Solutions to Exercises

1.2

Chapter 1

Let {x;} be a countable dense subset of X, and let {y;} be a countable
dense subset of Y. Then the countable collection {(x;, y)} is dense in
X x Y, since for any (x, y) € X x Y and any € > 0 there exist x; and
vk with

lx —xjllx <€/2  and Iy — yelly < €/2,
and so

G, ye) — (x, Wlxxy < €.

It follows that X x Y is separable, and by induction it follows that any
finite product of separable spaces is separable.

If M is a linear subspace of X then let {x;} be a countable subset
of X such that for each x € X there is an x; such that |x — x;| < e.
Now discard any element x; of this collection for which B(x;, €) does
not intersect M. For each remaining x;, it follows that there exists an
element m; € M such that B(m;, 2¢) D B(x;, €). Thus this collection
{m} has the property that for each element m € M there exists an m
such that [m — m | < 2e. Applying this construction for the sequence
€, = 27" gives a countable dense subset of M, as required.

Cover X with the collection of open balls

U BGx.e).

xeX

Since X is compact it follows that there exists a finite covering by such
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balls:

N
X c | Bk e).

j=1
It follows that for each x € X there exists an x; with |[x — x;| < € as
required.
We first consider the case of 2 bounded. If u € C?(Q) then clearly u = 0
on 0€2; it follows that if u,, € CS(Q) converges to # uniformly on €2 then
u = 0 on 92 too. We now show that any function in

CYQ) ={ueC’Q):u=00ndQ)

can be arrived at in this way and hence that this space is the completion
of C?(Q) in the sup norm. Let 6 be the continuous function

X, x>1,
O(x)=42x—1, 1>x> 3,
0, x <3,

and define

ue(x) = O(lu(x)|/e)u(x).

Clearly u, is continuous on €2, and since u is uniformly continuous on
2 there exists a é such that

dist(x, 02) < § = lu(x)| < €/2,

that is, such that u.(x) = O when dist(x, 02) < §. It follows that
u. € C(Q), and since,

lu(x) —uc(x)| <€,

u. converges uniformly to u on 2.

It follows that Cg(Q) # Cg(Q) is the completion of C?(Q) in the sup
norm, and C?(Q) is therefore not complete.

When @ = R the limit of any convergent sequence of functions in
C? (R™) must tend to zero as |x| — oo. This is clear, since given € > 0
there exists an N such that |u,, — u| < € for all n > N. In particular, u y
is zero for all x > Ry, say, and so |u| < € for all x > Ry. The space of
all such u,

COR™) = {u € CY(Q):u(x) — Oas |x| > oo},

is the appropriate completion of C*(R™). For any u € CJ(R™), we
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can use the argument above to find an approximating sequence of u, €
CO(R™).

If {f;} is Cauchy in the || - [|c norm then it is Cauchy in each C" (Q)
norm. Since each C"(Q) is complete, f; — f in each of these spaces,
sothat f € C"(Q) for every n and thus f € C*®(). It remains to show
that in fact

[ flle < o0

and that

I1fj = flle =0

as j — oo. Since { f;} is Cauchy it certainly follows that for j, k > N
we have

!
> allfi = filleng, < €
n=1

for each / < oo, and taking the limit as k — oo gives

1
> allfi = flleg <€ (S1.1)
n=1

Using the triangle inequality in each C" (), 0 < n <1, shows that

1 1
> alfleg <€+ Y el filleng:

n=I1 n=I

and so

I flle <€+ 1 fjlle

Since (S1.1) holds for all /, we can let | — oo to show that

o0
> allfi = Fleg < e
n=1

and so f; — finthe | - [l norm.
We show that C% () is a Banach space; the case C” then follows
easily. If the sequence { f;} is Cauchy in C%7 (Q2) then given € > 0 there
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exists an N such that for j, k > N we have

b ILf () = fi] = Lfi ) — fi) <e

lx — yl”

| fi — filloo + su

X, yeQ

Because C°(Q) is complete we know that fj converges to some f €
C°($2). We just need to show that f is Holder. However, since f; — f
uniformly we have

L) = fOI=Lfi(30) — fFOD] < €lx = yI”

and so

[fG) = DI =Z1fix) =i+ ) = FOI+150) = FO
< Cjlx —yl" +€lx —yl”,

which shows that f € C%7 (Q).

If f € C'(Q) then | Df (x)| is uniformly bounded on @, by L, say. Since
2 is convex, given any two points x, y € €2 the line segment joining x
and y lies entirely in 2. It follows that

1
lf ) = fI = ‘/0 Df(y+$(x—y))-(x—y)d€‘

< L|x —yl,

so f is Lipschitz.
We have

i (x) — up(y)] = ‘h—m/g H’“;Z) —p(yfﬂumdz

Sh’”/p(H>|u(z)—u(z+y—x)|dz
P\

= Cly —x|”

by using (1.7) so that u;, is also Holder.
We prove the result by induction, supposing that it is true for n = k.
Then for n = k + 1 we take p such that

=1y 1
o)y
Pj p

j=1
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to obtain

/Q|f1(x) o Jrr Ndx Z A fillee -l fe=tllzre | f St lle -

(S1.2)
Now, we use the standard Holder inequality, noting that

thus

P/ Pk P/ Pi+1
/(fkfkﬂ)p dx < (/ fkpk dx) (/ fk[ﬁl dx) )
Q Q Q

and so

I fiefewtlle < N fiellLo l fanll e,

which combined with (S1.2) gives (1.31) for n = k + 1. Since the
standard Holder inequality is (1.31) for n = 2 the result follows.
Write

/|u(x)|pdx=/ |M(x)|6I(V—P)/(V—Q)|u(x)|r(p—q)/(r—q)dx‘
Q Q

Now note that
r— _
p +P q
r—-q r—gq

=1,

and so using Holder’s inequality we have

(r=p)/(r—q) (p—q)/(r—q)
/ lu(x)|” dx < </ lu(x)|? dX> (/ Iu(X)I’dX> ,
Q Q Q

which becomes

lullLr < ||u||%5,r7”)/"(’*‘1)||u||}“(rl’*q)/p(r7q)

’

as required.

1.10 Ifs € S(2) then it is of the form of (1.10),

s(x) = chx[lj](x),
=1
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where the /; are m-dimensional cuboids, each of the form

I =] ]ta. bl.
k=1

It clearly suffices to approximate y[/] to within € in the L” norm using
an element of C?(Q). To do this, consider the function

m
Xn = H¢n(xk; ag, by),
k=1
where

(x—a)/n, a<x=<a+n,
¢y(x;b,a) =1 1, a+n<x<b—n,
b—-x)/n, b—n<x<bh.

Clearly x, € C?(Q) and converges to x[/]in L?(2) as n — 0.
Since |g(x)| < ||glloo almost everywhere, it follows that

Lf()g)] < [f()IlIglleo

almost everywhere, and so

/Qlf(X)g(x)Idx =< /Q LFIlIgloo dx < [ f L1118 lloos

as claimed.
Since {x"} is Cauchy, given € > 0 there exists an N such that

||x(”) _ X(m)H,oo <e for all n,m=>N.
This implies that
’xj(_”) _ x;’">| <e€ for all n,m> N. (SL.3)

In particular, we have x;-”) is Cauchy foreach j. So x}") — xjasn — oo.
Itis then clear thatx = {x;} € [*°, and taking the limitm — o0 in(S1.3)

shows that
x}") —xj| <e for all n>N, for all j.

It follows that x™ — x in [®°, and so [® is complete.
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We know that the norm is positive definite, and so
Ir + 2317 = (v + Ay, 2+ 4y) = x|® + 240x, y) + 221y )1* = 0.
In particular, the quadratic equation for A,
AP+ 2200, y) + I1x )1 =0,

can have only one distinct real root. Therefore the discriminant “b?> —
4ac” cannot be positive (which would give two real roots). In other
words,

4(x, y)* — 4llylPlIx]I* <0
or

1Ce, < [lx NIyl

which is the Cauchy—Schwarz inequality. We can now write

Ix + ¥ = IxII* +2¢x, y) + l1yI?

< IlxI* + 20yl + NIy l?

= (Il + Iy >,
giving the triangle inequality.
We simply expand the left-hand side,
et + 0l + e = vlI* = [l 20, v) + VI 4+ el = 2, 0) + o))

= 2llul® +2[lv])%,

as required.
If {u;} is a dense subset of / 2(T") then for each element y € I there must
exista u; thatis within € of 1 at y and within € of O for all other elements

of I'. Each such u; is distinct. It follows that if I" is uncountable then so
are the {u}, and so I2(") cannot be separable.

Chapter 2

We can apply the contraction mapping theorem to 4" to deduce that 1"
has a unique fixed point x*,

h"(x™) = x*.
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If we apply /4 to both sides then
h(h"(x*) = "' (x*) = B*(h(x*) = h(x"),

showing that 2 (x*) is also a fixed point of A". Since the contraction
mapping theorem guarantees that the fixed point of A" is unique, we
must have h(x*) = h*, and so h* is also a fixed point of 4.

The interval [1, 00) is closed but not compact, and the map 4 : [1, co) —
[1, 00) given by x — x + 1/x satisfies

lh(x) = h(M)| = |x — y|(1 — (xy)™")
<|x—yl

but clearly has no fixed point.
However, if X is compact and & : X — X satisfies

[hGx) —hWI < llx — yll, (82.1)
suppose that / has no fixed point. Then
lh(x) — x| >0 for all x € X,

and since ||h(x) — x|| is continuous from X into R it obtains its lower
bound, so that

|h(x) — x|| > € for all x € X,

and there exists some y € X such that ||h(y) — y|| = €. However, if we
take z = h(y) then from (S2.1) we have

lh(z) —zll <€,

a contradiction. So & has at least one fixed point. Uniqueness follows as
in the proof of the standard contraction mapping theorem.

Take €, = 27" and apply the result of Exercise 1.2 so that there exists
finite set {x'}, 1 < j < M, such that |x — x| < 27%. Set N, =
Z’;zl M, and let {x;} be the sequence

(1) n @ 2 .3
X Xpg s X e X X

Suppose that there are solutions x,, (¢) of

dx/dt = f(x) with x(0) = xo (82.2)
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such that x,,(t) — x*. We need to show that there is a solution of (S2.2)
with x(t) = x*. Now, if f is bounded then the sequence x, () satisfies

Sup X2 (D] < lxol + Tl flle and  [x4 (1) = xu ()] = || flloolt — s,
t€l0,7]

the conditions of the Arzela—Ascoli theorem (Theorem 2.5). It follows
that there is a subsequence that converges uniformly on [0, 7], and as in
the proof of Theorem 2.6 the limit x (¢) satisfies (S2.2). Since x, — x
uniformly on [0, t], in particular we have x(t) = x* as required.
When |x| # 0 then it follows that

) d
—|x|7 = 2]x|—|xl,
dt dt

and (2.27) follows immediately. When |x (¢p)| = 0, since C(¢) is contin-
uous, for any € > 0 we have

%%le < [C(t) + €llx|
for t — fy small enough, and so it follows from Lemma 2.7 that
O = (IC) + €t — 1),
Therefore
lx (@ + h)| < [C(to) + €lt,
and so
%JXI = C(t) +e.

Since this holds for any € > 0 we have (2.27).

