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ADAM J HARPER

Abstract. These are rough notes covering the third block of lectures in the “Prob-

abilistic Number Theory” course. In these lectures we will see how the Euler product

for the Riemann zeta function and the multiplicative independence of distinct primes

provides some “almost independent” structure, for varying imaginary part. This ulti-

mately leads to the Selberg central limit theorem for log |ζ(1/2 + it)|, as t varies.

(No originality is claimed for any of the contents of these notes. In particular, they

borrow substantially from the paper [1] of Radziwi l l and Soundararajan.)

13. “Almost independence” for the zeta function

Back at the start of the course, we observed that if f(n) is an additive function and

if n ≤ N then we can write

f(n) =
∑
p≤N

(
∞∑
k=1

f(pk)1pk||n

)
=:
∑
p≤N

fp(n).

Since the functions fp(n) behave “almost independently” as n ≤ N varies, this ulti-

mately leads to the Erdős–Kac central limit theorem for additive functions.

In this chapter we will see that we can obtain an analogous decomposition for log ζ(s)

or log |ζ(s)| = < log ζ(s). The easiest setting to see this is when <(s) > 1.

Lemma 13.1. For any σ > 1 and any t ∈ R, we have

log ζ(σ + it) =
∑
p

∞∑
k=1

1

k

1

pk(σ+it)
, and log |ζ(σ + it)| =

∑
p

∞∑
k=1

1

k

cos(kt log p)

pkσ
.

The double series on the right are absolutely convergent.

Proof of Lemma 13.1. In view of the Euler product expression for the zeta function

(Lemma 10.2), we have

log ζ(σ + it) = −
∑
p

log

(
1− 1

pσ+it

)
, σ > 1, t ∈ R.
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The lemma follows on inserting the Taylor series expansion of log
(

1− 1
pσ+it

)
, and (for

the statement about log |ζ(σ + it)|) on taking real parts and noting that <p−ikt =

cos(−kt log p) = cos(kt log p). �

In the case of additive functions, the summands fp(n) were “almost independent”

because divisibility by distinct primes are “almost independent” events, by the Chinese

Remainder Theorem. In the case of the zeta function we will think of the imaginary part

t as varying over some interval [T, 2T ], and the almost independence arises because the

values log p are linearly independent over Q (this is just a restatement of the uniqueness

of prime factorisations), so the terms cos(kt log p) vary almost independently for distinct

primes p. To explore this, we first prove a simple integral estimate.

Lemma 13.2. Let A(s) =
∑

n≤X
an
ns

and B(s) =
∑

n≤X
bn
ns

, where the an, bn are arbitrary

complex numbers. Then for any T ≥ 0 and any σ ∈ R we have

∫ 2T

T

A(σ + it)B(σ + it)dt = T
∑
n≤X

anbn
n2σ

+O

X ∑
m,n≤X,
m6=n

|an|
nσ
|bm|
mσ

 .

Proof of Lemma 13.2. If we simply insert the definitions of A(σ+ it) and B(σ+ it), we

find ∫ 2T

T

A(σ + it)B(σ + it)dt =
∑
n≤X

an
nσ

∑
m≤X

bm
mσ

∫ 2T

T

1

nit
1

m−it
dt.

The terms where m = n give the first sum in the statement of the Lemma, whilst if

m 6= n we have ∫ 2T

T

1

nit
1

m−it
dt =

∫ 2T

T

eit log(m/n) � 1

log(m/n)
� X,

since if 1 ≤ n < m ≤ X then log(m/n) = log(1 + m−n
n

) ≥ log(1 + 1
n
)� 1/X (similarly

if 1 ≤ m < n ≤ X). This gives the “big Oh” term claimed in the Lemma. �

Notice that the “big Oh” term here does not grow with T , so we can expect the first

sum typically to dominate once T is large enough.

Lemma 13.3 (Truncated Moments for log zeta). For any X ≥ 2, any T ≥ 0, any

σ ∈ R and even j ∈ N we have

∫ 2T

T

(∑
p≤X

cos(t log p)

pσ

)j

dt = T
j!

2j(j/2)!

