
LECTURE NOTES 1 FOR CAMBRIDGE PART III COURSE ON
“PROBABILISTIC NUMBER THEORY”, MICHAELMAS 2015

ADAM J HARPER

Abstract. These are rough notes covering the first block of lectures in the “Prob-

abilistic Number Theory” course. In these first lectures we will introduce the class

of additive functions, estimate their low moments and present applications to bilin-

ear sums, and estimate all moments to prove the Erdős–Kac central limit theorem.

Throughout we emphasise the nature of all these results as statements about sums of

“almost independent” random variables.

(No originality is claimed for any of the contents of these notes, which borrow from

the Probabilistic Number Theory books of Elliott as well as from numerous original

research papers.)

1. Introduction to additive functions

We begin with a simple definition that lies at the heart of classical probabilistic

number theory.

Definition 1.1. A function f : N→ C is said to be additive if

f(ab) = f(a) + f(b) ∀(a, b) = 1.

If moreover

f(ab) = f(a) + f(b) ∀a, b,

then f is said to be completely additive.

Notice that if n = pa11 ...p
ak
k , where the pi are distinct primes and ai ∈ N, then for an

additive function f we have

f(n) =
k∑
i=1

f(paii ).

Thus the values of f on all natural numbers are determined by its values on prime

powers, so we see that additive functions might be able to pick out interesting number

theoretic structure. Two key examples, which we shall discuss extensively later, are the

functions

ω(n) :=
∑
p|n

1 and Ω(n) :=
∑
pk|n

1,

counting the number of prime factors of n without and with multiplicity.
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Probabilistic number theory began with the (gradual) observation that additive func-

tions f are also related to some interesting probabilistic structure, at least heuristically

(and, as it turns out, also rigorously). If n ≤ N for some fixed N ∈ N, then we can

write

f(n) =
∑
pk||n

f(pk) =
∑
p≤N

∞∑
k=1

f(pk)1pk||n =:
∑
p≤N

fp(n),

say, where 1 denotes the indicator function. Now let us consider the behaviour of the

values f(n) as n ≤ N varies, which is equivalent to considering f(n) as a random vari-

able on the probability space ([N ],P([N ]),PN), where PN denotes the discrete uniform

measure on [N ]. We have already expressed f as a sum of the random variables fp, but

how do the fp behave?

We can note that, if p1, ..., pw are any given distinct primes and k1, ..., kw are any

natural numbers, then

PN(pkii ||n ∀1 ≤ i ≤ w) =
1

N
#{n ≤ N : pkii | n ∀1 ≤ i ≤ w, but pki+1

i - n ∀1 ≤ i ≤ w}

=
1

N

(⌊
N

pk1+1
1 ...pkw+1

w

⌋
(p1 − 1)...(pw − 1) +O(p1...pw)

)
,

since in each complete set of residue classes mod pk1+1
1 ...pkw+1

w , precisely (p1−1)...(pw−1)

classes will be divisible by all the pkii but none of the pki+1
i . Since we always have

bxc = x+O(1), it follows that

PN(pkii ||n ∀1 ≤ i ≤ w) =
w∏
i=1

(pi − 1)

pki+1
i

+O(
p1...pw
N

).

In other words, provided that p1...pw
N

is “small”, the probability will roughly resemble the

product
∏w

i=1
(pi−1)
p
ki+1
i

, implying that the events pkii ||n are roughly independent for different

primes pi. Since the random variables fp are solely determined by events of the form

pk||n, it follows (as was perhaps first appreciated by Kac) that an additive function f

is a sum of roughly independent random variables fp.

We know lots about the behaviour of sums of independent random variables, and

a theme of modern probability is to understand how this extends to various kinds

of approximate independence. This is exactly the situation we are in when studying

additive functions.

We end this first section by proving a simple estimate for the first moment (i.e. the

mean) of an additive function, mimicking the calculation above.
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Lemma 1.2. Let f be an additive function, let N ∈ N, and let EN denote expectation

with respect to the discrete uniform measure on [N ]. Then

ENf =
∑
pk≤N

f(pk)

pk

(
1− 1

p

)
+O

 1

N

∑
pk≤N

|f(pk)|

 .

In the special case of the prime factor functions ω and Ω, we have

ENω = ENΩ +O(1) =
∑
p≤N

1

p
+O(1) = log logN +O(1).

Proof of Lemma 1.2. By linearity of expectation, we have

ENf =
∑
p≤N

ENfp =
∑
p≤N

∑
k:pk≤N

f(pk)EN(1pk||n) =
∑
p≤N

∑
k:pk≤N

f(pk)PN(pk||n),

noting that if pk > N then we do not have pk||n for any n ≤ N . Cutting off the sums

as soon as pk > N means there are no convergence issues here. Then by definition of

PN , we have

ENf =
∑
p≤N

∑
k:pk≤N

f(pk)
1

N

(
bN
pk
c − b N

pk+1
c
)

=
∑
pk≤N

f(pk)

(
1

pk
− 1

pk+1

)
+O

 1

N

∑
pk≤N

|f(pk)|

 .

This is a trivial rewriting of the estimate claimed in Lemma 1.2.

When f = ω we have f(pk) = 1 for all primes p and natural numbers k. Inserting

these values in the general statement we just proved, we find

ENω =
∑
p≤N

1

p

(
1− 1

p

)
+O

 ∑
pk≤N :k≥2

1

pk

+O

 1

N

∑
pk≤N

1

 .

The final “big Oh” term here is certainly � 1 (in fact it is � 1
logN

), and the first “big

Oh” term is �
∑

p2≤N
1
p2
� 1. Removing the subtracted terms −1/p2 from the main

term may similarly be done at a cost of O(1), giving the result claimed in the lemma.