If
y() = / b(s)x(s)ds
0
then
dy
yrie b(t)x(t) < a()b(t) + b(t)y(1),
and so

<d_y — b(t)y(t)> exp (— /l b(s) ds) <a(t)b(t)exp <— /t b(s) ds) .
dt 0 0
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If a(¢) is increasing then we can replace a(¢) on [0, T] with a(T), and

)
d t t
—[y(t) exp(—/ b(s)ds)] Sa(T)b(t)exp(—/ b(s)ds).
dt 0 0

Integrating both sides between 0 and T gives us

T T '
y(T) exp <—/ b(s) ds) < a(T)/ b(t) exp(—/ b(s) ds) dt
0 0 0

and so
T T
y(T) < a(T)/ b(t) exp </ b(s) ds> dt.
0 t

We can integrate the right-hand side to obtain

T
W(T) < a(T) [exp (/ b(s)ds) _ 1},
0

and so, using (2.28), we have

T
x(T) <a(T)exp (/ b(s)ds)
0

as claimed.
As in the proof of Proposition 2.10 we consider the difference of two
solutions, z(¢) = x(¢) — y(¢), which satisfies

dz .
i f&x)—g®»
=f@)—fM+ 1) —egl.

We now use Lemma 2.9 to deduce that
d
7 Iz < 1fx) = fDI+ 1) — gl
I+
<Lzl + I f — gllo-

An application of Gronwall’s inequality [(2.21) in Lemma 2.8] now
yields (2.29).
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Chapter 3
3.1 We denote

|A|l; = {smallest M such that ||Ax|ly < M| x| x forall x € X}
and

[All2 = sup [[Ax]ly.

lxllx=1

First we take x = 0 and put y = x/||x||x; then we have
IAylly = Al = IAx|ly = [IAll2lxlx

for all x € X, and so ||A||; < ||A||,. Furthermore, it is clear that, for
any M,

[Ax|]ly = Mllx]lx ~ forall xeX = Al = M,

and so [|All> < [|A]l;. Thus ||All; = [[A]l2.
3.2 [ isclearly bounded from C 910, L)) into itself, since

11 (Plloc = LI f lloo-

For the L? bound, first observe, by using the Cauchy—Schwarz inequality,
that 1 (f)(x) is defined for all x if f € L?. Then

L
II(f)|2=/ 11(f)(x))> dx
0

[ ([ roa) s
[ ([)([vora)e

L

< LZ/ ()P ds
0

< P

Thus I is a bounded operator on both spaces.
3.3 Suppose that A~'y; = x; and that A=y, = x,. Then it is clear that

A(xy + x2) = y1 + y2.
Since the inverse is unique it follows that

A i+ ) = Ay + A .
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For each x € X, P,x converges to x, and so it follows that the sequence
{P,x};2, is bounded:

sup || Pux|lx < oo
neZ+t

for each x € X. From the principle of uniform boundedness (Theo-
rem 3.7) we immediately obtain

sup ”anop < 00,
neZ*

as claimed.
It is clear that ¢; (x)¢; (y) is an element of L%(Q x Q) and that

/ (600 Db ()b ()] dx dy = 8581,
QxQ

and so they certainly form an orthonormal set. If k € L>(Q x ) then
k(-,y) e L?(), and we can write

k(. y) = ui(y)gi (x),

i=1

where

ui(y) = /Q K(x. y): (x) dox.

/|u,-(y>|2dy=/ ’/k(x,ym(x)dx
Q Q Q
s/ (/ |k(x,y>|2dx/ |¢,-<x>|2dx) dy
Q Q Q

< / ke, )P dx dy,
QxQ

Since

2
dy

we have u; € L?(Q). So we can write

o0

wiy) =3 ( [ w0 dy> b5,

j=1
which yields the expression

o]

k(x,y) =) (/Q Qk(x,y)¢>i(x)¢>j(y) dx dy)dn(x)dz,-(y),

ij=1

as claimed.
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We consider the approximations to A given by the truncated sums,
n
A,ll/l = Z)\j(u, wj)wj.
Jj=1

Using Lemma 3.12 we see that each operator A, is compact. We now
want to show that

”A - An”op g 07

and it then follows from Theorem 3.10 that A is compact. However, this
convergence is clear, since

0
Z Aj(u, wj)wj

j=n+1

(A = Apull =

Z (I/t, wj)wj

j=n+1

00 1/2
sml( > |<u,wj)|2>

j=n+1

S )"n-&-l

< Mg llull,

and A,4+; — 0asn — oo. Thus A is compact. That A is symmetric
follows by taking the inner product of Au with v to give

(Au,v) =>4, w) (v, w)) = (u, Av).

Jj=1

We know from Lemma 3.4 that A~! exists iff Ker(A) = 0. So we show
that if Ax = 0 then x = 0. Because A is bounded below we have

0=llAxlly = kllx|lx,

so that ||x||x = 0. For y € R(A) we can use the lower bound on A to
deduce that

1 1
1A= Yllx < - IAA™ Yy = —lIylly,
k k

so that A~! is bounded.
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Since G is a solution of the homogeneous equation on both sides of
X =y, we must have

CiMui(x),a <x <y,

o) = {Cz@)uz(x), y<x<b.

The conditions at y require

Ciui(y) = C2(y)ux(y),
Ci()uy () + p(») ™" = C:(Mub(y).

Solving these simultaneous equations for C; and C; gives
Ci(y) =ua()/Wp(y)  and  Ca(y) = ur(y)/Wp(»),
where
Wy (y) = pOlur(Muz(y) — ua(uj(»)]-

Differentiating W, with respect to y and cancelling the puju} terms
gives

W; = p'(uyuy — upu') + pluuy — usul{].

If we use the differential equation L[u;] = L[u,] = O to substitute for
the terms puy and pu; we see that in fact W, = 0, so that W, is a
constant. We therefore obtain (3.28), and G(x, y) is symmetric.
Proposition 3.13 and Lemma 3.16 show that the integral operator K
defined by

[Kul(x) = / k(x, y)u(y)dy
Q
is a compact symmetric mapping from L?(2) into L?(). It follows

from Theorem 3.18 that K has a set of eigenfunctions u, (x) with corre-
sponding eigenvalues 1, so that Ku,, = A, u,:

/ k(x, Yu,(y)dy = hnuy (x).
Q

Since A; # O for all j there is no nonzero u such that Ku = 0. In this
case KerK = {0}, and so we can expand any f € L?(S2) in terms of the
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eigenfunctions of K,

f£=> (foupu;.

j=1

It is now easy to see that the solution of (3.29) is given by

u) =Y (f’kbff)uj(x),

=t

as claimed.
3.10 We have

1 o0
A" = —/ t*le M dt w. (S3.1)
(@) Jo

Now,

o0
['(x) = / e~ dt,
0

and so, substituting # = X ;¢ in (S3.1), we have

o du
/ A}f‘)‘u“—]e—” — =21;"T(),
0 Aj

which gives
—a _
A™%w = A j w;
asrequired. Since A~ is characterised by its action on the eigenfunctions
the two expressions are equivalent.
3.11 We have

2 %, 2
[A*ull” = ) A7lcjl

M

1

J

I
Nk

2(s—a) 2¢042 2(1—
R RS I

~.
Il

1—¢

IA

oo 12 00
2(s— 2 1—
<Z)‘js a)/w|‘fj|2> (Z)‘ja/( ¢)|Cj|2>
=1 j=1

[AS O eu ][ a2,

IA

which gives the result on setting ¢ = (k — 5)/(k — [) and @ =
k(s =D/ =1).
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3.12 Take x = ) 72, x;w; and consider the series expansion

(e —1) N [(e7Mh — 1)
Tx—kAx:; A xws (S3.2)
Observe that
o0 o0 .
(e—)L/h _ 1) (e—)\,h _ 1)
Z |:h—|—)nj Xjwj = Z T—i—l )ijjw_,-.
j=n+1 Jj=n+1
The mean-value theorem tells us that (¢7* — 1)/z < 1, and so
2
oo (ef)‘jh _ 1) o)
AZ {h + A | xw| <4 AZ A2 (S3.3)
j=n+1 j=n+1

which tends to zero as n — oo.
It follows that given € > 0 we can choose an n such that the infinite
sum in (S3.3) is bounded above by € /2. It is then clear that the finite sum

e = 1)
I Rt P Py
- h
j=1
converges to zero as h — 0, and so for small enough & the whole
expression in (S3.2) is bounded by €, as required.

Chapter 4

4.1 Let P = {orthonormal subsets of H}, and define an order on P such that
a <bifa C b.If {C;} is a chain (i € Z) then C = U;C; is an upper
bound. Zorn’s lemma implies that there is a maximal orthonormal set
{e;}icr- The argument of the second part of Proposition 1.23 now shows
that the {e;} form a basis.

4.2  Take z ¢ Y. Then if w is contained in the linear span of z and Y it has a
unique decomposition of the form

w=y+az with yey,

as in the proof of the Hahn—Banach theorem. We can therefore define a
nonzero linear functional on the linear span of z and Y via

fO+az)=a.

The functional f is zero on Y, and we can extend it to a nonzero linear
functional on X by using the Hahn—Banach theorem.
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It is immediate from Holder’s inequality that

Ly @I = I fllz<llglz

and so
IL Mty < N fllze. (S4.1)
To show equality consider the sequence of functions
gp(x) = | f@)1P72 f(x).

Since f € L*°(2) and 2 is bounded we have g,(x) € L'(Q) for every
p, with

-1
lgpll = IFIT -

It follows from

L) =I1F17,
that

1Az
-1
LI

Since f € L we can use the result of Proposition 1.16,

ILfllry >

1 flle = Lim || fliLe,
p—)OO
to deduce that

Ll iy = N flle,

which combined with (S4.1) gives the required equality.

Since M is a linear subspace of H it is also a Hilbert space. The Riesz
theorem then shows that given a linear functional f on M there exists
an m € M such that

f(x) = (m,x) for all xeM.
Now define F on H by
F(u) = (m, u);

it is clear that F' is an extension of F and that || F|| = || f]|.
If x ¢ M then the argument of Solution 4.2 shows that there exists an
element f € X* with f|y = O but f(x) # 0. Soif f(x) = 0 for all
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such f then we must have x € M. Now if x, — x then for each f € X*
with f|y = 0 we have

f) = lim f(x,) =0,

and so it follows that x € M.

The linear span of the {x,,} forms a linear subspace M of X, and clearly
xp € M for each n. It follows that x is contained in the linear span of the
{x,} and so can be written in the form

X = chxj. (84.2)
j=1

[In fact x can be written as a convex combination of the {x;}, that is,
(S4.2) with ¢; > 0 and Zj c¢;j = 1; see Yosida (1980, p. 120).]
For any ¢ € [a, D],
8 1 x = x(t)
is a bounded linear functional on C°([a, b]). Since x,, — x, we have

8 (xn) = 8 (x),

and so x,(t) — x(¢) foreacht € [a, b].
Write

2 2 2
ln = xl17 = llxall” + [l ll” = 2(x, xn),

and then take limits on the right-hand side, using norm convergence on
l|x,]I? and weak convergence on (x, x,), to show that
. 2
lim ||x, — x| =0,
n—00

which is x, — x.

Chapter 5
Simply write

(Du, ¢) = (—1)1*Nu, D*¢,),

and then using the definition of convergence in D(£2) (Definition 5.2)
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we have D¢, — D%¢ in D(L2), and so
(D°u, ) — (=1)*!(u, D“¢)
= (D%, ¢),
so that D%u is indeed a distribution.
If ¢, € D(RQ) with ¢, — ¢ in D(RQ) then ¢, — ¢ in D(Q). It
follows that
(Yu, ¢n) = (u, Ypp) = (u, Yn) = (Yu, $),
and so Yu € D'(RQ).
Given ¢ € D(2) we have
(DGu), ) = —(Yu, ¢')
= —(u,¥¢')
= —(u, y¢' +o¥') + (u, ¢p¥')
= (Du, y¢) + (uDy, ¢)
= (Y Du+uDVy, ¢),

as claimed.
Assume that | f,,| < M for every n. For every ¢ € C2°(£2) we know that

/ Jopdx (S5.1)
Q

is a Cauchy sequence. Since C2°(£2) is dense in L2(Q) (Corollary 1.14),
foreachu € L%(Q2) wecan find a sequence of ¢, € C°(2) with¢p, — u
in L?(R2). Then, given € > 0, choose K such that

| —u| <e/4M for all k>K

and then choose N such that

‘ / (fo = fobi dx
Q

<e€/2 for all n,m=>N.

