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Abstract. We begin by briefly reviewing foundational material in higher algebraic K-theory: the
notion of an exact category, Quillen’s Q-construction, and the K-theory space of an exact category
are all defined. We use this material to define the higher K-groups of a ring R. We then prove a version
of Quillen’s localization theorem for the case when R is a Dedekind domain.
This is followed by some material defining the Witt group W (R) of a ring R, and then by a proof of an
analogous localization theorem for the Witt groups of a Dedekind domain.
We then turn to the Hermitian K-theory version of the previous material, discussing, among other things,
a localization theorem for Hermitian K-theory. We show how this gives an analogue of the algebraic
K-theory and Witt theory localization sequences for Dedekind domains. We conclude by outlining a
proof of the Hermitian localization theorem and giving some possible directions to enlarge its scope.
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1. Introduction

The earliest work done on algebraic K-theory centred on the Grothendieck group K0 of a category.
The “classical” theory used explicit algebraic presentations for its definitions; for example, given a ring
R, K0(R) was defined to be the group completion of the abelian monoid consisting of isomorphism
classes of projective R-modules, where the monoid operation is direct sum. This means, for instance,
that K0(F ) where F is any field is isomorphic to the integers, since all projective modules over a field
are free. Explicit definitions were also given for K1 and K2: see ([10], Chapter III) for details.
During the search for a characterization of Kn(R) for general n, several incompatible definitions were
suggested. The “correct” definition was eventually given by Quillen in two steps; first, he used the
+-construction, first introduced by Kervaire in [5], to define

Kn(R) = πn(BGL(R)+),

where πn is a homotopy group, GL(R) is the infinite general linear group given by
⋃
n∈NGLn(R), and

B denotes taking the classifying space of the group. This definition only agrees with the previous
definitions of Kn for n > 0. Quillen’s next step was to repair this. He did so by defining

Kn(R) = πn(BGL(R)+ ×K0(R)).

This is the correct definition, since BGL(R)+ is path-connected and Kn(R) is discrete, so it is equal to
our previous definition in higher degrees and is also equal to the earlier definition of K0. Later, in his
seminal paper [7], Quillen defined the Q-construction, which we discuss in detail in the sequel (Definition
2.1.9). The general idea is the same as the +-construction: one constructs a topological space whose
homotopy groups are K-groups. This time, however, the construction takes an exact category E (an
additive category with a class of exact sequences) and builds a new category QE . One then constructs a
CW complex BQE from this category, and then the homotopy groups of the loop space ΩBQE are the
K-groups of the exact category E . Quillen proved that the +-construction gives the same K-groups as
the Q-construction when the exact category E is the category of projective modules over R. However,
the Q-construction has the advantages of being functorial immediately from the definition and applying
to a wider range of situations. This technique can be used for other forms of K-theory; for example,
the K-theory of a topological space X can be defined via a similar process, except the exact category
one uses is the category of vector bundles over X.
Also in [7], Quillen proved a collection of fundamental theorems; for example, the results known as the
“Devissage” (Theorem 2.2.2) and “Localization” (Theorem 2.2.1) theorems. The Devissage Theorem
gives conditions under which two abelian categories have the same K-theory, and the Localization
Theorem gives a long exact sequence of K-groups. These results are very important, since directly
calculating K-groups can be very difficult. These theorems can also be formulated, using techniques
inspired by Quillen’s work, in the setting of Hermitian K-theory, a type of algebraic K-theory which
is an invariant of rings with involution. It turns out to be the case that Hermitian K-theory has deep
connections with another collection of invariants of rings, called the Witt groups (see [8] for a full account
of this.) Indeed, one may say, as a rule of thumb, that if there is a theorem which has an analogue
in both algebraic K-theory and Witt theory, then there should be a version for Hermitian K-theory.
In the present paper, we illustrate this principle by discussing three different localization theorems for
Dedekind domains; first for algebraic K-theory, then for Witt theory, and finally for Hermitian K-theory.

2. The Localization Theorem for Dedekind Domains

In this section, we discuss the ‘classical’ version of our main result. We begin by briefly reviewing
some foundational material, first formulated by Quillen in [7].
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2.1. The K-Theory Space of an Exact Category. First, we will need to define the notion of an
exact category; as will be clear from the definition, this is a generalization of the notion of an exact
sequence in an abelian category.

Definition 2.1.1. An exact category is a pair (E ,M) where E is an additive category andM is a family
of sequences in E of the form

0→ B
i−→ C

j−→ D → 0

satisfying the following: there exists an embedding of E as a full subcategory of an abelian category A
such that

(i) M is the class of all sequences of the form above which are exact in A,
(ii) E is closed under extensions in A, in the sense that if there is an exact sequence of the form above

in A with B,D ∈ E , then C is isomorphic to an object in E .

