# A different proof of a finite version of Vinogradov's bilinear sum inequality (NOTES) 

Adam J Harper

16th October 2011


#### Abstract

We give a different proof of a finite version of Vinogradov's bilinear sum inequality, which is perhaps simpler than the proof in a recent preprint of Bourgain, Sarnak and Ziegler (although our proof yields a poorer bound). Our proof essentially follows an argument of Katai concerning exponential sums with multiplicative coefficients.


## 1 Introduction

In these brief notes we shall prove the following result:
Theorem 1. Let $F$ and $v$ be number-theoretic functions taking values in the complex unit disc, and suppose additionally that $v$ is multiplicative. Let $\tau>0$ be a small parameter, and suppose that for any distinct primes $p_{1}, p_{2} \leq e^{1 / \tau}$, and for all $M \geq M_{\tau}$, we have

$$
\left|\sum_{m \leq M} F\left(p_{1} m\right) \overline{F\left(p_{2} m\right)}\right| \leq \tau M
$$

Then

$$
\left|\sum_{n \leq N} v(n) F(n)\right| \leq \frac{N}{\sqrt{\log (1 / \tau)+O(1)}}+O\left(\frac{N}{\log (1 / \tau)}+\sqrt{N e^{1 / \tau}}+M_{\tau} e^{1 / \tau}\right)
$$

Theorem 1 corresponds closely to Theorem 2 of Bourgain, Sarnak and Ziegler [1], except that they have the stronger bound $2 \sqrt{\tau \log (1 / \tau)} N$ for the sum over $n$ (if $N$ is large enough). However, the proof given by Bourgain, Sarnak and Ziegler involves a bit fiddly decomposition of the integers less than $N$, whereas our proof of Theorem 1 will be fairly short and easy.

Our proof of Theorem 1 is not very new- in fact it corresponds almost exactly to an argument of Katai [2] concerning exponential sums with multiplicative coefficients, the only real difference being that we need to introduce a dyadic decomposition to obtain an acceptable bound under our hypotheses. The proof is
also clearly related to an argument of Montgomery and Vaughan [3] concerning exponential sums with multiplicative coefficients, and no doubt also to many other arguments in that area. As with the proof of Bourgain, Sarnak and Ziegler [1], the aim is just to introduce a double summation in place of the single sum over $n$, which will allow one to use the Cauchy-Schwarz inequality to remove the unknown weight function $v$ and apply the hypothesis about $F$.

## 2 A lemma from probabilistic number theory

To prove Theorem 1 we shall require a lemma concerning the additive function

$$
\omega_{\tau}(n):=\sum_{\substack{p \mid n, p \leq e^{1 / \tau}}} 1 .
$$

Lemma 1. Define $\mu_{\tau}:=\sum_{p \leq e^{1 / \tau}} 1 / p$, and let $N$ be any natural number. Then we have the following variance estimate:

$$
\sum_{n \leq N}\left(\omega_{\tau}(n)-\mu_{\tau}\right)^{2} \leq N \mu_{\tau}+O\left(e^{1 / \tau}\right)
$$

Lemma 1 is a special case of the Turán-Kubilius inequality, but since the proof is just a short calculation we shall give it in full. Expanding the sum in the statement we obtain

$$
\sum_{p, q \leq e^{1 / \tau}} \sum_{n \leq N} \mathbf{1}_{p, q \mid n}-2 \mu_{\tau} \sum_{p \leq e^{1 / \tau}}[N / p]+N \mu_{\tau}^{2},
$$

and on removing the square brackets, and paying attention to the diagonal contribution in the double sum, we see that is at most

$$
\sum_{p, q \leq e^{1 / \tau}}[N / p q]-N \mu_{\tau}^{2}+N \mu_{\tau}+2 \mu_{\tau} \pi\left(e^{1 / \tau}\right)
$$

which is certainly at most $N \mu_{\tau}+O\left(e^{1 / \tau}\right)$.