It follows that for all n, m > N

< N fa = fullu — il +€/2

< QM)(e/4M) +¢/2 = €,

/(fn - f;n)u dx
Q

and so (S5.1) is a Cauchy sequence for every u € L?(2), showing that
fao = fin L*(Q).
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Suppose that the result is true for k = n. We show that it holds for
k = n + 1, which then gives a proof by induction since the statement of
Proposition 5.8 gives (5.45) for k = 1. We know that

el = Nl + Y ID“ul,
|loe|=n+1
which along with the induction hypothesis becomes
lulfmis < €0 D ID*uP + Y (Dl (85.2)

la|=n la|=n+1

We therefore consider | D%u| for |a| = n. Since u € Hé’“ (£2) we must
have D%u € HO1 (€2), and so

|D%| < C|DyD%u| = C|DPu|

with |8| = n + 1, by using (5.11) from the proof of Proposition 5.8. It
follows from (S5.2) that

lullpn <C+1) Y |Dul,
|a|=n+1

which is the result for k = n + 1.
Consider a sequence of u, € C®() that approximates u in H*(Q).
Then the derivatives of {u, are given by the Leibniz formula (1.6)

D(Yuy) =Y (Z) Dy D Fu,,

B=a

and so

D)l <Y (Z) |DP Y| D P, |

B=a

< (ﬂz (;) |Dﬁw|> e

In this way the derivatives up to and including order k are bounded in
L? by a constant (depending on ) times the H* norm of u,,, and so

IVunllae = CO) unllpx.

It follows that ¥ru,, is Cauchy in H*(2), and so in the limit as n — oo
we have yu € HX(Q) with

lullge = CO)Ilull

as required.
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5.6  First we show that u € L>(B(0, 1)):

1\12 2l
/ {loglog (1—}—)} dxdy = / / rloglog(14+1/r)dr do,
B©.1) x| o Jo

which is finite since the integrand is bounded. Now, since

u _ 1 X
ax log(1 + 1/]x|) |x|2>(1 + |x])

we have

/ |Vu(x)|>dx dy
B(0,1)
1 1
= 21y 12 5 d
o1 log(1 + 1/]x)* |x|*(1 + [x[)

2w 1 |
B /0 A log(l + l/r)2 r(l +r)2 dr' (85.3)

If we make the substitution u = 1/r this becomes

xdy

/°° 1 1 du
1 u+ (1/u) log(1 4+ u)?

This integral is bounded by

* 1
/ '
1 u(logu)?

and since the integrand is the derivative of —1/logu it follows that the
integral in (S5.3) is finite. Therefore u € H'(B(0, 1)), even though it is
unbounded.

5.7  First integrate (5.46) with respect to xy, so that

00 00 /2 proo %) 1/2
/ |u(x)|3dx1 < 6</ uDludy1> / (/ uDzudy2>
—0o0 - —0Q —0oQ
00 1/2
X (/ uD3udy3> dx;
—0oQ
00 1/2 1/2
< 6(/ uDludy1> (// uDou dx dy2>
172
(// uDsu dx dy;) .
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Now integrate with respect to x; to obtain

00 oo 1/2
// lu()|® dx; dx, < 6(// uDsu dx, dyg)
—0oQ —0o0
00 1/2 00 1/2
X (// uDiudy; dxz) </// uD3u dx, dxzdy3) .
—0o0 —0Q

Finally, integrating with respect to x3 gives

3 1/2
/ lu(x)? dx < 6H (/ uDjudx> ,
Q =1 Q

and so
lull3s < Clu’?|Dul?,

which gives

172

1/2
lull s < Clul 2 luell

as required.

We simply apply the argument of Theorem 5.29 to the functions v =
D%u for each o with |o| < j. It follows that v € H*~/(), and since
k — j > m/2 we can use Theorem 5.29 to deduce that v € C%(Q) with

vl < Cllullgei < Cllullger.
Combining the estimates for each |a| < j shows that u € C/(Q) with
lullci@ < Cllulluxe

as claimed.
Suppose that the inequality does not hold. Then for each k € Z* there
must exist u; € V such that

lug| > k|Vuy]. (S5.4)
If we set vy = uy/|ui| so that |vi| = 1, (S5.4) becomes
Vol <k (S5.5)

It follows that v; is a bounded sequence in H'(S2), and so using
Theorem 5.32 it has a subsequence that converges in L?(2) to some
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v € V with

/ v(x)dx =0 and lv] = 1. (85.6)
Q

However, we can also use (S5.5) along with the L? convergence of vy to
v to show that for any ¢ € D(2) and any j

/vD"‘qbdx: lim/kaj¢dx=— lim/Djvkqbdx:O.
Q k=00 Jo k=00 o

It follows that Dv = 0, and so, using the hint, v is constant almost
everywhere. This contradicts (S5.6), and so we have the inequality (5.47).
Suppose that {u,} is a bounded sequence in L?($2). Then, since L? is
reflexive, there is a subsequence that converges weakly in L?(2), i.e. for
every ¢ € L?(Q2) we have

(U, ¢) = (u, ¢)

for some u € L?(2). Now, suppose that u, does not converge to u in
H~1(), so that there exists an € > 0 such that, for some subsequence

{un},

sup |(un —u, §)| = €.
(@H @):119] 1 =1)

Then there exist ¢,, with ||¢, || H = 1 such that

|(un —Uu, ¢n)| > 6/2

Since {¢,} is a bounded sequence in H{(2) and Hj () is compactly
embedded in L?(2), there exists a subsequence that is convergent in
L?(Q) to some ¢. It follows (on relabelling) that

[(n —u, )| = €/4

for n large enough. But this contradicts the weak convergence of u,, to
uin L?, and so we must have u, — u in H~ ().
Since

U= § Ckeka»x/L

kEZm
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we have

2mik .
Du = E cper iR
A
kezm

It follows that

P =L" Y jal>  and  [DuP =L" Y @n/L)kPlel,
kezZm kezZm

and so
L
lul < (—) |Du|
2
as claimed.
Chapter 6
Start with

/Vu-Vvdx = / f)v(x)dx,
Q Q

and integrate the left-hand side by parts to give

/(Au — flvdx =0.

Q

Since u € C*(R2) and f € C°(RQ), we have
¢=Au— feCQ).

It therefore suffices to show that if

/govdx =0 forall wveClR)
Q
then ¢ = 0. Suppose that ¢(x) # 0 for some x € 2. Then since ¢ is

continuous there is a neighbourhood N of x on which ¢(x) is of constant
sign. Taking a function v that is positive and has compact support within

N implies that
/(pudx:/gavdx;éo,
Q N

a contradiction. That u satisfies u|yn = 0 follows from u € HOI(Q) N
C°(2), using Theorems 5.35 and 5.36.
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Take the inner product of Lu = f withav € CC1 (2),

[ oo

i,j=1
=/f(X)v(X)dx,
Q

and integrate the first term by parts,

m

/Za”(x) ou av

i,j=1

= / fx)v(x)dx.
Q

We can now introduce a bilinear form

a(u,v)= /Za,](x)au Bv

i,j=1

and write the equation as
a,v) = (f,v) forall veCHQ).

As before we use the density of C Cl () in HO1 (R2) to generalise to f €
H~'(RQ) and the weak form of the problem is thus to find u € Hol(Q)
such that

a(u,v) = (f,v) forall — ve H)(Q).

By definition

m

a(u,u) = Z/au(x)D uDudx—i—Z/b(x)Duudx

i,j=1

+ / c(x)u®dx
Q

39/ |Vu|2dx—max||bi||Lx/ |Vul| |u|dx
Q ! Q

2
—||C||L°°/ ul dx.
Q
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Solutions to Exercises
Now we use Young’s inequality with e,

b2

2

a
b<el 42
ab=e5 + o

to split the second term,

~1
a(u,u) > %0/ [Vul>dx — (0 max ”bi”Loc) / lu|? dx
Q i Q

2
—||c||Loo/ ul dx,
Q

2 2
a(u,u) = Cllully, — Mul”,

and so

as required.
Consider the bilinear form b(u, v) corresponding to the operator L + «.
Then

b(u,v) =a(u,v) +a(u,v)
——
L2
is a continuous bilinear form on Hol: clearly (u, v) is, and a(u, v) is since

el =Y [lagiDuliidx+ Y [ ibiDadivl s
Q — Ja

ij=1
+ / |cllullv| dx
Q
< Cllullg vl ae-
Furthermore, b satisfies the coercivity condition, since
b(u,u) = a(u,u) +a(u, u)

2 2 2
> Cllully, — Aul” + alul

2
> Clully,.

We can now apply the Lax—Milgram lemma to obtain the conclusion.
First, it is easy to see that if (6.31) holds for all v € H'(2) then choosing
v = 1 we have

/ fx)dx =0.
Q
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We cannot immediately apply the Lax—Milgram lemma to the equation
au,v) = (f,v),
since
laGu, w) = |Vul® = llulg — lul?,

andsoa(u, v) is not coercive. To deal with the L? part we need a Poincaré-
type inequality. Note that if f o f(x)dx =0, then

(fiv) = (f,v—/gv(x)dx),

since subtracting the constant from v does not make any difference, and

similarly
a(u,v) =a (u, v — / v(x) dx).
Q

The weak form of the equation in this case [ fQ f(x)dx = 0] is therefore
equivalent to

a(u,v) = (f,v) for all veV,

where

V:{ueHl(Q):/u(x)dx=0}.
Q

It is was shown in Exercise 5.9 that in this space
lul = C|Vul,
and so we have
la(u, w)| = |Vul* > %W + 1Vul* = klully.

We can therefore apply the Lax—Milgram lemma to deduce the existence
of a weak solution of the Neumann problem.

Without the imposition of the condition | o (x) dx = 0 Laplace’s equa-
tion on Q with periodic boundary conditions does not have a unique



28 Solutions to Exercises

weak solution. In terms of the Lax—Milgram lemma this translates into
the weak problem

a(u,v):/ Vu-Vvdx = (f,v) with feHY(Q),
0

where we seek u € L?(Q). But then a is not coercive on L?(Q), since
a(c, ¢) = 0 for any constant c.

6.7  First,
Dl (uv) (x) = u(x + he;)v(x +hhe,-) —u(x)v(x)
= u(x) {v(x + he;) — v(x)] oGt e {u(x + he;) — u(x)
h h
= M(X)D,hv(X) +v(x + hei)Dth(X).
Next, we write
/ u(x + he;) — u(x)v(x) i
Q h
= / Mv(x)dx —/ @v(x)dx

and change variables in the first integral, putting y = x + he;, to obtain

u(y) u(x)
/QTv(y—he,-)dy—/QTv(x)dx

=_/ u(x)v(x —he;) —v(x) dx
o —h

:—/ u(x)Di_hv(x)dx.
Q

Finally, both expressions are equal to

Diu(x + he;) — Diju(x)
Y .

