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Abstract

We give an introduction to the basics of category theory required to perform categorification:
the notion of a category, key definitions pertaining to morphisms, and functors are all defined and
discussed, with illustrative examples. A decategorification of the category FinSet together with
the disjoint union operation is performed, resulting in the commutative monoid (N,+). As an
approach to the process of categorification, we proceed to an overview of the theory of modules
over associative algebras. The notion of a module is introduced with illustrative examples. The
tensor product of two modules is carefully constructed, with simple computational examples for
ideals of Z. Associative algebras are then discussed, with examples. We then define and discuss
the notion of the Grothendieck group, define naive categorification, and proceed to a simple
example of weak categorification. We then perform a more sophisticated weak categorification:
the categorification of the polynomial representation of the Weyl algebra. We conclude with a
brief discussion of strong categorification.
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1 Introduction

Volodymyr Mazorchuk in [1] introduces categorification as a term which refers to the process of
replacing ideas in set theory with their analogues in the field of category theory, a highly abstract
branch of mathematics which aims to view mathematical objects and the relationships between them
as generally as possible. As will be seen, this process gives extra structure on the mathematical object
in question, the study of which may provide unique insights. As a way of attaining intuition, it will
be instructive to briefly consider the opposite process, which is known as decategorification.
The classic, everyday example of decategorification comes from counting. To count is simply to
recognise that collections containing the same number of objects have something in common. In
everyday language, we say that they have the same quantity. In the language of category theory,
we say that they are isomorphic in the category of finite sets. If we choose to forget the categorical
structure and treat all finite sets of the same cardinality as equal, what is left is simply N. In a similar
way, the disjoint union operation becomes nothing more than addition; we forget everything except
the cardinality of the set. This is the basic method of all decategorification: we treat isomorphic
objects as equal.
Because it is always easier to do away with information than it is to create more of it, the process
of categorification is not so simple. There is no hard and fast rule for categorifying an object: it is
done on a case-by-case basis.
In Section 2 and Section 3 we give overviews of basic category theory and the theory of modules
over associative algebras, respectively. Having made these preparations, we proceed, in Section 4, to
actual examples of categorification.

2 Basic category theory

In order to introduce examples of categorification, it will first be necessary to give an overview of
the language and theory of categories. Correspondences are often noticed between different types
of mathematical objects, as well as the maps between those objects; for example, the relationship
between groups and group homomorphisms seems the same, intuitively, as the relationship between
topological spaces and continuous functions. Category theory formalises this intuition.

2.1 Categories

Definition 2.1.1. A category C, in part, consists of two collections, called objects and morphisms,
denoted Ob(C) and Mor(C) respectively, together with three assignments, called domain, codomain
and identity:

• Domain and codomain each assign every morphism f an object dom(f) (respectively, cod(f)).

When a morphism satisfies dom(f) = A and cod(f) = B, we write f : A→ B or A
f−→ B.

• Identity assigns every object A a morphism idA such that dom(idA) = A = cod(idA)

To make this structure a category, there must also exist an operation called composition (denoted by
◦) on the collection of pairs of morphisms (f, g) such that dom(f) = cod(g). This is known as the
collection of composable morphisms. Composition gives a new morphism f ◦ g such that dom(f ◦ g)
= dom(g) and cod(f ◦ g) = cod(f).
In addition, the following two conditions must hold:

1. Associativity : given a sequence of objects and morphisms of the form A
f−→ B

g−→ C
h−→ D,

h ◦ (g ◦ f) = (h ◦ g) ◦ f.
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2. Unit Law : for any morphism f : A→ B, we have idB ◦ f = f = f ◦ idA.

Remark. Notice that care has been taken to avoid referring to Ob(C) or Mor(C) as sets. This
is because, if they were defined to be sets, it would be impossible to construct certain categories
without encountering difficulties such as Russell’s Paradox. As will become apparent, this would
make many interesting examples impossible. Ob(C) and Mor(C) are in fact examples of classes,
which are collections of sets which it is possibly to identify by a shared property. A class which
is not simply a set is known as a proper class. For a more in-depth discussion of the set-theoretic
foundations of categories, see Herrlich and Strecker. [3]

It will be instructive at this point to consider a few examples.

Example 2.1.2. Let Ob(C) be the class of all sets, let Mor(C) be the class of functions between the
sets, and let idA be the standard identity function on the set A. Then C is a category, commonly
denoted Set.

Example 2.1.3. Grp is the category whose objects are groups and whose morphisms are group ho-
momorphisms. The notion of the identity morphism extends in a natural way from Set. This
construction generalises easily: in a very similar manner, we can form such categories as AGrp,
(abelian groups, abelian group homomorphisms) Rng, (rings, ring homomorphisms) and Top (topo-
logical spaces, continuous maps.) The intuitive notion is that the morphisms should preserve the
structure of the objects which they map between.

The following example aims to demonstrate the value of the category-theoretic point of view.

Example 2.1.4. Recall the First Isomorphism Theorem for groups: let G and H be groups, and
let ϕ : G → H be a group homomorphism. Then Kerϕ is normal in G, Imϕ is a subgroup of
H. Because Kerϕ is normal in G, we can form the quotient group G/Kerϕ 6= Imϕ. The First
Isomorphism Theorem says that Imϕ ∼= G/Kerϕ. Recall also that this generalises easily so that
a version exists for rings. Going even further, versions exist for many other structures, including
vector spaces, as well as algebras and modules, which will be discussed later. This is no accident:
it pertains to properties shared by all of the categories involved. Thus, by using category-theoretic
concepts, all of the versions of this useful theorem can be obtained at once, rather than laboriously
considering each case individually.

Note. We will require the use of the First Isomorphism Theorem for modules later. The above
example will be referred to at that stage.

In the examples discussed so far objects have been all been sets, with or without an extra structure,
and the morphisms have all been functions whose domain and codomain have been the objects. As
the following example, due to Simmons in [5], will demonstrate, this is not necessarily the case.

Example 2.1.5. Let Ob(C) be the class of all finite sets. Let an arbitrary morphism A
f−→ B be a

function f : A×B → R with no other conditions imposed. For an object A, we define

idA : A× A→ R

by
idA(a1, a2) = 1 ∀ai ∈ A

For a given pair of composable morphisms A
f−→ B

g−→ C define

g ◦ f : A× C → R

by

(g ◦ f)(a, c) =
∑
{f(a, b)g(b, c) | b ∈ B}

for a ∈ A, c ∈ C.
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It can be shown that these two classes of objects and morphisms give rise to a category.

Definition 2.1.6. Let C be a category. A subcategory S of C consists of:

• A collection Ob(S) contained in Ob(C)

• A collection Mor(S) contained in Mor(C)

Such that the following conditions hold:

• Every S ∈ Ob(S) has identity idS ∈ Mor(S)

• For all f : S → T ∈ Mor(S), both S and T are in Ob(S)

• For every pair of composable morphisms g, h ∈ Mor(S), f ◦ g is in Mor(S)

Example 2.1.7. Let (M, ◦) be a set together with a binary operation. If ◦ is associative and the
structure has an identity e, it is known as a monoid. Now, consider a category C with a single
object A. Then C is a monoid, because, from the definition of a category, composition of morphisms
is associative, and there must be an identity morphism. This is in fact true for any single object
in a category: the morphisms with the object as both domain and codomain form a monoid under
composition.

We now give some key definitions pertaining to morphisms.

Definition 2.1.8. Let A and B be a pair of objects in a category. Then their hom-set, denoted
Hom(A,B), is the collection of all morphisms with A as domain and B as codomain.

Definition 2.1.9. Let A, B, and C be objects in a category. The morphism f : A → B is said to
be an epimorphism if the following holds for all morphisms g1, g2 : B → C

g1 ◦ f = g2 ◦ f =⇒ g1 = g2.

Definition 2.1.10. Let A,B, and C be as above. The morphism f : A → B is said to be a
monomorphism if the following holds for all morphisms g1, g2 : C → A

f ◦ g1 = f ◦ g2 =⇒ g1 = g2.

A morphism is said to be an isomorphism if it is both an epimorphism and a monomorphism. We
also say, equivalently, that invertible morphisms are isomorphisms.

Remark. In most of the categories we have seen so far, the notion of an isomorphism is intuitive:
isomorphisms are bijections which also preserve the structure of the objects of the category; so in
Set the isomorphisms are bijections; in Grp, Rng AGrp and other categories of this type, they are
the same as the traditional notion of isomorphisms for the algebraic structures in question; in Top,
they are homeomorphisms.

