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Abstract. These are rough notes covering the second block of lectures in the “Prob-

abilistic Number Theory” course, on probabilistic heuristics. We will develop Cramér’s

probabilistic model for the primes, and use it to precisely conjecture the distribution of

primes in short intervals. Then we will study the Buchstab function and prove Maier’s

irregularity theorem, which shows that the Cramér model for short intervals cannot be

completely correct. We also develop some basic theory of the Riemann zeta function,

and discuss Möbius randomness and heuristics for the Riemann Hypothesis.

(No originality is claimed for any of the contents of these notes, which borrow

from the books of Montgomery and Vaughan [1] and Titchmarsh [2] as well as from

numerous original research papers.)

7. The Borel–Cantelli lemmas

In number theoretic problems, we often try to prove that a certain property is satisfied

for all values of some parameter. For example, we might try to prove that a function f(n)

obeys a certain estimate for all n ∈ N. In view of this, when we develop probabilistic

heuristics we need to make sure that they really imply (on the probabilistic side) that

the properties we are interested in hold for all values of the parameter.

In this section we will prove two basic probabilistic lemmas that are relevant for this.

Lemma 7.1 (First Borel–Cantelli Lemma). Let (An)n∈N be some sequence of events

(that are measurable with respect to a probability measure P), and suppose that
∑∞

n=1 P(An)

converges. Then

P(infinitely many of the An occur) =: P(An i.o.) = 0.

Proof of Lemma 7.1. Let N ∈ N be arbitrary but fixed. If infinitely many of the An

occur, then certainly at least one An with n ≥ N must occur, so we see

P(An i.o.) ≤ P(An holds for some n ≥ N) ≤
∑
n≥N

P(An),

by the union bound. Since
∑∞

n=1 P(An) is convergent, the right hand side tends to

zero as N → 0 whilst the left hand side is independent of N . Thus we must have

P(An i.o.) = 0. �
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Remark 7.2. Remember that an event that happens with probability zero can still occur.

For example, suppose that P were the measure corresponding to a random variable X

unformly distributed on [0, 1], and that An := {0 ≤ X ≤ 1/n2}. Then it is obvious that

if X = 0, all of the events An do occur.

The converse of the First Borel–Cantelli Lemma is false (as can be seen by adapting

the example in the above remark), but one can obtain a converse by introducing an

extra independence assumption.

Lemma 7.3 (Second Borel–Cantelli Lemma). Let (An)n∈N be a sequence of independent

events (that are measurable with respect to a probability measure P), and suppose that∑∞
n=1 P(An) diverges. Then

P(infinitely many of the An occur) =: P(An i.o.) = 1.

Proof of Lemma 7.3. Let N ≤M be arbitrary fixed natural numbers, and observe that

P(An does not occur for all N ≤ n ≤M) =
∏

N≤n≤M

(1− P(An)),

since the An are independent. For any number 0 ≤ p ≤ 1 we have 0 ≤ 1−p ≤ exp{−p},
and therefore

P(An does not occur for all N ≤ n ≤M) ≤ exp{−
∑

N≤n≤M

P(An)}.

In particular, if we fix N and let M →∞ then, since
∑

n P(An) diverges, we must have

P(An does not occur for all n ≥ N) = 0.

Finally, using the union bound we have

P(An does not occur for all n ≥ N, for some N) ≤
∞∑
N=1

P(An does not occur for all n ≥ N) = 0,

and so the complementary event, namely that An occurs infinitely often, must have

probability 1. �

In the next section we will apply the Borel–Cantelli lemmas in a number-theoretic

situation, but it is worthwhile to get an idea of their importance in a pure probabilistic

situation also. Let Sn :=
∑n

i=1 Xi be a simple random walk, so that Xi are independent

random variables taking values ±1 with probability 1/2 each. Notice that Sn has mean

zero and variance n. One can show (Hoeffding’s Inequality) that for any t ≥ 0,

P(|Sn| ≥ t
√
n) ≤ 2e−t

2/2.

In particular, for any function t = t(n) that tends to infinity with n we will have

P(|Sn| ≥ t(n)
√
n)→ 0 as n→∞,
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but what does this actually imply about the fluctuations of the random walk Sn as n

varies? For any δ > 0 we have

P(|Sn| ≥
√

(2 + δ)n log n) ≤ 2e−(2+δ)(logn)/2 =
2

n1+δ/2
, and

∞∑
n=1

1

n1+δ/2
<∞,

so the first Borel–Cantelli Lemma implies that with probability 1, the event |Sn| ≥√
(2 + δ)n log n happens only finitely many times. In other words, the fluctuations

of Sn are (almost surely) of size at most
√

(2 + o(1))n log n, but is this the real truth

(remember that the converse of the first Borel–Cantelli lemma is not true)? There seems

to be something a bit wasteful about our argument, because we have summed over all

n, but if we know that |Sn| ≤
√

(2 + δ)n log n for some given n then we automatically

know that the same must be approximately true for all nearby n. The truth turns out

to be that with probability 1,

lim sup
Sn√

2n log log n
= 1,

which is Kolmogorov’s Law of the Iterated Logarithm. One gets this by applying the

Borel–Cantelli lemmas at an appropriately chosen subsequence of values n, and it shows

the importance of understanding exactly what one is trying to prove “for all n”.

8. Cramér’s model for primes

In Fact 1 from Chapter 0 (and on the first problem sheet), we saw Chebychev’s or-

der estimate π(x) � x
log x

for the prime counting function (x ≥ 2). In a high point of

nineteenth century mathematics, Hadamard and de la Vallée Poussin proved (indepen-

dently) in 1896 that actually

π(x) ∼
∫ x

2

dt

log t
∼ x

log x
as x→∞,

which is called the Prime Number Theorem. This says that a proportion ∼ 1/ log x of

the numbers around x are prime. The best result known today, due to Vinogradov and

Korobov in 1958, is that

π(x) =

∫ x

2

dt

log t
+O(xe−c(log3/5 x)/(log log x)1/5).

In a 1936 paper on the distribution of primes in short intervals, Cramér proposed

modelling the primes by a sequence of independent random variables Un, as follows:

Model 8.1 (Cramér’s model). Let U1 = 0, let U2 = 1, and for n ≥ 3 let Un be a sequence

of independent Bernoulli random variables taking value 1 with probability 1/ log n, and

taking value 0 otherwise.
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Then for “properly formulated” questions about primes, if a statement is true with

probability 1 for the sequence (Un) then “something similar” may hold for the primes

themselves.

Remark 8.2. The deliberately vague terms “properly formulated” and “something sim-

ilar” in Model 8.1 are a bit disturbing, but it seems difficult to say precisely what they

should mean— it is a question of judgement in any given situation (as it would be when

deciding if a physical model were reasonable or not). For example, in Cramér’s model

the values U2n are not distinguished in any way from the values U2n+1, whereas for the

actual primes we know the distribution between odd and even numbers is extremely dif-

ferent, so a properly formulated question would have to be one where this distinction is

unimportant. The phrase “something similar” means that one should consider inserting

some kind of safety factor when translating the probabilistic answers into conjectures,

to obtain conjectures that seem more certain.

Remark 8.3. Cramér did not state his model in the general but vague way that we have

in Model 8.1. Instead he worked it out concretely in the special case of primes in short

intervals.

Theorem 8.4 (Cramér’s model for short intervals). Let Un be a sequence of independent

random variables as in the Cramér model. Define a random sequence (Pn)n∈N by setting

Pn := min{m :
∑m

i=1 Ui = n}.
Then with probability 1,

lim sup
n→∞

Pn+1 − Pn
log2 Pn

= 1.