The members ofM are called the short exact sequences of E . When the classM is clear, we will use
the abbreviated notation E . We call maps which occur as one of the i above admissible monomorphisms,
and we call maps which occur as one of the j above admissible epimorphisms.
As one may expect, we will also need the notion of a structure preserving map between exact categories:

Definition 2.1.2. An exact functor F : C → D between exact categories is an additive functor which
maps short exact sequences in C to short exact sequences in D. If C is a full subcategory of D, and the
exact sequences in C are precisely those sequences which are exact in D, we call C an exact subcategory
of D.

Definition 2.1.3. Let E be a small exact category. Then K0(E) is defined to be the abelian group with
generators [C], one for each object C of E , and relations [C] = [B] + [D] for every short exact sequence
0→ B → C → D → 0 in E .

Example 2.1.4. Every abelian category A is an exact category in an obvious way: simply takeM to be
the class of exact sequences in A.

Example 2.1.5. The category P(R) of finitely generated projective R-modules is exact, since it embeds
in the abelian category R-mod. As every exact sequence of projective modules splits, it follows from
Definition 2.1.3 that we have K0P(R) = K0(R).

Remark. The example above is an important motivation for the notion of an exact category. The main
point is that there are two different but related notions both denoted by K0, and which both bear the
name “Grothendieck group.” One is the left adjoint of the forgetful functor from abelian groups to
abelian monoids, and is used in the most classical definition of K0(R); one considers the isomorphism
classes of projective R-modules, together with direct sum. This structure is an abelian monoid, and
applying K0 to it, as the notation suggests, yields the abelian group K0(R).
The second notion of Grothendieck group works like K0 in Definition 2.1.3, except that it was initially
defined only in an abelian category. For someone who wanted to put the K-theory of a ring in a
categorical framework, this would pose a problem, since the category P(R) is not abelian. However,
P(R) is certainly equipped with a collection of exact sequences, even though not all of its morphisms
have kernels and cokernels, and the Grothendieck group of an abelian category is defined only in terms
of exact sequences. An important innovation of Quillen was to exploit this, and introduce the more
general idea of an exact category, which solves the aforementioned problem, and also, as we will see,
opens the door to an elegant definition of the higher K-groups of a ring.

Our goal is to define the higher K-groups of a small exact category, such that, when the exact category
is the category P(R), we obtain a definition of the higher K-groups of the ring R. To do this, we must
first define the notion of the classifying space of a category.
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Definition 2.1.6. Let C be a small category. Its nerve, denoted N∗C, is the simplicial set whose
p-simplices are the diagrams in C of the form

X0 → X1 → · · · → Xp.

The i-th face map of this simplex is obtained by deleting the object Xi, and the i-th degeneracy is
obtained by replacing Xi with id : Xi → Xi.
The classifying space of C, denoted BC or |C|, is the geometric realization of NC. This is a CW complex
with p-cells in bijection with the nondegenerate p-simplices of the nerve. The precise definition is as
follows.

Definition 2.1.7. Let S be a simplicial set. Its geometric realization, denoted |S|, is a topological space
constructed in the following manner.
For each p ≥ 0, make the product Sp×∆p into a topological space by viewing it as the disjoint union of
|Sp| copies of ∆p. We index these copies by the elements s of Sp, so that the number of copies is equal to
the cardinality of Sp. Now, consider the disjoint union of each Sp×∆p as a topological space, and denote
this larger space by S̄. Define the equivalence relation ∼ on S̄ by the rule that (s, x) ∈ Sm × ∆m and
(t, y) ∈ Sn ×∆n are equivalent if and only if there exists a map α : [m] → [n] in the simplex category
∆ such that α∗(t) = s and α∗(x) = y. That is to say:

(α∗(t), x) ∼ (t, α∗(s))

The space X̄/ ∼ is the geometric realization |X|.

Example 2.1.8. Let n be the poset {1 < · · · < n}, viewed as a category. Then Npn consists of the diagram
1 < · · · < p if 1 ≤ p ≤ n, and is empty otherwise. Thus, the classifying space of n is homeomorphic to
the standard n− 1 simplex.

We are now ready to define the higher K-groups of a small exact category E : the idea is that they will
be the homotopy groups of the classifying space of a category QE , which is known as the Q-construction,
and was first defined by Quillen in [7].

Definition 2.1.9 (Quillen’s Q-Construction). Let E be a small exact category. Then the category QE
has the same objects as E . A morphism from C to D in QE is an equivalence class of diagrams

C D2 D
j i

where j is an admissible epimorphism and i is an admissible monomorphism.
Two such diagrams are equivalent if there is an isomorphism between them which is the identity on C
and D. The composition of the morphism above with a morphism D � E2 � E is C � E1 � E,
where E1 is the pullback of the diagram

E2

D2 D

It is a fact ([10], IV.6.2) that the geometric realization BQE is a connected CW complex with
π1(BQE) ∼= K0(A). In light of this, we make the following definition.

Definition 2.1.10. Let E be a small exact category. Then K(E), which we call the K-theory space of
E , denotes the loop space ΩBQE , and we set

Kn(E) = πnK(E) = πn+1(BQE) for n ≥ 0.