Example 2.1.11. Let FinSet be the category whose objects are finite sets and whose morphisms are
functions between finite sets. Further, let∐

: FinSet× FinSet→ FinSet

A×B 7→ A
∐
B

be the disjoint union operation. Note that, since the disjoint union of two finite sets is again a
finite set, it is a binary operation. Then the decategorification of FinSet with this operation is the
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commutative monoid (N,+).
To see this, first consider monomorphisms and epimorphisms. It can be shown that a morphism f is a
monomorphism or an epimorphism if and only if it is an injective or surjective function, respectively.
Then f is an isomorphism in FinSet if and only if it is a bijection. Sets with a bijection between
them have the same cardinality; therefore an arbitrary ismorphism class of FiniteSet collapses all
finite sets of the same cardinality into a single element, with 0 corresponding to ∅, 1 corresponding
to all singleton sets, and so on. Therefore the underlying set of this decategorification is N.
Now, consider the disjoint union operation on two finite sets, A = {a1, . . . ak} and B = {b1, . . . bl}.
Clearly |A| = k and |B| = l. It is defined as follows:

A
∐
B = {(a, 0) |a ∈ A} ∪ {(b, 1) |b ∈ B}.

Note. Here, 0 and 1 are members of an indexing set I: because we are only considering disjoint
union as a binary operation, it only requires two elements. In fact this construction generalises to
any family of sets Ai which are indexed by I.

So we have that A
∐
B = {(a1, 0), (a2, 0), . . . , (ak, 0), (b1, 1), (b2, 1), . . . , (bl, 1)}. This set has car-

dinality k + l. Also, trivially, |A
∐
∅| = |A|. If we consider this only up to isomorphism, that is to

say, forget everything about the sets in question except their cardinality, it is apparent that disjoint
union corresponds to addition, with the empty set corresponding to the identity 0, and all other
finite sets corresponding to their nonzero cardinalities.
Since the binary operation on a monoid must be associative, it must be verified that disjoint union
is associative. Let A and B be as above, and let C = {c1, . . . cm}. First consider A

∐
(B
∐
C) :

A
∐

(B
∐
C)

=A
∐
{(b1, 1), (b2, 1), . . . , (bl, 1), (c1, 2), (c2, 2), . . . , (cm, 2)}

The index here indicates only the originating set of the element, so we have:

A
∐

(B
∐
C) = {(a1, 0), (a2, 0), . . . , (b1, 1), (b2, 1), . . . , (bl, 1), (c1, 2), (c2, 2), . . . , (cm, 2)}

Similarly:

(A
∐
B)
∐
C

={(a1, 0), (a2, 0), . . . , (ak, 0), (b1, 1), (b2, 1), . . . , (bl, 1)}
∐
C

={(a1, 0), (a2, 0), . . . , (b1, 1), (b2, 1), . . . , (bl, 1), (c1, 2), (c2, 2), . . . , (cm, 2)}

Which is the same as A
∐

(B
∐
C). Also, by a similar argument, it can be shown that

∐
commutes.

Therefore, the decategorification of (FinSet,
∐

) is the commutative monoid (N,+).

2.2 Functors

We now proceed to a discussion of functors : these are, roughly speaking, maps between categories,
which assign objects to objects and morphisms to morphisms.

Definition 2.2.1. Let C and D be categories. A functor F : C → D is a map which assigns to

each object A ∈ Ob(C) an object F (A) ∈ Ob(D), and assigns to each morphism A
f−→ B ∈ Mor(C) a

morphism F (A)
F (f)−−→ F (B) ∈ Mor(D) In addition, the following properties should be satisfied:

1. Identity morphisms are preserved: F (id)A = idF (A) ∀A ∈ Ob(C).
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2. Composition is preserved: for an arbitrary pair of composable morphisms (f, g), F (g ◦ f) =
F (g) ◦ F (f).

Similarly to the notation for morphisms, when we mean that F is a functor from C to D, we shall

write F : C → D or C F−→ D.

Definition 2.2.2. Let C,D and E be categories, together with functors F and G such that C G−→
D F−→ E . Then we can define the composite functor F ◦G as follows:

C → E
A 7→ F (G(A))

f 7→ F (G(f))

for all A ∈ Ob(C) and f ∈ Mor(C).

Example 2.2.3. The map F : Grp → Mon which maps each group to the monoid consisting of
the same set with the same operation and each group homomorphism to its underlying monoid
homomorphism is an example of a functor: we refer to functors of this type as forgetful functors; in
this case, we have forgotten the necessity for inverses, and hence, the group structure.

Example 2.2.4. Let F be as in the previous example, and let G : Rng→ Grp be the forgetful functor
mapping each ring to its underlying group, and each ring homomorphism to its underlying group
homomorphism. Then we can define the composite functor F ◦G : Rng→Mon which assigns each
ring to its underlying monoid and each ring homomorphism to its underlying monoid homomorphism.
Here, we have forgetten the necessity for additive inverses, as well as the ring multiplication operation
and its properties.

Example 2.2.5. The disjoint union operation in Example 2.1.11 is a functor.

Definition 2.2.6. A category C is called small if Ob(C) and Mor(C) are sets which are not proper
classes.

Example 2.2.7. Let C be a category. Then there exists an identity functor idC : C → C which assigns
every object and morphism to itself. This, along with the fact the functor composition is associative,
allows us to define Cat, the category of small categories, whose objects are small categories and
whose morphisms are functors.

Remark. Since the objects and morphisms of a small category are sets, there is no logical difficulty
here. However, because this is not the case for all categories, it is not possible to form a category of
categories: in attempting to do so, a contradiction analogous to Russell’s Paradox is encountered.

Example 2.2.8. ([2], Example 1.5.6) Let R and S be commutative rings. Recall GLn(R), the multi-
plicative group of all invertible n×n matrices whose entries are in R. Let φ : R→ S be an arbitrary
ring homomorphism. Let the entry in the ith row and jth column of a member of this group be
denoted by (aij). For an arbitrary matrix with entries denoted this way, define a map:

GLnφ : GLn(R)→ GLn(S)

(aij) 7→ φ[(aij)]

It can be easily shown that GLnφ is a group homomorphism. In fact, this information defines
an infinite family of functors; for every n ∈ N+ there exists a functor which maps from CRng
(commutative rings with ring homomorphisms) to Grp, asigning each commutative ring R to GLn(R)
and each ring homomorphism φ : R→ S to the group homomorphism GLnφ : GLn(R)→ GLn(S).
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Definition 2.2.9. All examples of functors so far have preserved the directions of morphisms; we
say that such functors are covariant. However we shall continue to simply write “functor” in this
case. On the other hand, a contravariant functor F : C → D reverses the directions; that is to say,
it assigns every f : A → B ∈ Mor(C) a morphism F (f) : F (B) → F (A) ∈ Mor(D). Composable
morphisms f, g ∈ Mor(C) satisfy F (g ◦ f) = F (f) ◦F (g). There are no other ways in which covariant
and contravariant functors differ.

Definition 2.2.10. Let C be a category whose hom-sets are sets and not proper classes. For any
objects A,B ∈ Ob(C) we can define a covariant functor Hom(A,−) : C → Set as follows:

• X ∈ Ob(C) 7→ Hom(A,X)

• Each morphism f : X → Y is mapped to the function

Hom(A, f) : Hom(A,X)→ Hom(A, Y )

g 7→ f ◦ g

for each g in Hom(A,X).

A contravariant functor Hom(−, B) : C → Set is defined analogously. These functors are known as
hom-functors.

Remark. We have written above that the hom-functors map simply to Set, for conciseness. In fact,
if the hom-classes in question have additional structure, the hom-functors can map to the category
with those structures as objects. For example, if the hom-sets of A can be furnished with a group
structure, it will be the case that Hom(A,−) will map from C to Grp.

3 Modules over associative algebras

Many examples of categorification are based on the theory of modules over associative algebras. We
now give an overview of the topic, beginning with the definition of a module, which can be thought
of intuitively as a generalization of the notion of a vector space.

3.1 Introduction to modules

Definition 3.1.1. Given a ring R with unity, not necessarily commutative, a left R-module is an
abelian group (M,+) together with a product R ×M → M (analogous to scalar multiplication for
a vector space) satisfying the following axioms:

∀ rk ∈ R and ak ∈M :

1. 1Ra = a

2. (r1r2)a = r1(r2a)

3. (r1 + r2)a = r1a+ r2a

4. r(a1 + a2) = ra1 + ra2

Note. A right R-module is defined similarly, with scalar multiplication on the right, and the axioms
changed accordingly.

Example 3.1.2. Any vector space over a field F is also both a left and right F-module: because F is a
commutative ring, there is no difference between left and right modules. In this case they are simply
called F-modules. (Or R-modules, for a general commutative ring R.)
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Example 3.1.3. Let G be an abelian group. Let n be an integer, and let g be an element of G. Then
G is a Z-module with the action:

ng =


g + · · ·+ g︸ ︷︷ ︸

n times

n > 0

0 n = 0

In the case that n < 0, take ng to be the inverse element of −ng; that is to say, the inverse element
of g + · · ·+ g︸ ︷︷ ︸

n times

.

Example 3.1.4. For a given ring R with a left ideal I, I is a left R-module, where the scalar multipli-
cation is simply the multiplication operation belonging to the ring. The same is true of right ideals
and right R-modules.