Proof of Theorem 8.4. We shall prove the theorem in two parts. Firstly we shall let

δ > 0 be small but fixed, and prove that

P(Pn+1 − Pn > (1 + δ) log2 Pn i.o.) = 0,

which will establish that P(lim supn→∞
Pn+1−Pn

log2 Pn
≤ 1) = 1.

Indeed, for any given n, by definition of Pn we have

P(Pn+1 − Pn > (1 + δ) log2 Pn) = P(Ui = 0 ∀Pn + 1 ≤ i ≤ Pn + (1 + δ) log2 Pn),
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and since the Ui are independent of one another (and in particular independent of the

value of Pn) we see

P(Pn+1 − Pn > (1 + δ) log2 Pn) =
∞∑

m=n+1

P(Pn = m)P(Ui = 0 ∀m+ 1 ≤ i ≤ m+ (1 + δ) log2m)

=
∞∑

m=n+1

P(Pn = m)
∏

m+1≤i≤m+(1+δ) log2m

(
1− 1

log i

)

≤
∞∑

m=n+1

P(Pn = m) exp{−
∑

m+1≤i≤m+(1+δ) log2m

1

log i
}.

Now if i ≤ m+ (1 + δ) log2m then we have

1

log i
≥ 1

log(m+ (1 + δ) log2m)
=

1

logm+O((log2m)/m)
=

1

logm
+O(

1

m
),

and so

P(Pn+1 − Pn > (1 + δ) log2 Pn) ≤
∞∑

m=n+1

P(Pn = m) exp{−(1 + δ) log2m+O(1)

logm
+O

(
log2m

m

)
}

�
∞∑

m=n+1

P(Pn = m)
1

m1+δ
≤ 1

n1+δ
.

Since
∑

n
1

n1+δ is a convergent series, our first statement follows from the first Borel–

Cantelli lemma (Lemma 7.1).

Now let δ > 0 be small but fixed, and define a deterministic increasing sequence xn

by setting x1 = 2, and xn+1 = xn + (1− δ) log2(xn), and define events

An := {Ui = 0 ∀xn < i < xn+1}.

Notice that if the event An occurs, and if Pm is the largest member of the sequence

(Pn) that is smaller than xn, then (since log is an increasing function) we must have

Pm+1 − Pm ≥ (1− δ) log2(Pm). We shall prove that P(An i.o.) = 1, which will establish

that P(lim supn→∞
Pn+1−Pn

log2 Pn
≥ 1) = 1.

In fact, very similar calculations as before show that

P(An) =
∏

xn<i<xn+1

(
1− 1

log i

)
= exp{

∑
xn<i<xn+1

log(1− 1/ log i)}

= exp{
∑

xn<i<xn+1

(
− 1

log i
+O

(
1

log2 i

))
}

� 1

x1−δ
n

� 1

(n log2(2n))1−δ
.
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The events An depend on the behaviour of disjoint subsets of the independent random

variables Ui, so they are independent events. Thus the second Borel–Cantelli lemma

(Lemma 7.3) is applicable, and since
∑

n
1

(n log2(2n))1−δ
is a divergent series the fact that

P(An i.o.) = 1 immediately follows. �

Translating the conclusion of Theorem 8.4 into a conjecture about the primes, we

obtain the following.

Conjecture 8.5 (Cramér’s Conjecture, 1936). Let 2 = p1 < p2 < ... denote the sequence

of primes taken in increasing order. Then

• (strong conjecture) lim supn→∞
pn+1−pn
log2 pn

= lim supn→∞
pn+1−pn

log2 n
= 1.

• (weak conjecture) pn+1 − pn � log2 n.

Cramér did not explicitly make either the weak or the strong conjecture, saying only

that “we may take [Theorem 8.4] as a suggestion that, for the particular sequence of

ordinary prime numbers pn, some similar relation may hold”. However, either statement

is traditionally called Cramér’s Conjecture.

Using the Vinogradov–Korobov estimate for π(x), one can deduce that

π(x+ y)− π(x) ∼ y

log x
∀xe−c(log3/5 x)/(log log x)1/5 ≤ y ≤ x,

for a suitable constant c > 0. In particular, we must have pn+1−pn � ne−c(log3/5 n)/(log logn)1/5 .

But more sophisticated tools are available for studying primes in intervals than simply

taking the difference of estimates for π(x), and so it is actually known that pn+1−pn �
n0.525+o(1) unconditionally, and pn+1− pn � n1/2+o(1) if the Riemann Hypothesis is true

(in fact Cramér is responsible for the sharpest known result like this). But all of these

bounds are far weaker than Cramér’s Conjecture.

In 1943, Selberg showed that if the Riemann Hypothesis is true then for any function

y(x) ≤ x satisfying y(x)/ log2 x→∞ as x→∞, we have π(x+y)−π(x) = (1+o(1)) y
log x

for “most” values of x (meaning all apart from a proportion o(1) of x-values). This seems

like strong support for Cramér’s Conjecture, although we should note that asking for

something to happen for most x is really a different problem than asking it for all x, and

Cramér’s model would actually give a bit different prediction in this different problem.

9. Maier’s Irregularity Result

In this section we will show that, in fact, the Cramér model does not entirely accu-

rately predict the distribution of primes in short intervals. Maier proved this in 1985,

and at the time it was a rather surprising and influential discovery.

Definition 9.1. Let z ≥ 2. A number n is said to be z-sieved, or z-rough, if

p | n⇒ p ≥ z.
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We let Φ(x, z) := #{n ≤ x : n is z-sieved}.

As we saw when computing probabilities in Chapter 1, heuristic arguments would

suggest that Φ(x, z) ≈ x
∏

p<z

(
1− 1

p

)
. To obtain Maier’s irregularity result for primes,

a key step will be to show that Φ(x, z) need not always satisfy the heuristic estimate.

We begin by showing that Φ(x, z) can be well approximated by a certain continuous

function.

Definition 9.2. We define the Buchstab function w(u) by setting w(u) = 1/u when

1 ≤ u ≤ 2, and
d

du
(uw(u)) = w(u− 1) ∀u > 2.

Equivalently (Quick Exercise), we have w(u) = 1
u

(∫ u−1

1
w(v)dv + 1

)
for all u ≥ 2.

Theorem 9.3 (Buchstab, 1937). Fix U ≥ 1. Then for any z ≥ 2, and any 1 ≤ u ≤ U ,

we have

Φ(zu, z) =
zuw(u)

log z
− z

log z
+OU

(
zu

log2 z

)
=

zu

log z

(
w(u)− 1

zu−1
+OU

(
1

log z

))
.

In particular, for any fixed u > 1 we have

Φ(zu, z) ∼ zuw(u)

log z
as z →∞.

To help when proving the theorem, we shall first obtain some basic but more explicit

information about the Buchstab function w(u).

Lemma 9.4. For any u ≥ 1, the Buchstab function w(u) satisfies 1/2 ≤ w(u) ≤ 1.

Moreover, for any u ≥ 2 it satisfies |w′(u)| ≤ 1/(2u).

Proof of Lemma 9.4. When 1 ≤ u ≤ 2 the function w(u) = 1/u trivially satisfies 1/2 ≤
w(u) ≤ 1, and if we know the estimate for all u ≤ U , for some U ≥ 2, then we can

obtain it inductively for all u ≤ U+1 using the expression w(u) = 1
u

(∫ u−1

1
w(v)dv + 1

)
.