(∑
p≤X

1

p2σ

)j/2
1 +Oj

 ∑
p≤X

1
p4σ(∑

p≤X
1
p2σ

)2


+

+Oj

Xj

∑
n≤Xj

1

nσ

2 ,
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whilst for any odd j ∈ N we have∫ 2T

T

(∑
p≤X

cos(t log p)

pσ

)j

dt�j X
j

∑
n≤Xj

1

nσ

2

.

Proof of Lemma 13.3. Note first that we can write cos(t log p) = <pit = (1/2)(pit+p−it),

and therefore we always have∫ 2T

T

(∑
p≤X

cos(t log p)

pσ

)j

dt =
1

2j

∫ 2T

T

(∑
p≤X

1

pσ+it
+
∑
p≤X

1

pσ−it

)j

dt

=
1

2j

j∑
k=0

(
j

m

)∫ 2T

T

(∑
p≤X

1

pσ+it

)k(∑
p≤X

1

pσ−it

)j−k

dt.

Furthermore, if we expand out we find that
(∑

p≤X
1

pσ+it

)k
=
∑

n≤Xk
an(k)
nσ+it

=: Ak(σ+it),

say, where an(k) denotes the number of ways of writing n as a product of k primes

less than X (with primes counted with multiplicity, and different orderings counted as

distinct), and with an(k) = 0 if there is no such representation of n.

Using this notation, and applying Lemma 13.2, we get that
∫ 2T

T

(∑
p≤X

cos(t log p)
pσ

)j
dt

is

=
1

2j

j∑
k=0

(
j

m

)∫ 2T

T

Ak(σ + it)Aj−k(σ + it)dt

=
1

2j

j∑
k=0

(
j

m

)T ∑
n≤Xj

an(k)an(j − k)

n2σ
+O

Xj
∑

m,n≤Xj ,
m 6=n

an(k)

nσ
am(j − k)

mσ


 .

We always have an(k) ≤ k! ≤ j!, similarly for am(j − k), so the total contribution from

the “big Oh” terms may be bounded as stated in the lemma.

In the other sums, note that if an(k) 6= 0 and an(j−k) 6= 0 then n must be a product

of k prime factors and also a product of j − k prime factors. This can only happen if

k = j − k, in other words if j is even and if k = j/2. If j is even, the total contribution

from all those sums becomes

T

(
j
j/2

)
2j

∑
n≤Xj

an(j/2)2

n2σ
= T

(
j
j/2

)
2j

 ∑
n≤Xj ,

n product of j/2 distinct p≤X

an(j/2)2

n2σ
+Oj(

∑
n≤Xj ,

n prod. of j/2 non-distinct p≤X

1

n2σ
)

 .
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Finally, if n is a product of j/2 distinct primes less thanX then we have an(j/2) = (j/2)!,

so we can rewrite the above as

T

(
j
j/2

)
2j

(j/2)!

∑
n≤Xj

an(j/2)

n2σ
+Oj(

∑
n≤Xj ,

n prod. of j/2 non-distinct p≤X

1

n2σ
)

 .

Recalling the definition of an(j/2), we see
∑

n≤Xj
an(j/2)
n2σ =

(∑
p≤X

1
p2σ

)j/2
, which gives

the first term in the statement of the lemma (for j even). Meanwhile we have

∑
n≤Xj ,

n prod. of j/2 non-distinct p≤X

1

n2σ
≤
∑
p≤X

1

p4σ

∑
n: prod. of j/2−2 primes p≤X

1

n2σ
≤

(∑
p≤X

1

p4σ

)(∑
p≤X

1

p2σ

)j/2−2

,

which gives the multiplicative error term in the statement of the Lemma. �

Equipped with the Truncated Moments Lemma for log zeta, we can think about

whether it is possible to deduce a central limit type theorem. To do this we first want the

“big Oh” terms to be of smaller order than the supposed main terms T j!
2j(j/2)!

(∑
p≤X

1
p2σ

)j/2
.

Similarly as in our proof of the Erdős-Kac theorem (Theorem 5.1), we will arrange this

by taking X = T 1/φ(T ), where φ(T ) is some function that tends to infinity with T .

