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ADAM J HARPER

Abstract. These are rough notes covering the second block of lectures in “The Rie-

mann Zeta Function” course. In these lectures we will develop the exponential sum

method of Korobov and Vinogradov, and use it to prove the best known order estimate

for ζ(s) close to the 1-line, and the best zero-free region known. This has important

consequences for the error term in the Prime Number Theorem.

(No originality is claimed for any of the contents of these notes. In particular, they

borrow from the classic books of Ivić [1] and Titchmarsh [2].)

7. First thoughts on estimating zeta sums

In section 5 we proved Landau’s theorem (Theorem 5.1), which showed that if we

had a bound ζ(σ+ it) = O(eφ(t)) in a region to the left of the 1-line, with φ(t) hopefully

not too large a function, then we could deduce a zero-free region for the zeta function.

In this Chapter we will prove a highly non-trivial bound for the zeta function, due to

Vinogradov and Korobov in 1958, and deduce a wider zero-free region. (Vinogradov

and Korobov worked independently, but both exploited ideas from earlier works of

Vinogradov, hence their names are traditionally written non-alphabetically.)

If t ≥ 1 and σ > 0, then using Hardy and Littlewood’s approximation to the zeta

function (Theorem 3.3) with the choice x = t we see

ζ(σ + it) =
∑
n≤t

1

nσ+it
+

t1−σ−it

σ + it− 1
+O(t−σ) =

∑
n≤t

1

nσ+it
+O(1).

By partial summation, bounding
∑

n≤t
1

nσ+it
is basically equivalent to bounding sums∑

N<n≤N+M n−it, where M ≤ N ≤ t. These partial sums are sometimes called zeta

sums. Note that, in order to bound all of the sum
∑

n≤t
1

nσ+it
, we need to bound zeta

sums with N much smaller than t.

When we proved Theorem 3.3, we showed using Fourier analysis that certain zeta

sums of length N � t behaved like the corresponding integrals
∫ N+M

N
w−itdw, but

we do not know how to do that efficiently when N is much smaller than t. Instead

we must work with the zeta sum directly, using more combinatorial arguments. The

summands n−it = e−it logn don’t seem to have much useable structure, so our first step

is to introduce some polynomial structure using Taylor expansion.
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Lemma 7.1. Suppose that N is large, and 1 ≤M ≤ N ≤ t. Set r := b5.01 log t
logN

c. Then∑
N<n≤N+M

n−it = O

(
M max

N≤n≤2N

|U(n)|
N4/5

+N4/5 +Mt−1/500
)
,

where

U(n) :=
∑

x≤N2/5

∑
y≤N2/5

e(α1xy + α2x
2y2 + ...+ αrx

ryr), αj :=
(−1)jt

2πjnj
.

Proof of Lemma 7.1. Note first that∑
N<n≤N+M

n−it =
1

bN2/5c2
∑

x≤N2/5

∑
y≤N2/5

∑
N<n≤N+M

n−it

=
1

bN2/5c2
∑

x≤N2/5

∑
y≤N2/5

( ∑
N<n≤N+M

(n+ xy)−it +O(N4/5)

)

=
∑

N<n≤N+M

n−it
1

bN2/5c2
∑

x≤N2/5

∑
y≤N2/5

(1 +
xy

n
)−it +O(N4/5).

The point of the above is that the shift xy is always much smaller than n, so we can

apply Taylor expansion efficiently to (1 + xy/n)−it = e−it log(1+xy/n). Indeed we have

log
(

1 +
xy

n

)
=

r∑
j=1

(−1)j−1

j

(xy
n

)j
+O

((xy
n

)5.01(log t)/ logN)
=

r∑
j=1

(−1)j−1

j

(xy
n

)j
+O(t−(1+1/500)),

since xy/n ≤ N−1/5. This implies that∑
x≤N2/5

∑
y≤N2/5

(1 +
xy

n
)−it =

∑
x≤N2/5

∑
y≤N2/5

e

(
r∑
j=1

αj(xy)j

)
e
(
O(t−1/500)

)
=

∑
x≤N2/5

∑
y≤N2/5

e

(
r∑
j=1

αj(xy)j

)
+O(N4/5t−1/500),

remembering that e(z) := e2πiz. The conclusion of the lemma follows immediately. �

Remark 7.2. The exact choice of many of the parameters in the proof of Lemma 7.1

(e.g. the exponents 2/5 in the shifts) is not important. Something that is important is

the fact that the degree r of the polynomial in the exponent is � (log t)/ logN . It will

turn out that we can only handle the case where the degree isn’t too large relative to

N , and this will ultimately set the limit of the Vinogradov–Korobov method.

Remark 7.3. It may seem strange that we introduced the two shift parameters x, y in

Lemma 7.1, since we could have performed Taylor expansion in the same way with just

one. However, it turns out that introducing a pair of independent variables is very often

a very good idea, and we shall explore this next.
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8. Bilinear forms

In this section we will think about the general problem of bounding∑
x̃∈X

∑
ỹ∈Y

e(αx̃ · ỹ),

where α ∈ R and X ,Y are general sets of r-vectors. We will start by considering a

simple problem to illustrate the usefulness of the bilinear structure, and to develop

some basic estimates needed later. Afterwards we will turn to the sums U(n) appearing

in Lemma 7.1 (in which x̃ = (x, x2, ..., xr), similarly for ỹ).

Proposition 8.1 (Toy Proposition). Let α = a/q + θ/q2, where q ≥ 1, (a, q) = 1, and

|θ| ≤ 1. Let N be a large natural number. Then∑
p≤N

∑
p′≤N

e(αpp′)� N max{ N√
q
,
√
q}
√

log(q + 1),

where the sums are over primes p, p′.

Note that the bound in the proposition beats the trivial bound π(N)2 provided q is

neither too big nor too small. To prove the proposition we will need a small technical

result, that will also be needed later.

Lemma 8.2. Let α and N be as in the statement of Proposition 8.1, and let β, U ≥ 0

be arbitrary. Let ||x|| denote the distance from x ∈ R to the nearest integer. Then∑
n≤N

min{U, 1

||αn+ β||
} �

(
N

q
+ 1

)
(U + q log q).

Proof of Proposition 8.1. The crucial first step is to complete one sum (using the bilinear

structure), and apply the Cauchy–Schwarz inequality. Thus we have∣∣∣∣∣∑
p≤N

∑
p′≤N

e(αpp′)

∣∣∣∣∣ ≤∑
n≤N

∣∣∣∣∣∑
p≤N

e(αpn)

∣∣∣∣∣ ≤ √N
√√√√∑

n≤N

∣∣∣∣∣∑
p≤N

e(αpn)

∣∣∣∣∣
2

.