Moreover, the chain rule implies that w(u − 1) = d
du

(uw(u)) = w(u) + uw′(u) when

u > 2, and so |w′(u)| = |w(u−1)−w(u)
u

| ≤ 1/(2u). �

Proof of Theorem 9.3. Slightly abusing the notation in the statement of the theorem, we

shall prove by induction that for any U ∈ N, the statement holds for all U ≤ u < U + 1

and all z ≥ 2.

Firstly, when U = 1 and 1 ≤ u < 2 we have

Φ(zu, z) = 1 + π(zu)− π(z),

since a number n ≤ zu has all its prime factors ≥ z only if it is a prime ≥ z, or it is 1

(which has no prime factors). By a version of the Prime Number Theorem, it follows
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that

Φ(zu, z) = 1 +
zu

log(zu)
+O

(
zu

(log(zu))2

)
− z

log z
+O

(
z

(log z)2

)
,

which is acceptable for the theorem (since w(u) = 1/u when 1 ≤ u < 2).

For the inductive step, going from U to U + 1, we shall make use of the following

Buchstab identity:

Φ(x, z) = 1+
∑

z≤p≤x,
p prime

#{n ≤ x : p is the smallest prime factor of n} = 1+
∑
z≤p≤x

Φ(x/p, p).

If U + 1 ≤ u < U + 2 then the Buchstab identity implies that

Φ(zu, z)− Φ(zu, zu/(U+1)) =
∑

z≤p<zu/(U+1)

Φ(zu/p, p).

However, if z ≤ p then we have zu/p ≤ zu−1 ≤ pu−1 < pU+1, so the inductive hypothesis

applies and gives that

Φ(zu/p, p) =
zuw(up)

p log p
− p

log p
+O

(
zu

p log2 p

)
, where up :=

log(zu/p)

log p
=

log(zu)

log p
− 1.

Using the estimates of Chebychev and Mertens (Facts 1 and 2 from Chapter 0), and

the fact that U + 1 ≥ 2, we have∑
z≤p<zu/(U+1)

(
− p

log p
+O

(
zu

p log2 p

))
� zu/(U+1)

log z
π(zu/(U+1)) +

zu

log2 z

∑
z≤p<zu/(U+1)

1

p

� z2u/(U+1)

log2 z
+

zu

log2 z
� zu

log2 z
,

which is acceptable as an error term in the theorem.

We can also write∑
z≤p<zu/(U+1)

w(up)

p log p
=

∫ zu/(U+1)

z

w( log(zu)
log t

− 1)

t log t
dπ(t) =

∫ zu/(U+1)

z

w( log(zu)
log t

− 1)

t log t
d

(∫ t

2

ds

log s
+R(t)

)
,

and a form of the Prime Number Theorem implies that R(t) := π(t) −
∫ t

2
ds

log s
=

O(t/ log2 t). Therefore, using integration by parts and the facts that |w(·)| ≤ 1 and
d
dt
w( log(zu)

log t
− 1)� log(zu)

t log2 t
|w′( log(zu)

log t
− 1)| � 1

t log t
(by Lemma 9.4), we see∫ zu/(U+1)

z

w( log(zu)
log t

− 1)

t log t
dR(t) =

∫ zu/(U+1)

z

w( log(zu)
log t

− 1)

t log t

dR(t)

dt
dt

� 1

log3 z
+

∣∣∣∣∣
∫ zu/(U+1)

z

d

dt

(
w( log(zu)

log t
− 1)

t log t

)
R(t)dt

∣∣∣∣∣
� 1

log3 z
+

∫ zu/(U+1)

z

1

t2 log t
|R(t)|dt� 1

log3 z
+

∫ zu/(U+1)

z

1

t log3 t
dt� 1

log2 z
,
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which gives an acceptable overall contribution � zu

log2 z
.

To summarise, we have shown thus far that

Φ(zu, z) = Φ(zu, zu/(U+1)) + zu
∫ zu/(U+1)

z

w( log(zu)
log t

− 1)

t log t
d

(∫ t

2

ds

log s

)
+O

(
zu

log2 z

)
.

Finally, we see the integral here is∫ zu/(U+1)

z

w( log(zu)
log t

− 1)

t log t

d

dt

(∫ t

2

ds

log s

)
dt =

∫ zu/(U+1)

z

w( log(zu)
log t

− 1)

t log2 t
dt =

1

log(zu)

∫ u−1

U

w(v)dv,

the final equality following from the substitution v = log(zu)
log t

− 1. From the definition of

the Buchstab function, we have 1
log(zu)

∫ u−1

U
w(v)dv = uw(u)−(U+1)w(U+1)

log(zu)
, and so

Φ(zu, z) = Φ(zu, zu/(U+1)) + zu
uw(u)− (U + 1)w(U + 1)

log(zu)
+O

(
zu

log2 z

)
=

zuw(u)

log z
+ Φ(zu, zu/(U+1))− zu (U + 1)w(U + 1)

log(zu)
+O

(
zu

log2 z

)
.

Moreover we can apply the inductive hypothesis to Φ(zu, zu/(U+1)), obtaining that

Φ(zu, zu/(U+1)) = zuw(U+1)

log(zu/(U+1))
− zu/(U+1)

log(zu/(U+1))
+ O

(
zu

log2 z

)
= zu(U+1)w(U+1)

log(zu)
+ O

(
zu

log2 z

)
. In-

serting this in the previous display, and noting that − z
log z

= O( zu

log2 z
) when u ≥ U+1 ≥

2, gives the estimate for Φ(zu, z) claimed in the theorem. �

Remark 9.5. Note that once one has the idea to attempt an inductive proof using

Buchstab’s identity, the above argument would allow one to guess the recursive definition

w(u) = 1
u

(∫ u−1

1
w(v)dv + 1

)
of the Buchstab function if it were not given, since we must

define it to have the proper cancellation with Φ(zu, zu/(U+1)) at the final step.

Now that we are equipped with Theorem 9.3, we revisit the heuristic Φ(x, y) ≈
x
∏

p<y

(
1− 1

p

)
. In view of Fact 3 from Chapter 0, we have∏

p<y

(
1− 1

p

)
=
e−c2

log y

(
1 +O

(
1

log y

))
, y ≥ 2,

where c2 is a constant. (In fact c2 is equal to Euler’s constant γ := limN→∞
(∑

n≤N
1
n
− logN

)
≈

0.577). Comparing with the theorem, we see that for any fixed u > 1 and for large z the

heuristic for Φ(zu, z) will be quite accurate if w(u) is equal to e−γ, and will be off by a

constant multiplicative factor if ω(u) is not equal (or very close) to e−γ. So to prove an

irregularity result for Φ(zu, z) (i.e. to prove the heuristic is not always very accurate),

we just need to prove that w(u) is not always very close to e−γ.

Lemma 9.6. The limit w := limu→∞w(u) of the Buchstab function exists, and we have

|w(u)− w| � 1

Γ(u+ 1)
∀u ≥ 1,
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where Γ(t) :=
∫∞

0
e−xxt−1dx = et log t+O(t) for all t ≥ 1 (say).

Proof of Lemma 9.6. Recall that when u > 2 we have w(u− 1) = d
du

(uw(u)) = w(u) +

uw′(u), which we can rewrite as w′(u) = w(u−1)−w(u)
u

. On the other hand, we have

w(u− 1)− w(u) = −
∫ u
u−1

w′(t)dt, and so we have

|w′(u)| ≤ 1

u
max

u−1≤t≤u
|w′(t)| ∀u > 2.

This seems to suggest that |w′(u)| tends to zero rapidly with u. Indeed, if we let

M(u) := maxt≥u |w′(t)| then inductively we have

M(u) ≤ M(u− 1)

u
≤ M(u− 2)

u(u− 1)
≤ ...� 1

Γ(u+ 1)
.