Having made this restriction, let PT denote the continuous uniform probability mea-

sure on the interval [T, 2T ] (where T > 0), and let ET denote the expectation induced

by PT . (This clashes slightly with the notation PN that we used in an analogous discrete

setting in Chapter 1, but there should be no confusion in practice.) If it turns out that

the “big Oh” terms are all small, then Lemma 13.3 will imply that

ET
∑

p≤T 1/φ(T )

cos(t log p)

pσ
=

1

T

∫ 2T

T

∑
p≤T 1/φ(T )

cos(t log p)

pσ
dt→ 0 as T →∞,

and also

ET

 ∑
p≤T 1/φ(T )

cos(t log p)

pσ

2

=
1

T

∫ 2T

T

 ∑
p≤T 1/φ(T )

cos(t log p)

pσ

2

dt ∼ 1

2

∑
p≤T 1/φ(T )

1

p2σ
as T →∞.

Back in Remark 5.2, we noted that we cannot hope to prove a normal limit theorem

unless the variance 1
2

∑
p≤T 1/φ(T )

1
p2σ

tends to infinity as T →∞, which can only happen

if neither σ nor φ(T ) is too large.

Bearing in mind the above discussion, we formulate and prove the following result.

Proposition 13.4. Let φ(T ) be any function that satisfies φ(T )→∞ as T →∞, but

also log φ(T ) = o(log log T ) as T →∞. Further, let W (T ) be any function that satisfies

0 ≤ W (T ) ≤ φ(T )/2 for all large T .



PROBABILISTIC NUMBER THEORY LECTURE NOTES 3 5

Then under the probability measure PT , we have∑
p≤T 1/φ(T )

cos(t log p)

p1/2+W (T )/ log T√
(1/2) log log T

d→ N(0, 1) as T →∞.

Proof of Proposition 13.4. In view of the Method of Moments (Corollary 4.6), it will

suffice to prove that for each fixed j ∈ N we have

ET

(∑
p≤T 1/φ(T )

cos(t log p)

p1/2+W (T )/ log T√
(1/2) log log T

)j

→ mj as T →∞,

where mj denote the standard normal moments. We recall from the Normal Moments

Lemma (Lemma 4.5) this means that mj = 0 when j is odd, and mj = j!
2j/2(j/2)!

when j

is even.

When j is odd, Lemma 13.3 implies that

ET

(∑
p≤T 1/φ(T )

cos(t log p)

p1/2+W (T )/ log T√
(1/2) log log T

)j

�j
1

T (log log T )j/2
T j/φ(T )

 ∑
n≤T j/φ(T )

1

n1/2+W (T )/ log T

2

.

We can upper bound the right hand side extremely crudely by 1
T
T 3j/φ(T ), and this does

tend to 0 as T →∞ since we assume that φ(T )→∞.

When j is even, Lemma 13.3 implies that

ET

(∑
p≤T 1/φ(T )

cos(t log p)

p1/2+W (T )/ log T√
(1/2) log log T

)j

=
1

((1/2) log log T )j/2
j!

2j(j/2)!

 ∑
p≤T 1/φ(T )

1

p1+2W (T )/ log T


j
2

1 +Oj

 ∑
p≤T 1/φ(T )

1
p2+4W (T )/ log T(∑

p≤T 1/φ(T )
1

p1+2W (T )/ log T

)2


+

+Oj

 1

T (log log T )j/2
T j/φ(T )

 ∑
n≤T j/φ(T )

1

n1/2+W (T )/ log T

2 .