## 3 Proof of Theorem 1

In view of Lemma 1 and the Cauchy-Schwarz inequality, we have that

$$
\begin{aligned}
\left|\sum_{n \leq N} v(n) F(n)\right| & =\left|\frac{1}{\mu_{\tau}} \sum_{n \leq N} v(n) F(n) \sum_{\substack{p \mid n, p \leq e^{1 / \tau}}} 1+\sum_{n \leq N} v(n) F(n) \frac{\mu_{\tau}-\omega_{\tau}(n)}{\mu_{\tau}}\right| \\
& \leq \frac{1}{\mu_{\tau}}\left|\sum_{n \leq N} v(n) F(n) \sum_{\substack{p \mid n, p \leq e^{1 / \tau}}} 1\right|+\sqrt{N\left(N \mu_{\tau}+O\left(e^{1 / \tau}\right)\right) / \mu_{\tau}^{2}} .
\end{aligned}
$$

Since $v$ is multiplicative, and $|v(m p)-v(m) v(p)| \leq 2$ in any case,

$$
\begin{aligned}
\left|\sum_{n \leq N} v(n) F(n) \sum_{\substack{p \mid n, p \leq e^{1 / \tau}}} 1\right| & \leq\left|\sum_{\substack{m p \leq N, p \leq I^{1 / \tau}, m \geq M_{\tau}}} v(m) v(p) F(m p)\right|+\sum_{n \leq N} \sum_{\substack{p^{2} \mid n, \tau \\
p \leq e^{1 / \tau}}} 2+M_{\tau} e^{1 / \tau} \\
& \leq \sum_{\substack{j \geq 0 \\
2 j \geq M_{\tau}}}\left|\sum_{2 j \leq m<2^{j+1}} v(m) \sum_{p \leq \min \left\{e^{1 / \tau}, N / m\right\}} v(p) F(m p)\right|+O\left(N+M_{\tau} e^{1 / \tau}\right) .
\end{aligned}
$$

Then using the Cauchy-Schwarz inequality, for any fixed $j$ the inner sums have size at most

$$
\sqrt{2^{j} \sum_{2^{j} \leq m<2^{j+1}}\left|\sum_{p \leq \min \left\{e^{1 / \tau}, N / m\right\}} v(p) F(m p)\right|^{2} \leq \sqrt{2^{j}} \sum_{p_{1}, p_{2} \leq \min \left\{e^{1 / \tau}, N / 2^{j}\right\}} \sum_{\substack{2^{j} \leq m<2^{j+1}, m \leq \min \left\{N / p_{1}, N / p_{2}\right\}}} F\left(m p_{1}\right) \overline{F\left(m p_{2}\right)} \mid}
$$

Here the contribution from the diagonal terms (where $p_{1}=p_{2}$ ) is at most $2^{j} \sqrt{\pi\left(\min \left\{e^{1 / \tau}, N / 2^{j}\right\}\right)}$, and in view of the hypotheses of Theorem 1 the contribution from the other terms is at most

$$
\sqrt{2^{j} \tau\left(2^{j}+2^{j+1}\right)} \sum_{\substack{p_{1}, p_{2} \leq \min _{\begin{subarray}{c}{\left.p_{1} \neq p_{2} / \tau, N / 2^{j}\right\},} }}}\end{subarray}} .
$$

If we now sum over $j$, using Chebychev-type estimates for the prime counting function, we find that

$$
\begin{aligned}
&\left|\sum_{n \leq N} v(n) F(n) \sum_{\substack{p \mid n, p \leq e^{1 / \tau}}} 1\right| \ll \sum_{2^{j} \leq \frac{N}{e^{1 / \tau}}} 2^{j} \tau^{3 / 2} e^{1 / \tau}+\sum_{\frac{N}{e^{1 / \tau} \leq 2^{j} \leq 2 N}} \sqrt{\frac{N 2^{j}}{\log \left(N / 2^{j}+1\right)}+\frac{\tau N^{2}}{\log ^{2}\left(N / 2^{j}+1\right)}} \\
&+N+M_{\tau} e^{1 / \tau} \\
& \ll \tau^{3 / 2} N+N+N \sqrt{\tau} \log (1 / \tau)+N+M_{\tau} e^{1 / \tau} .
\end{aligned}
$$

The above is all $\ll N+M_{\tau} e^{1 / \tau}$, and Theorem 1 follows on recalling that we must divide by $\mu_{\tau} \gg \log (1 / \tau)$ to obtain the contribution to our final bound.

## References

[1] J. Bourgain, P. Sarnak, T. Ziegler. Disjointness of Möbius from horocycle flows. Preprint. 2011
[2] I. Katai. A remark on a theorem of H. Daboussi. Acta Math. Hung., 47, pp 223-225. 1986
[3] H. Montgomery, R. Vaughan. Exponential sums with multiplicative coefficients. Invent. Math., 43, no. 1, pp 69-82. 1977