When f = Ω we have f(pk) = k, but the same argument applies because this only

differs from ω on the higher prime powers in the error terms, where additional factors

of k make no difference (e.g. to the convergence of geometric series). �

2. The Turán–Kubilius inequality for the variance

In Lemma 1.2 we gave an estimate for the mean ENf of an additive function, and

in this section we shall use similar calculations to obtain a famous estimate for the

variance. As we shall see, although the proof is fairly straightforward this inequality

has powerful consequences.
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Theorem 2.1 (Turán–Kubilius inequality). Let f be an additive function, let N ∈ N,

and let EN denote expectation with respect to the discrete uniform measure on [N ]. Then

EN |f − ENf |2 �
∑
pk≤N

|f(pk)|2

pk
.

Turán proved the above inequality in 1934 in the special case where f = ω, and

later he handled some more general cases. The fully general statement we have given

(roughly speaking) was formulated by Kubilius in 1964.

Proof of Theorem 2.1. Notice first that if f is a complex-valued additive function, and

we write f = f1 + if2, then the real and imaginary parts f1, f2 will be real-valued

additive functions. Moreover we have

EN |f − ENf |2 = EN |(f1 − ENf1) + i(f2 − ENf2)|2 = EN |f1 − ENf1|2 + EN |f2 − ENf2|2,

so we see it will suffice to prove the Turán–Kubilius inequality for f1, f2 separately.

Therefore we shall assume henceforth that f is real-valued.

For real-valued f , expanding out the bracket yields as usual that

EN(f − ENf)2 = EN(f 2 − 2fENf + (ENf)2) = EN(f 2)− (ENf)2.

Similarly as in the proof of Lemma 1.2, inserting the definition of f gives that

ENf 2 = EN

∑
pk≤N

f(pk)1pk||n

2

=
∑

pk,ql≤N

f(pk)f(ql)EN(1pk||n1ql||n).

We shall give a different treatment of those terms in the sum where p = q (and so the

events pk||n and ql||n will not be approximately independent), and those terms where

p 6= q (and so the events will be approximately independent). If p = q but k 6= l then

the events pk||n and pl||n cannot occur simultaneously, and so those summands give a

zero contribution. So we can write

ENf 2 =
∑
pk≤N

f(pk)2EN(1pk||n) +
∑

pk,ql≤N,
p6=q

f(pk)f(ql)EN(1pk||n1ql||n).

Now inserting the definition of EN , when p 6= q we have

EN(1pk||n1ql||n) = PN(pk||n and ql||n) =
1

N

(⌊
N

pkql

⌋
−
⌊

N

pk+1ql

⌋
−
⌊

N

pkql+1

⌋
+

⌊
N

pk+1ql+1

⌋)
=

(
1

pk
− 1

pk+1

)(
1

ql
− 1

ql+1

)
+O(1/N)

= EN(1pk||n)EN(1ql||n) +O(1/N).

This estimate is fairly good (in the sense that the “big Oh” term is smaller than the main

term) when the product pkql ≤ N , but otherwise it is poor. Indeed, when pkql > N
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we see that the events pk||n and ql||n can in fact never occur simultaneously (and so

EN(1pk||n1ql||n) = 0), because they require at least that pkql|n. Therefore we really

always have

EN(1pk||n1ql||n) = EN(1pk||n)EN(1ql||n) +O(min{1/N, 1/(pkql)}).

Putting everything together, we have shown that

ENf 2 =
∑
pk≤N

f(pk)2EN(1pk||n) +
∑

pk,ql≤N,
p6=q

f(pk)f(ql)(EN(1pk||n)EN(1ql||n) +O(min{ 1

N
,

1

pkql
}))

=

∑
pk≤N

f(pk)EN(1pk||n)

2

+
∑
pk≤N

f(pk)2(EN(1pk||n)− EN(1pk||n)2)

−
∑

pk,pl≤N,
k 6=l

f(pk)f(pl)EN(1pk||n)EN(1pl||n) +O

 ∑
pk,ql≤N

|f(pk)||f(ql)|min{ 1

N
,

1

pkql
}

 .

Using the trivial inequality |f(pk)||f(ql)| ≤ |f(pk)|2 + |f(ql)|2, as well as the symmetry

between pk and ql, it is easy to see that the contribution to the “big Oh” term from

those products pkql ≤ N is

� 1

N

∑
pkql≤N

|f(pk)|2 � 1

N

∑
pk≤N

|f(pk)|2N
pk
�
∑
pk≤N

|f(pk)|2

pk
,

which is acceptable for Theorem 2.1. The contribution from those pkql > N will be

handled similarly, but with an extra technical trick of using the inequality

|f(pk)||f(ql)| =
|f(pk)||f(ql)|

√
log(pk) log(ql)√

log(pk) log(ql)
≤ |f(pk)|2 log(ql)

log(pk)
+
|f(ql)|2 log(pk)

log(ql)
.

This implies that∑
pk,ql≤N,
pkql>N

|f(pk)||f(ql)|
pkql

�
∑
pk≤N

|f(pk)|2

pk log(pk)

∑
N/pk≤ql≤N

log(ql)

ql
�
∑
pk≤N

|f(pk)|2

pk log(pk)
log(pk),

which again is acceptable. Easy arguments show that the second and third sums in our

expression for ENf 2 are also�
∑

pk≤N
|f(pk)|2
pk

, and we have
(∑

pk≤N f(pk)EN(1pk||n)
)2

=

(ENf)2, so Theorem 2.1 follows. �

We give two immediate corollaries in our favourite special case of the prime divisor

functions ω,Ω.