Now notice that we always have
∑

p≤X
1

p1+w
=
∑

p≤X
1
p
e−w log p, and if 0 ≤ w log p ≤ 1 we

can write this as
∑

p≤X
1
p
(1+O(w log p)). In the special case above we have 2W (T ) log p

log T
≤

2W (T )
φ(T )

≤ 1 for all large T , by assumption about W (T ), and so

∑
p≤T 1/φ(T )

1

p1+2W (T )/ log T
=

∑
p≤T 1/φ(T )

1

p
+O

W (T )

log T

∑
p≤T 1/φ(T )

log p

p

 = log log T−log φ(T )+O(1),

using the estimates of Mertens (Fact 2 from Chapter 0). In the Proposition we assume

that log φ(T ) = o(log log T ), so overall the above is (1 + o(1)) log log T .
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Putting everything together, when j is even we see ET
(∑

p≤T1/φ(T )
cos(t log p)

p1/2+W (T )/ log T√
(1/2) log log T

)j
is

= (1 + oj(1))
1

(1/2)j/2
j!

2j(j/2)!
(1 +Oj(

1

(log log T )2
)) +Oj(

1

T
T 3j/φ(T )).

Here we estimated the final “big Oh” term as we did for odd j. The above expression

→ j!
2j/2(j/2)!

= mj as T →∞, which proves the Proposition. �

Comparing Proposition 13.4 with Lemma 13.1, we have established a central limit

theorem for the partial sums over primes when σ is very close to 1/2, but we only know

that these partial sums approximate log |ζ(σ+ it)| on the different range σ > 1. It turns

out that (for a suitable choice of φ(T ) and W (T )) these partial sums do approximate

log |ζ(σ + it)|, on average over T ≤ t ≤ 2T , for σ very close to 1/2, but unlike in the

Erdős–Kac theorem it requires quite a lot of work to show this. This will be the subject

of the next section.

14. Selberg’s Central Limit Theorem

To finish the course, we will say as much as we can about the proof of the following

result, which is one of the most classical and fundamental probabilistic results on the

zeta function.

Theorem 14.1 (Selberg’s Central Limit Theorem, Selberg, 1946). Under the probability

measure PT , we have

log |ζ(1/2 + it)|√
(1/2) log log T

d→ N(0, 1) as T →∞.

Remark 14.2. Although ζ(s) has infinitely many zeros on the line <(s) = 1/2, it only

has finitely many in any interval T ≤ t ≤ 2T , so the continuous uniform measure PT
doesn’t see them.

In spite of the above remark, it is difficult to work with log |ζ(σ + it)| when σ ≤ 1

since it does blow up at any zero of the zeta function. Thus it is difficult even to start

directly trying to show that log |ζ(σ+ it)| ≈
∑

p≤T 1/φ(T )
cos(t log p)

pσ
for most t, which is our

approximate strategy for deducing Selberg’s Central Limit Theorem from Proposition

13.4. To get around this, an obvious idea is to take exponentials and try instead to

show that ζ(σ+ it) ≈ exp{
∑

p≤T 1/φ(T )
1

pσ+it
}, or more-or-less equivalently to try to show

that ζ(σ + it) exp{−
∑

p≤T 1/φ(T )
1

pσ+it
} ≈ 1.

We know how to approximate ζ(σ + it) (using Definition 10.3), so our difficulties

have now switched to approximating exp{−
∑

p≤T 1/φ(T )
1

pσ+it
}, for most t, by something

simple enough that we can compare it with ζ(σ + it). The following lemma is the key

to doing this.
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Lemma 14.3. Let T be large, and suppose that σ = σ(T ) ≥ 1/2. For a complex number

s, define P1(s) :=
∑

pk≤T 1/(log log T )2
1

kpks
and P2(s) :=

∑
T 1/(log log T )2<pk≤T 1/(log log log T )2

1
kpks

.

Then

PT (|P1(σ+it)| > log log T )→ 0 as T →∞, and PT (|P2(σ+it)| > log log log T )→ 0 as T →∞.

Moreover, for any T ≤ t ≤ 2T such that |P1(σ + it)| ≤ log log T we have

exp{P1(σ + it)}

( ∑
0≤k≤100 log log T

(−1)k

k!
P1(σ + it)k

)
= 1 +O(

1

log99 T
),

and for any T ≤ t ≤ 2T such that |P2(σ + it)| ≤ log log log T we have

exp{P2(σ + it)}

( ∑
0≤k≤100 log log log T

(−1)k

k!
P2(σ + it)k

)
= 1 +O(

1

(log log T )99
).