Now we have replaced a sum over primes, which is difficult to handle, by a sum over all

integers which is much easier. Indeed we have

∑
n≤N

∣∣∣∣∣∑
p≤N

e(αpn)

∣∣∣∣∣
2

=
∑
n≤N

(∑
p≤N

e(αpn)

)(∑
p′≤N

e(−αp′n)

)
=
∑
p,p′≤N

∑
n≤N

e(α(p− p′)n),

and in general by summing a geometric progression (and since | sinx| ≥ (2/π)|x| if

|x| ≤ π/2) one has∣∣∣∣∣∑
n≤N

e(βn)

∣∣∣∣∣ =

∣∣∣∣e(β(N + 1))− e(β)

e(β)− 1

∣∣∣∣ ≤ 2

|e(β/2)− e(−β/2)|
=

1

| sin(πβ)|
≤ 1

2||β||
,
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where ||β|| denotes the distance from β to the nearest integer. We also have the trivial

bound
∣∣∑

n≤N e(βn)
∣∣ ≤ N , so we conclude that

∑
n≤N

∣∣∣∣∣∑
p≤N

e(αpn)

∣∣∣∣∣
2

�
∑
p,p′≤N

min{N, 1

||α(p− p′)||
} � N

∑
0≤n≤N

min{N, 1

||αn||
}.

Here the last inequality used the fact that the numbers (p−p′) cover the integers between

−N and N at most N times each, and ||αn|| = ||α(−n)||.
Finally, Lemma 8.2 implies that∑

0≤n≤N

min{N, 1

||αn||
} �

(
N

q
+ 1

)
(N + q log q)� max{N

2

q
, q} log(q + 1),

and the proposition follows. �

Proof of Lemma 8.2. It will suffice to show that∑
−q/2<n≤q/2

min{U, 1

||αn+ β||
} � (U + q log q),

since if N ≥ q then one can break the sum in the lemma into at most N/q + 1 sums of

length at most q, and apply this bound (for suitable β). The bound is trivial if q = 1,

so assume henceforth that q ≥ 2.

To prove the bound, note that for all −q/2 < n ≤ q/2 we have∣∣∣∣αn− an

q

∣∣∣∣ =
|θn|
q2
≤ 1

2q
.

Since (a, q) = 1, as −q/2 < n ≤ q/2 varies the numbers an vary over all the residue

classes r modulo q, hitting each once. Thus, as n varies, at most O(1) of the numbers

αn will lie in each interval [(r − 1/2)/q, (r + 1/2)/q] modulo 1. On translating by β

(modulo 1), this clearly implies that at most O(1) of the numbers αn+β will lie in each

interval [(r − 1/2)/q, (r + 1/2)/q] modulo 1.

Finally, if αn+β ∈ [−1/2q, 1/2q] then we cannot rule out that ||αn+β|| is very small,

so we will use the bound min{U, 1
||αn+β||} ≤ U . But if αn+β ∈ [(r−1/2)/q, (r+1/2)/q]

for some non-zero −q/2 < r ≤ q/2 then we can use the bound min{U, 1
||αn+β||} � q/|r|

instead. Therefore∑
−q/2<n≤q/2

min{U, 1

||αn+ β||
} � U +

∑
1≤r≤q/2

q

r
� U + q log q,

as claimed. �

In the proof of Proposition 8.1, we lost a bit when replacing sums over primes by sums

over integers, since the primes are a sparse set. But they are not very sparse, so this

loss (of logarithmic factors) didn’t matter much. In contrast, the sums U(n) in Lemma
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7.1 are sums over vectors (x, x2, ..., xr), (y, y2, ..., yr), which form a very sparse subset of

the r-dimensional box that contains them. To overcome this we will need another idea,

which we shall deploy at the same time as exploiting the bilinear structure. This is all

done in the following lemma.

Lemma 8.3 (Duplication of variables). Let U(n) =
∑

x≤N2/5

∑
y≤N2/5 e(α1xy+α2x

2y2+

... + αrx
ryr) be as in the statement of Lemma 7.1. Then for any natural number k we

have

|U(n)| ≤ N4/5

 1

N8k/5

(
Jk,r(N

2/5)
)2 r∏

j=1

∑
−kN2j/5≤µj≤kN2j/5

min{3kN2j/5,
1

||αjµj||
}

1/(4k2)

,

where Jk,r(N
2/5) denotes the number of solutions (x1, ..., x2k) of the simultaneous equa-

tions
k∑
i=1

xji =
2k∑

i=k+1

xji ∀1 ≤ j ≤ r

with 1 ≤ xi ≤ N2/5 integers.

Proof of Lemma 8.3. The proof is like that of the Toy Proposition, but with the applica-

tion of the Cauchy–Schwarz inequality replaced by two applications of Hölder’s inequal-

ity (with exponent 2k). This has the effect of producing 2k duplicate copies of each of the

variables x, y, so that the sums of the resulting duplicated vectors (x, x2, ..., xr), (y, y2, ..., yr)

cover an r-dimensional box much more uniformly.

To simplify the writing, let us temporarily set Z := N2/5. By Hölder’s inequality we

have

|U(n)|2k ≤ Z2k−1
∑
x≤Z

∣∣∣∣∣∑
y≤Z

e(α1xy + α2x
2y2 + ...+ αrx

ryr)

∣∣∣∣∣
2k

= Z2k−1
∑
x≤Z

∑
y1,...,y2k≤Z

e

(
α1x(

k∑
i=1

yi −
2k∑

i=k+1

yi) + ...+ αrx
r(

k∑
i=1

yri −
2k∑

i=k+1

yri )

)
.

So if we let Jk,r(λ1, ..., λr;Z) denote the number of solutions (x1, ..., x2k) of the simulta-

neous equations
k∑
i=1

xji =
2k∑

i=k+1

xji + λj ∀1 ≤ j ≤ r,

with 1 ≤ xi ≤ Z integers, then we have

|U(n)|2k ≤ Z2k−1
∑
x≤Z

∑
−kZ≤λ1≤kZ

...
∑

−kZr≤λr≤kZr
Jk,r(λ1, ..., λr;Z)e (α1xλ1 + ...+ αrx

rλr)

≤ Z2k−1
∑

−kZ≤λ1≤kZ

...
∑

−kZr≤λr≤kZr
Jk,r(λ1, ..., λr;Z)

∣∣∣∣∣∑
x≤Z

e (α1xλ1 + ...+ αrx
rλr)

∣∣∣∣∣ .
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To simplify the writing further, from now on we will usually write
∑

λj
(without a range

of summation) as shorthand for
∑
−kZj≤λj≤kZj .

In the proof of the Toy Proposition, we were more or less finished at this point

because we could explicitly evaluate the inner sum. We are not so lucky here, so we use

Hölder’s inequality to duplicate variables again, obtaining that

|U(n)|(2k)2 ≤ Z2k(2k−1)

(∑
λ1

...
∑
λr

Jk,r(λ1, ..., λr;Z)

∣∣∣∣∣∑
x≤Z

e (α1xλ1 + ...+ αrx
rλr)

∣∣∣∣∣
)2k

≤ Z2k(2k−1)

(∑
λ1

...
∑
λr

Jk,r(λ1, ..., λr;Z)2k/(2k−1)

)2k−1

×
∑
λ1

...
∑
λr

∣∣∣∣∣∑
x≤Z

e (α1xλ1 + ...+ αrx
rλr)

∣∣∣∣∣
2k

.