Definition 3.1.5. Let M be a left or right R-module with a subgroup N . Then N is a submodule
of M, if, ∀n ∈ N and r ∈ R, the following holds:{

rn ∈ N when M is a left module.

nr ∈ N when M is a right module.

Definition 3.1.6. Let Mi be a family of left R-modules indexed by i ∈ I. Then their direct sum,
denoted ⊕iMi, is comprised by all ai with ai ∈ Mi and i = 0 for confinitely many i. Addition and
scalar multiplication are defined component-wise: (ai) + (bi) = (ai + bi), r(ai) = (rai). The familiar
notions of direct sums of vector spaces and abelian groups are special cases of this construction.

Definition 3.1.7. A module M is said to be simple if it contains no non-zero proper submodules.

Definition 3.1.8. A module M is said to be indecomposable if it is non-zero, and, in addition,
cannot be written as a direct sum of two non-zero submodules.

Remark. All simple modules are indecomposable, but the converse is not true.

We now give a few definitions, leading up to the Jordan-Hölder theorem for modules, which we
will make use of later.

Definition 3.1.9. An R-module M is said to be Noetherian if every sequence M1 ⊂M2 ⊂M3 ⊂ · · ·
of submodules of M stabilizies; that is to say, there is some n ∈ N such that Mn = Mn+1 = Mn+2 =
· · · , and so on.
Analogously, M is said to be Artinian if every sequence of submodules of M of the form · · · ⊂M3 ⊂
M2 ⊂M1 eventually stabilizies.

Definition 3.1.10. An R-moduleM is said to be of finite length if it is both Artinian and Noetherian,
or, equivalently, if there exists a series

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

of submodules of M , such that, for all i = 0, . . . , n, the quotient module (constructed in the same
way as quotient groups or quotient rings) Mi/Mi−1 is a simple R-module. Series such as this are
known as composition series, the natural number n is known as the length of the series, and the
simple quotient submodules are known as the series’ quotient factors.

Theorem 3.1.11 (Jordan-Hölder). Let M be a module of finite length and let

0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn−1 ⊂Mn = M

0 = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Nn−1 ⊂Mn = M

each be composition series for M . Then m = n and the quotient factors are the same up to permu-
tation.
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Proof. See [6].

The following subsection introduces the notion of the tensor product of two modules, which, as
will be seen, is crucial for categorification.

3.2 Tensor products

The following construction of the tensor product of two modules is due to Dauns in [7]. Before
proceeding, we require a definition.

Definition 3.2.1. An R-module M is said to be free if it has a basis; that is, a set B ⊆ M such
that the following hold:

1. B generates M : every element in M can be written as a sum of elements of B with coefficients
in R. (The multiplication can be on the left or right, depending on the type of R-module
in question. We write multiplication on the left here, but the case for a right R-module is
completely analogous.)

2. B is linearly independent: for e1, . . . , en ∈ B and r1, . . . , rn ∈ R, r1e1 + · · · + rnen = 0M =⇒
r1 = · · · = rn = 0R.

We now define some notation which will be useful for the construction of the tensor product.

Notation. Let R be a ring: whether or not it has identity is immaterial. Further, let A be a right R-
module and let B be a left R-module. Now, let S denote the free Z-module with generating set A×B.
We will make use of standard abbreviations and pointwise operations: p = {p(a,b)|(a, b) ∈ A× B} =
(p(a,b)), q = {q(a,b)|(a, b) ∈ A×B} = (q(a,b)); j ∈ Z; jp = pj = (jp(a,b)) ∈ S, p− q = (p(a,b)− q(a,b)) ∈ S.
We can visualize elements of S in the following ways:

• Firstly, every element in S can be written in a unique way as a finite sum

n∑
i=1

pi(ai, bi)

with the conditions that p1, . . . , pn ∈ Z\{0} and (aj, bj) 6= (ai, bi) ∈ A×B if j 6= i.

• Secondly, every element of S can be written as a finite sum of the form Σiε(i)(ai, bi) where
ε(i) = ±1, and where we relax the second condition above: repetitions in (ai, bi) ∈ A× B are
permitted.

• Lastly, we can write an element of S as a formal sum p = Σp(a,b)(a, b) where we allow (a, b) to
be any element of A × B, but also stipulate that the number of integers p(a,b) ∈ Z which are
zero should be cofinite. In this representation, algebraic operations are easy. The addition of
p, q ∈ S and the multiplication of p ∈ S by j ∈ Z are carried out as follows:

Σp(a,b)(a, b) + Σq(a,b)(a, b) = Σ(p(a,b) + q(a,b))(a, b)

jΣp(a,b)(a, b) = Σjp(a,b)(a, b)

Here, the empty sum is always 0S ∈ S. Since there are, in this case, four other zero elements
(0A ∈ A, 0B ∈ B, 0R ∈ R, 0Z = 0 ∈ Z) all of which are simply written as 0 when there is no
ambiguity, care must be taken. Define (a, b) = 1(a, b) = (a, b)1 ∈ S for (a, b) ∈ A × B. Note that
0S 6= (0A, 0B) = 1(0A, 0B) ∈ S.
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Definition 3.2.2. Firstly, let a, a′ ∈ A, b, b′ ∈ B, and r ∈ R all be arbitrary. Furthermore, let H be
the additive subgroup of S generated by all Z-linear combinations of all possible elements of types
y1, y2, and y3, defined by the following relations:

1. (a+ a′, b)− (a, b)− (a′, b) = y1

2. (a, b+ b′)− (a, b)− (a, b′) = y2

3. (ar, b)− (a, rb) = y3

Then the tensor product over R of A and B, denoted A⊗R B, is defined to be the abelian quotient
group S/H.

Note. If R is fixed and understood, the abbreviation A ⊗ B is used. For (a, b) ∈ S, define a ⊗ b =
(a, b) +H = 1(a, b) +H ∈ A⊗B. Now, let ρ : S → S/H be the natural quotient map ρ(s) = s+H,
and let π be the restriction π = ρ |A×B of ρ to the subset A×B ⊂ S. This means that π(a, b) = a⊗b.

This definition is both complicated and abstract. We will now verify a few properties of the
quotient group S/H, with the goal of gaining some familiarity and comfortability with it. Notice
that the calculations all rely on using the coset absorption properties of y1, y2, and y3 to write
expressions in a manner which is desirable for the proof.

Remark. Recall the action of Z from Example 3.1.3 which causes an arbitrary abelian group G to
become a Z-module. We will make use of it here, allowing it to act on the abelian group A ⊗ B.
Now, for the whole of the following example, let a and b be fixed elements of A and B respectively.

Example 3.2.3. (i) If 1 /∈ R, then 0S = (a, b)− (a, b) ∈ H is not of the form y3 as defined above.

(ii) (0A, 0B) ∈ H.

Proof.

(0A, 0B) +H

= (0A, 0B) + [(0A + 0A, 0B)− (0A, 0B)− (0A, 0B)]︸ ︷︷ ︸
Of the form y1

+H

= 2(0A, 0B) + (−2)(0A, 0B) +H = 0(0A, 0B) +H = H.

(iii) (0A, b), (a, 0B) ∈ H.

Proof.

(0A, b) +H

= (0A + 0A, b)− [(0A + 0A, b)− (0A, b)− (0A, b)]︸ ︷︷ ︸
Of the form y1

+H

= 2(0A, b) +H.

From this it follows that (0A, b) +H = H. For (a, 0B) the proof is similar, except that we use the y2
relation.

(iv) For an integer n ≥ 1, (na)⊗ b = a⊗ (nb) = n(a⊗ b).
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Proof. We proceed by induction. For n = 1, the statement is trivially true, so we take it as the base
case. For the inductive step, assume that

((n− 1)a)⊗ b = a⊗ ((n− 1)b) = (n− 1)(a⊗ b)

Then

(na)⊗ b = (na, b) +H

= (na, b)− [a+ (n− 1)a, b)− (a, b)− ((n− 1)a, b)]︸ ︷︷ ︸
Of the form y1

+H

= −[(−a,−b)− (n− 1)(a, b)] +H

= −[(−na,−nb)] +H

= n(a, b) +H

To complete the proof, it must be shown that a⊗ (nb) = n(a⊗ b), but, as with (iii), we can proceed
in an analogous way, using the y2 relation instead of y1.

(v) (−a)⊗ b = −(a⊗ b) = a⊗ (−b).

Proof. By (iii) and (iv) above:

0S/H = (0A, b) +H

= (a+ (−a), b) = H

= a⊗ b+ (−a)⊗ b

Hence, (−a)⊗ b = −(a⊗ b). Analogously, a⊗ (−b) = −(a⊗ b).

(vi) For n ≥ 1, (−na)⊗ b = −n(a⊗ b) = a⊗ (−b).

Proof. Simply apply (iv), except with −a in the place of a. Then apply (v):

(−na)⊗ b
= (n(−a))⊗ b
= n((−a)⊗ b)
= −n(a⊗ b)

Analogously, a⊗ (−nb) = −n(a⊗ b).