Proof of Lemma 14.3. Using Chebychev’s inequality we have PT (|P1(σ+it)| > log log T ) ≤
1

(log log T )2
ET |P1(σ + it)|2, and using Lemma 13.2 with A(s) = B(s) = P1(s) the right

hand side is

=
1

(log log T )2

 ∑
pk≤T 1/(log log T )2

1

k2p2kσ
+O

T 1/(log log T )2

T

 ∑
pk≤T 1/(log log T )2

1

kpkσ

2 .

The “big Oh” term here obviously tends to zero as T →∞, and since σ ≥ 1/2 the first

term is

≤ 1

(log log T )2

 ∑
p≤T 1/(log log T )2

1

p
+O(1)

 ≤ 1

log log T
,

using the estimate of Mertens (Fact 2 from Chapter 0). The proof that PT (|P2(σ+it)| >
log log log T )→ 0 is exactly similar, the key point being that

1

(log log log T )2

∑
T 1/(log log T )2<p≤T 1/(log log log T )2

1

p
=

2 log log log T − 2 log log log log T +O(1)

(log log log T )2
,

again by Mertens’ estimate.

To prove the final statements, we just note that if |P | ≤ K is any real number then

e−P =
∞∑
k=0

(−1)k

k!
P k =

∑
0≤k≤100K

(−1)k

k!
P k +O(

1

(b100Kc+ 1)!
|P |(b100Kc+1))

=
∑

0≤k≤100K

(−1)k

k!
P k +O(e−100K),

where the final step uses the general inequality |P |k/k! ≤ (|P |e/k)k. �

Using Lemma 14.3, we can obtain our desired “simple” approximation to exp{−
∑

p≤T 1/φ(T )
1

pσ+it
}.
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Proposition 14.4. Let T be large, and suppose that σ = σ(T ) ≥ 1/2. For a complex

number s, define M(s) :=
∑

n
µ(n)a(n)

ns
, where µ(n) denotes the Möbius function, and

where a(n) denotes the characteristic function of the set of natural numbers n having

at most 100 log log T prime factors less than T 1/(log log T )2, and at most 100 log log log T

prime factors between T 1/(log log T )2 and T 1/(log log log T )2, and no other prime factors.

Then

PT

|M(σ + it) exp{
∑

pk≤T 1/(log log log T )2

1

kpk(σ+it)
} − 1| ≥ 1

(log log T )20

→ 0 as T →∞.

Proof of Proposition 14.4. Note first that since the function µ(n)
ns

is multiplicative, we

can write M(s) =
(∑

n
µ(n)a1(n)

ns

)(∑
n
µ(n)a2(n)

ns

)
, where a1(n) is the characteristic func-

tion of those numbers having at most 100 log log T prime factors less than T 1/(log log T )2 ,

and no other prime factors, and where a2(n) is the characteristic function of numbers

having at most 100 log log log T prime factors between T 1/(log log T )2 and T 1/(log log log T )2 ,

and no other prime factors. We will show that for most T ≤ t ≤ 2T we have∑
n

µ(n)a1(n)

nσ+it
≈

∑
0≤k≤100 log log T

(−1)k

k!
P1(σ+it)k,

∑
n

µ(n)a2(n)

nσ+it
≈

∑
0≤k≤100 log log log T

(−1)k

k!
P2(σ+it)k,

which in view of Lemma 14.3 will prove the proposition.

Indeed, if we expand out
∑

0≤k≤100 log log T
(−1)k

k!
P1(σ + it)k we will obtain a finite

sum of the form
∑

n≤T 100/ log log T
b(n)
nσ+it

, for certain coefficients b(n). Note that b(n) is a

combinatorial coefficient that does not depend on σ. If n has at most 100 log log T prime

factors (counted with multiplicity), and if all of its prime and prime power factors are

≤ T 1/(log log T )2 , then the coefficient b(n) must be the same as the coefficient of 1
ns

in the

infinite series (for <(s) > 1, say)

∞∑
k=0

(−1)k

k!