(Here we apply the fact that Γ(u+ 1) = uΓ(u).) It follows that limu→∞w(u) = w(2) +∫∞
2
w′(t)dt certainly exists, and

|w(u)− w| ≤
∫ ∞
u

|w′(t)|dt�
∫ ∞
u

dt

Γ(t+ 1)
� 1

Γ(u+ 1)
∀u ≥ 2.

(The corresponding statement when 1 ≤ u < 2 is trivial, since both sides are of order

1.) �

If the limit w from Lemma 9.6 were not equal to e−γ, we could now immediately

conclude an irregularity result for z-sieved numbers, but unfortunately for us here (al-

though unsurprisingly, and fortunately for much of the rest of number theory!) it turns

out that w = e−γ. Nevertheless, it turns out that we can show that w(u) oscillates infin-

itely often around its limit w (though with the amplitude of the oscillations decreasing

rapidly with u, as shown by Lemma 9.6), and therefore we have an irregularity result

for z-sieved numbers, both “from above” and “from below”, for arbitrarily large fixed

values of u.

Lemma 9.7 (Buchstab oscillations). There exists a sequence of arbitrarily large values

of u ∈ R for which the Buchstab function w(u) < w, and there exists a sequence of

arbitrarily large values for which w(u) > w.

Proof of Lemma 9.7. We will only prove the first statement, since the proof of the second

is exactly similar.

Suppose, for a contradiction, that for all sufficiently large u we had w(u) ≥ w. Then

we could define u0 := sup{u ≥ 1 : w(u) < w} (with the convention, should it be needed,

that the supremum of the empty set is 1), so that w(u)−w ≥ 0 for all u ≥ u0. However,

recall that we have uw(u) =
∫ u−1

1
w(v)dv + 1 for all u ≥ 2, and therefore we have

u(w(u)− w) =

∫ u−1

1

(w(v)− w)dv + (1− 2w) ∀u ≥ 2.



PROBABILISTIC NUMBER THEORY LECTURE NOTES 2 11

In particular, if u0 + 1 ≤ u1 ≤ u2 then we have

u2(w(u2)− w)− u1(w(u1)− w) =

∫ u2−1

u1−1

(w(v)− w)dv ≥ 0,

so u(w(u)− w) ≥ 0 would be a non-decreasing function on the interval [u0 + 1,∞).

But Lemma 9.6 implies that u(w(u)−w)→ 0 as u→∞, so this situation could only

be possible if w(u) = w for all u ≥ u0 + 1. In this case we would have w = d
du

(uw(u)) =

w(u− 1) for all u ≥ u0 + 1, and so w(u) = w for all u ≥ u0, and so inductively we see

we would actually have w(u) = w for all u ≥ 1. However this is false, since w(u) = 1/u

is non-constant on the interval [1, 2], for example. �

Corollary 9.8 (Irregularity Theorem for sieved numbers). There exists a sequence of

arbitrarily large values of u ∈ R, and of small real numbers κ(u) > 0, for which

Φ(zu, z) ≥ (1 + κ(u))zu
∏
p<z

(
1− 1

p

)
∀ large z.

There also exists a sequence of arbitrarily large values of u ∈ R, and of small real

numbers κ(u) > 0, for which

Φ(zu, z) ≤ (1− κ(u))zu
∏
p<z

(
1− 1

p

)
∀ large z.

Proof of Corollary 9.8. Combining our asymptotic for sieved numbers (Theorem 9.3)

with the Buchstab oscillations lemma, we find there exists a sequence of arbitrarily

large u for which

Φ(zu, z) ≥ zu

log z
(1 + κ(u))w ∀ large z,

and the same for the ≤ (1−κ(u)) statement. Assuming the Facts that
∏

p<z

(
1− 1

p

)
∼

e−γ

log z
as z → ∞, and that the limit w of the Buchstab function is e−γ (whose proof is

omitted), the Corollary follows.

((Note that if w were not equal to e−γ we would obtain an irregularity theorem for

all large u, rather than just a special sequence, but only “from above” or “from below”

depending on whether w were larger or smaller than e−γ. )) �

Remark 9.9. The ultimate source of the oscillations in Lemma 9.7 is the fact that the

Buchstab function is non-constant when 1 ≤ u ≤ 2, in other words the fact that the

heuristic Φ(x, z) ≈ x
∏

p<z

(
1− 1

p

)
typically fails when

√
x ≤ z ≤ x. This is just a

restatement of the fact that divisibility by different primes larger than
√
x are obviously

not “almost independent”, as we explored in Chapter 1.

Now we are ready to upgrade Corollary 9.8 into the promised irregularity result for

the primes.
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Theorem 9.10 (Maier’s Irregularity Theorem, 1985). Fix λ > 1. Then

lim sup
x→∞

π(x+ logλ x)− π(x)

logλ−1 x
> 1, and lim inf

x→∞

π(x+ logλ x)− π(x)

logλ−1 x
< 1.

Since the density of primes around x is ∼ 1/ log x, the expected number of primes

between x and x + logλ x is logλ−1 x. The Cramér model would have predicted that,

once λ > 2, both the limsup and the liminf here should equal 1.

The proof of Theorem 9.10 is an averaging argument that is often called the Maier

matrix method. The overall idea is simply that if we know that the z-sieved numbers on

a certain range are irregularly distributed, and if we know that the quantity of primes

in a set depends on the number of z-sieved numbers in a predictable way (which is

true in various situations), then the number of primes in the set must also have some

irregularities. The Maier matrix argument comes in because the set we deal with is a

union of arithmetic progressions, assembled as the columns of a matrix.

Proof of Theorem 9.10. We will only prove that lim supx→∞
π(x+logλ x)−π(x)

logλ−1 x
> 1, since

the proof of the liminf statement is exactly similar. In view of Corollary 9.8, we may

fix a value u > λ for which

Φ(zu, z) ≥ (1 + κ(u))zu
∏
p<z

(
1− 1

p

)
∀ large z.

We will also use the deep Fact that if π(x; q, a) := #{p ≤ x : p prime, p ≡ a mod q},
then there exists a sequence of arbitrarily large values of z for which

π(x;
∏
p<z

p, a) =
1∏

p<z p
(

1− 1
p

) (∫ x

2

dt

log t

)(
1 +O(e−cmin{z,(log x)/z})

)
∀x ≥

(∏
p<z

p

)3

, (a,
∏
p<z

p) = 1.

(This Fact says that the primes are roughly equidistributed among all the
∏

p<z p
(

1− 1
p

)
coprime arithmetic progressions modulo

∏
p<z p.)

Now let D be a large natural number, whose value we will set later in terms of u, and

let z be one of the numbers for which we have the above estimate for π(x;
∏

p<z p, a).

We shall consider the matrix M = (mr,s), where

mr,s := s+ r
∏
p<z

p, 1 ≤ s ≤ zu,

(∏
p<z

p

)D−1

< r ≤ 2

(∏
p<z

p

)D−1

.