6.8  The inverse of @ is just the map y — x, given by

_{yl+zla i=1,...,m—1,
l Ym+¢(y1 +Z1a~~-3ym—1 +Zm_]), i =m.
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Therefore
1 0 0 ... Dy
01 0 ... Dy
Vi = 0O 0 1 ... D3y
0o 0 0 ... 1

It follows immediately that det V¥ = 1, as required.
The result of Lemma 3.26 shows that, for a general positive symmetric
linear operator whose inverse is compact,

|AYM| < C|Alu|(kfx)/(kfl)|Aku|(sfl)/(kfl)

for0 <l <s < k. A = —A on Q' with Dirichlet boundary conditions
certainly satisfies these conditions.

Taking u € Hé‘ ('), Proposition 6.19 shows that u € D(A7/?) for all
j=0,1,...,k, and so

j/2
lull iy < 1A72ul < Cjllull gia)-

Therefore we have

(k—s)/(k—1) (s=0)/ (k=)
leell sy < Cllull s ™Ml e oms (S6.1)

for all such u.

Now take u € H¥(Q), and use Theorem 5.20 to extend u to a function
Eu e H(’)‘(Q/) for some Q" O Q. Then (S6.1) holds for Eu, and since E
is bounded from H/ () into H({(Q’) foreach 0 < j < k, we have

(k=s)/G=D))1 (5= /h=D)
lulas@) < NEullis ) < CllEullgig)”  1Eull g,

k—s)/(k—I) —1)/(k—I
< Cllull oy ull G,

which is (6.32) for u € H*(Q), as required.

Chapter 7
Define an element I € X** by

T
(, L):/ (L, f(t))dt  forall L e X" (S7.1)
0
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This map [ is clearly linear, and it is bounded since

T
{1, L)| 5/0 (LI Nlf (Dl x dt

T
< (/0 ||f<t)||xdt> ILlx,

T
/0 I f@®llxdt < oo

and

from (7.31). Since X is reflexive, it follows that there exists an element
y € X such that

(I,Ly=(L,y) forall L eX*

Therefore, using (S7.1), we have (7.29).
That the integral is well defined follows from Lemma 4.4, which shows
that if

(L, y1) =(L, y2) for all LeX*

then y; = y,.
Corollary 4.5 shows that there exists an element L € X* such that
ILllop =1and Ly = ||y|lx. Then, using (7.29), we have

T
[ o
0

T
5/ (L. £ )] dt
X 0

T
< / £ (0)llx dt,
0

as required.

An element v of L?(0, T; V) is the limit in the L? norm of a sequence
of functions v, in C°([0, T]; V). Since such functions are uniformly
continuous on [0, T], given € > 0 we can find an integer N such that
8 = T/ N satisfies

t—s|<8 = V(1) — va(S)Ily < /TP,

We can approximate v, to within € in L”(0, T'; V) by

N
> v (i8)xIGS, (G + D],

j=1
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an expression of the form (7.32). It follows that such elements are dense
in L?(0, T; V). Since C' ([0, T) is dense in L” (0, T) we could also use
elements of the form of (7.32) with o; € C'([0, T)); similarly, CX(2)
is dense in L?(£2), so we could take v; € C° ().

Taking the inner product of (7.33) with A*u,, yields

k+1 k+1

L |4 = 4% |4,

)

and so, using Young’s inequality, we obtain

k+1

%m’f/zmz +]A% | < AT 7

which shows that

t
|Ak/2un(r>|2+/ |AF u, () ds < |42 @) + |4 £,
0

which yields (7.34), and then (7.35) follows from (7.33). Therefore, using
Proposition 6.18, we get

u, € L0, T; H N L*0, T; H*)
and
du,/dt € L*(0, T; H*™").
Extracting a subsequence shows that the solution u satisfies
uel*>0,T; H**YY  and  du/dt € L*(0,T; H* ™).

It follows from Corollary 7.3 that u € Cco([0, T1; H").
Since the {w;} are orthogonal in H{ and orthonormal in L? the equation
for u,, becomes

Ajunj = [,
where A; = |lw;||* and f; = (f, w;). It follows that

Upj = fj/)\p

independent of n. In particular we have

~ f
2: J

u, = —wj,
— Aj
Jj=l1
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and so, form > n,

m 2
S fj
ey — u,ll” < )LJ-

Jj=n+l J

Since we have the Poincaré inequality we must have A; > A, for some
A, and so

1 m
|2 —un||2 =< X Z f]2

j=n+l1
Since f € L*(R) it follows that u, converges in H}(Q) to u =
s fiwi/A;.

Now, we know that
((un, v)) = (P, f,v) for all v E P”HO1 ().
Since
((Un,v)) = ((up, Pyv))  and (P, f,v) = (P f, Pyv)
for all v € Hy (), we in fact have
((n,v)) = (P, f,v)  forall ve Hy(Q).
Since u,, — u in HO1 (£2) we know that
((un, v)) = ((u, v)),

and since P, f — f in L?(S2) we must have

((u,v)) = (f,v) forall ve Hj(Q),

and u is a weak solution of (7.36) as required.

Chapter 8
We show in general that if Z = X N'Y, with norm

lullz = llullx + llully,
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then Z* = X* + Y*. First, it is clear that if f = f; + f, with f; € X*
and f, € Y*, thenforu e XNY

[+ S )| < [(fi, u) | + [(f2, u)
< Wfrllx=Nullx + I f2lly+llully
= (Lfillxs + N f2lly) el xay -

Thus X*+Y* C (XNY)*. Now,if f € (XNY)* then, since itis a linear
functional on a linear subspace of X, application of the Hahn—Banach
theorem (Theorem 4.3) tells us it has an extension f; that is a linear
functional on the whole of X (we could use Y rather than X here if we
wished). Thus (X N Y)* C X* C X* + Y*, and so we have the required
equality.

8.2  Follow the argument of Theorem 7.2, except approximate u by a se-
quence u,, € C'([0, T]; H') such that

Uy — in  L*0,T; H)YNL"(Qr)
and
du,/dt — du/dt  in  L*0,T; H ")+ LY(Qr).
We will denote by X (71, ;) the space
L*(t1, s H) N LP(Q x (11, 1)),
and by X*(z1, ;) the space
L*(t1, 15 H') + LY(Q x (1, 1)).

We now estimate

T t
/mmWM=1//wawmwa//mmwmm
Q T JaJo Q Ji

1 T )
;// |t (£) 17 dt dx + 21t x|t | x 00
QJO

IA

IA

1 T .
= / / |un (1)1 dt dx + 2|ty || x0.7) 11n | x 0.7
T JalJo

showing once again that u, is also a Cauchy sequence in C°([0, T']; L?)
and hence that u € C°([0, T]; L?) as claimed.
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Integrating by parts gives
[ runia
- Uy a2 X
Q ; axj
Oup
= [ s
.,

u
0x j
We can estimate the extra term by

2
dx+/ fw,)Vu, -nds.
a0

/ fup)Vu, -ndS < |f(0)] / |Vu,|dS
aQ a0
< 1F 18R Vuull 20
< Cllunlla oo
< Cllugll g2,
using the trace theorem (Theorem 5.35). Since we have
lull 2@y < ClAu|
from Theorem 6.16, we can write
d
%Enunnz + [Aun|* < Ulun | + ClAuy).
Using Young’s inequality on the last term and rearranging finally gives

d
Znunn2 + |Au, > < 2||u,|* + C,

which integrates to give the bound

T T
||un(T>||2+/ |Au, (s)|* ds szl/ llun ()1 dt + lluoll* + CT.
0 0

Thus u,, is uniformly bounded in L2(O, T; D(A)) [and L*°(0, T; V)],
where (8.19) is used as before to guarantee that u,, € L>(0, T; V).
In this case we can follow the proof of Proposition 8.6 until the line

| F(u) — F(U)|2 <Clu— U|i2p(1 + |u|i2w + |v|iZQV)'

We now have to be more careful with our use of the Sobolev embedding
theorem, since the highest we can go is H' C L°. We therefore need

2p <6 and 2qy <6, where (p, q) are conjugate.

The first conditions forces us to take p < 3, and hence we must have
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q > 3/2, which shows that the largest possible value for y is 2, as
claimed. Provided that y < 2 we can write

|F(u) — F)* < Cllu — vli3: (1 + llullg + vl m),

as in Proposition 8.6.
Since u, v € L*(0, T; D(A) we can use Corollary 7.3 to take the inner
product of

dw
dt
with Aw to obtain, using (8.31),

+ Aw = F(u) — F(v)

1 d 2 2
3wl + [Aw = (F@) = F), Aw)
< C(+ Aul + | Av)) " w]| 2| Aw 2,

We now use Young’s inequality to split the right-hand side,

%%Hwn2 +lAw]® < 4§1|Aw|2 + C(L+ | Aul + [Av)?w]?,
and so
%%”w”z < C(1+ | Aul + |Av)?w]>.
This yields

lw@®)I* < |lw(0)|* exp (/ C(1 + |Au(s))* + |Av<s>|2>ds>,
0

which gives continuous dependence on initial conditions since we know
that both u and v are elements of L>(0, T'; D(A)).
Setting g(s) = e 49 u(s), we have

a_g — Ae—A(Z—S)u(S)+e—A(I—s)d_u
as ds

= Ae M u(s) + eI = Au + f(u(s))]
= e 27 f(u(s)),

so that integrating with respect to s between 0 and ¢ gives

g(t) —g(0) = / e 79 £ (u(s)) ds.

0

This rearranges to give (8.33).
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Chapter 9

Taking the divergence of the governing equation yields
Au=V- f,

since all the other terms are divergence free. A solution of this equation in
the periodic case when f € Lz( Q) has been obtained as Equation (9.10).
Note that if f € H then this implies that p = 0 (or, equivalently, a

constant).
1/2 1/2
|u|14=/ lul*dx < (/ |u|6) (/ |u|2)
0 0 0

We have
3
= [lullyelul

3
=< klloel|”ful,

since H'(Q) c L%(Q) (see Theorem 5.31).
Applying the Cauchy—Schwarz inequality first in the variable j and then
in the variable i, we get

” m 12 / m 12
Sane| < () (Sir)
i,j=I1 Jj=1

(h(E)(En)

i=1

m 12/ m 12/ m 12
(z|a,-|2> <z|b,-,,-|2> (z|cj|2) |
i=1 ij=1 j=1

1/2 1/2 1/2 1/2
b, v, w)| < klu|ull2 o o] w]

IA

IA

as claimed.
If m = 2, we have

[using b(u, v, w) = —b(u, w, v)], so that
(B(u, u), w) < klulllullllwl,
and therefore

1B, w)llye < klulllull.
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If m = 3, we have
b, v, w)| < Kl a4 o4 ol wl|
[using b(u, v, w) = —b(u, w, v) again], and so
(B, u), w) < klu|"?|lul?|lwl,
giving
1B, w)lly+ < klul"?||u]?>.