In particular, if we let E be P(R), this gives a definition of the K-groups of the ring R which is in
agreement with other definitions.
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2.2. Localization, Devissage, and Applications. In this subsection, we discuss the ‘classical’ version
of our main result. We begin by stating a fundamental theorem of algebraic K-theory, first proved by
Quillen in [7]:

Theorem 2.2.1 (Localization). Let B be a Serre subcategory of a small abelian category A. Then the
sequence of K-theory spaces

K(B)→ K(A)
loc−→ K(A/B)

is a homotopy fibration. Therefore, there is a long exact sequence of homotopy groups

(2.1) · · · → Kn+1(A/B)
∂−→ Kn(B)→ Kn(A)

loc−→ Kn(A/B)
∂−→ Kn−1(B)→ · · ·

which ends with K0(B)→ K0(A)→ K0(A/B)→ 0.

Proof. See [7]. �

Remark. In fact, localization also holds for certain types of exact category, but we will only need the
abelian case in the present paper.

On a number of occasions, we will require another fundamental theorem due to Quillen:

Theorem 2.2.2 (Devissage). Let i : A ⊂ B be an inclusion of abelian categories such that A is an exact
abelian subcategory of B and A is closed in B under subobjects and quotients. Suppose that every object
B of B has a finite filtration

0 = Br ⊂ · · · ⊂ B1 ⊂ B0 = B

by objects in B such that every subquotient Bi/Bi−1 lies in A. Then

K(A) ' K(B) and Kn(A) ∼= Kn(B) for all n.

Proof. See [7]. �

Now, let R be a Noetherian ring, and let S be a central, multiplicatively closed subset of R. Denote by
M(R) the category of finitely generated left R-modules, and denote by MS(R) the full subcategory of
finitely generated S-torsion R-modules. Also, let G(R) denote the K-theory space of M(R) and define
the G-groups of R by Gn(R) = KnM(R). It is a fact ([10], II.6.4.1) that MS(R) is a Serre subcategory
of M(R), with quotient category M(S−1R). The localization theorem 2.2.1 gives a homotopy fibration

(2.2) KMS(R)→ G(R)→ G(S−1(R)).

It is observed in ([10], V.4.4) that MS(R) is the colimit over all s ∈ S of the categories M(R/sR), and
that

K∗MS(R) ∼= lim−→ G∗(R/sR).

Now, let ChbSM(R) be the category of bounded chain complexes of S-torsion finitely generated left
R-modules. Also, define KChbSM(R) := G(R on S). Comparing (2.2) to the homotopy fibration

G(R on S)→ G(R)→ G(S−1R)

from ([10], V.2.6.1), we see that the canonical map MS(R)→ ChbSM(R) induces a homotopy equivalence

KMS(R)
'−→ G(R on S)
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The prototypical case is when S = {sn | n ∈ N}, for some element s ∈ R and n ∈ N. In this
situation, the maps G(R/sR) → G(R/snR) are homotopy equivalences by Devissage, so that we have
G(R/sR) ' KMS(R). At this point, we will require the notion of a transfer map.

Definition 2.2.3. For any ring R, let H(R) denote the category consisting of all R-modules which
possess a finite resolution consisting of finitely generated projective R-modules.

Definition 2.2.4. Let f : R→ S be a ring homomorphism such that S has a finite resolution consisting
of finitely generated projective R-modules. Let M be an S-module; we can make M into an R-module,
with action given by r ·m = f(r) ·m.
In fact, this defines a functor P(S)→ H(R). We call the induced map

f∗ : K(S)→ KH(R) ∼= K(R)

the transfer map. Obviously, the transfer map induces a map f∗ : Kn(S)→ Kn(R) for each n.

By inspection, the map G(R/sR)→ G(R) identifying G(R/sR) with the homotopy fibre of G(R)→
G(R[1/s]) is the transfer i∗ associated to the map i : R → sR. Thus, in this situation, the long exact
localization sequence 2.1 becomes:

(2.3) · · · → Gn+1(R[s−1])
∂−→ Gn(R/sR)

i∗−→ Gn(R)→ Gn(R[s−1])
∂−→ · · ·

This is a sequence of K∗(R) modules, because P(R) acts on the sequence of abelian categories

MS(R)→M(R)→M(S−1R).

2.3. Dedekind Domains. Now, suppose D is a Dedekind domain, let F denote its field of fractions,
and let p denote a nonzero prime ideal of D. Then D, F , and D/p are all regular, so that we have
K∗(D) ∼= G∗(D), K∗(F ) ∼= G∗(F ), and K∗(D/p) ∼= G(D/p) ([10], V.3.3). This proves the following:

Theorem 2.3.1. Using the notation immediately above, and setting S = R \ {0}, the long exact local-
ization sequence 2.3 of the previous subsection becomes

· · ·Kn+1(F )
∂−→ ⊕pKn(R/p)

⊕(ip)∗−−−→ Kn(R)→ Kn(F )
∂−→ · · · ,

where the direct sums run over all nonzero prime ideals of R, and the maps (ip)∗ are transfer maps.