To bound the first term in brackets, we note that∑
λ1

...
∑
λr

Jk,r(λ1, ..., λr;Z)
2k

2k−1 ≤
(

max
λ1,...,λr

Jk,r(λ1, ..., λr;Z)1/(2k−1)
)
×
∑
λ1

...
∑
λr

Jk,r(λ1, ..., λr;Z)

≤ Z2k

(
max
λ1,...,λr

Jk,r(λ1, ..., λr;Z)1/(2k−1)
)
,

since
∑

λ1
...
∑

λr
Jk,r(λ1, ..., λr;Z) simply counts all vectors (x1, ..., x2k) with 1 ≤ xi ≤ Z

integers. We also note that, for any λ1, ..., λr, the Cauchy–Schwarz inequality implies

Jk,r(λ1, ..., λr;Z) =
∑

L1,L2,...,Lr∈Z

(
#{(x1, ..., xk) : 1 ≤ xi ≤ Z, and

k∑
i=1

xji = Lj ∀1 ≤ j ≤ r}

× #{(xk+1, ..., x2k) : 1 ≤ xi ≤ Z, and
2k∑

i=k+1

xji = Lj − λj ∀1 ≤ j ≤ r}

)

≤
∑

L1,L2,...,Lr∈Z

(
#{(x1, ..., xk) : 1 ≤ xi ≤ Z, and

k∑
i=1

xji = Lj ∀1 ≤ j ≤ r}

)2

= Jk,r(0, ..., 0;Z) =: Jk,r(Z).

Therefore we have

|U(n)|(2k)2 ≤ Z4k(2k−1)Jk,r(Z)
∑
λ1

...
∑
λr

∣∣∣∣∣∑
x≤Z

e (α1xλ1 + ...+ αrx
rλr)

∣∣∣∣∣
2k

,
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and on expanding the 2k-th power as before we obtain that |U(n)|(2k)2 is

≤ Z4k(2k−1)Jk,r(Z)
∑
λ1

...
∑
λr

∑
−kZ≤µ1≤kZ

...
∑

−kZr≤µr≤kZr
Jk,r(µ1, ..., µr;Z)e (α1µ1λ1 + ...+ αrµrλr)

≤ Z4k(2k−1) (Jk,r(Z))2
∑

−kZ≤µ1≤kZ

...
∑

−kZr≤µr≤kZr

∣∣∣∣∣ ∑
−kZ≤λ1≤kZ

e(α1µ1λ1)

∣∣∣∣∣ ...
∣∣∣∣∣ ∑
−kZr≤λr≤kZr

e(αrµrλr)

∣∣∣∣∣ .
We have finally arrived at exponential sums that we can evaluate, and proceeding as

in the proof of the Toy Proposition we obtain

|U(n)|(2k)2 ≤ Z4k(2k−1) (Jk,r(Z))2
∑

−kZ≤µ1≤kZ

...
∑

−kZr≤µr≤kZr
min{3kZ, 1

||α1µ1||
}...min{3kZr,

1

||αrµr||
}.

Raising both sides to the power 1/(4k2), and remembering that Z = N2/5, the bound

claimed in the lemma follows. �

Remark 8.4. Note that in the proof of Lemma 8.3 we needed to switch the order of

our sums more than once (as well as duplicating variables) to arrive at sums we could

estimate. This shows the power of the simple idea of introducing two independent

variables x, y: at any point one can move one set of sums to the inside, surrounded

by absolute value signs, and then complete the ranges of the outside sums to obtain

something nicer.

In order to obtain a useful bound from Lemma 8.3, we need to give a non-trivial

bound for the product over j appearing there (which will be an easy calculation using

Lemma 8.2), and we need a good bound for Jk,r(N
2/5). We also cannot succeed unless

k is chosen suitably large, since the applications of Hölder’s inequality in the proof

of Lemma 8.3 are very inefficient unless Jk,r(λ1, ..., λr;N
2/5) ≈ Jk,r(N

2/5) for most

λ1, ..., λr, which can only happen if k is large in terms of r. In the next section we will

study Jk,r(N
2/5), and this will occupy most of the rest of Chapter 2.

9. Vinogradov’s Mean Value Theorem

This section is devoted to the study of Jk,r(Z), the number of solutions (x1, ..., x2k)

of the simultaneous equations

k∑
i=1

xji =
2k∑

i=k+1

xji ∀1 ≤ j ≤ r

with 1 ≤ xi ≤ Z integers (for Z large). This quantity is called Vinogradov’s mean value,

and as well as its applications to the zeta function it is of great interest in its own right,

and in additive number theory as well (especially in connection with Waring’s problem).

We trivially always have Jk,r(Z) ≥ bZck, since for any choice of x1, ..., xk we can

take (xk+1, ..., x2k) = (x1, ..., xk). (These trivial solutions are called diagonal solutions.)
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Moreover, we observed in section 8 that

bZc2k =
∑

−kZ≤λ1≤kZ

...
∑

−kZr≤λr≤kZr
Jk,r(λ1, ..., λr;Z) ≤ Jk,r(Z)

∑
−kZ≤λ1≤kZ

...
∑

−kZr≤λr≤kZr
1,

and therefore we see

Jk,r(Z) ≥ bZc2k∏r
j=1(3kZ

j)
= (3k)−rbZc2kZ−(1/2)r(r+1).

This bound would be close to the truth if the differences
∑k

i=1 x
j
i −

∑2k
i=k+1 x

j
i were

all roughly uniformly distributed as the xi varied. It is conjectured that the true size

of Jk,r(Z) is never much bigger (as a function of Z) than the largest of our two lower

bounds.

Conjecture 9.1. Let k, r be natural numbers, and let Z ≥ 1 and ε > 0 be arbitrary.

Then

Jk,r(Z)�k,r,ε Z
k+ε + Z2k−(1/2)r(r+1)+ε,

where the implicit constant may depend on k, r, ε (but not on Z).

Note in particular that if k ≥ (1/2)r(r+ 1) then the second term is at least as big as

the first, so the conjecture says that the behaviour is roughly uniform. This is exactly

what we would like to substitute into Lemma 8.3 to obtain a good bound for zeta sums.

For us it will also be important to understand how the implicit constant depends on

k, r, since we have r � (log t)/ logN possibly tending to infinity along with Z = N2/5.

Recently Wooley [3, 4] has proved Conjecture 9.1 for k ≥ r2 − 1 (and, jointly with

Ford, for some smaller k as well). We shall not prove this great result, but we shall

prove an older bound that seems just as good for our application to the zeta function.

Theorem 9.2 (Vinogradov’s mean value theorem, Vinogradov, 1930s (with refinements

by Korobov and others)). Suppose Z is large, and let k, r be natural numbers such that

k ≥ r2. Let F = F (k, r) = b(k/r)− rc and let δ = δ(k, r) = (1− 1/r)F . Then

Jk,r(Z) ≤ (4r)4kFZ2k−(1−δ)(1/2)r(r+1).