In a column where (s,
∏

p<z p) > 1, since all of the entries mr,s are strictly larger than∏
p<z p we see none of them can be prime. Meanwhile, if (s,

∏
p<z p) = 1 then in the

s-column ofM there will be π(s+2
(∏

p<z p
)D

;
∏

p<z p, s)−π(s+
(∏

p<z p
)D

;
∏

p<z p, s)

primes. Using the Fact about π(x;
∏

p<z p, a), and using that log
(∏

p<z p
)D

= D
∑

p<z log p �
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Dz (which follows from Chebychev’s estimate, Fact 1 from Chapter 0), this quantity is

1∏
p<z p

(
1− 1

p

) (∫ s+2(
∏
p<z p)

D

s+(
∏
p<z p)

D

dt

log t

)(
1 +O(e−cmin{z,D})

)

=
1∏

p<z p
(

1− 1
p

)
(∏

p<z p
)D

log((
∏

p<z p)
D)

(
1 +O(e−cD) + o(1)

)
,

where the o(1) term tends to zero as z → ∞. So the total number of prime entries in

the matrix M is

#{s ≤ zu : (s,
∏
p<z

p) = 1} · 1∏
p<z p

(
1− 1

p

)
(∏

p<z p
)D

log((
∏

p<z p)
D)

(
1 +O(e−cD) + o(1)

)

= Φ(zu, z)
1∏

p<z p
(

1− 1
p

)
(∏

p<z p
)D

log((
∏

p<z p)
D)

(
1 +O(e−cD) + o(1)

)
≥ (1 + κ(u))zu

(
∏

p<z p)
D−1

log((
∏

p<z p)
D)

(1 +O(e−cD) + o(1)).

Now averaging over the rows of M, of which there are
(∏

p<z p
)D−1

, we find there

must exist some row r containing at least

(1 + κ(u))zu

log((
∏

p<z p)
D)

(1 +O(e−cD) + o(1))

primes. But the r-th row ofM is simply the interval of length zu between 1 + r
∏

p<z p

and zu + r
∏

p<z p, where r �
(∏

p<z p
)D−1

. In particular, if D and z are large enough

there will be at least
(1 + κ(u)/2)zu

log(1 + r
∏

p<z p)

primes in the interval. As noted previously, we have log(1+r
∏

p<z p) � log((
∏

p<z p)
D) �

Dz, so zu � logu(1 + r
∏

p<z p) ≥ logλ(1 + r
∏

p<z p). Thus there must exist a sub-

interval of length logλ(1 + r
∏

p<z p) containing at least a factor (1 + κ(u)/2) more than

the expected number of primes. �

Remark 9.11. The reason that the irregularities in Maier’s theorem are on a scale of

powers of log x is because the size x of the entries in our arithmetic progressions (at

least
(∏

p<z p
)D

) is exponential in the scale z at which we obtain irregularities for the

z-sieved numbers.
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Remark 9.12. Note that the sequence of values x along which we show that π(x+logλ x)−π(x)

logλ−1 x

is large, is very sparse. This is why Maier’s Theorem does not contradict the result of

Selberg giving an asymptotic for primes in “most” short intervals of length log2+o(1) x.

Remark 9.13. The deep Fact about π(x; q, a) that we used should really be true for all

q ≤ x1/3 (say) and all (a, q) = 1, and with a much stronger error term. This would

follow from the Generalised Riemann Hypothesis. But since we only need it for a special

sequence of moduli q, it can be proved unconditionally (using methods originating with

Linnik).

10. An introduction to the Riemann zeta function

To finish Chapter 2 we shall think about heuristics for the behaviour of the Riemann

zeta function, and more specifically a heuristic in favour of the Riemann Hypothesis.

Before we can do this we need to develop a little of the theory of the zeta function

(which we shall also use in Chapter 3).

The Riemann zeta function ζ(s) is a meromorphic function on the entire complex

plane, but its definition is not straightforward to explain for all s ∈ C. We will begin by

defining the zeta function when <(s) > 1. Later we will extend the definition to cover

the range <(s) > 0, which is by far the most important for applications. (Note that,

since the half plane {<(s) > 1} is a set containing a limit point, the Identity Theorem

from complex analysis implies there is at most one analytic continuation of ζ(s) to a

meromorphic function on C.)

Definition 10.1. For each s ∈ C such that <(s) > 1, the Riemann zeta function ζ(s)

is defined by

ζ(s) :=
∞∑
n=1

1

ns
.

Note that the series is absolutely convergent.

For each <(s) > 1, the zeta function is built from some information about every

natural number n. Since each n is a (possibly empty) product of primes, in an essentially

unique way, one might hope that the values of the zeta function can be related to the

behaviour of ps for primes p only. The following result, the so-called Euler product

expression for ζ(s), provides such a connection.

Lemma 10.2 (Euler product expression). If <(s) > 1 then

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

where the infinite product is defined to be limP→∞
∏

p≤P

(
1− 1

ps

)−1

.
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Proof of Lemma 10.2. Note that, for any prime p,(
1− 1

ps

)−1

=
∞∑
k=0

1

pks
.

Here the geometric series is absolutely convergent if <(s) > 0.

Since we can freely multiply out and rearrange the terms in a finite product of

absolutely convergent series, and since every integer has a unique prime factorisation

up to ordering (the Fundamental Theorem of Arithmetic), we have∏
p≤P

(
1− 1

ps

)−1

=
∏
p≤P

∞∑
k=0

1

pks
=
∞∑
n=1

cP (n)

ns
,

where cP (n) is 1 if all the prime factors of n are ≤ P , and cP (n) is zero otherwise.

Then we see ∣∣∣∣∣ζ(s)−
∏
p≤P

(
1− 1

ps

)−1
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∞∑
n=1,

cP (n)=0

1

ns

∣∣∣∣∣∣∣∣ ≤
∞∑
n=1,

cP (n)=0

1

n<(s)
.

Since we certainly have cP (n) = 1 if n ≤ P , the right hand side is

≤
∞∑

n=P+1

1

n<(s)
.

If <(s) > 1 then this tends to zero as P →∞, as claimed. �

The importance of the zeta function arises from the fact that (at least when <(s) > 1)

it is simultaneously a product over primes, which are the basic object of study in

multiplicative number theory, and a sum over integers that can be approximated and

manipulated analytically. One wants to establish similar properties for other s ∈ C,

and to play the properties off against one another to deduce information about the zeta

function and the primes.

By playing with the series definition of ζ(s), we can obtain a second definition that

makes sense whenever <(s) > 0, except at s = 1 (where the function has a simple pole),

and agrees with our original definition 10.1 when <(s) > 1.

Definition 10.3. For each s ∈ C such that <(s) > 0, except for s = 1, and for any

x > 0, the Riemann zeta function is defined by

ζ(s) :=
∑
n≤x

1

ns
+
x1−s

s− 1
+
{x}
xs
− s

∫ ∞
x

{w} dw
ws+1

,

Here {w} := w − bwc denotes the fractional part of w.

The value of the right hand side is independent of the choice of x.
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Proof of well definedness. The idea is simply to approximate the tail of the series
∑

n
1
ns

by an integral.

Indeed, if <(s) > 1 and x > 0 then

ζ(s) =
∞∑
n=1

1

ns
=
∑
n≤x

1

ns
+
∑
n>x

s

∫ ∞
n

dw

ws+1
=
∑
n≤x

1

ns
+ s

∫ ∞
x

(
∑

x<n≤w

1)
dw

ws+1
.

Now
∑

x<n≤w 1 = bwc − bxc = (w − x)− {w}+ {x}, so we can rewrite the above as

ζ(s) =
∑
n≤x

1

ns
+ s

∫ ∞
x

(w − x)
dw

ws+1
+ s{x}

∫ ∞
x

dw

ws+1
− s

∫ ∞
x

{w} dw
ws+1

.

An easy calculation shows that the second and third terms here are x1−s

s−1
and {x}

xs
re-

spectively, so we have verified that definitions 10.3 and 10.1 agree when <(s) > 1.