Bibliographical Note. The preceding section is based primarily on [7] and [10].

3. Localization for Witt groups

We now turn our attention to an analogous theorem for Witt groups of Dedekind domains. Throughout
this section, except where otherwise stated, D will denote a Dedekind domain and F will denote its
quotient field. We will begin by reviewing some basic definitions and results on Witt groups.

3.1. Witt groups. Throughout this subsection, R will be a commutative unital ring and X will be a
left R-module.

Definition 3.1.1. A bilinear form on a left R-module X is a function

β : X ×X → R

such that β(x, y) is R-linear as a function of x for each fixed y, and R-linear as a function of y for
each fixed x. Furthermore, a bilinear form β is called an inner product on X if it satisfies the following
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non-degeneracy conditions.
Firstly, for each R-linear map

ϕ : X → R

there should exist an element x0 ∈ X such that the homomorphism

x 7→ β(x0, y)

is equal to ϕ. Similarly, there should exist a unique y0 ∈ X such that the homomorphism x 7→ β(x, y0)
is equal to ϕ.

Example 3.1.2. Letting R = C, any complex inner product space is a bilinear form module in the obvious
way.

Our usual notation for an inner product will be β(x, y) = x · y. If β is a bilinear form or inner product
on X, we call the pair (X, β) a bilinear form module or an inner product module over R; also, when
there is no danger of confusion, we will use the abbreviated notation X.

Definition 3.1.3. Two bilinear form modules (X, β) and (X ′, β′) are isomorphic if there exists an
R-linear bijection f : X → X ′ satisfying the identity β′(f(x), f(y)) = β(x, y) for all x and y in X.

Finitely generated projective R-modules are of particular interest for our purposes:

Definition 3.1.4. An inner product module X will be called an inner product space if X is finitely
generated and projective over R.

Also of particular interest are symmetric inner product spaces, which are defined as follows:

Definition 3.1.5. An inner product space X is symmetric if its inner product has the property that
x · y = y · x for all x, y ∈ X.

Finally, before defining the Witt group W (R) of R, we will require the notion of a split inner product
space, defined as follows:

Definition 3.1.6. A symmetric inner product space S over a ring R is split if there exists a submodule
N ⊂ S such that N = N⊥ and N is a direct summand of S. (N⊥ = {s ∈ S | s ·N = 0}.)

We can now define the notion of the Witt group of R; for proof that W (R) is a group, see ([4], Chapter
I.)

Definition 3.1.7. We say that two symmetric inner product spaces X and X ′ over R are in the same
Witt class, and denote this by X ∼ X ′, if there exist split inner product spaces S and S ′ such that
X ⊕ S is isomorphic to X ′ ⊕ S ′. The Witt classes together with the orthogonal sum operation form a
group W (R), which we call the Witt group of R.

In order to prove the main theorem of this section, we will require some material on valuations.

3.2. Valuations and the residue class form homomorphisms.

Definition 3.2.1. A discrete valuation on a field F is a group homomorphism v from F× to Z satisying
the equation

v(α + β) ≥ Min(v(α), v(β))

for α, β, α + β 6= 0. Furthermore, we set v(0) =∞.
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Example 3.2.2. Let F be the field of rational functions with complex coefficients, in one indeterminate

X. We can write f(X)
g(X)
∈ F as Xn s(X)

t(X)
, where s(0) and t(0) are non-zero and n is an integer. Then, the

map d : F× → Z which sends f(X)
g(X)

to n is a discrete valuation.

Notation. In this subsection, a discrete valuation on a general field F will be denoted v. The associated
valuation ring, which consists of all α ∈ F such that v(α) ≥ 0, will be denoted D. The unique maximal
ideal of D (which consists of all elements α ∈ F such that v(α) > 0) will be denoted B, and the residue
class field D/B will be denoted F̄ . Finally, the image of u ∈ D× will be denoted ū ∈ F̄×, and, for
u ∈ F×, 〈u〉 will denote the symmetric inner product space with one element e1 in its basis such that
e1 · e1 = u.

We aim to construct a group homomorphism ∂v : W (F ) → W (F̄ ), which will be well defined up to
multiplication by units of the form 〈ū〉 in W (F̄ ). In order to define ∂v, we will make use of the following
lemma, which will allow us to give a presentation of W (F ).

Lemma 3.2.3. The abelian group W (F ) is generated by the elements 〈u〉 with u ∈ F , subject only to
the following relations.

(i) 〈u〉 = 〈uα2〉 for α 6= 0.
(ii) 〈u〉+ 〈−u〉 = 0

(iii) 〈u〉+ 〈v〉 = 〈u+ v〉+ 〈uv(u+ v)〉 for u+ v 6= 0.

Proof. See ([4], Chapter IV, Lemma 1.1) �

Next, we choose a prime element π ∈ D; that is, an element with v(π) = 1, so that πD = B. Then,
every element of F× can be written uniquely as a product of the form πiu for u ∈ D×(i > 0.)