Take (p,q) = (2,2)ifm =2 and (p, q) = (4/3, 4) if m = 3. We know
that B, — Bin L?(0, T; V*), where B, = B(u,, u,) and B = B(u, u).
We need to show that P, B,, X\ Binthe same sense. Foryr € L1(0, T; V)
we have

T

T T
/ (PyB,(t)—B,y¥)dt = / (PyB,— By, w)dt+/ (B,— B, ¥)dt.
0 0 0

. *
The second term converges since B, — B, so we have to treat only the
first term. We rewrite this as

T
/ (Bn(t)a an> dt.
0

Since functions of the form
k
v =Y ;).  YjeV.a; eC'(0.TLR)  (S9.1)
j=1

are dense in LY(0, T; V) (see Exercise 7.3) we can consider

T k
/0 <Bn,ZQn¢j>aj(t)dz.
j=1

Since B, is uniformly bounded in L?(0, T'; V*) when m = 2, we can
use the fact that Q,%; — v¥; in V to show the required convergence
for all i of the form (S9.1). The density of such ¥ in L4(0, T'; V) then
gives the full result.
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Ifu € L*(0, T; V) then we can estimate b(w, u, w) in (9.41) differently,
writing

d
3 2wl vlwl < Kl w2 )

2, € 20,114
< zlwll +E|w| lleell™,

o<

which becomes, dropping the terms in | w]|?,

d 2 20,14
—lw]* < Clw .
dt| I” < Clw|lul

Integrating gives
t
lw(®)]* < lw(0)]* exp (/ ||u(s>||4ds),
0

which implies uniqueness provided that u € L*(0, T; V).

Chapter 10

If not, then there exist an € > 0 and sequences 3, — 0, x, € K,
v, € H, such that

|0 — yul < 8 and [f(xn) — fn)] > €.

Since K is compact there is a subsequence of the {x,} (relabel this x,,)
such that x, — x* € X. Now,

IX* = yu| < |X* —xp| + X0 —yal =0 as  n— oo, (S10.1)
and
[f )= f O] = 1f )= fF =1 f ) —f(x")=€/2  (510.2)

if n is sufficiently large, since f is continuous at x*. But then (S10.1)
and (S10.2) say precisely that f is not continuous at x*, which is a
contradiction.

The set in (10.23) is bounded since

U S(1)B, (510.3)

t=10(B)
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with #y(B) from Definition 10.2, is a subset of B, and
U sos (S10.4)
0=t=<to(B)

is bounded since B is bounded and S(¢) is continuous. Similarly, if
B is compact then (S10.3) is a closed subset of B, and (S10.4) is the
continuous image of the compact set B x [0, #p(B)]: both parts are
compact, and therefore so is (10.23). That (10.23) is positively invariant
is clear by definition.

In this example w(0) = 0 and w(x) = {|x| = 1} if x £ 0. So

A(B) ={(0,0)} U {lx| =1}

(which is clearly not connected). Since w(x) = (1, 0) for all x with
lx| =1,

A[A(B)] = {(0,0), (1, 0)},

so that A[A(B)] # A(B) as claimed.
We show that, for a bounded set X,

wl(X) = {y:S(tn)xn g y}v

where t, — oo and x,, € X, is equal to
oy (X) = [JS®x.
t>0s>t
If y € w(X) then clearly
yelJsex
s>t
for all # > 0 and hence in y € w,(X). So w;(X) C wy(X).

Conversely, if y € w,(X) then for any > 0

y € US(s)X,

s>t

and so there are sequences {t"}, with 7' > ¢, and {x\V} € X with
S(tMx{ — y. Now consider t = 1,2, ... and pick t, from 7" and
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x, from x such that
|S(r,§1"))xn(1") — y| <1/n.

Then S(t,)x, — y with ¢, — o0, since ¢, > n, showing that y €
w1 (X). This gives wr(X) C w1(X), and so w;(X) = wy(X).

If y € S(¢t)B for all t > 0O then for any ¢, there is an x,, € B with
y = S(#,)x,,soclearly y € w,(B) (as defined in the previous solution).
Conversely, if y € w,(B) then we must have

velJseB.

s>t

Now, if T > 1y(B), then
S()B D S(t+ 1)B,
and so then

S(t)B D U S(t + 1)B.

1210(B)
Since S(t)B is closed
SmB> | J St+1)B>y,
t10(B)

thatis, y € S(¢)B forall r > 0.
Clearly we have

(1S@®Bc () SxT)B.

t>0 neZ*

Ifu € S(nT)Bforalln € Z* theninparticularu € S(noT)B, provided
that ng is large enough that nyT > ty(B), where

St)BCB for all t > to(B).

Since u € S(nT)B we have u = S(nT)y with y € B, and it follows
that forall r > 0

SMu=S{t+nT)y =S(t)y € B,

since T > to(B). Therefore u € S(t)B for all + > n(T. It follows that
u € wy(B), giving the required equality.
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yew(¥)ifS(t,)y, — ywitht, - coand y, € Y. Then y, € X also
and so w(X) D w(Y). If Y absorbs X in a time 7y (assuming X to be
bounded) and if S(z,)x, — x, then

Sty — t0)[So)x,] — x,

and since t, — fp — o0 and S(t))x, € Y, w(X) C w(Y), so then
(X)) =w().
First, the set

G K; (S10.5)
i=j

is clearly closed, and since all sets K; lie within 1/j of K; if i > j itis
also bounded, and hence compact. It follows that K, the intersection
of a decreasing sequence of compact sets, is itself compact.

Now, it is clear by a similar argument that

dist(Koo, K;) < j .
Conversely, ifu € K thendist(u, K;) < j‘1 foralli > j.So certainly
o0
dist(u, UK,-) <j
i=j
In particular, there exist points u; € K;,i > j, such that

.1
lu; —ul < j—'.

Since each u; is contained in the compact set (S10.5) (with j = 1)
then there exists a subsequence of the u; that converges to some u*. It
follows that u* € K, and by construction |u — u*| < j~'. Therefore

dist(Kj, Koo) < j 7',
and so
disty (K, Koo) < j7":

K ; converges to K, in the Hausdorff metric.

To show that the inverse is continuous, suppose not. Then there exist
an € > 0 and a sequence {x,} € f(X) withx, — y € f(X) but
[f~'(x,) — f'(y)| = €. However, f~'(x,) € X, and since X is
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Solutions to Exercises

compact there exists a subsequence x,; such that f -1 (%n;) — z. Since
S is continuous, it follows that x,, — f(z). Since f is injective, it
follows from f(z) = y that z = f~!(y), which is a contradiction. So
£~ !is continuous on f(X).

Proposition 10.14 says that, given €; and T > 0, there exists a time 1,
such that, for all ¢t > 7,

dist(u(r), A) < 8(e1, T).

So we can track the trajectory u(¢) within a distance €; for a time T
starting at any time ¢ > 7.

We can replace T with 27 and apply the same argument for €, =
€1/2, that is, there exists a time 7, such that, for all t > 1,

dist(u(t), A) < 8(ea, 2T),

and then the trajectory u () can be tracked for a time 27 starting at any
time ¢t > 1,.

Thus u(t) can be followed from t; to 7, by a distance €; with a finite
number of trajectories on A of time length T, and when we reach 1,
we can start to track u(¢) within a distance €, with trajectories on A of
time length 27, until we reach a t3 after which we can track within a
distance €3 for a time length 37, etc.

The “jumps” are bounded by €; + €41, since

(Vi1 — S(tre1 — 1) vkl
< k1 — u(tie )| + lu(te + 1 — 1)) — St — L) vl

< €41 T &
Take € > 0. Then there is a T > 0 such that
dist(S(¢t) By, A) + dist(S(t)B,, A) < € for all t>T.

Also, by the uniform continuity of the semigroup, there is a § > 0 such
that

dist(S(#)By, S(t)By) < ¢ for all te[0,T]

provided that dist(B;, B;) < 4. The argument is symmetric, which
gives the result.
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Using Young’s inequality on (11.30) we can deduce that

2P rd LQ
Ju _2/9|u| xSl
So we can write (11.6) as
d 2052 2
1= ju? TP < [ —— 4k )9l
Zdt|u| + [lull” + » |ul _<p_2+ )I |
Neglecting the ||u||> term we can write

d 2a 2
Yol + 22 < (—= +k)I9l.
dt )4 p—2

We can now apply the Gronwall inequality to deduce an asymptotic
bound on |u(¢)|, as in Proposition 11.1. (The expression for the bound
will be a more complicated expression than before.)

Proceeding as advised, we obtain

js(y(s)eXp (— /Sg(f)df» <h(s)exp (—/Sg(r)dr> <h(s),

and integrating both sides between s and 7 + r gives

t+r
y(t+r) < y(s)exp (/ g(r)dr)

t+r t+r
+ (/ h(r)dr) exp (/ g(t)dr>

< (y(s) + az) exp(ay).

Integrating both sides for ¢t < s <t + r gives the result as stated.
Taking the inner product of

du,
dt

+ Auy, = P, f(uy,)

with 2 Au,, we obtain

du,
( CZ ,tZAun) + 2 Aun* = (P f (un), t*Auy),
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which, using the methods leading to (8.27) for the right-hand side,
becomes

d
1 2 2, 2 2 20, 112
17 ltunll™ = 2t llunlI” + 7] Aun ™ < 17|y |7

Integrating from 0 to 7' gives

T T
||Tun||2+/ r2|Aun|2dzs/ Qt + 1) |u, |1 dt.
0 0

Since we already know that u, € L?(0, T; V), it follows that u,, €
L?(t, T; D(A)) for any ¢t > 0. Since H*(Q) C C°(Q) if m < 3 we
also have P, f(u,) € L?*(t, T; L?), and so it follows that du,/dt €
L?(t, T; H). Taking limits shows that the solution u satisfies

uel*t,T;D(A) and  du/dt € L*(t,T; L?).

Application of Corollary 7.3 then makes the “formal” calculations at
the beginning of Section 11.1.2 rigorous.
Observe that for s < 0 we have

f©®ls| = aals|? —k,
and so in particular
f)=0  forall s < (k/ap)/P. (S11.1)

Now set M = (k/a»)'/?, multiply Equation (11.1) by (u(x) + M)_,
and integrate to obtain

d
%—/(u(x) + M)? +/ Vu+ M)_|* = / f)(u+ M)_dx
dt Jq Q Q
<0,
using (S11.1). It follows, using the Poincaré inequality, that
1 d 2 2
35 | W) +M) dx < —-C [ (u(x) + M)~ dx,
dt Q Q

and so as in the last part of the argument given in Theorem 11.6, we
must have

/(u(x) +M)>dx =0
Q

forallu € A.
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12.1  If u is smooth then Au = —Au, and we have

2
b(u,u, Au) = Z / ui(Di”j)D/%Dlzuj dx
i jdl=17%

2
3 /Q D2(u; (D)) (D?uj) dx

ijk =1

S /Q [(D3us) (D) + 2Dy ) (D Dia)

ikl
+ui (D Diu;)| (Djuj)
=b(Au,u, Au)+2 Z (Diu;)(DiDiuj) (Djuy) dx

i,j.k,l
+b(u, Au, Au)
2
=b(Au, u, Au) +2 Z b(Dyu, Dyu, Au),
k=1

as claimed. The result follows for general u by taking limits.
To obtain inequality (12.23), use (9.26) to give

2
b, u, A%u)| < k|A>?ul|Aulllu]| +2 " |b(Dju, Au, Dju)|
j=1
2
< k|AY2u|| Aulllu]) + 2k > 1Djul | Djul || Aull
j=1

< k|AY2u] | Aul||u]|
2 12 s o 172
+2/<<Z|Dju|2> <Z||D,~u||2> 1Au].
Jj=1 Jj=1
Since
lul® = a(u, u) = (Au, u) = (A"?u, AV?u) = |A?u)?,
this becomes

1b(u, u, A%u)| < 3k|A>?u|| Au||u)|

A

v 0k
AVl + =l Aul?,
Vv

IA

as required.
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Take the inner product of
du/dt +vAu + B(u,u) = f
with A2u to obtain
%%mmz +v|AY2u? = —b(u, u, A%u) + (f, A%u),
and use the estimate (12.23) from the previous exercise to write

d
1 2 3/2,,12
3 t|Au| +v|A/u|

<I|b(u,u, A*w)| + || fII1AY?ul
) C 2 v

< — AUl + = |lull*|Aul* + AE —| A3 u)?,
4 v v 4

so that

2
_ 21
- v

d C
d—|Au|2+ V| A3 u)? + = lu)?|Aul’.
t Vv

Using a similar trick as we did for the absorbing set in V, we integrate
this equation between s and ¢, withr < s < t + 1, so that

M C t+1
|Autt + DI < [Au(@)® + ==+ ;/ lu()I*Au(s)I ds,
t

where we have used (12.24). Integrating again with respect to s between
t and 1 + 1 gives

t+1 oM C t+1
|Au<t+1>|2s/ |Au(s)|2ds+7+;/ lu(s) I Aus)I? ds.
t t

(S12.1)
Now, if t > #;(Jug|) then we know that

1+1
@)l < py  and / Au(s)Pds < I,
t
and so if it follows that then
2 2M  C ,
[Au(t + D" < pa=1s+ - + ;pVIAv

an absorbing set in D(A).