Moreover, since we always have 0 ≤ {·} < 1, every term on the right hand side in

Definition 10.3 continues to converge and define a holomorphic function for all <(s) > 0

(for any choice of x), apart from the term x1−s

s−1
which has a simple pole at s = 1.

Therefore, by the uniqueness of analytic continuation, since the right hand side takes

the same value for any x whenever <(s) > 1, it must take the same value for any x on

the whole range <(s) > 0. �

11. Perron’s inversion formula

In classical analytic number theory, one considers generating series of the form∑∞
n=1

an
ns

(called Dirichlet series, of which the Riemann zeta function is the prototypical

example) and tries to study them and recover information about the coefficients an, or

related objects. One can think of the Dirichlet series
∑∞

n=1
an

nσ+it
as a kind of Fourier

transform of the sequence (an), in which the oscillating terms n−it = e−it logn are analo-

gous to the exponential phases e2πint in a Fourier series, and the terms n−σ are present to

make everything converge. With this in mind, one could reasonably hope to formulate

a procedure like Fourier inversion, allowing one to recover information about
∑

n≤x an

by summing/integrating the series
∑∞

n=1
an

nσ+it
over a suitable range of the “frequency”

variable t. This is the procedure that we shall now develop.

Lemma 11.1. Let y, c, T > 0, and define

δ(y) :=


0 if 0 < y < 1

1/2 if y = 1

1 if y > 1.

Then ∣∣∣∣δ(y)− 1

2πi

∫ c+iT

c−iT
ys
ds

s

∣∣∣∣ <
{
yc min{1, 1

T | log y|} if y 6= 1

min{1, c
T
} if y = 1.



PROBABILISTIC NUMBER THEORY LECTURE NOTES 2 17

Proof of Lemma 11.1. The obvious approach is to use Cauchy’s Residue Theorem, and

evaluate the integral by deforming the line of integration in a suitable way.

For example, if 0 < y < 1 then the integrand ys

s
tends to zero as <(s) → ∞ (in a

uniform way, independently of =(s)), and is holomorphic on the line of integration and

to the right of it (the only pole being to the left, at s = 0). Thus Cauchy’s Residue

Theorem implies that

1

2πi

∫ c+iT

c−iT
ys
ds

s
= − 1

2πi

∫ ∞+iT

c+iT

ys
ds

s
+

1

2πi

∫ ∞−iT
c−iT

ys
ds

s
,

and we certainly have
∣∣∣∫∞+iT

c+iT
ys ds

s

∣∣∣ ≤ 1
T

∫∞
c
yσdσ = yc

T | log y| . On the other hand, Cauchy’s

Residue Theorem also implies that

1

2πi

∫ c+iT

c−iT
ys
ds

s
= − 1

2πi

∫
Γ(c,T )

ys
ds

s
,

where Γ(c, T ) is the arc of the circle centred at the origin, with radius |c + iT | =√
c2 + T 2, that runs from c + iT to c − iT on the right. And we have

∣∣∣∫Γ(c,T )
ys ds

s

∣∣∣ ≤
yc√
c2+T 2

∫
Γ(c,T )

|ds| ≤ πyc.

Similarly, if y > 1 then the integrand ys

s
tends to zero as <(s) → −∞, so one can

apply Cauchy’s Residue Theorem with the contour shifted to the left instead of the

right. This time the contour encloses the pole at s = 0, which contributes its residue of

1 to the value of the integral.

Finally, if y = 1 then the integral is quite easy to estimate directly (by real variable

methods). �

Note in particular that we have δ(y) = 1
2πi

∫ c+i∞
c−i∞ ys ds

s
, (where the infinite integral is

interpreted as limT→∞
∫ c+iT
c−iT ys ds

s
), and also that for any x > 0 and any n ∈ N we have∣∣∣∣δ(x/n)− 1

2πi

∫ c+iT

c−iT

xs

ns
ds

s

∣∣∣∣ <
{

xc

nc
min{1, 1

T | log(x/n)|} if n 6= x

min{1, c
T
} if n = x.

Lemma 11.2 (Truncated Perron formula). Let x, c, T > 0, and suppose that
∑∞

n=1
|an|
nc

is convergent. Then

′∑
n≤x

an =
1

2πi

∫ c+iT

c−iT

(
∞∑
n=1

an
ns

)
xs
ds

s
+O

(
xc

∞∑
n=1

|an|
nc

min{1, 1

T | log(x/n)|
}

)
,

where
∑′

n≤x denotes that if x is an integer, then the final summand ax is replaced by

(1/2)ax.

Proof of Lemma 11.2. We have

′∑
n≤x

an =
∞∑
n=1

anδ(x/n) =
∞∑
n=1

an
1

2πi

∫ c+iT

c−iT

xs

ns
ds

s
+O

(
xc

∞∑
n=1

|an|
nc

min{1, 1

T | log(x/n)|
}

)
,
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in view of our previous observation and the triangle inequality.

Finally, our assumption that
∑∞

n=1
|an|
nc

converges implies that both
∑∞

n=1

∫ c+iT
c−iT

∣∣an xsns 1
s

∣∣ |ds|
and

∫ c+iT
c−iT

∑∞
n=1

∣∣an xsns 1
s

∣∣ |ds| are convergent, and therefore we may swap the summation

and integration and deduce that

∞∑
n=1

an
1

2πi

∫ c+iT

c−iT

xs

ns
ds

s
=

1

2πi

∫ c+iT

c−iT

(
∞∑
n=1

an
ns

)
xs
ds

s
.

�

Remark 11.3. In fact, as we have stated Lemma 11.2 it remains valid with
∑′

n≤x an

replaced by
∑

n≤x an, since if x is an integer then the “big Oh” term in the lemma is at

least as large as |ax|.

Lemma 11.2 provides our desired relationship between a Dirichlet series and the

counting function of its coefficients. Note that if T is chosen larger, meaning that we

input information about the Dirichlet series at a wider range of “frequencies” c + it,

then the “big Oh” error term becomes smaller.

12. The Riemann Hypothesis

In 1859, in his only paper on analytic number theory, Riemann extended the definition

of the zeta function to all s ∈ C (with only a simple pole at s = 1), gave several

proofs of a functional equation establishing some symmetry of ζ(s) about the critical

line <(s) = 1/2, and proposed how to use the zeta function and Perron’s inversion

formula to prove results like the Prime Number Theorem (although it took until 1896

for Hadamard and de la Vallée Poussin to actually achieve this). He also said that the

following statement about the zeros of ζ(s) (that is, the values s for which ζ(s) = 0)

seems “very probable”:

Conjecture 12.1 (Riemann Hypothesis). There are no zeros s of the Riemann zeta

function with <(s) > 1/2.

Because of the functional equation, this is equivalent to saying that all zeros of the

zeta function in the strip 0 ≤ <(s) ≤ 1 satisfy <(s) = 1/2. The Riemann Hypothesis

is now an extremely famous conjecture, and in this section we will think about why it

might be true, and why it is interesting.

It isn’t obvious at first sight that the zeros of ζ(s) have any significance at all, so we

begin by noting that there are certainly no zeros satisfying <(s) > 1.

Lemma 12.2. When <(s) > 1 we have

ζ(s) ·
∞∑
n=1

µ(n)

ns
= 1,
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where the Möbius function µ(n) is zero if n has any non-trivial square divisors, and

µ(n) := (−1)ω(n) otherwise.

In particular, when <(s) > 1 we have ζ(s) 6= 0.

Proof of Lemma 12.2. The Euler product expression for the zeta function (Lemma 10.2)

implies that

ζ(s) ·
∏
p

(
1− 1

ps

)
= 1, <(s) > 1.