Lemma 3.2.4. Fixing π, and fixing k ∈ {0, 1}, there is a unique additive homomorphism

ψk : W (F )→ W (F̄ )

which maps each generator 〈πiu〉 to 〈ū〉 when i ≡ k mod 2 and to 0 when i 6≡ k mod 2.

Proof. By Lemma 3.2.3, we only need to check that each one of the relations which define W (F ) map
to a valid relation in W (F̄ ). This is immediately clear for all of the relations except the third. To show
our assetions holds for relation (iii), we let εi denote 1 when i ≡ k mod 2 and 0 when i 6≡ k mod 2.
We must show that if πhu1 + πiu2 = πju3, then ε〈ū1〉+ ε〈ū2〉 = εj〈ū3〉+ εh+i+j〈ū1ū2ū3〉 in W (F̄ ). After
dividing by a suitable power of π (and re-indexing if necessary) we may assume that two of the three
integers h, i, j are 0 and that the third is greater than 0. The argument splits into three cases here.

(1) When h = i = j = 0, ū1 + ū2 = ū3, and the required equation follows.
(2) When h > i = j = 0, ū2 = ū3, hence 〈ū1〉 = 〈ū1ū2ū3〉, and the required equation follows. The

case i > 0 is totally analogous.
(3) When 0 = h = i < j, ū1 + ū2 = 0, hence 〈ū1〉 + 〈ū2〉 = 0, 〈ū3〉 + 〈ū1ū2ū3〉 = 0, and the required

equation follows.

�

Definition 3.2.5. The group homomorphisms ψ0 and ψ1 are called the two residue class form homo-
morphisms associated with the valuation v. In the present paper we will only require the use of ψ1, and
therefore use the alternative notation ∂v.

Remark. The homomorphism ∂v depends on the choice of prime element π; however, none of the following
proofs will depend on it, so that our arguments are valid for the ∂v obtained from any choice of π.
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Now, let D ⊂ F be the valuation ring associated with v, and let W (D) → W (F ) be the natural
induced group homomorphism.

Lemma 3.2.6. The composition

W (D)→ W (F )
∂v−→ W (F̄ )

is zero.

Proof. Since D is a local ring, all projective D-modules are free; this means that any inner product space
over D can be expressed as an orthogonal sum consisting of inner product spaces of rank 1 with inner
product matrix (u), and of inner product spaces of rank 2 with inner product matrices of the form[

α 1
1 β

]
with α ∈ B, and with β and 1 in F.
In the first case, the corresponding element 〈u〉 in W (F ) clearly satisfies ∂v〈u〉 = 0, since u = π0u and
0 6≡ 1 mod 2.
In the second case, if α 6= 0, the corresponding element in W (F ) an be written as a sum 〈α〉+〈α(αβ−1)〉,
where αβ − 1 ≡ −1 mod B since α ∈ B. Clearly, ∂v annihilates any such sum.
Finally, if α = 0, the given summand is split: thus, each possible orthogonal summand maps to zero in
W (F̄ ) and the result follows. �

3.3. Witt groups of Dedekind domains. Towards our goal, we can use the material in the previous
subsection, since, for a Dedekind domain D, every nonzero prime ideal p ⊂ D gives rise to a p-adic
valuation on the quotient field F , which we will now define in two steps.

Definition 3.3.1. Let R be a principal ideal domain with field of fractions F , and let π be an irreducible
element of R. Since every principal ideal domain is a unique factorization domain, every nonzero a ∈ R
can be written uniquely as

a = πeape11 . . . penn ,

where the ei are non-negative integers and the pi are irreducible elements of R, under the condition that
there is no unit u of R such that π = upi or pi = upj for any i, j with i 6= j. Then, the π-adic valuation
vπ on F is given by vπ(0) =∞ and vπ(a/b) = ea − eb for nonzero a and b in R.

Definition 3.3.2. Let D be a Dedekind domain with field of fractions F , and let p be a non-zero
prime ideal of D. Then the localization Dp is a principal ideal domain with field of fractions F. The
construction of the previous definition applied to the prime ideal pDp of Dp yields the p-adic valuation
on F.

The p-adic valuation has residue class field D/p. We denote the associated homomorphism W (F )→
W (D/p) by ∂p.
Now, let X be an inner product space over F . Given a finite subset {x1, . . . , xk} ⊂ X containing a basis
for X over F , we form the D-submodule

L = Dx1 + · · ·+Dxk ⊂ X.

Definition 3.3.3. We call any D-submodule of the form above a lattice or a D-lattice in X.

Given a lattice L ⊂ X, the dual lattice L] ⊂ X is defined thus:

L] := {x ∈ X | x · l ∈ D ∀ l ∈ L},

where · denotes the inner product of X.
9



Remark. For any lattice L, the dual lattice L] is a D-module, canonically isomorphic to HomD(D,L);
indeed, every D-linear map from L to D extends uniquely to an F -linear map from X to F , which must
have the form x 7→ x · x0 for some unique x0 ∈ L].