Note. So far, we have not used the y3 relation.

Definition 3.2.4. For an additive abelian group C, a function ϕ : A×B → C is said to be R-bilinear
if, for all a, a′ ∈ A, b, b′ ∈ B and r ∈ R the following hold:

1. ϕ(a+ a′, b) = ϕ(a, b) + ϕ(a′, b)

2. ϕ(a, b+ b′) = ϕ(a, b) + ϕ(a, b′)

3. ϕ(ar, b) = ϕ(a, rb)
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Recall from Definition 3.1.6 the notion of the direct sum of a family of modules. Let A and B be
as they have been so far in this subsection. The notation and construction of the direct sum often
cause vague ideas regarding connections between A ⊕ B and S, between A ⊕ B and bilinear maps,
or between A ⊕ B and A ⊗ B, to be formed. The following remarks are intended to remove this
confusion and demonstrate that there is no deep connection.

Remarks. 1. The set A×B can be given the group structure of A⊕B, and is certainly a subset
of S, but it is not a subgroup of S: we have that (a + a′, 0B)− (a, 0B)− (a′, 0B) = 0A⊕B, but
this can never be equal to 0S.

2. Consider ϕ : A × B → C, a bilinear map. Then there is no way to construct ϕ as a group
homomorphism from A⊕B to C. To see this, consider the element (a, b)+(a′, b′) ∈ A⊕B. Define
a congruence between (a, b) + (a′, b′) ∈ A ⊕ B and (a + a′, b + b′) ∈ A × B (this is suggested
by the identification of A × B with A ⊕ B.) Then ϕ[(a, b) + (a′, b′)] ∼= ϕ[(a, b) + (a′, b′)] =
ϕ(a, b) + ϕ(a, b′) + ϕ(a′, b) + ϕ(a′, b′) 6= ϕ(a, b) + ϕ(a′, b′) in general. (ϕ(a, b′) + ϕ(a′, b) 6= 0 in
general.)

3. Let π be the restriction π = ρ |A×B as previously. It can be the case that π(a, b) = a⊗ b = 0
for a 6= 0A and b 6= 0B.

4. Consider the subset π(A × B) ⊂ A ⊗ B. We will show that this does not inherit the group
structrue from A ⊕ B. If A ⊗ B 6= 0, then ∃ 0 6= a ⊗ b ∈ A ⊗ B. Then, in A ⊕ B, (a, b) =
(a, 0) + (0, b), but modulo H, 0 6= a⊗ b = (a, b) +H 6= (a, 0) + (b, 0) +H = H.

For concrete computations, we consider the general forms of the elements of the modules in
question and use them to determine the general form of an element of the tensor product.

Proposition 3.2.5. For an integer n ≥ 2, consider Q ⊗Z Z/(n), the tensor product of the ideal
generated by n with Q. It can be shown that Q⊗Z Z/(n) = 0.

Proof. Let v be an element of Q. Then, for some q ∈ Q, v = nq. The general form of a member of
Z/(n) is (x + (n)), where n - x ∈ Z. So we have v ⊗ (x + (n)) = qn ⊗ (x + (n)), which is equal to
q ⊗ (nx+ (n)) = q ⊗ (n) by Example 3.2.3.(iii). But this is simply q ⊗ 0Z/(n) = 0.

Proposition 3.2.6. Let p and q be coprime. Then Z/(p)⊗Z Z/(q) = 0.

Proof. The key fact here is that, due to the coprimality of p and q, ∃s, t ∈ Z such that sp+ tq = 1.
We have:

(x+ (p))⊗ (y + (q))

= xy(sp+ tq + (p))⊗ (1 + (q))

= xy(tq + (p))⊗ (1 + (q))

= xy((t+ (p))q)⊗ (1 + (q))

Once again, by 3.2.3(iii), this is equal to xy(t+ (p))⊗ (q(1 + (q)) = xy(t+ (p))⊗ 0Z/q = 0.

We now proceed to associative algebras, which follow on conceptually from modules in a natural
way, and can, in fact, be constructed from them.
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3.3 Associative algebras

Note. The remainder of the paper is based on [4].

Definition 3.3.1. Let R be a commutative ring. An associative R-algebra is a ring B which is
also an R-module such that the multiplication operation in the ring is R-bilinear. This means that,
∀α ∈ B and ∀a, b ∈ B, α(ab) = (αa)b = a(αb).
The attributes of B can vary as they can for rings without the additional structure: associative
algebras can possess or lack a multiplicative identity, be commutative or non-commutative, and so
on. We are primarily concerned with the case where R is a field.

Example 3.3.2. Given an R-module M , we can construct an associative R-algebra from it by fur-
nishing it with an R-bilinear map from M ×M to M such that, ∀m1,m2,m3 ∈ M, m1(m2m3) =
(m1m2)m3.

Example 3.3.3. Any ring can be viewed as a Z-algebra. This corresponds to the fact that any abelian
group can be viewed as a Z-module.

Example 3.3.4. Any set of matrices with entries in a commutative ring R forms an R-algebra with
matrix addition and multiplication.

Example 3.3.5. Let V be a vector space over a field F. Consider the set of linear maps φ : V → V .
(These are known as the endomorphisms of V.) For α ∈ F and v ∈ V , define (αφ)(v) = αφ(v). This
construction, together with pointwise addition of functions as the ring addition and composition
of functions as the ring multiplication, is an F-algebra. It is denoted End V and is known as the
endomorphism algebra of V .

Example 3.3.6. Just as the complex numbers are obtained from the real numbers by adjoining a
new element i such that i2 = −1, we can obtain an algebra D, which is called the dual numbers, by
adjoining a new element x such that x2 = 0. Note that x 6= 0. We can write D as R[x]/(x2). It is
a two-dimensional associative R-algebra which is unital and commutative. This process works for a
general field F : as the notation for D suggests, the algebra of dual numbers over F is nothing more
than the quotient of the polynomial ring by the ideal generated by x2.

Example 3.3.7. Let Γ be a group. Then we can define the group algebra F[Γ], which is the F-vector
space with basis Γ, with multiplication defined by

(α1γ1)(α2γ2) = (α1α2)(γ1γ2),

for all α1, α2 ∈ F, γ1, γ2 ∈ Γ.

Definition 3.3.8. Let B and C be two associative R-algebras. Then ϕ : B → C is an algebra
homomorphism if the following conditions hold ∀α ∈ R, x, y ∈ B :

• ϕ(αx) = αϕ(x)

• ϕ(x+ y) = ϕ(x) + ϕ(y)

• ϕ(xy) = ϕ(x)ϕ(y)

In other words, ϕ is a ring homomorphism which is also R-linear.

Note. In the case that B and C are unital, we also require that ϕ(1B) = 1C .

For the remainder of this section, let B be a unital associative F-algebra.

Definition 3.3.9. A representation of B is a unital algebra homomorphism with domain B and
codomain End V for some F-vector space V .
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Definition 3.3.10. A left B-module is a left B-module for the underlying ring of B. Let M be a
left B-module. Then M is also a left F-module, with the following action:

αm = (α1B)m, for all α ∈ F,m ∈M.

Right B-modules are defined analogously.
Let M be a simple B-module, containing an arbitrary nonzero element m. Then Bm = {bm | b ∈ B}
is a nontrivial submodule of M. Since we have defined M to be simple, it must be the case that
Bm = M . Therefore, if M is a simple B-module, it is generated by any one of its nonzero elements.
Consider the homomorphism f : B → M , defined by f(b) = bm. Since Bm = M , f is surjective.
Recall Example 2.1.4: by the First Isomorphism Theorem for modules, M and B/ker f are isomorphic
as B-modules. Since B/ker f ∼= M and M is simple, it must be the case that ker f is a maximal ideal
of B. Therefore, because we imposed nothing other than the simplicity of M , all simple B-modules
are isomorphic to quotients of B by its maximal ideals.

Example 3.3.11. (i) Up to isomorphism, the only simple F-module is the one-dimensional vector
space F.
(ii) The only maximal ideal of D, as defined in Example 3.3.6, is the principal ideal generated by x. It
follows that, up to isomorphism, the only simple D-module is D/(x). This module is one dimensional:
in it, x acts, multiplicatively, as 0 does. 1D is the identity.

The concept of a representation of B and the concept of a left B-module are, in fact, equivalent.
Hence, in an abuse of terminology, the two terms will sometimes be used interchangeably. Similarly,
when “B-module” is written with no specification of whether the module in question has scalar
multiplication on the left or right, “left B-module” is meant.

Definition 3.3.12. A left B-module M is finitely generated if it has a finite generating set {bi |i ∈ I}.

In the following definition, the trivial module is denoted by 0.