Corollary 2.2. We have

EN(ω − log logN)2 � log logN and EN(Ω− log logN)2 � log logN.
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Corollary 2.3. Given any function t(N) ≥ 1, we have

PN(|ω − log logN | ≥ t(N)
√

log logN)� 1

t(N)2
.

In particular, if t(N)→∞ as N →∞ then “almost all” numbers n ≤ N (in the sense

of asymptotic density) satisfy

|ω(n)− log logN | ≤ t(N)
√

log logN.

Proofs of Corollaries 2.2 and 2.3. The Turán–Kubilius inequality immediately implies

that

EN |ω − ENω|2 �
∑
pk≤N

1

pk
� log logN and EN |Ω− ENΩ|2 �

∑
pk≤N

k2

pk
� log logN.

Moreover, using our estimate for the first moment (Lemma 1.2) we have ENω =

log logN +O(1), and the same for Ω, so we have

EN(ω − log logN)2 = EN(ω − ENω +O(1))2 � EN(ω − ENω)2 + EN1� log logN,

and the same for Ω.

Corollary 2.3 follows immediately from Corollary 2.2 and Chebychev’s inequality. �

Remark 2.4. The final statement in Corollary 2.3, that “most numbers n ≤ N have

about log logN prime factors”, is sometimes expressed by saying that ω has normal

order log logN . The proof we have just given was Turán’s proof of this statement.

The original proof, by Hardy and Ramanujan in 1917, was a 17 page long argument

counting numbers with different quantities of prime factors. This shows the power of

some probabilistic thinking.

3. A modern application of the Turán–Kubilius inequality

Thus far we have been concerned with fairly classical questions concerning additive

functions. In this section we will show that the Turán–Kubilius inequality is relevant

in some cutting edge mathematics.

Definition 3.1. A function f : N→ C is said to be multiplicative if f 6≡ 0 and

f(ab) = f(a)f(b) ∀(a, b) = 1.

This is a natural counterpart to our definition of additive functions.

A key question in number theory is to obtain non-trivial estimates for sums of the

form
∑

n≤N f(n)g(n), where f is multiplicative and g is some other “twist” function.

For example, to prove the odd Goldbach conjecture one needs estimates for sums like∑
n≤N

µ(n)e2πiθn,
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where µ(n) is the Möbius function (the multiplicative function taking value −1 on all

primes, and vanishing on all higher prime powers), and where θ is some real number.

In a recent paper, Bourgain, Sarnak and Ziegler were interested in certain dynamical

systems (X,T : X → X) called horocycle flows, and sought a non-trivial bound for∑
n≤N µ(n)g(T nx), where x ∈ X is any point in the (compact metric) space X and g is

a continuous function on X.

A reason for hoping to obtain cancellation in such sums is that often the twist func-

tion is oscillatory (so there would be cancellation if the multiplicative function f(n)

were absent), and the structure of the twist function is not multiplicative so it should

not “conspire” with f(n). One can turn this philosophy into a proof method by trying to

rewrite
∑

n≤N f(n)g(n) using the multiplicativity of f(n), producing a messier expres-

sion but one in which we see sums of g(n) without a multiplier f(n) (though these will

be more complicated sums than simply over all n ≤ N).

It turns out that we can use the Turán–Kubilius inequality for the rewriting step,

obtaining a non-trivial estimate given quite weak information about the twist g.

Theorem 3.2. Let f and g be functions taking values in the complex unit disc, and

suppose f is multiplicative. Let τ > 0 be a small parameter, let Mτ ≥ 1, and suppose

that for any distinct primes p1, p2 ≤ e1/τ , and for any M ≥Mτ , we have∣∣∣∣∣∑
m≤M

g(p1m)g(p2m)

∣∣∣∣∣ ≤ τM.

Then ∣∣∣∣∣∑
n≤N

f(n)g(n)

∣∣∣∣∣� N√
log(1/τ)

+
√
Ne1/τ +Mτe

1/τ .

Remark 3.3. Since g takes values in the unit disc, a trivial bound for
∣∣∣∑m≤M g(p1m)g(p2m)

∣∣∣
is always M . So the hypotheses of the theorem ask for a saving of a multiplicative factor

of τ , once M is large enough. Similarly, a trivial bound for
∣∣∑

n≤N f(n)g(n)
∣∣ is N . If τ

is small then log(1/τ) will be large, so the conclusion of the theorem gives a non-trivial

bound for the twisted sum (provided N is large enough to make the second and third

terms negligible).

Remark 3.4. Bourgain, Sarnak and Ziegler gave a rather complicated proof of a result

like Theorem 3.2 (though with a bit stronger bound in the conclusion), which they call a

finite Vinogradov inequality. Our proof of Theorem 3.2 is modelled on a 1986 argument

of Katai, who worked in the special case of sums like
∑

n≤N f(n)e2πiθn. See Tao’s blog

terrytao.wordpress.com/2011/11/21/the-bourgain-sarnak-ziegler-orthogonality-criterion/

for some further discussion.
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Proof of Theorem 3.2. We may assume that N ≥ e1/τ , otherwise the conclusion is trivial

because
√
Ne1/τ > N . For the same reason we may assume that N/e1/τ ≥Mτ .

Let ωτ (n) denote the additive function that satisfies ωτ (p
k) = 1 if p ≤ e1/τ , and

ωτ (p
k) = 0 otherwise. Then by our first moment estimate (Lemma 1.2) we have

ENωτ =
∑

p≤e1/τ ,
pk≤N

1

pk

(
1− 1

p

)
+O(

τe1/τ logN

N
) =

∑
p≤e1/τ

1

p
+O(1 +

τe1/τ logN

N
),

and using Mertens’ estimate (Fact 2 from Lecture Notes 0) this is all = log(1/τ)+O(1+
τe1/τ logN

N
). Since we assume N ≥ e1/τ , the “big Oh” term is actually just O(1).