Remark 9.3. Note that if k/r2 is large then δ will be small.

The proof of Theorem 9.2 works by fixing r and inducting on k. The inductive

step is carried out by examining the system of equations
∑k

i=1 x
j
i =

∑2k
i=k+1 x

j
i modulo

a suitably chosen prime p, and applying a result called Linnik’s Lemma. Note that

this kind of argument will heavily exploit the polynomial structure that we worked to

introduce all the way back in Lemma 7.1.

Lemma 9.4 (Linnik’s Lemma, 1942–1943). Let r ≥ 1 be a natural number. Also let A

and m ≥ 1 be integers, let p > r be prime, and let λ1, ..., λr be any integers. Then the
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number of solutions (x1, ..., xr) of the simultaneous congruences

r∑
i=1

xji ≡ λj mod pj ∀1 ≤ j ≤ r,

with A ≤ xi < A+mpr integers that are distinct modulo p, is

≤ (r!)mrpr(r−1)/2.

Proof of Lemma 9.4. Note first that, for any given integers (λ1, ..., λr), there are
∏r−1

j=1 p
r−j =

pr(r−1)/2 different vectors (µ1, ..., µr) modulo pr such that

µj ≡ λj mod pj ∀1 ≤ j ≤ r.

So it will suffice to show that for any such vector (µ1, ..., µr), there are at most (r!)mr

different solutions (x1, ..., xr) such that

r∑
i=1

xji ≡ µj mod pr ∀1 ≤ j ≤ r.

(Note carefully that we have now “lifted” all of our congruences to be congruences

modulo pr.)

Next, suppose that

r∑
i=1

xji ≡
r∑
i=1

yji ≡ µj mod pr ∀1 ≤ j ≤ r.

Since (r!, p) = 1, the elementary symmetric functions
∑
x(1)x(2)...x(j) in the xi are

uniquely determined modulo pr by the power sums
∑r

i=1 x
j
i modulo pr (using Newton’s

identities), and therefore the polynomials

P (z) =
r∏
i=1

(z − xi), Q(z) =
r∏
i=1

(z − yi)

are identically congruent modulo pr.

But we have P (xj) ≡ 0 modulo pr for all 1 ≤ j ≤ r, and so we must have

Q(xj) =
r∏
i=1

(xj − yi) ≡ 0 mod pr ∀1 ≤ j ≤ r.

If the yi are distinct modulo p this implies that xj is congruent to one of the yi modulo

pr, and so (since the xj are also distinct modulo p) the xj are forced to be a permutation

of the yj modulo pr. This implies that there are at most (r!)mr possible solution vectors

(x1, ..., xr). �

Before proceeding to develop the inductive argument for the proof of Theorem 9.2,

we record a simple but important observation about the system of equations
∑k

i=1 x
j
i =∑2k

i=k+1 x
j
i , 1 ≤ j ≤ r.
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Lemma 9.5 (Translation Invariance). If (x1, ..., x2k) solves the system of equations

k∑
i=1

xji =
2k∑

i=k+1

xji ∀1 ≤ j ≤ r,

then so does (x1 − x, x2 − x, ..., x2k − x), for any x.

Proof of Lemma 9.5. We simply note that, by the binomial theorem,

k∑
i=1

(xi − x)j =
k∑
i=1

xji − jx
k∑
i=1

xj−1i + ...+ j(−x)j−1
k∑
i=1

xi + k(−x)j,

and similarly

2k∑
i=k+1

(xi − x)j =
2k∑

i=k+1

xji − jx
2k∑

i=k+1

xj−1i + ...+ j(−x)j−1
2k∑

i=k+1

xi + k(−x)j.

So if
∑k

i=1 x
j
i =

∑2k
i=k+1 x

j
i for all 1 ≤ j ≤ r then the same must be true for the

translated sums. �

Now we shall use Linnik’s Lemma to set up an induction on the number of variables

k. Unfortunately the proof of this Induction Lemma is very long, but it does split up

into several distinct parts.

Lemma 9.6 (Induction Lemma). Let r ≥ 2, and suppose that Z ≥ (2r)3r and k ≥ r2+r.

Then

Jk,r(Z) ≤ 42kZ2k/r+(3r−5)/2Jk−r,r(4Z
(r−1)/r).

Proof of Lemma 9.6. Choose any prime (1/2)Z1/r ≤ p ≤ Z1/r, and set Z1 = dZ/pe. We

have pZ1 ≥ Z, and therefore we certainly have Jk,r(Z) ≤ Jk,r(pZ1). We also certainly

have Z1 ≤ 2Z/p ≤ 4Z(r−1)/r, so to prove the lemma it will suffice to show that

Jk,r(pZ1) ≤ 42kZ2k/r+(3r−5)/2Jk−r,r(Z1).

Let us also note that p > r, because of our hypothesis that Z ≥ (2r)3r. This means

that later on we will be able to apply Linnik’s Lemma to r of our variables.

(Note that we choose p ≈ Z1/r so that the ranges mpr of the variables in Linnik’s

Lemma will approximately match the ranges Z of our variables.)

Next, let J1 denote the number of solution vectors (x1, ..., x2k), counted by Jk,r(pZ1),

in which (x1, ..., xk) and (xk+1, ..., x2k) each contain at least r numbers that are distinct

modulo p. Also let J ′1 denote the number of solution vectors (x1, ..., x2k), counted

by Jk,r(pZ1), for which the first r elements (x1, ..., xr) and (xk+1, ..., xk+r) are distinct

modulo p, and let J2 denote the number of solution vectors not counted by J1. Then

we have

Jk,r(pZ1) = J1 + J2 ≤ k2rJ ′1 + J2,



RIEMANN ZETA FUNCTION LECTURE NOTES 2 11

since each vector counted by J ′1 corresponds to at most k2r vectors counted by J1 (by

permuting the components).

We shall bound J ′1 and J2 separately.

Bounding J ′1. I claim that we have

J ′1 ≤ p2k−2r max
1≤x≤p

J ′1(x),

where J ′1(x) denotes the number of solution vectors (x1, ..., x2k), counted by J ′1, for

which all of the 2k− 2r components (xr+1, ..., xk) and (xk+r+1, ..., x2k) are congruent to

x modulo p. Assuming this for the present, we can use translation invariance (Lemma

9.5) to subtract x from all the components, and obtain that

J ′1(x) = #{(x̃1, ..., x̃r, y1, ..., yk−r, x̃r+1, ..., x̃2r, yk−r+1, ..., y2k−2r) : 1− x ≤ x̃j ≤ pZ1 − x ∀j ≤ 2r,

0 ≤ yj ≤ Z1 − 1 ∀1 ≤ j ≤ 2k − 2r, and (x̃1, ..., x̃r), (x̃r+1, ..., x̃2r) all distinct mod p,

r∑
i=1

x̃ji =
2r∑

i=r+1

x̃ji − pj
k−r∑
i=1

yji + pj
2k−2r∑

i=k−r+1

yji ∀1 ≤ j ≤ r}.