∑
pj

1

jpjs

k

= exp{−
∑
pj

1

jpjs
} = exp{

∑
p

log(1− 1

ps
)},

since none of the terms with pj > T 1/(log log T )2 or k > 100 log log T can possibly con-

tribute to the coefficient of 1
ns

for such n. But in view of the Euler product expansion

(Lemma 10.2) and also Lemma 12.2, we already know that for <(s) > 1 this series is
1
ζ(s)

=
∑∞

n=1
µ(n)
ns

. Therefore we must have b(n) = µ(n) for such n. Let us also note, for

use a bit later, than for all n we know that |b(n)| is at most the coefficient of 1
ns

in the

infinite series (for <(s) > 1, say)

∞∑
k=0

1

k!

∑
pj

1

jpjs

k

= exp{
∑
pj

1

jpjs
} = exp{−

∑
p

log(1− 1

ps
)} = ζ(s) =

∞∑
n=1

1

ns
,
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so we always have |b(n)| ≤ 1.

It follows that∑
n

µ(n)a1(n)

nσ+it
−

∑
0≤k≤100 log log T

(−1)k

k!
P1(σ+it)k =

∑
n≤T 100/ log log T ,

n has >100 log log T prime factors,

or n has a prime power factor >T 1/(log log T )2

µ(n)a1(n)− b(n)

nσ+it
.

Using Chebychev’s inequality and Lemma 13.2 as before, and the fact that |µ(n)a1(n)−
b(n)| ≤ 1 + |b(n)| ≤ 2, we then get

PT

(∣∣∣∣∣∑
n

µ(n)a1(n)

nσ+it
−

∑
0≤k≤100 log log T

(−1)k

k!
P1(σ + it)k

∣∣∣∣∣ ≥ 1

log25 T

)

≤ (log50 T )ET

∣∣∣∣∣ ∑
n≤T 100/ log log T ,

n has >100 log log T prime factors,

or n has a prime power factor >T 1/(log log T )2

µ(n)a1(n)− b(n)

nσ+it

∣∣∣∣∣
2

� log50 T

( ∑
n≤T 100/ log log T ,

n has all prime factors ≤T 1/(log log T )2 ,
n has >100 log log T prime factors,

or n has a prime power factor >T 1/(log log T )2

1

n2σ
+O

(
T 300/ log log T

T

))
.

The contribution from the “big Oh” term obviously tends to zero, and since σ ≥ 1/2

the contribution from the first term is

≤ log50 T

 ∑
p≤T 1/(log log T )2

∑
k:pk>T 1/(log log T )2

log T

pk
+

∑
n≤T 100/ log log T ,

n has >100 log log T prime factors

1

n



� log50 T

 log T

T 1/(2(log log T )2)
+

∑
n≤T 100/ log log T ,

n has >100 log log T prime factors

1

n

 .

Again, the first term here clearly tends to zero. To estimate the contribution from the

second sum, we note that if r > 1, and if Ω(n) denotes the total number of prime factors

(counted with multiplicity) of n, then

∑
n≤T,

n has >100 log log T prime factors

1

n
≤ 1

r100 log log T

∑
n≤T

rΩ(n)

n
≤ 1

r100 log log T

∏
p≤T

1 +
r

p
+

∑
2≤k≤(log T )/ log p

rk

pk

 .

Provided that r ≤ 1.99, say, the sum over proper prime powers (k ≥ 2) is always

O(1/p2), and so by taking logarithms we find
∏

p≤T

(
1 + r

p
+
∑

2≤k≤(log T )/ log p
rk

pk

)
=
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exp{
∑

p≤T ( r
p

+O( 1
p2

))} = exp{r log log T +O(1)} � logr T . This implies overall that

log50 T
∑

n≤T 100/ log log T ,
n has >100 log log T prime factors

1

n
� log50 T

logr T

r100 log log T
= log50 T

logr T

log100 log r T
.

Finally, if we choose r = 1.99 then the right hand side is � 1
log10 T

, say, which in

particular tends to zero as T →∞.