Suppose that u,, € V with |lu, || < k and that u, — u in H. Then there
exists a subsequence u,; such that u,, — v in V, so that [[v]| < k.
Since V CC H, it follows that u,,, — v in H, and so in particular we
must have u = v, which implies that |Ju| < k.



12.4

12.5

Chapter 12
If u € D(A) with

u = Z Tk /L

kez?

then we can estimate ||u ||« by
lutlloo < luel.
keZ?
Split the sum into two parts,
lelloo < D luel + > lual.

|k| <k |k|>K

We now use the Cauchy—Schwarz inequality on each piece,

lello <> (el x 1)+ > (luil kI x [k|72)

|k|<k |k|>K

(zwr) (20)

+ ( > |uk|2|k|“> 1/2< > |k|‘4> 1/2.

|k|>K |k|>K

Since

d 1=Ck*  and > Ikt < ce?,

[k| <k |k|>K

this becomes

lulloo < Clelul + &' Aul).

47

To make both terms on the right-hand side the same, we choose x =

|Au|'/?|u|~1/2, obtaining

lulloo < Clul'?|Aul'>.

We have already derived in (12.20) the inequality

d 2|12
— [lull* + v]Aul* < 271 + Cllu|l®,
dt v

and since we have a uniform bound on ||« || for ¢ large enough, we obtain

a uniform bound on the integral of |Au(s)|?,

to+1
/ |Au(s)|*ds < C,.

fo

(S12.2)
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Following the analysis in Proposition 12.4, we estimate
] < vIAu| + [B(u, w)| + | f1,
and using (12.25) this becomes
lurl < vlAul + kllul 2| Aul'? 4| £
An application of Young’s inequality yields
Jus| < clAul + Cllull® + | £,
and so for ¢ large enough,
lus] < c|Aul + Cpjy + | f1.

The bound in (S12.2) therefore implies a bound on f |u, %,

to+1
/ luy(s))*ds < Cs. (S12.3)

fo

Now differentiate
u; +vAu+ B(u,u) = f
with respect to 7 to obtain
Uy +vAu, + B(us, u) + B(u,u;)) =0

and take the inner product with u; so that

d
1 2 2
3 ™ vlludl™ = 16w, up)

1/2 3/2
< klluloee 2 e 17

3v. Kl
< 22 +

4 4v
Using once again the asymptotic bound on ||u||, we have for ¢ > #, that
d

2 2

Eh/lt' < Gslu,|”.

We use the usual trick, integrating between s and ¢t 4+ 1, witht < s <
t+1,

t+1
lu,(t + DI* < Ju,(s)I? +c4/ lu ()| ds,
t
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and then between ¢ and ¢ + 1 (with respect to s) so that

1+1
lu (t + D> < (1+ C4)/ u; > ds
t
< (1 + CyGCs, (S12.4)

by (S12.3).
To end, we show that |u,| bounds |Au|. From the equation we have

v|Au| < u;| + |Bu, w)| + | f1,
or with (12.25)
vIAu] < lue| + k| Aul [l + | £1,
and so after using Young’s inequality and rearranging we have
| Aul < Cuel + llull* + 1£D-
Together with (S12.4) we obtain
|Au(t)| < pp

for all + > 1 + #o(|lug|]). So we have an absorbing set in D(A) and
hence a global attractor for the 3D equations.

Chapter 13

Let G(X, €) be the number of boxes in a fixed cubic lattice, with sides
€, that are necessary to cover X. Since each cube with side € sits inside
a ball of radius €, N(X, ¢) < G(X, €), and so

dp(X) = dpox(X).

Also, since any ball with side € is contained within at most 2" different
boxes in the grid, we have G(X, €) < 2" N (X, €). Therefore

log G(X,
dhon(X) = lim sup 2£IX-€)
e—0 - 10g €

log2 +log N(X,
glimsupm og2+logN(X,e€)
€0 —loge

. log N(X, €)
= limsuyp ————
e—0 _10g6
=ds(X),
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giving equality between box-counting dimension and fractal dimension
in R™.
132  Ife,y <€ < €, then we have
log N(X, €) - log N(X, €,+1)
—loge T —loge,
log N(X, €,41)
~ —logent1 + log(enti/€n)
log N (X, €+1)
~ —loge, +loga’

and so

) logN(X,e) . log N(X, €,)
limsup ——— < limsuyp ———.
€0 —loge s 00 —loge,

That this inequality holds in the opposite sense is straightforward, and
hence we obtain the desired equality.
13.3  The sequence ¢,, = (\/Qlog m)~!, m > 2, satisfies

€mt1 _ logm - log2
€m logim +1) ~ log3’

and so we can use the result of the previous exercise. Note that we have

2 1 1 2

e, €
= —+ <
(logn)?  (logk)?> ~ (logn)?

logn B log k

for n > k, and so the first m — 1 elements from Hi,, will belong to
distinct balls of radius ¢,,. It follows that

N(Hiog) > m — 1,
and so
log N (Hiog, €m
df(Hlog) > lim sup w
m=ee ogep
log(m — 1
> lim sup og(m )

B —1 ©)
m—oco log(v/21ogm)

which implies that d s (Hg) = 00, as claimed.
13.4 At the jth stage of construction the middle-a set C,, consists of 2/
intervals of length 8/, where 8 = (1 — a)/2. It follows that

N(Cq, /) =2,
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Therefore, using the result of Exercise 13.2 we can calculate

log2/  log2

ds(C,) = limsu - = .
1(Ca) Pooplogﬂf log B

Clearly
o0 o0
n ( U X« 4. e> <Y uXp.d.e).
k=1 k=1

Since (X, d, €) is nondecreasing in € we have
Xy, d, €) < H (X
for each k, and so for every € > 0 we have
o0 oo
n < U Xx.d. e> <> HIXD.
k=1 k=1
We can now take the limit as € — 0 on the left-hand side to obtain
oo o0
H ( U Xk> <> H'Xp)
k=1 k=1

as claimed.
The map L taking e into v (1 <i < n) is given by

n
L=3 v®eEh),
k=1

.

i -

and since efk) = Jik, the components of L are L;; = v

(LTL)” — U]Ei)vlij) — U(i) . v(./) — M”'

M is real and symmetric since
M;; = Sx @ sx,

It follows that its eigenvalues A ; are real, and one can find an orthonor-
mal set of eigenvectors e with

Me® = e®.
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To show that A; > 0, consider
M = — 0T pe® — e(k)(Sx(’)(Sx(’) (k) =w®? >0,

where v® is the vector given by its components

v‘gk) = efk)(SxS(").
If v® = 0 then the two different initial conditions

sx(0)=0 and  8x(0) = Z eMox®

have the same solution at time ¢, contradicting uniqueness. So all the
eigenvalues are strictly positive.
Writing M as

n
M = E Ajejej,
j=1

we have
logM = Zlog)»jejejr.
j=1
Clearly
Tr[log M] = Zlogkj, (S13.1)
and since
detM = H)\.]
j=1

the required result follows immediately.
Since Tr[log M] is given by (S13.1), we have

d o
—Trllog M] = —.
- Trllog M] gw
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The right-hand side of (13.34) is

i (6,‘, M_l dd—ﬂtlei)

i=1

n n
_ , 1T
=D e [ D2 ee]
i=1 j=1 K

n n
= Z (}»ileiT [Z ()lkekekT + )\kékekT + )\keké]{)

i=1 k=1

(s

i=I

=

(ikekekT + )\kékekT + )\keké,{)] e,<>

)

=1

n
ii€f+liéf+zkk(€i,ék)€/{] €i>

k=1

=D [Ahi + @ie) + (ei 1)

i=1
n
1+
= E A A,
i=1

since %(ei, e) =0.

13.9  Since the eigenvalues are proportional to the sums of squares of m
integers, we will have reached the eigenvalue mk? once we have taken
k™ combinations of integers. Thus

Agm = Cmk?,
and so if K" < n < (k+ 1) we obtain
Cmk* <, < Cm(k + 1)™.
We now have
k<n'/™ < (k+1)
and so
In'm <k <k4+1<2n'm
This gives
en®™ < A, < Cn?™,

as required.
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13.10 Taking the inner product of (13.27) with U we obtain

d
3 UP+vIUIP = —b(U. u, U),
dt
and so
1 40 2
17, U+ VIUI" = kUTIUul.
Using Young’s inequality and rearranging we get
d 2 2
EIUI +v|UlI” = ClUJ". (S13.2)
That bounded sets in L? are mapped into bounded sets in L> follows
by neglecting the term in ||U||?> and applying Gronwall’s inequality
(Lemma 2.8),
U < e UO) =51 (S13.3)

To show that we in fact obtain a bounded set in H'!, we first return
to (S13.2) and integrate between ¢ /2 and ¢ to obtain

v/ U )P ds < C/ Us)Pds + UG/ < COU 2P
t/2 t/2
! / (S13.4)

using (S13.3). Now we take the inner product of (13.27) with AU,
which gives

d
%EHUHZ +v|AU|? = —b(u, U, AU) — b(U, u, AU).
Using (9.27) we obtain
d
2 WU+ VIAUP < k(lul P lull U2 AU
HUIPNUN2 ul ) Aul 21 AU ),
and after using Young’s inequality and rearranging we have
d 2 2 2
—IUNI"+v]AU|” = CIIUI".
dt
Expression (S13.4) allows us to use the “uniform Gronwall” trick and

find a bound on ||U]| valid for all + > 0. Thus A(t; u) is compact for
allr > 0.
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If we integrate (12.6) between 0 and T we obtain

|f|2

T
v/ |Au(s)|*>ds < + u(O) 2.
0

Dividing by T and taking the limit as 7 — oo yields

5 1 |fI?
1msup? |Au(s)| ds < R
0

T—o00

since there is an absorbing set in V. Therefore

|fI?

X< e =3 L0G2

The only length that can be formed from x and v is

we()"
x = X )

and this implies (13.35).

Chapter 14

Since A is compact, it is bounded and certainly contained in B(0, r)
for some r > 0. So N,(A) = 1. We consider

S(BO,r)NA),

which by our assumption can be covered by K balls, centred in .4, and
of radius /2. So

N(A,r/2) = K

Now consider each one of the balls in this covering, and apply our
assumption again to show that

S(B(a;,r/2) N A)
can be covered by K balls of radius r/4, so that
N(A,r/4) =
Iterating this argument, we can see that

N(A,27%r) =
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14.3

14.4

Solutions to Exercises

So therefore, using the result of Exercise 13.2, we have

. log(N(A,27r))
dp(A) = lim == on
- klog K
klog2
1
=ng oga’
log?2

precisely (14.33).
We have, for any u € D(A!/?),

lull? = a(u, u) = (A2u, AV?u) = |A ).