But now for any fixed x̃r+1, ..., x̃2r, each vector (x̃1, ..., x̃r) satisfies the conditions of

Linnik’s Lemma, with A = 1 − x and m = d(pZ1)/p
re ≤ d2Z/pre ≤ 2r+1. And for

any fixed x̃r+1, ..., x̃2r and x̃1, ..., x̃r, the number of vectors (y1, ..., y2k−2r) that can be

counted in J ′1(x) is at most Jk−r,r(Z1). So in total, using the trivial bound (pZ1)
r for

the number of choices of x̃r+1, ..., x̃2r, and using the non-trivial Linnik’s Lemma bound

(r!)mrpr(r−1)/2 for the number of choices of (x̃1, ..., x̃r), we have

J ′1(x) ≤ (pZ1)
r(r!)mrpr(r−1)/2Jk−r,r(Z1) ≤ (2Z)r(r!)2r(r+1)Z(r−1)/2Jk−r,r(Z1),

remembering again that Z1 ≤ 2Z/p and p ≤ Z1/r. Thus we have

J ′1 ≤ p2k−2r(2Z)r(r!)2r(r+1)Z(r−1)/2Jk−r,r(Z1) ≤ Z2k/r−2(2Z)r(r!)2r(r+1)Z(r−1)/2Jk−r,r(Z1)

≤ 2r(r+1)+r(r!)Z2k/r+(3r−5)/2Jk−r,r(Z1)

≤ 22r(r+1)Z2k/r+(3r−5)/2Jk−r,r(Z1)

≤ 22kZ2k/r+(3r−5)/2Jk−r,r(Z1),

where the final inequalities used the facts that r! ≤ rr ≤ 2r
2

and k ≥ r(r + 1).

It still remains to prove the claim that J ′1 ≤ p2k−2r max1≤x≤p J
′
1(x), which helpfully

allowed us to “freeze” the residue class of most of our variables. To show this, for any

1 ≤ x ≤ p write
∑(x) as shorthand for

∑
z≤pZ1, z≡x mod p, and in particular define

S(x) :=

(x)∑
e(β1z + β2z

2 + ...+ βrz
r) =

∑
z≤pZ1, z≡x mod p

e(β1z + β2z
2 + ...+ βrz

r).
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Also let 1 denote the indicator function, which takes value 1 if the attached statement

is true, and takes value 0 otherwise. Then by definition we have

J ′1 =
∑

x1,...,xr
distinct mod p

(x1)∑ (x2)∑
...

(xr)∑ ∑
xk+1,...,xk+r
distinct mod p

(xk+1)∑
...

(xk+r)∑ ∑
xr+1,...,xk

mod p

(xr+1)∑
...

(xk)∑
∑

xk+r+1,...,x2k
mod p

(xk+r+1)∑
...

(x2k)∑ r∏
j=1

1∑k
i=1 x

j
i−

∑2k
i=k+1 x

j
i=0.

Note carefully that the first two big sums are over all residue classes (x1, ..., xr) and

(xk+1, ..., xk+r) that are distinct modulo p, whilst the other two big sums are just over

all residue classes modulo p (without the condition that they be distinct).

If w is an integer, then direct calculation (and remembering that e(βw) denotes

e2πiβw) shows that
∫ 1

0
e(βw)dβ is 1 if w = 0, and is zero otherwise. Using this fact we

can rewrite the above in terms of exponential sums, as

J ′1 =
∑

x1,...,xr
distinct mod p

∑
xk+1,...,xk+r
distinct mod p

∑
xr+1,...,xk

mod p

∑
xk+r+1,...,x2k

mod p

∫ 1

0

...

∫ 1

0

S(x1)...S(xk)S(xk+1)...S(x2k)dβ1...dβr

=

∫ 1

0

...

∫ 1

0

∣∣∣∣∣∣∣
∑

x1,...,xr
distinct mod p

S(x1)...S(xr)

∣∣∣∣∣∣∣
2 ∣∣∣∣∣ ∑
x mod p

S(x)

∣∣∣∣∣
2k−2r

dβ1...dβr.

Finally, Hölder’s inequality applied to
∣∣∣∑x mod p S(x)

∣∣∣2k−2r yields that

J ′1 ≤
∫ 1

0

...

∫ 1

0

∣∣∣∣∣∣∣
∑

x1,...,xr
distinct mod p

S(x1)...S(xr)

∣∣∣∣∣∣∣
2

p2k−2r−1
∑

1≤x≤p

|S(x)|2k−2r dβ1...dβr

= p2k−2r−1
∑

1≤x≤p

∫ 1

0

...

∫ 1

0

∣∣∣∣∣∣∣
∑

x1,...,xr
distinct mod p

S(x1)...S(xr)

∣∣∣∣∣∣∣
2

|S(x)|2k−2r dβ1...dβr,

which is clearly≤ p2k−2r max1≤x≤p
∫ 1

0
...
∫ 1

0

∣∣∣∣∑ x1,...,xr
distinct mod p

S(x1)...S(xr)

∣∣∣∣2 |S(x)|2k−2r dβ1...dβr
By expanding the multiple integral in terms of the indicator function 1 again, we see it

exactly equals J ′1(x), as claimed.

Bounding J2. Recall that J2 counts all those vectors (x1, ..., xk, xk+1, ..., x2k), counted

by Jk,r(pZ1), in which either (x1, ..., xk) or (xk+1, ..., x2k) does not contain at least r

numbers that are distinct modulo p. In the first case there are at most pr−1rk possi-

bilities for (x1 (mod p), ..., xk (mod p)), so there are at most pr−1+krk possibilities for
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(x1 (mod p), ..., xk (mod p), xk+1 (mod p), ..., x2k (mod p)). Similarly, in the second case

there are at most pr−1rk possibilities for (xk+1 (mod p), ..., x2k (mod p)), so there are at

most pr−1+krk possibilities for (x1 (mod p), ..., xk (mod p), xk+1 (mod p), ..., x2k (mod p)).

LetA denote the set of all possibilities for (x1 (mod p), ..., xk (mod p), xk+1 (mod p), ..., x2k (mod p))

that are allowed in J2, so that #A ≤ 2pr−1+krk.

Now similarly as above, using Hölder’s inequality we have

J2 =

∫ 1

0

...

∫ 1

0

∑
x1,...,x2kmod p,

(x1 (mod p),...,x2k (mod p))∈A

S(x1)...S(xk)S(xk+1)...S(x2k)dβ1...dβr

≤
∫ 1

0

...

∫ 1

0

 ∑
x1,...,x2kmod p,

(x1,...,x2k (mod p))∈A

|S(x1)|2k


1/2k

...

 ∑
x1,...,x2kmod p,

(x1,...,x2k (mod p))∈A

|S(x2k)|2k


1/2k

dβ1...dβr

≤ (#A)

∫ 1

0

...

∫ 1

0

∑
x mod p

|S(x)|2kdβ1...dβr

≤ 2pr+krk max
1≤x≤p

∫ 1

0

...

∫ 1

0

|S(x)|2kdβ1...dβr.