Definition 3.3.13. A short exact sequence of modules is a sequence of B-module homomorphisms

0
ψ0−→M1

ψ1−→M2
ψ2−→M3

ψ3−→ 0

such that Imψi = Kerψi+1 for i = 0, 1, 2. Now, consider the following equivalent conditions:

1. There exists a B-module homomorphism ϕ1 : M2 →M1 such that ϕ1 ◦ ψ1 = idM1

2. There exists a B-module homomorphism ϕ2 : M3 →M2 such that ϕ2 ◦ ψ2 = idM3

If they hold, we say that the sequence is a split exact sequence.

Note. In the above case we have that M2
∼= M1 ⊕M3.

Definition 3.3.14. Consider a short exact sequence of B-modules:

0→M → N → P → 0

If every short exact sequence of this form is a split exact sequence, we say that P is a projective
B-module. Also P is projective if and only if it is equal to F ⊕M for some module M and free
module F . In particular, all free modules are projective.

Definition 3.3.15. Let B-mod be the category whose objects are finitely generated B-modules and
whose morphisms are B-module homomorphisms. Let B-pmod be the category with the same class
of morphisms, but with finitely generated projective B-modules as objects. Note that B-pmod is a
subcategory of B-mod.
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Definition 3.3.16. Let C and D be subcategories of B-mod. Let 0 denote the trivial object, and
let F : C → D be a covariant functor such that F (0) = 0. Further, let 0→ M → N → P → 0 be a
short exact sequence of objects in Ob(C). We say that F is an exact functor if it maps short exact
sequences to short exact sequences, that is to say, F is exact if 0→ F (M)→ F (N)→ F (P )→ 0 is
exact in D.

Remark. The definition of an exact functor is valid for any category which has the property of being
abelian; B-mod and B-pmod are specific examples. Since our approach to categorification is based
on B-modules, we have, for conciseness, defined exact functors only in relation to these specific
categories. For a proper treatment of abelian categories, see [3].

Definition 3.3.17. Let N be a submodule of a B-module M . Suppose that, for any other submodule
H of M , N + H = M =⇒ H = M. Then N is said to be superfluous. A superfluous epimorphism
of B-modules M → N whose kernel is superfluous in M .

Definition 3.3.18. Let M be a B-module. A projective cover of M is a projective module P ,
together with a superfluous epimorphism P →M.

Example 3.3.19. Any projective module is its own projective cover, for example, the projective cover
of F considered as a one-dimensional vector space over itself is F.
Example 3.3.20. Recall D, the algebra of dual numbers. The projective cover of the simple D-module
D/(x) is D itself.

Note. Let M be an arbitrary B-module. Then its projective cover and associated superfluous epi-
morphism, if they exist, are unique up to isomorphism. However, in general, it is not necessary that
they should exist.

Definition 3.3.21. Let A and B be unital associative algebras, let M be an A-module, and let N
be a B-module. Then we can define an (A⊗F B)-module, denoted M ⊗FN , by the following action:

(a⊗ b)(m⊗ n) = (am)⊗ (bn),

for all a ∈ A, b ∈ B,m ∈M, and n ∈ N.

This construction is known as the external tensor product of M and N .

3.4 Finite-dimensional algebras

We are most concerned here with associative F-algebras which are finite-dimensional as F-vector
spaces and which are unital. We will now state some of the properties of such algebras. For this
subsection, we assume that B is an associative F-algebra which is finite dimensional and unital. We
assume also that all modules are finitely generated.

Proposition 3.4.1. 1. Every left or right B-module has a projective cover. ([8], Theorem I.4.2)

2. The algebra B has a finite number of nonisomorphic simple modules. ([8], Proposition I.3.1)

3. The projective covers of the nonisomorphic simple modules form a complete list of nonisomor-
phic indecomposable projective B-modules. ([8], Corollary I.4.5)

Note. Proofs of all three statements in the proposition above are given in [8].

Lemma 3.4.2. Suppose V is a simple B-module with projective cover P . Then, for any simple
B-module W , we have an isomorphism of F-modules

HomB(P,W ) ∼= HomB(V,W ) =

{
0 if W � V

EndB(V ) if W ∼= V
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Example 3.4.3. As seen in Examples 3.3.12 and 3.3.20 , the algebra D has one simple module D/(x).
Its projective cover D is, up to isomorphism, the only indecomposable projective D-module.

Definition 3.4.4. An associative algbra B is called simple if it has no nontrivial proper two-sided
ideals and the set B2 = {ab | a, b ∈ B} 6= {0}.

Note. If B is a nonzero unital associative algebra, the second condition is automatically satisfied.

Example 3.4.5. The algebra of square matrices with entries in F is a simple F-algebra.

Definition 3.4.6. A finite dimensional unital associtive algebra is semisimple if it is isomorphic to
a Cartesian product of simple subalgebras. A module over an associative algebra is semisimple if it
is isomorphic to a direct sum of simple submodules.

Proposition 3.4.7. Let B be a semisimple finite dimensional unital associative algebra. Then all
B-modules are semisimple and projective. In particular, every B-module is its own projective cover.

4 Weak categorification

We are now almost equipped with the necessary concepts to begin an explanation of weak cate-
gorification; we have presented the required basic category theory, as well as the required theory of
modules over associative algebras. All that is left to deal with is the notion of the Grothendieck group
of a category. For the first part of this culminating section, we present an overview of it.

4.1 Grothendieck groups

Once again, we fix a unital associative F-algebra B. Recall the categories B-mod and B-pmod,
and let C be a subcategory of B-mod. We are primarily interested in the case where C is either
B-mod or B-pmod.

Definition 4.1.1. Let F(C) be the free abelian group (analogously to Definition 3.2.1, an abelian
group with a basis) whose basis is the isomorphism classes of objects M ∈ Ob(C), which we denote
by [M ]. Let 0→M1 →M2 →M3 → 0 be a split exact sequence in C, and, in addition, let N split(C)
be the subgroup of F(C) generated by elements of the form [M1]− [M2]+[M3]. The split Grothendieck
group of C, denoted Ksplit0 (C), is the quotient group F(C)/N split(C). We will usually denote the image
of [M ] in Ksplit0 (C) again by [M ].

Remark. Equivalently to the above, N split(C) is also generated by elements of the form [M3]− [M1]−
[M2] for every M1,M2,M3 ∈ Ob(C) withM3 = M1 ⊕M2.)

Proposition 4.1.2. Let F-mod be the category whose objects are all finite dimensional F-vector
spaces and whose morphisms are the F-linear maps between the spaces. Then Ksplit0 (F-mod) ∼= Z.

Proof. Consider the surjective homomorphism

f : F (F-mod)→ Z
[V ] 7→ dim(V )

−[V ] 7→ −dim(V )

Since dim(V ⊕W ) = dim(V ) + dim(W ), we have that N split(F-mod) ⊆ ker(f). Now, let
n∑
i=1

ci[Vi]

be an arbitrary element of ker(f). We have
n∑
i=1

cidim(Vi) = f(
n∑
i=1

ci[Vi]) = 0. In Ksplit0 (F-mod) ,
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since [Vi] = dim(Vi)[F], we have
n∑
i=1

ci[Vi] = (
n∑
i=1

cidim(Vi))[F] = 0, so
n∑
i=1

ci[Vi] ∈ N split(F-mod),

but, because
n∑
i=1

ci[Vi] was an arbitrary element of ker(f), ker(f) ∈ N split(F-mod). So ker(f) =

N split(F-mod).
Therefore, by the First Isomorphism Theorem,

Ksplit0 (F-mod) ∼= F (F-mod)/ker(f) ∼= Z

Definition 4.1.3. Let F (C) be the free abelian group with basis the isomorphism classses [M ] of
objects M in C. Let N(C) be the subgroup of F (C) generated by the elements [M1]− [M2] + [M3] for
every short exact sequence 0 → M1 → M2 → M3 → 0 in C. The Grothendieck group of C, denoted
K0(C), is the quotient group F (C)/N(C). Customarily, we will denote the image of [M ] in K0(C)
again by [M ].

Remark. Analogously to the notion of an exact functor, as discussed in 3.3.17, it is possible to define
K0(C) for any abelian category C; but, once again, it is not necessary to deal with this in depth.

Example 4.1.4. Note that F-mod is projective: every short exact sequence in it splits. Therefore,
Ksplit0 (F-mod) = K0(F-mod) ∼= Z.
Notation. From this point onward, let K0(B-mod.) = G0(B) and K0(B-pmod) = K0(B).

Lemma 4.1.5. If B is semisimple, all short exact sequences in B-mod split. Therefore, all modules
are projective. Hence, B-mod = B-pmod and G0(B) = K0(B).

Proof. This is a direct consequence of Proposition 3.4.7.

For the rest of this section, we assume that B is finite dimensional. Let V1, . . . , Vs be a complete
list of nonisomorphic simple B-modules. By Proposition 3.4.1, if Pi is the projective cover of Vi
for i = 1, . . . , s, then P1, . . . , Ps is a complete list of nonisomorphic indecomposable projective B-
modules. Recall Theorem 3.1.11 (the Jordan-Hölder theorem), from which it follows that

G0(B) =
s⊕
i=1

Z[Vi].