Now by the Turán–Kubilius inequality (Theorem 2.1) we have∑
n≤N

(ωτ (n)− log(1/τ))2 �
∑
n≤N

(ωτ (n)− ENωτ )2 +
∑
n≤N

(ENωτ − log(1/τ))2

� N
∑

p≤e1/τ ,
pk≤N

1

pk
+N � N log(1/τ).

Therefore we have∣∣∣∣∣∑
n≤N

f(n)g(n)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

log(1/τ)

∑
n≤N

f(n)g(n)ωτ (n)

∣∣∣∣∣+

∣∣∣∣∣ 1

log(1/τ)

∑
n≤N

f(n)g(n)(ωτ (n)− log(1/τ))

∣∣∣∣∣
≤

∣∣∣∣∣ 1

log(1/τ)

∑
n≤N

f(n)g(n)ωτ (n)

∣∣∣∣∣+

√
N

log(1/τ)

√∑
n≤N

(ωτ (n)− log(1/τ))2

�

∣∣∣∣∣ 1

log(1/τ)

∑
n≤N

f(n)g(n)ωτ (n)

∣∣∣∣∣+
N√

log(1/τ)
,

where the second line uses the Cauchy–Schwarz inequality and the fact that |f(n)|, |g(n)| ≤
1, and the third line uses our Turán–Kubilius estimate.

We have managed to insert a saving factor 1/ log(1/τ) in front of our sum, at the

cost of the terms ωτ (n), but we have used hardly any information about f or g. Next

we will show that using the factor ωτ (n) (which gives an extra sum, over prime divisors,

to play with), we can manipulate things so that we can invoke our assumptions on g.

Indeed, we have

1

log(1/τ)

∑
n≤N

f(n)g(n)ωτ (n) =
1

log(1/τ)

∑
mp≤N,
p≤e1/τ

f(mp)g(mp),

and since f is multiplicative and |f | ≤ 1 we have f(mp) = f(m)f(p) +O(1p|m), so

1

log(1/τ)

∑
n≤N

f(n)g(n)ωτ (n) =
1

log(1/τ)

∑
m≤N

f(m)
∑

p≤min{N/m,e1/τ}

f(p)g(mp)+O

(
N

log(1/τ)

)
.
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At this point we want to apply the Cauchy–Schwarz inequality to remove the coefficients

f(m). First considering the part of the sum where m ≤ N/e1/τ , we see

1

log(1/τ)

∣∣∣∣∣∣∣
∑

m≤ N

e1/τ

f(m)
∑
p≤e1/τ

f(p)g(mp)

∣∣∣∣∣∣∣ �
1

log(1/τ)

√
N

e1/τ

√√√√√ ∑
m≤N/e1/τ

∣∣∣∣∣∣
∑
p≤e1/τ

f(p)g(mp)

∣∣∣∣∣∣
2

=
1

log(1/τ)

√√√√√ N

e1/τ

∑
p1≤e1/τ ,
p2≤e1/τ

f(p1)f(p2)
∑

m≤ N

e1/τ

g(mp1)g(mp2).

Using our hypothesis about the sum of g(mp1)g(mp2) (when p1 6= p2), together with

the trivial bound |f | ≤ 1, we find everything is

� 1

log(1/τ)

√√√√√ N

e1/τ

π(e1/τ )
N

e1/τ
+

∑
p1 6=p2≤e1/τ

τN

e1/τ

� N
√
τ

log(1/τ)
,

which is more than good enough.

We will handle the part of the sum where N/e1/τ < m ≤ N in essentially the same

way, but if we directly apply the Cauchy–Schwarz inequality it will be inefficient because

now the inner sums will run over p ≤ N/m, so be of rather different sizes as m varies.

There is a standard and easy procedure to address this, which is to further divide the

sum over m into dyadic ranges, as follows:

1

log(1/τ)

∣∣∣∣∣∣∣
∑

N

e1/τ
<m≤N

f(m)
∑
p≤N

m

f(p)g(mp)

∣∣∣∣∣∣∣ ≤
1

log(1/τ)

∑
j≥0,

2j≤e1/τ

∣∣∣∣∣∣∣
∑

2jN

e1/τ
<m≤ 2j+1N

e1/τ

f(m)
∑
p≤N

m

f(p)g(mp)

∣∣∣∣∣∣∣
≤ 1

log(1/τ)

∑
j≥0,

2j≤e1/τ

√
2j+1N

e1/τ

√√√√√√ ∑
2jN

e1/τ
<m≤ 2j+1N

e1/τ

∣∣∣∣∣∣
∑
p≤N

m

f(p)g(mp)

∣∣∣∣∣∣
2

� 1

log(1/τ)

√
N

e1/τ

∑
j≥0,

2j≤e1/τ

√
2j

√√√√√√√√√
∑

p≤ e1/τ
2j

∑
2jN

e1/τ
<m≤ 2j+1N

e1/τ
,

m≤N/p

1 +
∑

p1 6=p2≤ e
1/τ

2j

∣∣∣∣∣∣∣∣∣∣
∑

2jN

e1/τ
<m≤ 2j+1N

e1/τ
,

m≤min{N/p1,N/p2}

g(mp1)g(mp2)

∣∣∣∣∣∣∣∣∣∣
� 1

log(1/τ)

√
N

e1/τ

∑
j≥0,

2j≤e1/τ

√
2j

√√√√π(e1/τ/2j)
2jN

e1/τ
+

∑
p1 6=p2≤ e

1/τ

2j

τ2jN

e1/τ
.