And for any 1 ≤ x ≤ p, if we expand the multiple integral in terms of the indicator

function 1 again we see it counts all those vectors (x1, ..., xk, xk+1, ..., x2k), counted by

Jk,r(pZ1), in which all of the components are ≡ x modulo p. So using translation

invariance (Lemma 9.5) again to subtract x from all the components, and then dividing

all the translated components by their common factor p (which reduces the range of the

new variables to Z1), we find

J2 ≤ 2pr+krkJk,r(Z1).

Finally, we rework this bound into a form more like our bound for J ′1, by noting

that we trivially have Jk,r(Z1) ≤ Z2r
1 Jk−r,r(Z1) (since for any fixed (x1, ..., xr) and

(xk+1, ..., xk+r), the number of choices of the other 2(k − r) variables that satisfy the

underlying equations is ≤ Jk−r,r(Z1)). So, remembering again that Z1 ≤ 2Z/p and

p ≤ Z1/r, we have

J2 ≤
(
2pr+krkZ2r

1

)
Jk−r,r(Z1) =

(
2pk−rrk(pZ1)

2r
)
Jk−r,r(Z1)

≤
(
2Zk/r−1rk(2Z)2r

)
Jk−r,r(Z1)

≤
(
22r+1rkZ2k/r+(3r−5)/2Z−(k/r)+(r+3)/2

)
Jk−r,r(Z1).

Since we assume that k ≥ r2+r and Z ≥ (2r)3r, one can check (by separately considering

the cases where 2 ≤ r ≤ 8 and r ≥ 9, say) that the right hand side is

≤ 22r+18kZ2k/r+(3r−5)/2Jk−r,r(Z1).
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Putting everything together. In summary, we have

Jk,r(pZ1) ≤ k2rJ ′1+J2 ≤
(
k2r22k + 22r+18k

)
Z2k/r+(3r−5)/2Jk−r,r(Z1) ≤ 16kZ2k/r+(3r−5)/2Jk−r,r(Z1),

as claimed, since k ≥ r2 + r (with r ≥ 2). �

Now that we have proved Lemma 9.6, it is a fairly straightforward bookkeeping

exercise to complete the proof of Vinogradov’s Mean Value Theorem (Theorem 9.2).

Proof of Theorem 9.2. [[The details of this proof are not examinable, although it is not

difficult.]]

If r = 1 then we obviously have Jk,1(Z) ≤ Z2k−1 (for any Z ≥ 1), since fixing

(x1, ..., x2k−1) leaves at most one possible choice of x2k. This suffices to prove Theorem

9.2 when r = 1, so from now on we assume that r ≥ 2.

We fix r ≥ 2 and proceed by induction on k ≥ r2 (or, more accurately, on the

parameter F in the statement of the theorem).

• If r2 ≤ k ≤ r2+r−1 then F (k, r) = b1−1/rc = 0 and δ(k, r) = (1−1/r)F = 1,

so the bound we need to prove is

Jk,r(Z) ≤ Z2k.

But this is (worse than) trivial (for any Z ≥ 1), so we are done in this base

case.

• For the inductive step, suppose that r2 + fr ≤ k ≤ r2 + (f + 1)r − 1 for some

integer f ≥ 1, and suppose that we have already proved the theorem whenever

k ≤ r2 + fr − 1.

If Z < (2r)3r then we cannot apply Lemma 9.6, so we are forced to take a

trivial approach by noting that

Jk,r(Z) ≤ Z2rJk−r,r(Z).

Then r2 + (f − 1)r ≤ k − r ≤ r2 + fr − 1, so by the inductive hypothesis we

have

Jk−r,r(Z) ≤ (4r)4(k−r)(f−1)Z2(k−r)−(1−δ′)(1/2)r(r+1), where δ′ = (1− 1/r)f−1.

So overall, if we write δ = (1− 1/r)f we have

Jk,r(Z) ≤ (4r)4(k−r)(f−1)Z2k−(1−δ′)(1/2)r(r+1)

= (4r)4kfZ2k−(1−δ)(1/2)r(r+1)(4r)−4k−4r(f−1)Z(δ′−δ)(1/2)r(r+1)

= (4r)4kfZ2k−(1−δ)(1/2)r(r+1)(4r)−4k−4r(f−1)Zδ′(1/2)(r+1)

< (4r)4kfZ2k−(1−δ)(1/2)r(r+1)(4r)−4k−4r(f−1)(2r)δ
′(3/2)r(r+1).
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And δ′(3/2)r(r + 1) ≤ (3/2)r(r + 1) < 4r(r + 1) ≤ 4k, so the product of the

last two terms above is < 1 and we certainly have

Jk,r(Z) ≤ (4r)4kfZ2k−(1−δ)(1/2)r(r+1),

which is the bound claimed in the theorem.

It remains to handle the case where Z ≥ (2r)3r, for which we can apply

Lemma 9.6 to obtain that

Jk,r(Z) ≤ 42kZ2k/r+(3r−5)/2Jk−r,r(4Z
(r−1)/r).

Then by the inductive hypothesis we have

Jk−r,r(4Z
(r−1)/r) ≤ (4r)4(k−r)(f−1)

(
4Z(r−1)/r)2(k−r)−(1−δ′)(1/2)r(r+1)

, where δ′ = (1−1/r)f−1.

Noting that, if we write δ = (1− 1/r)f , we have(
Z(r−1)/r)2(k−r)−(1−δ′)(1/2)r(r+1)

= Z2k−(1−1/r)(1−δ′)(1/2)r(r+1)Z−2k/r−2(r−1)

= Z2k−(1−δ)(1/2)r(r+1)Z−2k/r−2(r−1)+(1/2)(r+1)

= Z2k−(1−δ)(1/2)r(r+1)Z−2k/r−(1/2)(3r−5),

we find overall that

Jk,r(Z) ≤ 42k(4r)4(k−r)(f−1)42(k−r)−(1−δ′)(1/2)r(r+1)Z2k−(1−δ)(1/2)r(r+1) ≤ (4r)4kfZ2k−(1−δ)(1/2)r(r+1).

This is the bound claimed in the theorem.

�

10. Second thoughts on estimating zeta sums

Recall that our goal in this chapter is to estimate zeta sums
∑

N<n≤N+M n−it, and

use the estimates to obtain an improved zero-free region and an improved error term

in the Prime Number Theorem. We have now assembled three powerful ingredients for

doing this:

(i) Lemma 7.1, which reduced the estimation of zeta sums to the estimation of

certain double exponential sums

U(n) :=
∑

x≤N2/5

∑
y≤N2/5

e(α1xy + α2x
2y2 + ...+ αrx

ryr), αj :=
(−1)jt

2πjnj
;

(ii) Lemma 8.3, which used Hölder’s inequality to reduce the estimation of U(n) to

the estimation of Vinogradov’s Mean Value Jk,r(N
2/5) (together with certain

other easy sums over µj);

(iii) Vinogradov’s Mean Value Theorem (Theorem 9.2), which gives a good bound

for Jk,r(N
2/5) provided k is large enough in terms of r.
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We can combine these ingredients to obtain the following estimate.