The class [M ] ∈ G0(B) of any M ∈ B-mod is the sum (with multiplicity) of the classes of the
simple modules appearing in any composition series of M. Moreover, since any P ∈ B-pmod can
be written uniquely as a sum of indecomposable projective modules, we also have

K0(B) =
s⊕
i=1

Z[Pi].

Example 4.1.6. Recall Example 3.4.3. Due to it, for the algebra D of dual numbers, we have that
G0(D) = Z[D/(x)] and that K0(D) = Z[D].

We can now define a natural bilinear form as follows:

〈−,−〉 : K0(B)⊗Z G0(B)→ Z

Given by
〈[P ], [M ]〉 = dimFHomB(P,M), (4.1.1)

for all P ∈ B-pmod, M ∈ B-mod.
Here, HomB(P,M) denotes the F -vector space of all B-module homomorphisms from P to M (the
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operation is function composition). Note that it is crucial that P is projective here; there is no
analogous bilinear form mapping from G0(B)⊗G0(B) to Z except in the case that B is semisimple,
which implies that G0(B) = K0(B).
By Lemma 3.4.2, we have

〈[Pi], [Vj]〉 =

{
0 if i 6= j

dimFEndB(Vi) ≥ 1 if i = j

Therefore, the form 〈−,−〉 is nondegenerate. For a commutative ring R and R-module V , let V ∨

denote the dual space, the set of all linear maps from V to R. A bilinear form 〈−,−〉 : V ⊗RW → R
of R-modules induces maps

V → W∨, v 7→ (w 7→ 〈v, w〉)
W → V ∨, w 7→ (w 7→ 〈v, w〉)

If the form is nondegenerate, these maps are injective. If these maps are isomorphisms, then the
form is known as a perfect pairing.

Example 4.1.7. Consider once again the algebra D of dual numbers. Let f : D → D/(x) be a
homomorphism of D-modules. Since the codomain of f is a simple D-module, the kernel of f must
be a maximal ideal of D. But it is known that the only maximal ideal of D is (x). So, f factors
through a map D/(x)→ D/(x). But D/(x) is a one dimensional F-vector space, so any such map is
simply multiplication by some scalar in F. So HomD(D,D/(x)) ∼= F. 〈D,D/(x)〉 = 1.

4.2 Some further properties of functors

We are now almost in a position to discuss categorification proper; we require only the definitions of
two specific functors which were not accesible to us without the theory of modules over associative
algebras. Now that the required theory has been given, we can begin to define the functors in
question.

Definition 4.2.1. Let B1 and B2 both be unital associative F-algebras, let C1 be a subcategory of
the category of B1-modules, and let C2 be a subcategory of the category of B2-modules. A functor
F : C1 → C2 is said to be additive if F (M ⊕N) = F (M)⊕ F (N) for all M,N ∈ C1.

Now, if F is additive, then it induces a group homomorphism

[F ] : Ksplit0 (C1)→ Ksplit0 (C2)
[F ]([M ]) 7→ [F (M)]

for all M ∈ C1.

Analogously, if F is exact, then it induces a group homomorphism

[F ] : K0(C1)→ K0(C2)
[F ]([M ]) 7→ [F (M)]

for all M ∈ C1.

Definition 4.2.2. Let A and B be two finite-dimensional unital associative F-algebras. Now, let M
be a left A-module and a right B-module, where the A and B actions commute. Then M is known
as an (A,B)-bimodule.
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Example 4.2.3. A itself is an (A,A)-bimodule with left and right multiplication. More generally, if
B is a subalgebra of A, we can consider A as an (A,B), (B,A), or (B,B)-bimodule.

If B and C are subalgebras of A, we let BAC denote A considered as a (B,C)-bimodule. If B or
C is equal to A, the corresponding subscript is omitted. For example, AB denotes A considered as
an (A,B)-bimodule.
Suppose M is an (A,B)-bimodule. Then we have the functor

M ⊗N − : B-mod→ A-mod, N 7→M ⊗B N.

Here we consider M ⊗B N as an A-module via the action

a(m⊗ n) = (am)⊗ n

Definition 4.2.4. Now, in the above scenario, suppose that B is a subalgebra of A. Then we have
induction and restriction functors

IndAB : B-mod→ A-mod, N 7→ A⊗B N
ResAB : A-mod→ B-mod M 7→ BA⊗AM

for all M ∈ A-mod and N ∈ B-mod. If A is projective as a left and right B-module, both of
these functors are exact and, in addition, induce functors on the corresponding categories of finitely-
generated projective modules.

4.3 Weak categorification

We can now describe the process of weak categorification. In what follows, let R be a commutative
ring. Let B be an R-algebra which is unital and associative, and let {bi}i∈I be a fixed generating
set for B. If M is a B-module, then the action of each bi in the generating set defines an R-linear
endomorphism bMi (x) = bix of M .

Definition 4.3.1. A naive categorification of (B, {bi}i∈I ,M) is a tuple (M, ϕ, {Fi}i∈I), whereM is
an abelian category, ϕ : K0 ⊗Z R → M is an isomorphism, and, for each i ∈ I, Fi : M →M is an
exact endofunctor of M such that the following diagram commutes:

K0(M)⊗Z R K0(M)⊗Z R

M M

ϕ

[Fi]

bMi

ϕ

Note. We say that a diagram such as this is commutative or commutes if any two paths with the
same starting and ending points, where we define the traverse of a path to be the composition of the
functions that comprise it, are equal.

Above, we have written [Fi] in place of [Fi]⊗ id. To say that this diagram commutes is, intuitively
speaking, to say that the action of the functor [Fi] lifts the action of bi to the realm of categories.
This is indeed a form of categorification, but it is an extremely weak notion; it is often the case
that we want the functors [Fi] to preserve something more than just the action. For example, we
could categorify the relations between the generators bi or the induced maps bMi . This motivates the
following definition.
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Definition 4.3.2. Given a set of relations of B which generate all of the relations in B, a set of
isomorphisms of functors which lift these relations to the Grothendieck group, along with a naive
categorification of (B, {bi}i∈I ,M), is called a weak categorification.

Remark. Note that these definitions depend on a generating set for the algebra B. Because of this,
it is more accurate to speak of the categorification of the presentation of a module. We will, in a
slight abuse of terminology, proceed using the language of the definitions.

Example 4.3.3. Let B = C[b]/(b2 − 2b), with the generating set {b}. Obviously, the relation satisifed
by this generator is b2 = 2b. Consider C as the B-module M with action given by b ·1 = 0, and also as
the B-module N with action given by b · 1 = 2. LetM be C-mod, the category of finite-dimensional
C-modules, and define the functors F,G :M→M by F (V ) = 0 and G(V ) = V ⊕V for all V ∈M.
Define ϕ : K0⊗ZC→M and ψ : K0⊗ZC→ N both by z[C] 7→ z (here, [C] denotes the isomorphism
class of the simple one-dimensional C-module).
Now, we have that

ϕ ◦ [F ](z[C]) = 0 = b · ϕ(z[C])

for all z ∈ C, so (M, ϕ, F ) is a naive categorification of (B, {b},M). It is also the case that

ψ ◦ [G](z[C]) = ψ(z[G(C)]) = ψ(z[C⊕ C]) = ψ(2z[C]) = 2z = b · z = b · ψ(z[C]),

so (M, ψ,G) is a naive categorification of (B, {b}, N). For the weak categorification, we begin by
noting the following:

[F ◦ F ](z[C]) = F (0) = 0 = [F ](z[C])⊕ [F ](z[C])

[G ◦G](z[C]) =[G](z[C⊕ C]) = z[(C⊕ C)⊕ (C⊕ C)] = [G](z[C])⊕ [G](z[C])

These equations are true for all z ∈ C. This means that we have isomorphisms of functors F ◦ F ∼=
F ⊕ F and G ◦G ∼= G⊕G. Therefore, considered as operators on K0(M) we have [F ]2 = 2[F ] and
[G]2 = 2[G], so the isomorphisms lift the generator relation b2 = 2b. This means that (M, ϕ, F ) and
(M, ψ,G) are weak categorifications of (B, {b},M) and (B, {b}, N), respectively.

4.4 Categorification of the polynomial representation of the Weyl alge-
bra

The example immediately previous is very simple. We will now proceed to a more sophisticated
example: the categorification of the polynomial representation of the Weyl algebra, which utilizes
categories of modules over nilcoxeter algebras. We begin by defining the Weyl algebra. For the whole
of this subsection, as before, we fix an arbitrary field F and assume all modules are finitely generated.

Definition 4.4.1. The Weyl algebra, denoted W , is the unital associative algebra over Z with
generators x, ∂ and defining relation ∂x = x∂ + 1.

Now, let RQ be the Q-vector space spanned by x0, x1, x2, . . . There is a natural and familiar action
of W on RQ defined as follows:

x · xn = xn+1, ∂ · xn = nxn−1

for all n = 0, 1, 2, . . . The polynomial representation of the Weyl algebra is this representation of W
on RQ .