At this point, we will require a general lemma from homological algebra.

Lemma 3.3.4. Let D be a Dedekind domain. Then every finitely generated torsion free D-module is
projective.

Proof. See ([2], VII.5). �

We use this lemma to conclude that L and L] are projective. We will now state and prove a key
theorem, from which the main result of this section will follow quickly.

Theorem 3.3.5. An inner product space X over F contains a lattice L such that L = L] if and only
if the Witt class of X is in the kernel of the homomorphism ∂p : W (F ) → W (D/p) for every nonzero
prime ideal p of D.

Proof. We begin by noting that L is self-dual if and only if the inner product on X, when restricted to
L, makes L into an inner product space over D.
One direction of the proof is straightforward; if X contains a self-dual lattice, it is in the image of the
map W (D)→ W (F ) : it therefore follows immediately from Lemma 3.2.6 that X is in the kernel of ∂p
as required.
For the converse, we will work on a case-by-case basis. First, we assume that D has a unique nonzero
prime ideal p, so that D is the valuation ring associated with the p-adic valuation on F . Now, if X is
an inner product space over F , we can write it in the following way:

X ∼= 〈πu1〉 ⊕ · · · ⊕ 〈πum〉 ⊕ 〈um+1〉 ⊕ · · · ⊕ 〈un〉,
where π is defined as above and the ui are units of F. This is valid by Lemma 3.2.3 and the discussion
immediately after; taken together, these say that W (F ) is generated by elements of the form 〈πiu〉 where
i is an integer and u is a unit of F . Also, we have the relation 〈u〉 = 〈uα2〉 for α 6= 0. Combining all of
this information allows us to consider the powers of π in the generators modulo 2, which lets us write
X in the form above.
If the Witt class of X is in ker ∂p, then, by definition, the inner product space over D/p defined by

〈ū1〉 ⊕ · · · ⊕ 〈ūm〉
is split; the generators with a factor of π go to 0 since 0 6≡ 1 mod 2. Thus, this inner product space has
an inner product matrix of the form [

0 I
I B

]
with respect to a suitable basis.
Lifting to the ring D, it follows that the inner product space 〈u1〉 ⊕ · · · ⊕ 〈um〉 has an inner product
matrix of the form [

A I
I B

]
such that every entry of the matrix A is in p. Hence, this is also true of the inner product space
〈u1〉 ⊕ · · · ⊕ 〈um〉 over F.
Tensoring with the inner product space 〈π〉, we obtain that the inner product space 〈πu1〉⊕ · · ·⊕ 〈πum〉
has inner product matrix [

πA πI
πI πB

]
10



Multiplying each of the first m/2 basis vectors by π−1, we obtain[
π−1A I
I πB

]
This is a matrix with entries in D, whose determinant is a unit of D.
Now, consider the lattice L in 〈πu1〉 ⊕ · · · ⊕ 〈πum〉 spanned by our modified basis. The inner product
defined by the matrix immediately above, when restricted to L, gives an inner product in L; this is
implied by the combination of the facts that it has entries in D and that its determinant is a unit of D.
Furthermore, we have an obvious self-dual lattice in 〈um+1〉 ⊕ · · · ⊕ 〈un〉; simply take the D-submodule
spanned by um+1, . . . , un. Forming the direct sum of the two self-dual lattices we have defined gives the
required self-dual lattice in X.
Now, we turn our attention to the case where D has more than one nonzero prime ideal. For each
p, let Dp ⊂ F be the associated valuation ring. Choosing a basis e1, . . . , en for X, we note that each
inner product ei · ej belongs to Dp for all but a finite number of nonzero prime ideals. Similarly, the
determinant of the inner product matrix (ei · ej) belongs to Dp for all but a finite number of nonzero
prime ideals.
Thus, there exists a finite set S of nonzero prime ideals such that the Dp-lattice

Dpe1 + · · ·+Dpen

is self-dual for all p 6∈ S. Now, suppose that ∂p(X) = 0 for all p. Then, by arguments above, for each
p ∈ S, we can choose a self-dual Dp-lattice.
At this point, we will require a lemma.

Lemma 3.3.6. Let X be an F -vector space with basis e1, . . . , en. Given a Dp-lattice Lp in X for each
prime p, subject to the restriction that

Lp = Dpe1 + · · ·+Dpen

for all but a finite number of p, there is a unique D-lattice

L =
⋂
p

Lp

such that the Dp-lattice spanned by L is equal to Lp for every p.

Proof. See ([6], §81 : 14.) �

We can combine this lemma with the previous discussion to conclude that there exists a D-lattice L
with the property that the induced Dp-lattice DpL is self-dual for every non-zero prime ideal p. Our aim
is to show that L is self-dual.
To see this, first let x and y be elements of L. Then x · y ∈ Dp for every p, so x · y ∈ D. This proves that
L ⊂ L].
Conversely, if x ∈ L], then x ·DpL ⊂ Dp for every prime p, hence

x ∈
⋂
p

(DpL)] =
⋂
p

DpL = L.