By expanding this product, we find it is equal to
∑∞

n=1
µ(n)
ns

, an absolutely convergent

series. In particular, it is some finite complex number whose multiplicative inverse is

ζ(s), so we cannot have ζ(s) = 0. �

Note that the real reason that ζ(s) 6= 0 when <(s) > 1 is because the zeta function

encodes information about the primes via the Euler product. It turns out that if ζ(s) 6= 0

on a wider range of s, then this implies non-trivial things about the primes, which is

the most important reason that the Riemann Hypothesis is an interesting conjecture.

But why should we believe that it is a true conjecture?

Proposition 12.3 (Möbius cancellation implies RH, Littlewood, 1912). Suppose that

for all small ε > 0, we have
∑

n≤x µ(n) �ε x
1/2+ε. Then the Riemann Hypothesis is

true.

Proof of Proposition 12.3. We will show that if we have the estimate
∑

n≤x µ(n) �ε

x1/2+ε, then the Dirichlet series
∑∞

n=1
µ(n)
ns

converges and defines a holomorphic function

whenever <(s) > 1/2. If we can show this then we will be done, because Lemma 12.2

implies that

ζ(s) ·
∞∑
n=1

µ(n)

ns
− 1 = 0 ∀<(s) > 1,

and so the Identity Theorem from complex analysis will imply that

ζ(s) ·
∞∑
n=1

µ(n)

ns
− 1 = 0 ∀<(s) > 1/2,

and so as before we must have ζ(s) 6= 0.

For any large N ∈ N, we have

N∑
n=1

µ(n)

ns
=

N∑
n=1

µ(n)

(
s

∫ N

n

dw

ws+1
+

1

N s

)
= s

∫ N

1

∑
n≤w µ(n)

ws+1
dw +

∑
n≤N µ(n)

N s
.

But if <(s) = 1/2 + 2ε, then∣∣∣∣
∑

n≤w µ(n)

ws+1

∣∣∣∣ =
|
∑

n≤w µ(n)|
w3/2+2ε

�ε
1

w1+ε
,
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by our assumption about
∑

n≤w µ(n). Thus the integral in the previous display is

absolutely convergent as N →∞, and the term
∑
n≤N µ(n)

Ns tends to zero. Moreover the

convergence is uniform on any compact subset of {<(s) > 1/2} (since in such a subset

the real part of s will be bounded some fixed distance away from 1/2, and |s| will be

bounded), so
∑∞

n=1
µ(n)
ns

converges to a holomorphic function. �

There are actually many statements whose truth implies the Riemann Hypothesis,

so Proposition 12.3 doesn’t in itself say that sums of the Möbius function are especially

interesting. But it turns out that the Riemann Hypothesis is not only implied by

cancellation in
∑

n≤x µ(n), but is equivalent to it.

Proposition 12.4 (RH implies Möbius cancellation, Littlewood, 1912). If the Riemann

Hypothesis is true, then for all small ε > 0 we have
∑

n≤x µ(n)�ε x
1/2+ε.

Proof of Proposition 12.4. In view of the truncated Perron formula (Lemma 11.2 and

the subsequent Remark), for any x, T > 0 and any c > 1 we have∑
n≤x

µ(n) =
1

2πi

∫ c+iT

c−iT

(
∞∑
n=1

µ(n)

ns

)
xs
ds

s
+O

(
xc

∞∑
n=1

|µ(n)|
nc

min{1, 1

T | log(x/n)|
}

)

=
1

2πi

∫ c+iT

c−iT

1

ζ(s)
xs
ds

s
+O

(
xc

∞∑
n=1

1

nc
min{1, 1

T | log(x/n)|
}

)
.

Here we used Lemma 12.2 to write
∑∞

n=1
µ(n)
ns

= 1
ζ(s)

when <(s) = c > 1. We shall

assume henceforth that x is large (this being the case we are interested in) and that

T ≥ 2 and 1 < c ≤ 2 (as we shall eventually choose them).

If the Riemann Hypothesis is true, then the integrand 1
ζ(s)

xs

s
has no poles in the

half-plane <(s) > 1/2, so Cauchy’s Residue Theorem implies that∫ c+iT

c−iT

1

ζ(s)
xs
ds

s
=

∫ 1/2+ε/2+iT

1/2+ε/2−iT

1

ζ(s)
xs
ds

s
+

∫ c+iT

1/2+ε/2+iT

1

ζ(s)
xs
ds

s
−
∫ c−iT

1/2+ε/2−iT

1

ζ(s)
xs
ds

s

� x1/2+ε/2 log(2 + T ) max
|t|≤T

1

|ζ(1/2 + ε/2 + it)|

+
xc

log x

1

T
max

1/2+ε/2≤σ≤c,
t=±T

1

|ζ(σ + it)|
.

To estimate the terms involving 1/ζ we shall invoke the following lemma, whose proof

we shall sketch later.

Lemma 12.5. If the Riemann Hypothesis is true, then for any δ, ε > 0 we have

−δ log |t| ≤ log |ζ(σ + it)| = < log ζ(σ + it) ≤ δ log |t| ∀σ ≥ 1/2 + ε, |t| �ε,δ 1.
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If we apply Lemma 12.5 with the choice δ = ε/100 (and with ε replaced by ε/2), we

deduce that

max
|t|≤T

1

|ζ(1/2 + ε/2 + it)|
�ε T

ε/100, and max
1/2+ε/2≤σ≤c,

t=±T

1

|ζ(σ + it)|
�ε T

ε/100.

To control the “big Oh” term from the truncated Perron formula, we will take a fairly

crude approach and just note that if |n− x| ≥ x√
T

then | log(x/n)| = | log(1 + x−n
n

)| �
| log(1 + 1√

T
)| � 1√

T
. Therefore we have

xc
∞∑
n=1

1

nc
min{1, 1

T | log(x/n)|
} � xc

∑
|n−x|< x√

T

1

nc
+
xc√
T

∑
|n−x|≥ x√

T

1

nc
�

∑
|n−x|< x√

T

1+
xc√
T

∞∑
n=1

1

nc
,

on noting that if |n − x| < x√
T

then n � x, so 1
nc
� 1

xc
. The first sum here is clearly

� 1 + x√
T

, whilst the second term is � xc√
T

∫∞
1

1
yc
dy � xc

(c−1)
√
T

.

Collecting everything together, we have shown that∑
n≤x

µ(n)�ε x
1/2+ε/2 log(2 + T )T ε/100 +

xc

T 1−ε/100 log x
+

x√
T

+
xc

(c− 1)
√
T
.

The standard choice here is to take c = 1 + 1
log x

, since this satisfies our condition that

c > 1 and yet we still have xc = xx1/ log x � x. If we make this choice, then our bound

becomes ∑
n≤x

µ(n)�ε x
1/2+ε/2 log(2 + T )T ε/100 +

x log x√
T

.

Finally, Proposition 12.4 follows if we choose T = x, say. �

At this point we know (apart from the need to prove Lemma 12.5) that the truth of

the Riemann Hypothesis is equivalent to having the bounds
∑

n≤x µ(n) �ε x
1/2+ε for

sums of the Möbius function. We don’t know how to prove such strong bounds, but

there are various heuristic reasons, of different levels of sophistication, that we might

believe they should hold.

Model 12.6 (Random walk model). Since µ(n) takes the values ±1, and (it turns out)

takes each about half of the time (except on the well-understood sequence of n having a

non-trivial square divisor, where µ(n) = 0), the most naive model would be to assume

that the successive values of µ(n) (on squarefree values of n) behave like independent

random signs, and so
∑

n≤x µ(n) behaves like a simple random walk.