Proposition 4.4.2. The abelian subgroups

R = SpanZ{xn/n!}∞n=0 and R′ = SpanZ{xn}∞n=0

of RQ are also submodules of RQ considered as a W -module.
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Proof. Firstly, we must show that xR ⊆ R and ∂R ⊆ R. The action of W on R is linear with respect
to Z, so we only need to show the following, which are true for all n ∈ N :

x
xn

n!
=
xn+1

n!
= (n+ 1)

xn+1

(n+ 1)!
∈ R

∂
xn

n!
=

xn−1

(n− 1)!
∈ R

so R is a W -submodule of RQ. Similarly, the action of W on R′ is linear, so we simply show that
xR′ ⊆ R′ and ∂R′ ⊆ R :

xxn = xn+1 ∈ R′

∂xn = nxn−1 ∈ R′

So both R and R′ are W -submodules of RQ.

Now, we define a bilinear form 〈−,−〉 : RQ ×RQ → Q by

〈xn, xm〉 = δm,nn!

This form restricts to a perfect pairing 〈−,−〉 : R×R′ → Z.
We will now proceed to the nilcoxeter algebra and its modules. We begin by recalling some basic
facts about the symmetric group. F[Sn], the group algebra of the symmetric group on n symbols is
generated by the simple transpositions si = (i, i+ 1). The relations for these generators are the same
as the relations for the transpositions in the symmetric group, and are as follows:

s2i = 1 for i = 1, 2, . . . , n− 1,

sisj = sjsi for i, j = 1, . . . n− 1 such that |i− j| > 1,

sisi+1si = si+1sisi+1 for i = 1, 2, . . . , n− 2

The last two relations are called the braid relations. Now, any element σ ∈ Sn can be written as a
product

σ = si1 · · · sik .

If k is minimal, we call it the length of σ, and denote this value `(σ). Any expression where k = `(σ)
is called a reduced expression for σ. Any reduced expression for σ can be obtained from any other
reduced expression for σ by a sequence of braid relations. If the product in question is not a reduced
expression, braid relations can be used to replace it with an expression in which two copies of sj
are directly next to each other. The relation s2j = 1 can then be used to reduce the number of
transpositions by two. In this way a reduced expression can be obtained from any expression.

Definition 4.4.3. Let n be a non-negative integer. Then the nilcoxeter algebra Nn is the unital
F-algebra generated by u1, . . . , un−1 with defining relations

u2i = 0 for i = 1, 2, . . . , n− 1,

uiuj = ujui for i, j = 1, . . . n− 1 such that |i− j| > 1,

uiui+1ui = ui+1uiui+1 for i = 1, 2, . . . , n− 2

As a convention, we set N0 = N1 = F.

Note. The only difference between F[Sn] and the nilcoxeter algebra is that the generators square to
0.
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The unique maximal length element of Sn has length n(n−1)/2, which implies, for the Nilcoxeter
algebra, that if k > n(n− 1)/2, then ui1ui2 · · ·uik = 0 for all i1, i2, . . . , ik ∈ {1, . . . , n− 1}.

Definition 4.4.4. A graded algebra is an algebra which is also a direct sum of abelian groups Mi,
such that MiMj ⊂ Mi+j. The decomposition of the sums is referred to as grading. An element of a
member of the decomposition, say Mi, is referred to as homogenous of degree i.

Now, because the relations defining Nn are homogenous in the ui, we can define a grading Nn =⊕
m∈NN

(m)
n on Nn by setting the degree of ui to be one for i = 1, . . . , n− 1. Let I =

⊕
m≥1N

(m)
n be

the sum of the positively graded pieces of Nn; that is to say, I is the ideal of Nn generated by the ui
for i = 1, . . . , n− 1. Since Nn/I is a one-dimensional Nn-module (spanned by the image of the unit
of Nn), I is a maximal ideal of Nn and hence simple. It follows from the above result that Ik = 0
for k > n(n− 1)/2.

Proposition 4.4.5. The nilcoxeter algebra Nn has a unique simple module, denoted Ln. This is the
one-dimensional module on which all ui such that i = 1, . . . , n− 1 act by zero. The projective cover
of Ln is Nn.

Proof. Let V be a simple Nn-module. Then IV is a submodule of V . So it must be the case that
IV = 0 or IV = V. if IV = V , for k > n(n− 1)/2, we have

V = IV = I2V = · · · = IkV = 0

However, since V is simple, it must be nonzero. So we have IV = 0 and V = Ln.
Now, since Nn is a free, and hence projective, Nn-module, to show that it is the projective cover of
Ln, it is enough to show the kernel I of the canonical map Nn → Nn/I is a superfluous submodule of
Nn. If I+H = Nn for some submodule (or, equivalently, ideal) H of Nn, then H contains an element
of the form 1− a with a ∈ I. This element is invertible; the inverse is given by 1 + a+ a2 + · · ·+ ak,
where k is some integer greater than n(n−1)/2. Hence, H = Nn. So, as desired, I is superfluous.

Recall from Section 4.1 the results stemming from the Jordan-Hölder Theorem for modules; from
these, and Proposition 4.4.5, we have

G0(Nn) = Z[Ln], K0(Nn) = Z[Ln].

Now, let

GN = K0

(
∞⊕
n=0

Nn-mod

)
=

∞⊕
n=0

G0(Nn) =
∞⊕
n=0

Z[Ln], and

KN = K0

(
∞⊕
n=0

Nn-pmod

)
=

∞⊕
n=0

K0(Nn) =
∞⊕
n=0

Z[Nn].

We define a bilinear form 〈−,−〉 : GN ⊗Z KN → Z by setting 〈G0(Nn), K0(Nm)〉 = 0 for n 6= m and
using the form (4.1.1) when n = m.
Define isomorphisms of Z-modules

ϕGN : GN → R = SpanZ{xn/n!}∞n=0, [Ln] 7→ xn/n!

ϕKN
: KN → R′ = SpanZ{xn}∞n=0, [Nn] 7→ xn

Since
〈xm, xn/n!〉 = δm,n = 〈[Nm], [Ln]〉,
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we see that the above maps respect the bilinear forms on the involved spaces (the form on the left
hand side is the Q-valued bilinear form discussed above.)
Thus we have

〈a, b〉 = 〈ϕKN
(a), ϕGN (b)〉, for all a ∈ KN , b ∈ GN .

We now proceed to categorify the action of the Weyl algebra on the modules R and R′.

We can view the nilcoxeter algebra Nn as the subalgebra of Nn+1 generated by u1, . . . , un−1. For
each n ∈ N, define

Xn = (Nn+1)Nn , Dn = Nn(Nn+1).

That is to say, Xn is Nn+1 considered as an (Nn+1, Nn)-bimodule, and Dn is Nn+1 considered as an
(Nn, Nn+1)-bimodule. Thus

(Xn ⊗Nn −) = Ind
Nn+1

Nn
: Nn-mod→Nn+1-mod

(Dn ⊗Nn+1 −) = Res
Nn+1

Nn
: Nn+1-mod→Nn-mod

Now, for σ ∈ Sn, let σ = si1 · · · sik be a reduced expression and define uσ = ui1 · · ·uik . It follows from
the earlier-discussed facts about symmetric groups that uσ is independent of the reduced expression
of σ. It follows also that {uσ}σ∈Sn is a basis for Nn and that the multiplication in this basis is defined
thus

uσuτ =

{
uστ if `(στ) = `(σ) + `(τ),

0 otherwise

We require that the functors defined above are exact, and that they map projective modules to
projective modules. As was mentioned in Section 4.2, the following lemma is required.

Lemma 4.4.6. The bimodules Xn and Dn are projective as both left and right modules for all n ∈ N.

Proof. Recall that all free modules are projective. As a left Nn+1-module Xn is free, generated by
one element, and hence, projective. We now must show that it is projective as a right module. Let
σ ∈ Sn+1 and let i = σ(n+ 1). Then σ can be written uniquely in the form

σ = sisi+1 · · · snσ′, σ′ ∈ Sn

(σ′ = sn · · · si+1siσ). Therefore, Xn is a free right Nn-module with basis

1, un, un−1un, . . . , u1u2 · · ·un.

and is hence projective as a right module. By analogous arguments, it can be shown that Dn is left
and right projective.

Corollary 4.4.7. The functors Xn ⊗Nn − and Dn ⊗Nn+1 − are exact and induce functors

(Xn ⊗Nn −) = Ind
Nn+1

Nn
: Nn-pmod→Nn+1-pmod

(Dn ⊗Nn+1 −) = Res
Nn+1

Nn
: Nn+1-pmod→Nn-pmod

Let N be the direct sum
⊕∞

n=0Nn. Then N is an associative algebra. However, it is no longer
unital. It instead has an infinite family 1Nn , n ∈ N, of pairwise orthogonal idempotents. Let M
be an Nn-module. Then M is naturally an N -module when we set aM = 0 for all a ∈ Nm with
m 6= n. Similarly, any (Nn, Nm)-bimodule can be viewed as an (N,N)-bimodule. Define the (N,N)-
bimodules

X =
∞⊕
n=0

Xn and D =
∞⊕
n=0

Dn.
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Also let

N =
∞⊕
n=0

Nn-mod and Nproj =
∞⊕
n=0

Nn-pmod

N and Nproj can be viewed as subcategories of the category of finite-dimensional N -modules. Define

Ind =
∞⊕
n=0

Ind
Nn+1

Nn
and Res =

∞⊕
n=0

Res
Nn+1

Nn

These are endofunctors of N or Nproj. We now have isomorphisms of functors

(X ⊗N −) ∼= Ind and (D ⊗N −) ∼= Res.