We have just shown that

PT

(∣∣∣∣∣∑
n

µ(n)a1(n)

nσ+it
−

∑
0≤k≤100 log log T

(−1)k

k!
P1(σ + it)k

∣∣∣∣∣ ≥ 1

log25 T

)
→ 0 as T →∞,

and an exactly similar argument (applying Chebychev’s inequality, and bounding the

contribution from numbers with more than 100 log log log T prime factors larger than

T 1/(log log T )2 and no other prime factors, and from numbers with a prime factor smaller

than T 1/(log log T )2 or a prime power factor larger than T 1/(log log log T )2) shows that

PT

(∣∣∣∣∣∑
n

µ(n)a2(n)

nσ+it
−

∑
0≤k≤100 log log log T

(−1)k

k!
P2(σ + it)k

∣∣∣∣∣ ≥ 1

(log log T )25

)
→ 0 as T →∞.

Therefore, with probability tending to 1 as T →∞, we have

M(σ + it) exp{
∑

pk≤T 1/(log log log T )2

1

kpk(σ+it)
}

=

(∑
n

µ(n)a1(n)

nσ+it

)
exp{P1(σ + it)}

(∑
n

µ(n)a2(n)

nσ+it

)
exp{P2(σ + it)}

=

( ∑
0≤k≤100 log log T

(−1)k

k!
P1(σ + it)k +O

(
1

log25 T

))
exp{P1(σ + it)} ·

·

( ∑
0≤k≤100 log log log T

(−1)k

k!
P2(σ + it)k +O

(
1

(log log T )25

))
exp{P2(σ + it)}.

Using Lemma 14.3, we also know that with probability tending to 1 as T →∞ we have

|P1(σ + it)| ≤ log log T and |P2(σ + it)| ≤ log log log T . Then 1/ log T ≤ | exp{P1(σ +

it)}| ≤ log T and 1/ log log T ≤ | exp{P2(σ+ it)}| ≤ log log T , and then by Lemma 14.3

the above is(
exp{−P1(σ + it)}+O

(
1

log25 T

))
exp{P1(σ + it)} ·

·
(

exp{−P2(σ + it)}+O

(
1

(log log T )25

))
exp{P2(σ + it)} = 1 +O

(
1

(log log T )24

)
.

This finishes the proof of the proposition. �

[[We ran out of time to cover more of the Selberg central limit theorem in the course.]]
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We have shown that for most T ≤ t ≤ 2T we haveM(σ+it) exp{
∑

pk≤T 1/(log log log T )2
1

kpk(σ+it)
} ≈

1, and we already know from Proposition 13.4 that <(
∑

pk≤T 1/(log log log T )2
1

kpk(σ+it)
) has an

approximately Gaussian distribution as T ≤ t ≤ 2T varies (apart from the proper prime

power contribution, but this is negligible). There are two remaining steps in proving

the Selberg central limit theorem:

• Show that for most T ≤ t ≤ 2T we have M(σ + it)ζ(σ + it) ≈ 1, and therefore

for most T ≤ t ≤ 2T we must have ζ(σ+ it) ≈ exp{
∑

pk≤T 1/(log log log T )2
1

kpk(σ+it)
}.

This says that the Euler product expression for the zeta function remains ap-

proximately valid on a wide range of σ and t. Note that the coefficients of

M(σ+ it) are close to the Möbius function (on a certain range), so the fact that

M(σ + it)ζ(σ + it) ≈ 1 is not so surprising. However, one can only show that

M(σ + it)ζ(σ + it) ≈ 1 when σ is a bit larger than 1/2.

• Show the “continuity statement” that knowing the Selberg central limit theorem

for suitable σ = 1/2 + o(1) implies it when σ = 1/2.

The first step can be performed using another Chebychev type calculation, some-

what like the second moment calculation for the zeta function that you will perform

in question 6 on Example Sheet 3. The second step is different, and requires a bit of

complex analysis trickery and some (general and standard) information about the zeros

of the zeta function. Notice that this is the only step in the proof that involves such

manipulations, everything else having been done on the level of sums over primes that

were (hopefully) somewhat intuitive. This nice approach to proving Selberg’s central

limit theorem is due to Radziwi l l and Soundararajan [1], whose paper may be consulted

for further details.
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