Expanding p in terms of the eigenfunctions of A gives
n
p=Y (powpw;,
j=1
and so
n
IpIP =Y 2jl(p, wpl” < dulpl®.
j=1
Similarly,
n
lgli* = 2jl(q. w)I = Augalgl®.
j=1

The other two inequalities in the exercise follow easily from these.
Differentiating ® gives

= ewiacaro| G (1- gm0 (1o )|
ar =~ opa/Cla dr Clatb) ) ar " Clat+py )|

Since we have (14.34), the coefficient of da/dt is negative, whereas
the coefficient of db/dt is positive. It follows that we can substitute in
the inequalities for da/dt and db/dt, which gives d®/dt < 0.

Write

2mik-x/L 2mik-y/L
lux) —u(y)] < Y e HHE — T gy,
keZ?
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and use (14.35) to deduce that

u(x) —u()| < Clx — y|"* > lexllk|'?
keZ?

172 | 172
12 4 2
<Clx —y| <Z(1+|k| )|ck|> (Z(1+|k|4)>

keZ? keZ?

< Cllullg2lx — y|'/%

[> iz kI/(1 + [k|*) is finite.]
14.5  Since (6.14) shows that ||u|| g2 = C|Au| foru € D(A), we can use the
result of the previous exercise to deduce that

lu(x) — u(y)| < c|Aullx — y|'/2.

Expression (14.36) follows immediately from this and the definitions
of d(N) and n(u).

14.6  Choose € > 0. Then there exists a 7 such that b(t) < e/2forallt > T.
Hence fort > T,

ax X <e¢/2
P aX <¢€/2.

By Gronwall’s inequality (Lemma 2.8),
X(T+1) < X(T)e ™ +¢/2,
and so choosing 7 large enough that
ke ™" < €/2,
we have
X)) <e for all t>T+r1,

so that X (1) — 0.
14.7  Using the bound on b given in (9.25), we can write

d
%Ellwll2 +vlAw]® < [lwllollwll|Aul

< n(w) + cd\)'?| Aw|]||w]|| Aul
< n(w)|wll|Aul + cd(N)227 2| Aw[?| Aul,
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using (14.36), and therefore

d _
3wl + v — e V2ANOY2  Aul [ A llw))? < n(w)lwl]] Aul.

Now, we know that A is bounded in V and D(A), so that
%%nwnz + v = A2 pad (N) P llwl® < 20y pan(w).
Now, choose § such that
nw=v—- cki/szél/z > 0.

Then we have, for d(N) < 8,
d
%anw + ulwl? < 2py pan(w). (S14.1)

By assumption, we know that n(w) — 0, and since the attractor is
bounded in V we have ||w()|*> < 4,0%,. The result of the previous
exercise applied to (S14.1) now shows (14.37).

(1) Take the inner product of (14.38) with g, = Q,u to obtain

1 d 2
zglqnl + (Au, gn) = (F(u), qn)-

Now, notice that

[(Aut, g)| = [(Agn, @)l = Ans1lgnl’,

and so

d
37190+ hilanl® < Colal.

from which, using the result of Exercise 2.5, we see that
d
E+|QH| < _)"n+1|qn| + C()a

which gives

Co

|Qnu@)] =

+1Q,u(0)], (S14.2)

n+1

using the Gronwall lemma (Lemma 2.8).
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(ii)) Writing p(t) = P,u(t) and g(¢t) = Q,u(t), p solves the equation
dp/dt + Ap = P,F(p+q).
Thus the equation for w = p — p, is
dw/dt + Aw = P,F(p,) — P,F(p + q).

Taking the inner product with w and using the Lipschitz property
of F gives

d
35, Wl 4wl < Cilwl + Cilgllw.
Hence
d lw| < Cy|lw| + Cilq|
— |w w s
dt + = 1

and so, using the bound in (S14.2) and the Gronwall lemma as
above we obtain

| Pyue(t) — pu(1)| < C7! LCO

- |Qnu(0)|}ecl’.

n+1

Combining this with (S14.2) yields

() = pu()] < ;! [ACO

1 + IQnu(O)I} (C1+ €,
n+

and since we know that A,,;; — oo and |Q,u(0)] — Oasn —
00, it follows that p, () converges to u(t) as claimed.

Chapter 15
15.1 Forany pointv € H,

. 2 . 2 _ 2
dist(v, M)? = inf (1Pv—pP +1Qv—$(PI’)
and

|Qv — ¢ (PV)|* = | Qv — ¢(p) + ¢(p) — p(PV)?
<2[Qv—¢(P)I* + 206 (p) — d(PV)I?
<2|Qu—¢(p)I +2I°|Pv — p|
< (1Qu—¢(p)I* +|Pv—pl)
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15.2

15.3

Solutions to Exercises
for all p € PH, where ¢?* = 2max({?, 1). Therefore
|Qv — ¢(Pv)| < cdist(v, M).

The other implication is obvious.

Using Proposition 15.3 we see that the attractor lies in the graph of
some Lipschitz function ® : P,H — Q,H. We can therefore project
the dynamics on A onto P, H by writing

dp/dt + Ap = P,F(p + ©(p)). (S15.1)
It is easy to show that (S15.1) is a Lipschitz ODE on P, H, since

| P, F(p+®(p)— P, F(p+P(p)| < [F(p + @(p)—F(p + ©(p))l
=Clp+@(p)—p— 2|l
<C(lp—Dpl+1®(p) — 2(P))
<2Clp -l
We know that if u(¢) is a solution in A then p(¢t) = P,u(t) is a so-
lution of (S15.1) lying in P,.A. Since (S15.1) is Lipschitz its solu-
tions are unique, and so in particular P,.A is an invariant set. Thus
(S15.1) is a finite-dimensional system that reproduces the dynamics
on A. [The advantage of the inertial form over (S15.1) is that P, A
is the attractor of the finite-dimensional system, not just an invariant

set.]
Since F = 0 outside B(0, p),

2’0 CSt)u:ue P,H:p <|u| < pe)wrlfo}.

The cone invariance part of the strong squeezing property then shows
that for any two points #; and u, in 2,, we must have

10wy — u2)| < |Py(uy — u2)l.

If we write

= U ST

0<t<oo

then the function & defined by

& (Pu) = Quu for all Hex
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is Lipschitz on its domain of definition, P,¥ = P,B(0, p). Clearly ¥
is positively invariant, and so M is invariant.

To show that 4 C M, suppose that u € A and v € M with
P,u = P,vbut Q,u # Q,v. Then, using the invariance of ¥ and A,
we have u = S(t)u, with u, € M, and v = S(¢)v, with v, € A. Thus

|0n(u = v)| < [Qu(uy —vy)le™
<2pe X, (S15.2)

since both A and ¥ are subsets of B(0, p). Since (S15.2) holds for all
t > 0, we musthave Q,,u = Q,v.Thusu = vand A C M as claimed.
We have

135 = 12 42> + 32 + 112,

136 = 6% + 10,

137 = 42 + 11,

138 = 17 + 3% 4+ 8% 4+ 8%,
all as sums of (at most) four squares.

(1) Ifu(z)isasolution of (15.24), then p(t) = P,u(t) is the solution
of the equation

dp/dt + Ap = P,F(p(t) +q(1)).

Since F is Lipschitz, it follows that

[P F(p(t)+q()—P, F(p(O)+P(p))] < Cilgt)—D(p(@))]
< CiCe™,
where the result of Exercise 15.1 has been used.

(i) Letu(r) =p(t) + ©(p(t)). Then u(t) € M, so we just have to
show the exponential convergence in (15.26). To do this, we write

lu(t) —u()| < |p@)+q() — p(t) — P(p())]
+1p(0) + @(p() — p(t) — P(p(1))]
< lg(®) —@(p@)| +2[p(t) — p()]
< Ce ™ 4+ 2De™ = Me™ K7,

where we have used the result of Exercise 15.1 again and the
Lipschitz property of ®.
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Chapter 16

16.1  w(r) is clearly well defined, since the set
{x,y)e X x X:|x —y| <r}

is a compact subset of X x X. The convexity property follows easily,
since

wr+s)= sup [f(x)— [

|x—z|<r+s

sup If ) = fFODI+ 1) = fQI

[x—=y|<r, [y—z|<s

IA

< | SuF If(x) = fFDI +‘ Sulp If(x) = fDI
x—ylsr y—z|<s
= o)+ o),

where to prevent too clumsy notation we have assumed throughout that
x,y,z € X.
16.2 (i) X can be covered by N (X, €) balls of radius € and, in particular,
lies within € of the space spanned by the centres of these balls.
Therefore d(X, €) < N(X, €), and the inequality follows.
(ii) Simply choose any open subset O in R". Then d;(O) = n but
since O C R" we must have t(0O) = 0.
16.3  Consider the projection P, onto the space spanned by the first n eigen-
functions of A,

n
Pou = Z(M, ww;,

Jj=1

and its orthogonal complement Q,, = I — P,. Then

|u - Pn”| = |Qn”|
= QuA™ A u|
< 1Qn AT op A ul

—s5/2
< At s

< Cn72s/m
for some constant C. Clearly,

loge logC
—2s/m  2s/m’

logd(X,e) <
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and so one obtain (16.23). If X is bounded in D(A") for any r then it
follows from (16.23) that 7 (X) = 0, and so one can obtain any 6 in the
range

2d (X
0<6<1— fk( ).

We can now obtain any # < 1 by choosing k large enough.
Write w = u — v for u, v € A. If A is Lipschitz continuous from A
into H then

|Aw| = L|w]

for some L. Now split w = P,w 4+ Q,w, and observe that we have
both

|[Aw|* = |A(P,w+Q,w)|* = [A(P,w)*+]A(Q,w)[* > A2, 10,wl
and
|Aw|* < L*|lw|* < L*|P,w|* + L*|Q,w|*.

Since X, — oo as n — 00, we can choose n large enough that | >
L, and then write

)\’2

2 2 2 2
n+1 - L |an| SL |in| )

that is,

12 1/2
[Qnw| < (M) | Pywl.

n+1 =

It follows that we can define ®(P,u) = Q,u uniquely for eachu € A,
and then

L2 1/2
[P(p1) — P(p2)| = (A.21_142> lp1 — pal,
n+

so that (cf. Proposition 15.3) the attractor is a subset of a Lipschitz
graph over P, H.

Since X is the attractor for x = g(x), given € > 0, there existsa§ > 0
such that if x(0) € N (X, §) then the solution x (¢) of x = g(x) remains
within N (X, ¢€) for all ¢ > 0.
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17.2

Solutions to Exercises
Define f(x) on a closed subset of R” by

o f(x), dist(x, X) < 8/4,
fe= {0, dist(x, X) > §/2.

Since f is Lipschitz on its domain of definition, it can be extended
using Theorem 16.4 to a function F'(x) that is Lipschitz on R”. Now
consider

x=F(x)+ g). (S16.1)
Clearly X is an invariant subset for (S16.1), since F'(x) + g(x) = F(x)
on X. To show that the attractor of (S16.1) lies within an N (X, €) it

suffices to show that N (X, €) is absorbing. This follows from the choice
of § and the fact that F(x) + g(x) = g(x) outside N (X, §/2).

Chapter 17
Integrating (17.3) between O and L and using the periodic boundary

conditions gives
L L
/ |Du|2=—/ uD?udx,
0 0

which implies (17.4) after an application of the Cauchy—Schwarz in-
equality. Foru € H 5 the result follows by finding a sequence {u,} € C ;
that converges to u in the norm of sz.