Recall that GN = K0(N ) and that KN = K0(Nproj).

Proposition 4.4.8. The tuples (N , ϕGN , {Ind,Res}) and (Nproj, ϕKN
, {Ind,Res}) are naive categori-

fications of (W, {x, ∂}, R) and (W, {x, ∂}, R′), respectively.

Proof. We have already seen that ϕGN : Gn → R and ϕKN
: KN → R′ are isomorphisms of Z-modules.

It was shown in the proof of Lemma 4.4.6 that Xn is a free right Nn-module generated by n + 1
elements (we say that Xn has rank n + 1). Recall the unique simple module of Nn, Ln. Since dim
Ln = 1, we have

dimFInd(Ln) = dimF(Xn ⊗Nn Ln) = n+ 1

Therefore, the composition series of Xn⊗Ln consists of the unique simple Nn+1-module Ln+1 occuring
with multiplicity n+ 1. So we have the following equation of isomorphism classes:

[Ind(Ln)] = (n+ 1)[Ln+1] ∈ GN

We also have (considering the involved objects as left Nn+1-modules)

Ind(Nn) = Xn ⊗Nn Nn = Nn+1 ⊗Nn Nn
∼= Nn+1,

thus
[Ind(Nn)] = [Nn+1] ∈ KN .

We now consider the Res endofunctors. We have

dimFRes(Ln+1) = dimF(Dn ⊗Nn+1 Ln+1) = dimF(Nn+1 ⊗Nn+1 Ln+1) = 1

So Res(Ln+1) = Ln and therefore [Res(Ln+1)] = [Ln] ∈ GN .
Finally, we have (considered as left Nn-modules)

Res(Nn+1) = Dn ⊗Nn+1 Nn+1 = NnNn+1 ⊗Nn+1 Nn+1 = NnNn+1
∼= N⊕(n+1)

n

where the last isomorphism stems from the fact that, as a left Nn-module, Nn+1 is free and of rank
n+ 1. Therefore, we have

[Res(Nn+1)] = (n+ 1)[Nn] ∈ KN .

From these computations, it follows that we have, for all n ∈ N,

ϕGN ◦ Res([Ln+1]) = ϕGN ([Ln]) = xn/n! = ∂ · xn+1/(n+ 1)! = ∂ · ϕGN ([Ln+1]),

ϕGN ◦ Ind([Ln]) = ϕGN ((n+ 1)[Ln+1]) = (n+ 1)xn+1/(n+ 1)! = x · xn/n! = x · ϕGN ([Ln]),

ϕKN
◦ Res([Nn+1]) = ϕKN

((n+ 1)[Nn]) = (n+ 1)xn = ∂ · xn+1 = ∂ · ϕKN
([Nn+1]),
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ϕKN
◦ Ind([Nn]) = ϕKN

([Nn+1]) = xn+1 = x · xn = x · ϕKN
([Nn]).

These relations can be expressed in the form of commutative diagrams, thus:

GN GN

R R

ϕGN

Ind

x
ϕGN

GN GN

R R

ϕGN

Res

∂
ϕGN

KN KN

R′ R′

ϕKN

Ind

x
ϕKN

KN KN

R′ R′

ϕKN

Res

∂
ϕKN

The result follows: the specified tuples are indeed the naive categorifications required.

As with Example 4.3.3. this naive categorification, with the addition of an isomorphism of
functors lifting the Weyl algebra’s defining relation, can be strengthened to a weak categorification.

Proposition 4.4.9. For each n ∈ N, there exists an isomorphism of (Nn, Nn)-bimodules

Dn+1 ⊗Nn+1 Xn
∼= (Xn−1 ⊗Nn−1 Dn)⊕Nn,

where Nn is considered as an (Nn, Nn)-bimodule in the natural way, with actions given by left and
right multiplication. We thus have an isomorphism of (N,N)-bimodules

D ⊗N X ∼= (X ⊗N D)⊕N.

Proof. We have isomorphisms of (Nn, Nn)-bimodules

Dn+1 ⊗Nn+1 Xn
∼= Nn(Nn+1)Nn , Xn−1 ⊗Nn−1 Dn

∼= Nn ⊗Nn−1 Nn.

Let
m1 : Nn ↪→ Nn+1

be the natural inclusion of (Nn, Nn)-bimodules (uniquely determined by 1 7→ 1). We also have an
injective homomorphism of (Nn, Nn)-bimodules

m2 : Nn ⊗Nn−1 Nn ↪→ Nn+1, m2(a⊗ b) = aunb, a, b ∈ Nn.

For σ ∈ Sn+1, we have uσ ∈ m1(Nn) if and only if σ(n + 1) = n + 1. If σ(n + 1) 6= n + 1, then we
can wrote σ = τ1snτ2 for τ1, τ2 ∈ Sn. Hence uσ ∈ m2(Nn ⊗Nn−1 Nn). Therefore, m1 and m2 define an
Nn, Nn)-bimodule homomorphism

(Nn ⊗Nn−1 Nn)⊕Nn
∼= Nn+1

as desired.

Corollary 4.4.10. There exist isomorphisms of endofunctors of Nn-mod (hence also of Nn-pmod)

Res
Nn+1

Nn
◦ Ind

Nn+1

Nn

∼= (IndNn
Nn−1

◦ ResNn
Nn−1

)⊕ id,

and hence isomorphisms of endofunctors of GN (thus also of KN)

Res ◦ Ind ∼= (Ind ◦ Res)⊕ id.

Proof. This follows from the fact that

(Dn+1 ⊗Nn+1 Xn)⊗Nn − ∼= Res
Nn+1

Nn
◦ Ind

Nn+1

Nn
,

(Xn−1 ⊗Nn−1 Dn)⊗Nn − ∼= IndNn
Nn−1

◦ ResNn
Nn−1

,

Nn ⊗Nn − ∼= id.

These isomorphisms categorify the relation ∂x = x∂+ 1. This, together with the naive categorifi-
cation developed earlier, shows that we have a weak categorification of the modules R and R′ of the
Weyl algebra W.
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4.5 Further directions

We have now developed notions of naive and weak categorification, with examples. This nomenclature
is suggestive: why are such categorifications “naive” or “weak”? Are there “strong” categorifications?
As a conclusion, we will discuss this, informally and briefly.
Recall from Section 2 that a monoid (M, ◦) can be viewed as a category with a single object.
This can be taken further; for example, we can view a group as a category with a single object
in which all morphisms are isomorphisms. This corresponds to the fact that every element in a
group must be invertible. We can, in fact, go even further and treat unital associative R-algebras as
one-object categories with certain properties. Roughly speaking, a strong categorification of a unital
associative R-algebra is a categorification of the algebra considered as a one-object category. Now,
the categorifications that we have seen thus far all “lift”, in some sense, mathematical objects to
the “higher” realm of categories. However, we are now considering a categorification of a category;
this suggests, intuitively, that it is possible to go “higher” still. This is indeed the case: for strong
categorification, we require the notion of a so-called 2-category. We will omit the precise definition
here, but the notion is fairly intuitive: for example, rather than having only objects and morphisms,
a 2-category has 1-morphisms and 2-morphisms. For any two objects X and Y in a 2-category, the
morphisms Mor(X, Y ) form a category; the objects in this category are the 1-morphisms and the
morphisms are the 2-morphisms. Also fairly intuitive is the analogue of the notion of the Grothendieck
group for a 2-category; just as taking the Grothendieck group of a category is moving “down” to the
realm of single objects, the analogous operation for a 2-category also moves “down”: the result is
itself a category.
An example of a 2-category is the category of small categories discussed in Section 2: the objects
are small categories, the 1-morphisms are functors, and the 2-morphisms are maps between functors
known as natural transformations. With this in mind, we can define strong categorification in
a slightly more precise manner than above: let R be a commutative ring and let C be a unital
associative R-algebra considered as a one-object category. Then a strong categorification of C is a 2-
category C with certain properties, together with an isomorphism ϕ which has domain Ksplit

0 (C)⊗ZR
or K0(C)⊗Z R and codomain C.
This is, very roughly speaking, the idea behind strong categorification. For brevity, a full definition
of it has been omitted. For the same reason, interesting examples of naive and weak categorification
have been omitted. For more examples of weak and naive categorification, as well as a full treatment
of strong categorification, see [1] and [4].
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