If this is true then the bound
∑

n≤x µ(n) �ε x
1/2+ε should certainly hold, and in

fact the Law of the Iterated Logarithm (as discussed in section 7) would suggest that

the fluctuations should be of order
√
x log log x (and not more). One probably wouldn’t

accept the random walk model, which reflects no arithmetic information, to a very fine

level of precision (like the Iterated Logarithm statement), but as a rough guide it is
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widely accepted. Recently Sarnak has formulated a sequence of precise but general

conjectures suggesting there should be lots of cancellation in many sums of the form∑
n≤x µ(n)g(n).

Model 12.7 (Random multiplicative model, Wintner, 1940). To introduce some arith-

metic structure into the random walk model, Wintner proposed modelling µ(n) by a

random sequence f(n), where the values (f(p))p prime are independent random signs,

and for general n we have f(n) :=
∏

p|n f(p) if n is squarefree, and f(n) := 0 if n is not

squarefree. The Möbius function is the special case where f(p) = −1 for all primes p.

The random multiplicative model is much less understood as a probabilistic ob-

ject than the simple random walk, but as Wintner proved it certainly also satisfies∑
n≤x f(n) �ε x

1/2+ε with probability 1. It is not clear whether it is a really good

model for the Möbius function, but it does seem to model at least some interesting

arithmetic phenomena quite well.

Model 12.8 (Random matrix model, Montgomery, 1972). A popular model for the

Riemann zeta function on the critical line <(s) = 1/2 is the characteristic polynomial

of a suitable random matrix, with the eigenvalues of the random matrix then supposed

to correspond to the zeros of the zeta function.

This kind of model isn’t directly a model for the Möbius function, but it leads to vari-

ous conjectures (e.g. for the moments
∫ T

0
|ζ(1/2+it)|2kdt of the zeta function, by Keating

and Snaith) and thereby, indirectly, to conjectures about the Möbius function that we

can compare with the previous two models. Gonek has conjectured, based on these

kinds of ideas, that
∑

n≤x µ(n) should have fluctuations of order
√
x(log log log x)5/4,

and not more.

Finally we shall sketch the proof of Lemma 12.5.

Sketch proof of Lemma 12.5. We assume for simplicity that 1/2 + ε ≤ σ ≤ 1, but the

case σ > 1 can be treated with a similar (or easier) argument. The proof will assume

two complex analysis facts, which are both variants of the maximum modulus principle.

The first, the Borel–Carathéodory theorem, asserts that one can bound the modulus

of a holomorphic function at a point given a bound for its real part on a surrounding

disc: if h(z) is holomorphic on the disc |z| ≤ R, and if h(0) = 0, and if r < R, then

max
|z|≤r
|h(z)| ≤ 2r

R− r
max
|z|≤R

<h(z).

We apply this to h(z) := log ζ(2 + it+ z)− log ζ(2 + it), with R = 3/2− ε/2. Since we

assume the Riemann Hypothesis, ζ(2+ it+z) does not vanish inside the disc |z| ≤ R, so

log ζ(2 + it+ z) is holomorphic in the disc. By construction we also have h(0) = 0. To
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apply the theorem we need an upper bound for <h(z) = log |ζ(2+it+z)|−log |ζ(2+it)|,
and since |ζ(2 + it)| =

∏
p |1−

1
p2+it
|−1 it is easy to see that log |ζ(2 + it)| = O(1), so we

really just need an upper bound for max|z|≤3/2−ε/2 log |ζ(2 + it+ z)|.
Our second definition of the zeta function (Definition 10.3) implies that, if <(s) ≥

1/2, if |=(s)| ≥ 2, and if x ≥ 10 (say) is a parameter, then

|ζ(s)| =

∣∣∣∣∣∑
n≤x

1

ns
+
x1−s

s− 1
+
{x}
xs
− s

∫ ∞
x

{w} dw
ws+1

∣∣∣∣∣ � ∑
n≤x

1

n<(s)
+ x1−<(s) + |s|

∫ ∞
x

dw

w<(s)+1

� (1 + x1−<(s)) log x+
|s|
x<(s)

.

(Here we used the fact that
∑

n≤x
1
nσ
� x1−σ

1−σ � x1−σ log x if σ ≤ 1 − 1/ log x, and∑
n≤x

1
nσ
�
∑

n≤x
1
n
� log x if σ > 1− 1/ log x.) In particular, if we just choose x = 10

we obtain the crude bound |ζ(s)| � |s| on our range of s, so for |z| ≤ 3/2− ε/2 we have

|ζ(2 + it+ z)| � |t|, and log |ζ(2 + it+ z)| ≤ log |t|+O(1). (Note this is only an upper

bound, since we haven’t yet excluded the possibility that ζ(2 + it+ z) could be very close

to zero. But the Borel–Carathéodory theorem only requires an upper bound.) Applying

the Borel–Carathéodory theorem with r = 3/2− ε, it follows that

max
|z|≤r
| log ζ(2 + it+ z)| = max

|z|≤r
| log ζ(2 + it+ z)− log ζ(2 + it)|+O(1)� log |t|

ε
,

so in particular

| log ζ(σ + it)| � log |t|
ε

∀σ ≥ 1/2 + ε, |t| � 1.

This bound is not yet good enough for Lemma 12.5, but we can refine it using our

second complex analysis fact. Hadamard’s three-circles theorem asserts that if 0 < R1 <

R2, and if f(z) is a holomorphic function on the annulus R1 ≤ |z| ≤ R2, then for any

R1 ≤ r ≤ R2 we have

max
|z|=r
|f(z)| ≤

(
max
|z|=R1

|f(z)|
) log(R2/r)

log(R2/R1)
(

max
|z|=R2

|f(z)|
) log(r/R1)

log(R2/R1)

.

We apply this to the function f(z) := log ζ(1.1 + it + z), say, and with R1 = 0.05 and

R2 = 0.6 − ε/2. The Riemann Hypothesis implies that ζ(1.1 + it + z) does not vanish

in the disc |z| ≤ R2, so f(z) is holomorphic there. Our previous calculations show

that max|z|=R2 |f(z)| � log |t|
ε

, whilst the Euler product expression directly implies that

max|z|=R1 |f(z)| = max|z|=R1 |
∑

p log(1− 1
p1.1+it+z

)| �
∑

p
1

p1.05
� 1. If 1/2 + ε ≤ σ ≤ 1

then we can take R1 < r = 1.1− σ ≤ R2 − ε/2, and conclude

| log ζ(σ + it)| ≤ max
|z|=r
|f(z)| �

(
log |t|
ε

) log(r/R1)
log(R2/R1)

�
(

log |t|
ε

)1−cε

,
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for a certain small constant c > 0. In particular, for any δ > 0, if |t| is large enough

depending on ε and δ we will have

| log ζ(σ + it)| ≤ δ log |t|,

which gives Lemma 12.5. �

Remark 12.9. Many of the proofs in this section consist mostly of complex analysis

“trickery”, such as the Identity Theorem, Borel–Carathéodory theorem, and Hadamard’s

three-circles theorem. But the key input into the proofs, in which it was important we

were working with the zeta function rather than some general function, was the Euler

product expression; a rough size estimate deduced from Definition 10.3; and the as-

sumption of the Riemann Hypothesis so we could work with log ζ(s) as a holomorphic

function. In general, complex analysis provides a language and toolbox for manipulat-

ing data about the zeta function (and, through it, about the primes), but we always

need estimates for arithmetic things (like primes in the Euler product) as raw data to

prove anything interesting.
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