Theorem 10.1 (Zeta sum estimate, Vinogradov, Korobov, 1958). There exists a small

absolute constant c > 0 such that the following is true. For any 1 ≤M ≤ N ≤ t,∣∣∣∣∣ ∑
N<n≤N+M

n−it

∣∣∣∣∣�Me−c(log
3N)/ log2(t+2) +N4/5.

Proof of Theorem 10.1. We may assume that t is large and that N ≥ elog
2/3 t, since

otherwise the theorem is trivial by adjusting the � constant appropriately.

By Lemma 7.1 we have∣∣∣∣∣ ∑
N<n≤N+M

n−it

∣∣∣∣∣�M max
N≤n≤2N

|U(n)|
N4/5

+N4/5 +Mt−1/500,

where

U(n) =
∑

x≤N2/5

∑
y≤N2/5

e(α1xy + α2x
2y2 + ...+ αrx

ryr), αj =
(−1)jt

2πjnj
,

and r = b5.01 log t
logN

c. Since t ≥ N we have t−1/500 = e−(1/500) log t ≤ e−(1/500)(log
3N)/ log2 t, so

the last two terms are certainly small enough.

By Lemma 8.3, for any N ≤ n ≤ 2N and any k ∈ N we have

|U(n)|
N4/5

≤

 1

N8k/5

(
Jk,r(N

2/5)
)2 r∏

j=1

∑
−kN2j/5≤µj≤kN2j/5

min{3kN2j/5,
1

||αjµj||
}

1/(4k2)

.

We take k = Cr2, where C ≥ 1 is a constant that we will choose later. (We will make

sure to choose it such that k = Cr2 ∈ N, as required.) Since k ≥ r2, Vinogradov’s Mean

Value Theorem (Theorem 9.2) implies that(
Jk,r(N

2/5)
)2 ≤ (4r)8kFN4/5(2k−(1−δ)(1/2)r(r+1)), where F = b(C−1)rc, and δ = (1−1/r)F ,

and so we see

|U(n)|
N4/5

≤

(4r)8CkrN−(4/5)(1−δ)(1/2)r(r+1)

r∏
j=1

∑
−kN2j/5≤µj≤kN2j/5

min{3kN2j/5,
1

||αjµj||
}

1/(4k2)

.

It remains to bound the sums over µj. We always have the trivial bound� k2N4j/5,

and if αj = aj/qj + θj/q
2
j for some qj ≥ 1, (aj, qj) = 1 and |θj| ≤ 1 then by Lemma 8.2
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we have ∑
−kN2j/5≤µj≤kN2j/5

min{3kN2j/5,
1

||αjµj||
} �

(
kN2j/5

qj
+ 1

)
(kN2j/5 + qj log qj)

� max{k
2N4j/5

qj
, qj} log(qj + 1).

But if j ≥ (log t)/ logN then, remembering that N ≤ n ≤ 2N , we have

αj =
(−1)jt

2πjnj
=

(−1)j

qj
+
θj
q2j
, where qj := b2πjnj/tc ≥ 1 and θj =

(−1)j+1{2πjnj/t}qj
2πjnj/t

.

In particular, if 2(log t)/ logN ≤ j ≤ 3(log t)/ logN then qj ≥ nj−(log t)/ logN ≥ N j/2 and

also qj � jnjN−j/3 � j2jN2j/3, so we certainly have∑
−kN2j/5≤µj≤kN2j/5

min{3kN2j/5,
1

||αjµj||
} � k2N4j/5

N j/10
if 2(log t)/ logN ≤ j ≤ 3(log t)/ logN.

Putting everything together, we see

|U(n)|
N4/5

≤

(4r)8CkrN−(4/5)(1−δ)(1/2)r(r+1)

r∏
j=1

(Dk2N4j/5)
∏

2(log t)/ logN≤j≤3(log t)/ logN

1

N j/10

1/(4k2)

≤
(

(4r)8CkrN−(4/5)(1−δ)(1/2)r(r+1)(Dk2)rN (4/5)(1/2)r(r+1)N−(1/10)((log t)/ logN)2
)1/(4k2)

,

where D is a large absolute constant. Remember that k = Cr2 and r = b5.01 log t
logN

c here.

If we choose C large enough then we will have δ ≤ 1/280, and therefore (4/5)δ(1/2)r(r+

1) ≤ 14δ((log t)/ logN)2 ≤ (1/20)((log t)/ logN)2, and therefore

|U(n)|
N4/5

≤
(

(4r)8Ckr(Dk2)rN−(1/20)((log t)/ logN)2
) 1

4k2

=
(

(4r)8C
2r3(DC2r4)rN−(1/20)(log t/ logN)2

)1/(4C2r4)

.

The dominant term inside the bracket is N−(1/20)(log t/ logN)2 , and so the conclusion of

the theorem follows. �

If M = N = tθ, for some 0 < θ ≤ 1, then the bound in Theorem 10.1 takes the form∣∣∣∣∣ ∑
N<n≤2N

n−it

∣∣∣∣∣� Ne−cθ
2 logN = N1−cθ2 .

Thus we have a power saving if N is any fixed power of t. In general we think of a power

saving as a very good result, and a squareroot-type bound
∣∣∑

N<n≤2N n
−it
∣∣� N1/2+o(1)

would be the very best we might hope to prove (since it would mean that the summands

n−it oscillate “like random”). If N is smaller than any fixed power of t, but larger than

eC log2/3 t (which is a wide range), then Theorem 10.1 does not give a power saving but

still gives a non-trivial bound.
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11. Some spectacular (?) consequences

Using our zeta sum estimate (Theorem 10.1) we can deduce the promised upper

bound for the size of the zeta function.

Theorem 11.1 (Richert, 1967, building on work of Vinogradov and Korobov). There

exists a large absolute constant C > 0 such that the following is true. For any large t

and any 0 < σ ≤ 1, we have

ζ(σ + it)� tC(1−σ)3/2 log2/3 t.

In particular, if σ ≥ 1− 1/ log2/3 t then ζ(σ + it)� log2/3 t.

Note that by the Hardy–Littlewood approximation for the zeta function (Theorem

3.3) we have

ζ(σ + it) =
∑
n≤t

1

nσ+it
+O(1).

The trivial bound for the sum is
∑

n≤t
1
nσ
� t1−σ/(1− σ), which is good enough if σ is

far from 1 but is much weaker than Theorem 11.1 if 1− σ is small. In that case we can

estimate a large part of the sum better using Theorem 10.1.