Therefore, the lattice L is self-dual, as required. �

In light of this theorem, we can proceed immediately to our main result:

Corollary 3.3.7. For any Dedekind domain D with field of fractions F , the sequence

0→ W (D)→ W (F )
⊕∂p−−→ ⊕pW (D/p)

is exact, where the direct sum is over all nonzero prime ideals of D.
11



Proof. Exactness at W (F ) follows immediately from Theorem 3.3.5, so we only need to show that the
map W (D)→ W (F ) is injective. This is the same as showing that, if an inner product space L over D
corresponds to a split inner product space over F , then L is itself split.
To this end we think of L as a self-dual lattice in the inner product space X = F ⊗D L. Let N ⊂ X
be a subspace of half the dimension, with N ·N = 0, so that N = N⊥. Then, we have that N ∩ L is a
self-orthogonal subspace of L; indeed, let x be an element of L orthogonal to all of N ∩ L. Then it is
orthogonal to all of N , and hence belongs to N⊥ ∩ L = N ∩ L, as required.
It only remains to show that N ∩ L is a direct summand of L, but this is the case since the quotient

L/(N ∩ L) ⊂ X/N

is finitely generated and torsion free, hence projective by Lemma 3.3.4. Thus, L is split, as required. �

Example 3.3.8. In some situations, the maps ∂p above are surjective, so that we have exactness at
⊕pW (D/p). In particular, this is true when D = Z, so that we have an exact sequence

0→ W (Z)→ W (Q)→ ⊕W (Z/pZ)→ 0,

where the direct sum runs over all primes p.

Bibliographical Note. The preceding section is based primarily on [4].

4. Localization for Hermitian K-theory

In this concluding section, we turn our attention to the analogue of the localization theorem for
Hermitian K-theory.

4.1. Preliminaries. Before we can state the main theorem of the section, we will require some pre-
liminary material. First, let R be a ring, and write R-free for the category of finitely generated left
R-modules. Further, we write F(R) for the category whose objects are the natural numbers, with mor-
phisms from n to m being given by the abelian group of m×n matrices (rij) with entries in R, and with
composition of morphisms being given by matrix multiplication. Clearly, F(R) and R-free are equivalent
categories.
Similarly, we will write R-proj for the category of finitely generated projective left R-modules.

Definition 4.1.1. Let C be a category. Then the idempotent completion of C, denoted C̃, is the category
whose objects are pairs (C, p) with C an object of C and with p a morphism from C to C such that
p2 = p. A map in C̃ from (C, p) to (D, q) is a map f : C → D such that f ◦ p = f = q ◦ f, and
composition is given by composition of maps in C. Further, the category C is called idempotent complete
if the functor C → C̃ given by C 7→ (C, idC) is an equivalence of categories.
Agreeing with notation used earlier in the paper, we write P(R) for the idempotent completion of F(R):
this is valid because P(R) is equivalent to R-proj. To see this, let (n, p) be an object of P(R). Then the
module pRn is projective, since we have the direct sum decomposition Rn ∼= pRn ⊕ (1− p)Rn. Defining
a functor which sends (n, p) to pRn gives the desired equivalence.

Remark. We use functorial versions of R-free and R-proj (denoted F(R) and P(R)) respectively) because
doing so will make it easier to check the existence of dualities and duality-preserving functors, which
are fundamental to Hermitian K-theory and will be defined shortly. In fact, we will work with explicit
functorial versions of most of the categories defined in what follows.

Now, let Σ ⊂ R be a multiplicative subset of central non-zero divisors, and let H1
Σ,proj be the category

whose objects are the left R-modules for which there is an exact sequence of left R-modules

0→ P1
i−→ P0 →M → 0

12



such that P0 and P1 are in R-proj and Σ−1i : Σ−1P1 → Σ−1P0 is an isomorphism. (Equivalently,
Σ−1M = 0.)
We make H1

Σ,proj into an exact category by declaring a sequence to be exact if it is exact as a sequence
of R-modules.
Now, we wish to work with a functorial version of H1

Σ,proj, which we denote by TΣ and define as follows:

• The objects of TΣ are monomorphisms i : P1 → P0 fitting into an exact sequence of the form
above, such that Σ−1i is an isomorphism.

• The abelian group of morphisms from P1
i−→ P0 to Q1

j−→ Q0 is the abelian group of pairs (f1, f0)
of morphisms fi : Pi → Qi (i = 0, 1) with f0i = jf1 modulo pairs of the form (hi, jh) for some
map h : P0 → Q1.

Objects for which i is the identity map of some projective module P are zero objects in TΣ; we identify
all of these, and refer to the resulting zero object as the base point. It is not difficult to see that the
functor from TΣ to H1

Σ,proj given by sending i to its cokernel is an equivalence of categories. We aim to
use this equivalence to give TΣ the structure of an exact category. First, we will define a fundamental
notion of hermitian K-theory; that of a category with duality.