This is all� N
e1/τ log(1/τ)

∑
2j≤e1/τ 2j

√
π(e1/τ/2j) + τπ(e1/τ/2j)2, and finally Chebychev’s

bound for the number of primes (Fact 1 from Lecture Notes 0) plus a little manipulation
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shows it is � N/ log(1/τ) + N
√
τ , which is also more than good enough for Theorem

3.2. �

On the first problem sheet you will apply Theorem 3.2 to give a non-trivial bound for∑
n≤N µ(n)e2πiθn (the case where f(n) = µ(n) and g(n) = e2πiθn, and

∑
m≤M g(p1m)g(p2m) =∑

m≤M e2πiθ(p1−p2)m), and will see why this is useful in Goldbach-type additive problems.

4. The method of moments

We have obtained estimates for the first and second moments ENf,ENf 2 of additive

functions, and shown their usefulness by establishing results like Corollary 2.3 (our

normal order result). Now we will show that if we can prove that all the moments of

a real-valued random variable are very close to those of the standard Gaussian (say),

then our random variable must be close to the standard Gaussian in distribution. This

is a powerful general method called the method of moments, that reappears in many

places (e.g. as the method of traces in random matrix theory).

Proposition 4.1. Let Z be a real-valued random variable, and let z ∈ R and ε > 0.

There exist k = k(z, ε) ∈ N and a small real number δ = δ(z, ε) > 0 such that the

following is true: if we have

|EZj −mj| ≤ δ ∀j = 1, 2, ..., k,

where mj := 1√
2π

∫∞
−∞ x

je−x
2/2dx are the moments of the standard normal distribution,

then we have

|P(Z ≤ z)− Φ(z)| ≤ ε,

where Φ(z) := 1√
2π

∫ z
−∞ e

−x2/2dx is the standard normal distribution function.

Remark 4.2. Notice that we have P(Z ≤ z) = E1Z≤z, where 1 denotes the indicator

function. Therefore if it were the case that the random variable Z, and the standard

normal distribution, were supported on some compact set, we could approximate the

indicator by a polynomial using the Stone–Weierstrass theorem and then invoke the

hypotheses about EZj. Since this is not the case the proof of Proposition 4.1 will be

more fiddly (to make sure the tails of the distributions do not cause problems), but the

basic idea is still simply that we can approximate things by polynomials.

Lemma 4.3. For any N ∈ N ∪ {0}, and any x ∈ R, we have∣∣∣∣∣eix −∑
n≤N

(ix)n

n!

∣∣∣∣∣ ≤ 2|x|N

N !
.
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Proof of Lemma 4.3. The lemma is trivial when N = 0, and for larger N it follows by

induction on observing that

eix −
∑

n≤N+1

(ix)n

n!
=

∫ x

0

ieiydy −
∑

1≤n≤N+1

(ix)n

n!
=

∫ x

0

i

(
eiy −

∑
n≤N

(iy)n

n!

)
dy.

�

Lemma 4.4 (Fourier Inversion Formula). Let f : R/Z→ R be a continuously differen-

tiable function, and for each k ∈ Z define

f̂(k) :=

∫ 1

0

f(x)e−2πikxdx.

Then for any x ∈ [0, 1] and any K ∈ N, we have∣∣∣∣∣∣f(x)−
∑
|k|≤K

f̂(k)e2πikx

∣∣∣∣∣∣�f
log(2K)

K
.

Proof of Lemma 4.4. This is (a special case of) a standard result on Fourier series,

and so the proof is omitted. See e.g. Appendix D of Montgomery and Vaughan,

Multiplicative Number Theory. �

We will also need to know that the moments mj of the standard normal distribution

do not grow too rapidly with j.

Lemma 4.5 (Normal Moments). If j ∈ N is odd then we have mj := 1√
2π

∫∞
−∞ x

je−x
2/2dx =

0, whilst if j is even then

mj =
j!

2j/2(j/2)!
≤ (j/2)j/2.

Proof of Lemma 4.5. When j is odd the result is clear because the integrand xje−x
2/2 is

an odd function, and when j is even it follows inductively using integration by parts. �

Proof of Proposition 4.1. Set B = 10/
√
ε, and notice first that

P(|Z| ≥ B) ≤ EZ2

B2
≤ m2 + δ

B2
≤ ε

50
,

say, provided k ≥ 2 and δ ≤ 1. The same (and in fact something far more precise) is

true for a normal random variable. Therefore we may assume without loss of generality

that |z| ≤ B, say.

Now choose any continuously differentiable functions h−, h+ : R→ [0, 1] that satisfy

1[−B,z−ε/10] ≤ h− ≤ 1[−2B,z], and 1[−B,z] ≤ h+ ≤ 1[−2B,z+ε/10],

and extend these to 6B-periodic functions f−, f+ : R→ [0, 1] by setting f±(x) = h±(x̃),

where x̃ ≡ x mod 6B is chosen so that |x̃| ≤ 3B. Since h± is continuously differentiable,
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and vanishes outside the interval [−2B, 2B], the 6B-periodic extension f± will be a

continuously differentiable function on R. Moreover, since P(|Z| ≥ B) ≤ ε/50 we have

Ef−(Z)− ε

50
≤ E1Z≤z = P(Z ≤ z) ≤ Ef+(Z) +

ε

50
.

Therefore it will suffice to prove that∣∣∣∣Ef−(Z)− 1√
2π

∫ ∞
−∞

f−(x)e−x
2/2dx

∣∣∣∣ ≤ ε/2,

say (and the same with f− replaced by f+). For simplicity of writing, hereafter we shall

write f rather than f− or f+.

