie in one of
∏

p|d ωH(p) residue

classes mod d. So overall we have

S1 =
∑
d≤D

λd
∏
p|d

ωH(p)

(
N

2d
+O(1)

)
,

which gives the result.

We can rewrite the sum S2 as∑
h∈H

∑
N/2−h<p≤N−h

wp+h =
∑
h∈H

∑
d≤D

λd
∑

N/2−h<p≤N−h,
d|

∏
g∈H(p+h−g)

1.

Similarly as in the estimation of S1, we have d|
∏

g∈H(p+ h− g) if and only if for each

prime divisor q of d, there exists some g ∈ H such that p ≡ g− h mod q. The numbers

(g−h)g∈H occupy ωH(q) residue classes mod q, but one of those is the zero class and we
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cannot have p ≡ 0 mod q, since p > N/2 − h is prime whilst q ≤ D < N/2 −maxH h.

This means in total there are
∏

q|d(ωH(q) − 1) residue classes mod d that p is allowed

to occupy, and each of these residue classes is coprime to d.

Finally, we deduce that

S2 =
∑
h∈H

∑
d≤D

λd
∏
q|d

(ωH(q)− 1)

(
1

φ(d)

∫ N−h

N/2−h

dt

log t
+

+O

(
max

(a,d)=1

∣∣∣∣π(N − h; d, a)− π(N/2− h; d, a)− 1

φ(d)

∫ N−h

N/2−h

dt

log t

∣∣∣∣)) ,
which gives the result. �

To control the “big Oh” term in the estimate for S2 one needs to use something like

the Bombieri–Vinogradov theorem. Note that the larger the range of d that one can

sum over in that theorem, the larger one can take D, and then one has more flexibility

in choosing the λd (and therefore a greater chance of achieving S2 > S1).

Goldston, Pintz and Yıldırım choose their λd roughly such that

∑
d|

∏
h∈H(n−h)

λd ≈

 ∑
d|

∏
h∈H(n−h),

d≤
√
D

µ(d)
logk+l(

√
D/d)

logk+l(
√
D)


2

.

These look a bit like the weights µ(d) log(x/d)
log x

, µ(d)(1 − log2 d
log2 x

) that we saw in the proof

of Selberg’s Fundamental Lemma (Proposition 8.3), and in fact they are a simplified

version of the Selberg Λ2 weights from a certain sieving problem. Since the set H has k

elements, the classical thinking would suggest that one should take l = 0 here, so that

the exponent of the logarithms is k. But Goldston, Pintz and Yıldırım discovered that

taking l ≈ (1/2)
√
k works much better for obtaining S2 > S1. Making such a choice in

Proposition 9.3, one finds after some calculation that one can show S2 > S1 provided

one can choose D = xθ for some θ > 1/2, which leads to Theorem 9.1. See Chapter

7.13 of Friedlander and Iwaniec [1] for a detailed exposition of this.

Following the work of Goldston, Pintz and Yıldırım, many unsuccessful attempts were

made to improve the choice of the λd so as to remove the need for a strong Bombieri–

Vinogradov result in their theorem. The key idea in the recent (successful!) work of

Maynard and of Tao is to change things one step further back in the argument, by

replacing the weights wn by something more “multidimensional”. So rather than taking
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wn =
∑

d|
∏
h∈H(n−h) λd, where the λd are to be chosen, they take (roughly speaking)

wn =
∑

d1|n−h1

...
∑

dk|n−hk

λd1,...,dk ,

where the λd1,...,dk are to be chosen. Notice that if one were to choose λd1,...,dk as a

function of the product d = d1d2...dk, then one would get back to something like the

Goldston–Pintz–Yıldırım situation. But it turns out that choosing

λd1,...,dk ≈ µ(d1...dk)f(d1, ..., dk),

where f is a smooth function but not just a function of the product, works much better.

After some calculation one finds that one can show S2 > S1 provided one can choose

D = xθ for any small θ > 0, which leads unconditionally to bounded gaps between

primes. See Maynard’s paper [2] for a detailed exposition of this.
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