Multiplying (17.5) by a function ¢ in C }2) and integrating by parts twice
gives

L L
/ (D*u)(D*¢) dx = / F(xX)¢(x)dx. (S17.1)
0 0
Define a bilinear form a(u, v) : HI% X Hg — R by
L
a(u,v) = / (D*u)(D*v) dx,
0

and then, using the density of C; in H 12), we see that (S17.1) becomes
(17.6).
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Since a(u, v) is equivalent to the inner product on H 12, (by the general
Poincaré inequality from Exercise 5.4), we can use the Riesz represen-
tation theorem to deduce the existence of a unique solution u € H }2, of
(17.6) forany f € H2.

In particularif f € L2 thenu € H%, which is a compact subset of .2,
using the Rellich—Kondrachov compactness theorem (Theorem 5.32).
It follows that the inverse of A is compact, and A itself is clearly sym-
metric. We can therefore apply Corollary 3.26 to deduce that A has an
orthonormal set of eigenfunctions {w;} that form a basis for L2
The orthogonality property (17.8) follows easily, since for u € Cg,

L d L a
b(u,u,u):/o u(x)zﬁdx:%/o au(xfdx:o,

using the periodic boundary conditions. The result follows for all u €
H g by taking limits. Similarly for the cyclic equality, after an integration
by parts, we have

L L L
/ uvywdx = —/ (uw)yvdx = —/ vwyu + wu,vdx.
0 0 0

The inequalities in (17.10) follow from the estimate
/uvwdx < llulloc[v[lw| < [Dul|v[lw],

since H' ¢ C° on a one-dimensional domain (Theorem 5.31).
Taking the inner product of (17.12) with u,, gives

d
%E|M”|2 +a(u,, u,) + (Dzunv up) + (P B(up, uy), u,) = 0.
Since
(PnB(un’ un)’ un) = (B(un’ un)’ Pnun) = (B(unv I/tn), un) =0
by (17.8), we obtain
d
3 el 1Dy P = [ Duy .

Using (17.4) we have

d
3 g nl? + 1D < || D%

IA

12, 12, |2
slunl® + 51D%uu %,
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and so
d 2 2.2 2

Dropping the term in | D?u,,|* and integrating we get
Jun (D < ' lun O,
so clearly
U, is uniformly bounded in L>(, T; Lz).

Integrating (S17.2) as it stands then gives

P + [ 1D, ds < [ a6 ds + 10 )
and in particular shows that
Uy, is uniformly bounded in L? (0, T; H 12))
It follows from these estimates, the equality
duy,/dt = —Au — D*u — B(u, u),
and Poincaré’s inequality (17.2) that
du,/dt  isuniformly boundedin  L2(0,T; H™?),

and we have obtained the bounds in (17.13).
Extracting subsequences from the {u,} and relabelling as necessary we
find a u such that

weL*(0,T: Hy) NL™(0,T; L?) with du/dt € L*(0,T; H™?),
and
Uy — u in L*(0, T; H2),
Up — U in L>®(0,T; L?),
du, /dt = du/dt in L20, T: H™?).

We can also use the compactness theorem (Theorem 8.1) to find a
subsequence with the additional strong convergence

Uy, = U in LZ(O, T; Hé)
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since H2 CC H} € H~2.1tis simple to show the weak-* convergence
in L2(0, T; H2) of all the terms in the equation, except for the non-
linear term. For this we need the strong convergence in L*(0,T; H 117)
and the uniform bound on u,, in L*(0, T’; Lz). We need to show that

T T
/ b(u,, u,,v)dt — / b(u,u,v)dt forall ve L2(O, T; Hﬁ)
0 0

Using (17.9) we write

b(up, up, v) —b(u, u, v) =b(u,—u, u,, v) +bu, u, —u,v)

=—b(uy,v,u, —u) —b, u, —u,u,) +bu, u, —u,v),

and then for the first term

T T
/|b<un,v,un—u>|dzsk/ a1 D>l 10 — ] dt
0 0

< klluy, ||Loo(0,T;L2)||U||L2(0,T;H§) llze, — “||L2(0,T;L2)

— 0,

and for the second and third terms

T T
/|b<v,un—u,un>|drsk/ DVl Dy — w)]lun] di
0 0

= k||un||Loo(o.T;L2) ||U||L2(0,T;Hg) lun — u”LZ(O,T;HlD

— 0,
giving the required convergence. That
P By, tty) = B(u, u)

follows as in Exercise 9.5.

Finally, the continuity of u into L? follows from the generalisation
of Theorem 7.2 discussed after its formal statement in Chapter 7.
The equation for the difference w of two solutions, w = u — v, is

Wy + Wyprx + Wex + W, + vw, = 0.

Taking the inner product with w we obtain

d
1 Wi+ ID*w ] = |Dw]? = =b(w, u, w) = b(v, w, w),
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Estimating the terms on the right-hand side by using (17.10) we have
d
1w+ ID*w ] < [Dwl + | D?ullw]? + vl Dw”
Using (17.4) and Young’s inequality gives

< (1 + D) |w||D*w| + | D*ul|w?|

d
1 2 2. 12
§E|w| + D w|

IA

HD*w* + C(1 + [D?ul + [vP)|w]?,
and so
d
E|w|2+|02w|2 < C(1+|D*ul + [vP)|w|*. (S17.3)

Neglecting the term in |D?w|? and integrating from O to ¢ shows
(17.15). Since u, v € L*(0, T; H;), it follows that w(z) = 0 for all
t if w(0) = 0, which gives uniqueness.

Choosing o = 6 we have

d

EW + 3D%* 4+ 2]v]* < 1Igl’, (S17.4)
and so in particular

Elvl2 < 2ol + 3lgl*.

The Gronwall inequality (Lemma 2.8) now shows that
POF < [vO)Pe™ + FlglP(1 — ). (817.5)

Sinceu = ¢ +vand ¢ € Cgo is constant, it follows that there is an
absorbing set for u(t) in L.
We can also obtain from (S17.4) a bound on the integral of | Dv|?,

t+1
5/ |D*v(s)|*ds < 3Ig* + [v()?,
t
or for | D?u|? the bound
t+1
/ D2u(s) P ds < Ig + D26 + v .
t
It follows from (S17.5) that if ¢ is large enough then
t+1
/ |D%u(s)|*ds < M, (S17.6)
t

and we have both bounds in (17.18).
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Taking the inner product of (17.11) with —D?u we obtain
d
%E|Du|2 + |D*ul?* = |D*ul* + b(u, u, D*u).
We now we estimate the right-hand side by using (17.10),
1 d 2 302 212 2 2
§E|Du| + |D’ul” < |D7u|* + |D”u||Du|".
Neglecting the term in | D*u|?> we have
d 2 212 2 2
—|Dul|® < |D“ul” + |D~u||Du|".
dt
Note that this is in the form in which the uniform Gronwall lemma of
Exercise 11.2 is applicable, since we have a uniform estimate on the
integral of | D?u| provided in (S17.6) above. It follows that there is an
absorbing set in H P
We have therefore obtained a compact absorbing set in L? and proved
the existence of a global attractor.
As in the proof of Theorem 13.20, we consider the equation for 6 =
u—v—U,
9[ + Orxxx + exx + 0u, + ww, = 0,
where w = u — v. Taking the inner product with 6 yields
140 2912 2
EEW +|D°0|” = [DO|” — b0, u,0) — b(w, w, H).
Using (17.4) and (17.10) on the right-hand side we obtain
140 2912 2 212 2
21017 +1D701 < 1P11D°0] + |017|D7ul + [Dw[7|6]
<3167 + 31D*01° + |D’ul|6)* + 5| Dw|* + 3161,
and so

d
$|9|2 + |D?*0> < 2(1 + |D*u))|0|* + | Dw|*.

It follows from Gronwall’s inequality (Lemma 2.8), since 8 (0) = 0, that

10(6)]* < k(1) / |Dw(s)|* ds,
0
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and so, using (17.4), we get

t
9P < k/ w(s) 1 D?w(s) P ds.
0
Returning to (S17.3),
d 2 2 2 2 2 2
Sl 4 1D = CA 4 D%l + Pl

multiplying both sides by |w|?, and integrating we obtain

/|w<s)|2|1)2w<s>|2dssc/ w(s)l* ds + Lw(O)*
0 0

Using (17.15) we have

/ lw(s)*ID*w(s)|*ds < C(t)|w(0)|*,
0
and hence

101> < K @)|w(0)[*.

The uniform differentiability property now follows.
To show that A(¢; ug) is compact take the inner product of (17.19) with
U to obtain

d
15, \UP + DU = |DUP +b(U, u, U) + b(u, U, U) =0.
Using the cyclic property (17.9) and the bound in (17.10) we have
14 27712 2
§E|U| + |D°U|* < C|DU|".
Using (17.4) and Young’s inequality we end up with
d
E|U|2 + DU < C|UP. (S17.7)
Dropping the term in | DU |? shows that

U@ < e g, (S17.8)

and integrating between ¢ /2 and ¢ shows that (cf. Exercise 13.10)

/ ID2U(s)|*ds < C(t)|U(t/2))>. (517.9)
t)2
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Now take the inner product of (17.19) with —D?U and obtain

d
3, |DUP + DU = DU + b(U, u, D*U) + b(u, U, D*U)
< |D*UP? +|DU||Du||D*U| + |u]| D*U P,

by using (17.10). We can use the Poincaré inequality (17.2) and drop
the term in |D3U|? to give

d
—|DU? < C|D*U|~.
dtl =< C| |

Using (S17.9) and the uniform Gronwall “trick” shows that a bounded
set in L? becomes a bounded setin H', and so A(z; ug) is compact for
all > 0 as claimed.

17.12 We use (17.4) to estimate the second term on the right-hand side by

n n n 1/2 n 1/2
D 1Dg;IP <D 111D < <Z|¢,~|2> (Zm%ﬁ) :
j=1 j=1 j=1 j=1
Since the {¢;} are orthonormal, |¢;|> = 1, giving
n n 1/2 n
> 1Dg;I” < n”Z(Z |DZ¢>_,-|2> <n+1> D¢
j=1 j=1 j=1

To estimate the final term, we use the Cauchy—Schwarz inequality,
L
/ $*Dudx < |¢1|Dul = 161121 Dul
0
< C|D¢;P,

since | Du| is bounded on A and H' C L*. Now, using (17.4), we have
L
/ #Dudx < Clg;||D%;|
0
< Clo;* + ;1D*¢; .

Combining these estimates we have

> (Loj. 0 < —3> 1D + Mn.

j=1 j=1
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Since the eigenvalues A; of A = D* are proportional to j*, it follows
(cf. final part of the argument in the proof of Lemma 13.17) that

> _ID%P = Cn.
j=1
Therefore we need

—Cn’ 4+ Mn < 0,

which occurs provided that n > (M/C)'/*. The KSE therefore has a
finite-dimensional attractor.
For v € D(A!/?) we have

L
(N(u),v):/ u(Du)v + (D*u)vdx
0

= — /OL %uzDv —uD%*v dx,
and so
[(N @), v)| < 3|ulP[|Dvllz~ + |u||D*v].
Since H' ¢ L* and D(A'/?) ¢ H? then
[(N @), )| < C(lul + Dul|A"?v],

as required.

17.14 Forw € D(A'?),

L
(N(u) — N(v), w) = / (uDu — vDv)w + D*(u — v)wdx
0

L
= / L —v)Dw + (u — v)(D*w) dx,
0
and so

[(N@) = N@), w)| < (3(ju+ vl + Dlul Dwlz~
< c(lu+ v+ Dl w],

where the same embedding results as those given above were used.