Now since x 7→ f(6Bx) is a 1-periodic continuously differentiable function, the

Fourier Inversion Formula (Lemma 4.4) implies that for any K ∈ N we have

f(6Bx) =
∑
|k|≤K

cke
2πikx +Of,B(

log(2K)

K
),

where the ck are the Fourier coefficients of x 7→ f(6Bx). Moreover, by applying Lemma

4.3 to approximate the complex exponentials, we find that for any even N ∈ N we have

f(6Bx) =
∑
|k|≤K

ck
∑
n≤N

(2πikx)n

n!
+O

∑
|k|≤K

|ck|
(2πkx)N

N !

+Of,B(
log(2K)

K
),

and so in particular

Ef(Z) = Ef(6B
Z

6B
) =

∑
|k|≤K

ck
∑
n≤N

EZn(2πik/6B)n

n!
+O

(
K

EZN(2πK/6B)N

N !

)
+Of,B(

log(2K)

K
).

Finally, using our estimate of the N -th normal moment (Lemma 4.5), together with

the fact that N ! ≥ (N/e)N , we see the first “big Oh” term here is

� K

(
2πKe

6B

)N EZN

NN
≤ K

(
2πKe

6B

)N
1

NN/2
.

Thus if we choose K large enough in terms of ε (and the fixed function f), and we

choose N large enough in terms of ε and K, the contribution from both “big Oh” terms

will be ≤ ε/4. Then if we know that |EZn −mn| ≤ δ for all n ≤ N , where δ is small

enough in terms of K,N, ε, it follows as required that

|Ef±(Z)− Ef±(N(0, 1))| ≤ ε/2.

�

The following immediate corollary is slightly less quantitative than Proposition 4.1,

but reflects the way that the method of moments is usually applied.
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Corollary 4.6 (Method of Moments). Let (Zn)∞n=1 be a sequence of real valued random

variables, and suppose that for each fixed j ∈ N we have

EZj
n → mj as n→∞,

where mj are the moments of the standard normal distribution.

Then we have convergence in distribution Zn
d→ N(0, 1) as n → ∞, in other words

for all z ∈ R we have

P(Zn ≤ z)→ Φ(z) as n→∞.

5. The Erdős–Kac Central Limit Theorem

We remarked previously that an additive function f(n) can be regarded as a sum of

random variables fp(n) that are “almost independent”. An obvious (to Kac!) conclusion

of this line of thought is that the values of f(n) should obey some kind of central limit

theorem.

Theorem 5.1 (Erdős–Kac Theorem, 1939-1940). Let f be a real additive function, and

suppose that |f(p)| ≤ 1 for all primes p, that f(pk) = f(p) for all k ∈ N (“f is strongly

additive”), and that ∑
p≤N

f(p)2

p
→∞ as N →∞.

Then under the probability measure PN , we have

f − ENf√
EN |f − ENf |2

d→ N(0, 1) as N →∞.

Remark 5.2. The conditions that |f(p)| ≤ 1 and that f is strongly additive can be

weakened, but not removed entirely. The condition that
∑

p≤N
f(p)2

p
→ ∞, or in other

words that the variance of f tends to infinity, is important to achieve a normal limit. All

of this is analogous to the situation for sums of independent random variables, where

the central limit theorem in general does require that no single variable can make too

large a contribution (Lindeberg’s condition) and that the variance diverges.

We saw in the proof of the Turán–Kubilius inequality (Theorem 2.1) that the “almost

independence” of fp and fq breaks down when the product pq > N , and this failure

becomes much more serious when trying to prove distributional theorems because one

must consider many values of p simultaneously, rather than two. In the original proof of

the Erdős–Kac theorem, this problem was overcome by replacing f(n) by a version that

is zero on all large primes (and showing this makes a negligible difference), and then

using a number theoretic tool called the Brun sieve to control the failure of independence

between smaller primes.
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In 1969, Billingsley (building on earlier work of Delange and of Halberstam) found a

much simpler proof that doesn’t require the sieve. This proof, which is the one we shall

broadly follow, is a well organised application of the method of moments.

Proof of Theorem 5.1. For convenience of writing, let φ(N) :=
(∑

p≤N
f(p)2

p

)1/10
. Thus

φ(N)→∞ as N →∞ by the hypotheses of the theorem, but we also have

φ(N) ≤

(∑
p≤N

1

p

)1/10

= (log logN +O(1))1/10

in view of Mertens’ estimate (Fact 2 from Chapter 0), so φ(N) does not tend to infinity

very quickly. In particular, we have N1/φ(N) � e(logN)/(log logN)1/10 → ∞. Let g(n) =

gN(n) denote the strongly additive function that agrees with f on all prime powers pk

with p ≤ N1/φ(N), but that equals zero on all larger primes.

To prove the Erdős–Kac theorem, we will first use the method of moments to show

that the truncated function gN(n) satisfies

gN − ENgN√
EN |gN − ENgN |2

d→ N(0, 1) as N →∞,

and then will show that the difference between f and gN is sufficiently small to imply

the analogous result for f .

Lemma 5.3 (Truncated Moments). In the above situation, for any large N and even

j ∈ N we have

EN(gN(n)−ENgN)j = mj

 ∑
p≤N1/φ(N)

f(p)2

p

(
1− 1

p

)j/2

(1+Oj(
1∑

p≤N1/φ(N)
f(p)2

p

))+O(
jN2j/φ(N)

N
)

(where mj = j!
2j/2(j/2)!

denotes the standard normal moment), whilst for any odd j ∈ N
we have

EN(gN(n)− ENgN)j �j

 ∑
p≤N1/φ(N)

f(p)2

p

(
1− 1

p

)(j−1)/2

+
N2j/φ(N)

N
.