Proof of Theorem 11.1. Suppose first that 1− 1/ log2/3 t ≤ σ ≤ 1. Then

ζ(σ + it) =
∑

n≤elog2/3 t

1

nσ+it
+

∑
elog

2/3 t<n≤t

1

nσ+it
+O(1) �

∑
n≤elog2/3 t

1

n
+

∑
blog2/3 tc≤j≤log t

∣∣∣∣∣∣
∑

ej<n≤ej+1

1

nσ+it

∣∣∣∣∣∣
� log2/3 t+

∑
blog2/3 tc≤j≤log t

∣∣∣∣∣∣
∑

ej<n≤ej+1

1

nσ+it

∣∣∣∣∣∣ ,
and because the sequence 1

nσ
is monotone decreasing, Abel’s summation lemma (as seen

in the proof of Lemma 3.4) implies that∣∣∣∣∣∣
∑

ej<n≤ej+1

1

nσ+it

∣∣∣∣∣∣� 1

ejσ
max

ej<n′≤ej+1

∣∣∣∣∣∣
∑

ej<n≤n′
n−it

∣∣∣∣∣∣ .
But by Theorem 10.1 we have

max
ej<n′≤ej+1

∣∣∣∣∣∣
∑

ej<n≤n′
n−it

∣∣∣∣∣∣� eje−cj
3/ log2 t,
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so we have

ζ(σ + it) � log2/3 t+
∑

blog2/3 tc≤j≤log t

ej(1−σ)−cj
3/ log2 t

� log2/3 t+
∑

blog2/3 tc≤j≤log t

ej/ log
2/3 t−c(j/ log2/3 t)3

� log2/3 t+

blog1/3 tc∑
r=1

∑
rblog2/3 tc≤j≤(r+1)blog2/3 tc

ej/ log
2/3 t−c(j/ log2/3 t)3

The final sums here are� (log2/3 t)
∑

r e
r−cr3 , and this is clearly� log2/3 t as required.

If instead σ < 1− 1/ log2/3 t then one can proceed in a similar way, but breaking the

sum over n at a different place to obtain a saving when summing over j. In fact, for

any large constant C we obtain that

ζ(σ + it) =
∑

n≤eC log t
√
1−σ

1

nσ+it
+

∑
eC log t

√
1−σ<n≤t

1

nσ+it
+O(1)

� eC log t(1−σ)3/2

1− σ
+

∑
bC log t

√
1−σc≤j≤log t

∣∣∣∣∣∣
∑

ej<n≤ej+1

1

nσ+it

∣∣∣∣∣∣
� tC(1−σ)3/2 log2/3 t+

∑
bC log t

√
1−σc≤j≤log t

ej(1−σ)−cj
3/ log2 t

� tC(1−σ)3/2 log2/3 t+
∑

bC log t
√
1−σc≤j≤log t

ej(1−σ)−cj(1−σ)C
2

.

Provided C is large enough the exponents in the sum over j will all be negative, and one

can bound it as we did above by breaking into intervals of length bC log t
√

1− σc. �

Remark 11.2. It is easy to check that the first part of the above proof also shows that

ζ(σ + it)� log2/3 t if t is large and σ > 1.

Finally, by combining Theorem 11.1 with Landau’s theorem (Theorem 5.1) we obtain

the best (i.e. widest) zero-free region known for the zeta function.

Corollary 11.3 (Vinogradov–Korobov zero-free region). There exists a small absolute

constant c > 0 such that the zeta function has no zeros s = σ+ it in the region {s : σ ≥
1− c/(log2/3(|t|+ 2)(log log(|t|+ 3))1/3)}.

Proof of Corollary 11.3. Theorem 11.1 tells us that, for all t ≥ t0 (a large constant), we

have

ζ(σ + it)� tC(1−σ)3/2 log2/3 t = eC(1−σ)3/2 log t+(2/3) log log t.

In particular, if σ ≥ 1− ((log log t)/ log t)2/3 then we have ζ(σ+ it)� e(C+2/3) log log t, so

we can apply Landau’s theorem (Theorem 5.1) with the choices φ(t) = (C+2/3) log log t
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and w(t) = ((log t)/ log log t)2/3, obtaining that ζ(σ + it) 6= 0 in the region

σ ≥ 1− c

φ(2t+ 1)w(2t+ 1)
= 1− c

(C + 2/3) log2/3(2t+ 1)(log log(2t+ 1))1/3
, t ≥ t0.

By relabelling the constants, this gives the assertion of the corollary when t ≥ t0.

One can obtain the analogous result for t < t0 using the known zero-free regions and

using symmetry, exactly as in the proof of Corollary 5.2. �

By repeating the proof of the prime number theorem with the line of integration

shifted into the Vinogradov–Korobov zero-free region, rather than the classical zero-

free region, (and obtaining a bound for ζ ′(s)/ζ(s) in that region as in Lemma 5.5), we

obtain the best known error term for the distribution of primes.

Corollary 11.4 (Prime Number Theorem with Vinogradov–Korobov error term). For

all x ≥ 2 we have

Ψ(x) = x+O(xe−c(log
3/5 x)/(log log x)1/5).

Proof of Corollary 11.4. The details of the proof are omitted and non-examinable, but

the idea of the argument is exactly as we have seen before [[and is examinable]].

At the end we obtain an estimate of the form

Ψ(x) = x+O(x log2 x
(
e−c(log x)/(log

2/3(T+2)(log log(T+3))1/3) + e− log T
)

),

and choosing T = exp{(log3/5 x)/(log log x)1/5} is optimal and gives the claimed result.

�

Remark 11.5. In our first proof of the Prime Number Theorem we obtained an error

term of the form O(xe−c log
1/10 x). After a great deal of hard work (which took more than

sixty years to complete in real time), this was improved to the Vinogradov–Korobov

error term O(xe−c(log
3/5 x)/(log log x)1/5). This error term is certainly much smaller, but it

looks to be of the same “shape”, and one might reasonably ask what more it really tells

us about the distribution of primes.

(i) There are problems in which the exact size of the error term is of qualitative

importance. For example, if one could obtain a zero-free region of the form

σ ≥ 1 − c/
√

log(|t|+ 2), which corresponds to an error term O(xe−c log
2/3 x) in

the prime number theorem, this would have applications to the distribution of

numbers with only small prime factors (smooth numbers).

(ii) We know that the Vinogradov–Korobov error term is not just a technical sharp-

ening of the classical error term, because we know that many new ideas were
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required to prove it! In particular, the Vinogradov–Korobov error term en-

codes the zeta sum estimate in Theorem 10.1, which is a fundamental number-

theoretic fact about the Fourier analytic properties of the integers (and which

we translated, via the zeta function, into information about primes).

(iii) But it is true that the error term O(xe−c(log
3/5 x)/(log log x)1/5) is nowhere close to

what we believe should be true. The Riemann Hypothesis conjectures that apart

from the trivial zeros at s = −2,−4,−6, ..., all the zeros of the zeta function lie

on the critical line {<(s) = 1/2}. If this is true then one obtains a squareroot

power-saving error term O(
√
x log2 x) in the Prime Number Theorem.

The Riemann Hypothesis is, arguably, the most important unsolved problem in math-

ematics, since it would imply that the error term in the distribution of primes is “like

random”. If one could obtain an improved zeta sum estimate (i.e. a power saving on a

wider range of N than in Theorem 10.1) this would help to widen the known zero-free

region, but at present we have no plausible approach to obtaining a zero-free region out

to the 1/2-line, as in the Riemann Hypothesis.
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