Proof of Lemma 5.3. Notice that since gN is strongly additive, we have

gN(n)− ENgN =
∑
p|n,

p≤N1/φ(N)

f(p)− ENgN =
∑

p≤N1/φ(N)

f(p)(1p|n − EN1p|n),

where 1 denotes the indicator function. It is this representation (that is extremely

natural when thinking of sums of random variables centred to have mean zero) that is

key to organising the moment computation efficiently.
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Indeed, if we now expand out we find that

EN

 ∑
p≤N1/φ(N)

f(p)(1p|n − EN1p|n)

j

=
∑

p1,...,pj≤N1/φ(N)

EN
j∏
i=1

f(pi)(1pi|n − EN1pi|n).

As usual we have that EN1pi|n = 1/pi+O(1/N), and therefore (using also that |f(pi)(1pi|n−
EN1pi|n)| ≤ 1) we have

∑
p1,...,pj≤N1/φ(N)

EN
j∏
i=1

f(pi)(1pi|n − EN1pi|n) =
∑

p1,...,pj≤N1/φ(N)

EN
j∏
i=1

f(pi)(1pi|n − 1/pi)

+O

 ∑
p1,...,pj≤N1/φ(N)

j

N

 .

Here the “big Oh” term is acceptably small. Further, if we let R(= q1...qw) denote the

product of all the distinct primes amongst p1, ..., pj (so that p1...pj = qa11 ...q
aw
w , say), and

if we let Xp denote independent random variables taking value 1 with probability 1/p,

and taking value 0 otherwise, then∑
n≤R

j∏
i=1

(1pi|n − 1/pi) = RE
j∏
i=1

(Xpi − 1/pi) = R
w∏
i=1

E(Xqi − 1/qi)
ai ,

since there are no “big Oh” error terms when summing over a complete set of R residues.

We can then conclude that

EN
j∏
i=1

f(pi)(1pi|n − EN1pi|n) =

(
j∏
i=1

f(pi)

)
1

N

(
bN
R
cR

w∏
i=1

E(Xqi − 1/qi)
ai +O(R)

)

=
w∏
i=1

f(qi)
aiE(Xqi − 1/qi)

ai +O(
R

N
),

and the overall contribution from the “big Oh” term is �
∑

p1,...,pj≤N1/φ(N)
p1...pj
N
≤

N2j/φ(N)

N
. Now we have reduced to dealing with truly independent random variables.

If j is even, then one collection of terms in
∑

p1,...,pj≤N1/φ(N) is those where we have

j/2 pairs of distinct primes. The contribution from these terms is

∑
q1,...,qj/2≤N1/φ(N),

distinct primes

j!

2j/2(j/2)!

j/2∏
i=1

f(qi)
2E(Xqi − 1/qi)

2 =
∑

q1,...,qj/2≤N1/φ(N),
distinct primes

mj

j/2∏
i=1

f(qi)
2

qi

(
1− 1

qi

)

= mj(
∑

p≤N1/φ(N)

f(p)2

p

(
1− 1

p

)
)j/2

+O(j2mj

∑
p≤N1/φ(N)

f(p)4

p2

(
1− 1

p

)2

(
∑

p≤N1/φ(N)

f(p)2

p

(
1− 1

p

)
)(j/2)−2),
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where the first term is obtained by ignoring the distinctness condition on the qi, and the

“big Oh” term corrects for this overcount. This all gives the main term in the statement

of the lemma.

To bound the contribution from all the other terms in
∑

p1,...,pj≤N1/φ(N) , where the

primes pi do not all just match in pairs, let us note that E(Xq − 1/q) = 0 (so every

prime must appear with multiplicity at least two to give a non-zero contribution), and

for any a ≥ 2 we have E(Xq − 1/q)a ≤ E(Xq − 1/q)2 = 1
q
(1− 1

q
). So this contribution is

∑
w<j/2

∑
p1,...,pj≤N1/φ(N),
w primes are distinct,

p1...pj=q
a1
1 ...qaww , ai≥2

w∏
i=1

f(qi)
aiE(Xqi − 1/qi)

ai ≤
∑
w<j/2

∑
p1,...,pj≤N1/φ(N),
w primes are distinct,

p1...pj=q
a1
1 ...qaww , ai≥2

w∏
i=1

f(qi)
2

qi

(
1− 1

qi

)

�j

∑
w<j/2

(
∑

p≤N1/φ(N)

f(p)2

p

(
1− 1

p

)
)w,

where any combinatorial factors (counting the number of tuples of p1, ..., pj for which

p1...pj = qa11 ...q
aw
w , for given primes qi) are absorbed in the implicit constant �j. If j is

even then the largest term here has w = (j/2)− 1, whereas if j is odd the largest term

has w = (j−1)/2, which in any case is acceptable to finish the proof of Lemma 5.3. �

The special case of the Truncated Moments lemma where j = 2 implies (since∑
p≤N1/φ(N)

f(p)2

p

(
1− 1

p

)
→∞ and φ(N)→∞) that

EN(g(n)−ENgN)2 ∼ m2

∑
p≤N1/φ(N)

f(p)2

p

(
1− 1

p

)
=

∑
p≤N1/φ(N)

f(p)2

p

(
1− 1

p

)
as N →∞,

and on feeding this back into the lemma we obtain that for any fixed j ∈ N,

EN

(
g(n)− ENgN√

EN(g(n)− ENgN)2

)j

→ mj as N →∞.

Therefore the Method of Moments (Corollary 4.6) indeed implies that gN−ENgN√
EN (gN−ENgN )2

d→
N(0, 1) as N →∞.

Further, for any n ≤ N we have f(n) − gN(n) =
∑

p|n,p>N1/φ(N) f(p) = O(φ(N)),

whilst by the above calculations and the definition of φ(N) we see EN(g(n)−ENgN)2 is

�
∑

p≤N1/φ(N)

f(p)2

p
= φ(N)10 −

∑
N1/φ(N)<p≤N

f(p)2

p
≥ φ(N)10 −

∑
N1/φ(N)<p≤N

1

p
� φ(N)10.

(Here we used that
∑

N1/φ(N)<p≤N
1
p

= log φ(N) +O(1).) Thus

f − ENf√
EN |f − ENf |2

=
gN − ENgN +O(φ(N))√

EN(gN − ENgN +O(φ(N)))2
=

gN − ENgN +O(φ(N))√
EN(gN − ENgN)2 +O(φ(N)6)

,
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and since EN(gN − ENgN)2 + O(φ(N)6) = (1 + O(1/φ(N)4))EN(gN − ENgN)2, the

convergence in distribution f−ENf√
EN |f−ENf |2

d→ N(0, 1) follows. �

It is worth noting that the above proof was completed with quite a lot of room to

spare— our choice of the truncation N1/φ(N) in the definition of gN was not especially

delicate (many other choices would also work), and our handling of the “big Oh” terms

when calculating EN
∏j

i=1 f(pi)(1pi|n − EN1pi|n) gave much sharper estimates than we

really needed. We will comment on this again in the final section of this chapter.

Returning to our favourite special case of the number of prime factors function ω

(where ω(pk) = 1 for all primes p and all k ∈ N), the Erdős–Kac theorem takes the

following form.

Corollary 5.4. Under the probability measure PN , we have

ω − log logN√
log logN

d→ N(0, 1) as N →∞.

Proof of Corollary 5.4. Lemma 1.2 implies that ENω = log logN + O(1), and the cal-

culations at the end of the proof of the Erdős–Kac theorem imply that the variance

EN(ω−ENω)2 ∼
∑

p≤N
1
p

(
1− 1

p

)
= log logN +O(1). Corollary 5.4 follows by combin-

ing these facts with the general statement of the Erdős–Kac theorem (Theorem 5.1). �

Corollary 5.4 hopefully seems like an appealing result in its own right, but we shall

also record a quick consequence that you will explore further on the first problem sheet.

Let d(n) =
∑

d|n 1 denote the divisor function.

Corollary 5.5. For any large N , at least N/2 + o(N) integers n ≤ N satisfy

d(n) ≥ (logN)log 2.

Proof of Corollary 5.5. Note that d(n) =
∏

pk||n(k + 1) ≥ 2ω(n), and so

1

N
#{n ≤ N : d(n) ≥ (logN)log 2} ≥ 1

N
#{n ≤ N : ω(n) ≥ log logN} → 1

2
as N →∞,

by the Erdős–Kac theorem. �

It is worth noting that if we try to study the distribution of d(n) by directly estimating

its first moment, say, then we obtain

ENd(n) = EN
∑
d≤N

1d|n =
∑
d≤N

PN(1d|n) =
∑
d≤N

(1/d+O(1/N)) = logN +O(1).

Thus the first moment is of a substantially different size than the range of values

(logN)log 2 considered in the corollary.
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6. Closing thoughts about additive functions

The results we obtained in this chapter develop an analogue of very classical proba-

bility theory (moment estimates, central limit theorem) for additive functions. We end

by mentioning two directions in which these investigations can be extended further.

Question 6.1. What is the rate of convergence in the Erdős–Kac theorem? For example,

what is the smallest function E(N) for which it is true that∣∣∣∣PN (ω − log logN√
log logN

≤ z

)
− Φ(z)

∣∣∣∣ ≤ E(N) ∀z ∈ R ?

Corollary 5.4 (applied at a suitable “net” of points z) implies that we can take

E(N) = o(1), but it gives no stronger information. (This is connected to the relatively

“soft” nature of the proof, which didn’t require very strong or uniform estimates.) In

the other direction, let yN := blog logNc−log logN√
log logN

and let zN := blog logNc+1/2−log logN√
log logN

, and

note that if the above inequality is satisfied then we must have∣∣∣∣PN (ω − log logN√
log logN

≤ zN

)
− PN

(
ω − log logN√

log logN
≤ yN

)
− (Φ(zN)− Φ(yN))

∣∣∣∣ ≤ 2E(N).

Since ω takes integer values it is clear that PN
(
ω−log logN√

log logN
≤ zN

)
−PN

(
ω−log logN√

log logN
≤ yN

)
=

0, whereas

Φ(zN)− Φ(yN) =
1√
2π

∫ zN

yN

e−t
2/2dt� (zN − yN)� 1√

log logN
,

so we must have E(N)� 1√
log logN

. This is the usual “continuity correction” error when

approximating discrete random variables by continuous ones.

It was conjectured by LeVeque (by analogy with the Berry–Esseen theorem on the

rate of convergence in the central limit theorem) that actually one can take E(N) =
C√

log logN
, and this was proved by Rényi and Turán in 1958, but their proof involves

rather sophisticated complex analysis. In my opinion, it remains an open problem to

find a really nice probabilistic proof of the Rényi–Turán theorem.

Question 6.2. We showed that ω has an approximately Gaussian distribution, but this

is true of many different random variables. What more can we say specifically about the

probabilistic structure of ω (or other additive functions)?

Note that ω(n) takes integer values; is a sum of many almost independent random

variables that occur with small probability; and has mean and variance approximately

the same (= log logN + O(1)). This strongly suggests that ω(n) might really have

an approximately Poisson distribution (which is also approximately normal when the

variance tends to infinity). In fact it is a classical result of Landau that for any fixed
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k ∈ N, we have the Poisson-type probabilities

PN(ω = k) = (1 + o(1))
1

logN

(log logN)k−1

(k − 1)!
as N →∞.

This can be developed in various ways, for example obtaining results that are uniform

as k → ∞ at a certain rate (done by Sathe and Selberg), or proving a total variation

Poisson approximation for the distribution of ω.
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