Definition 4.1.2. A category with duality is a triple (C, ], η), where C is a category, ] is a functor from C
to Cop, and η : idC → ]] is a natural isomorphism, such that for all objects C of C, we have 1C] = η]C ◦ηC] .
Given two categories with duality (C, ], η) and (D, ], τ), a functor F : C → D is called duality-preserving
if ] ◦ F = F op ◦ ] and F (ηC) = τF (C) for every object C of C.

As one may expect, this notion can be extended, so that the category C has extra structure, and this
structure is compatible with the duality:

Definition 4.1.3. An exact (resp. preadditive) category with duality is a category with duality (E , ], η)
such that E is an exact (resp. preadditive) category with duality, and such that the functor ] : E → Eop

is exact (resp. additive).

Definition 4.1.4. Given a category with duality (C, ], η), its associated hermitian category Ch is defined
as follows.
The objects are pairs (M,φ), with M an object of C and φ : M →M ] an isomorphism such that φ = φ]η.
A morphism α : (M,φ)→ (N,ψ) is a morphism from M to N in C such that α]ψα = φ.

Let ε be either 1 or −1, and let (C, ], η) be a preadditive category with duality. Then we denote by

εCh the hermitian category associated to the category with duality (C, ], εη.)

Example 4.1.5. Let R be a ring with involution; that is to say, a ring with a map ∗ : R→ Rop satisying
(a+ b)∗ = a∗ + b∗, (ba)∗ = a∗b∗, and (a∗)∗ = a.
In other words, (R, ∗, id) is a preadditive category with duality with one object. This duality ∗ can be
extended to a duality ] on F(R) and P(R) as follows:

• On F(R), n = n], and (rij)
] = (r∗ji). (For example, when R = C, with ∗ given by complex

conjugation, this is the same as taking the conjugate transpose of a matrix.)
• On P(R), we use the duality on F(R); (n, p)] = (n], p]).

With these definitions, one can verify by direct inspection that (F(R), ], id) and (P(R), ], id) are additive
(in fact, exact) categories with duality.

Remark. Since the two categories are equivalent, one may expect the duality ] on P(R) to have an
analogue in the category R-proj; this is indeed the case, and it turns out to have a familar description,
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which we will now outline. Let M be a left R-module, and let N be an R-bimodule. We define the
following left R-module:

Homskew R(M,N) := {f ∈ HomZ(M,N) | f(rm) = r∗f(m)}

which is an R-module with the action r · f(m) = rf(m).
Then, the duality on R-proj is given by M ] := Homskew R(M,R). The natural isomorphism id → ]] is
given at each M by the map M → M ]] which sends m to ev∗m, where evm is the evaluation at m. If R
is commutative with trivial involution, then ] is simply HomR(−, R).

We now wish to define a duality on the category TΣ. As above, let (R, ]) be a ring with involution
and let Σ ⊂ R be a multiplicative subset of non-zero divisors; in addition, let Σ be closed under the
involution. Then the localization Σ−1R exists and ] defines an involution on Σ−1R by (s−1r)] = (s])−1a].
We denote by Ext1

skewR(−, R) the first right derived functor of Homskew R(−, R) : this functor induces an
exact duality on H1

Σ,proj, and there exists a natural isomorphism η : id → (Ext1)2. By our assumptions

on Σ, the localization map R → Σ−1R is injective and respects the involution structure. This implies
that, for i an object of TΣ, we have that i] : P ]

0 → P ]
1 is injective, and that the cokernel of i] is Σ-torsion,

so that i] is an object of TΣ. Thus, the assignment i 7→ i] defines a duality on TΣ, which makes (TΣ, ], id)
into an additive category with duality. Moreover, since ] is simply an explicit version of Ext1

skewR(−.R),
which is exact, ] is also exact, so that (TΣ, ], id) is an exact category with duality.
For a given exact category E , we must also define a simplicial exact category with duality (a simplicial
object in the category of exact categories with duality) R∗E . The starting point for this is in [9]; therein,
Waldhausen constructs a simplicial exact category S∗E such that the classifying space of iS∗E (the
category with the same objects as S∗E and morphisms the isomorphisms of S∗E) is homotopy equivalent
to QE . If E happens to be an exact category with duality ], then pointwise application of ] makes
SnE an exact category with duality for each n. A slight difficulty arises here: one can show that the
assignment n 7→ SnE is not a simplicial exact category with duality, since the face and degeneracy maps
do not commute with the dualities. However, this problem can be overcome by considering the edge-wise
subdivison n 7→ Sn+1E , which is a simplicial exact category with duality. The aforementioned category
R∗E will be a version of the edge-wise subdivision.
To make this precise, let n ≥ 0 be an integer, and let n be the totally ordered set

{n′ < (n− 1)′ < · · · < 0′ < 0 < · · · < (n− 1) < n}.

We make n into a category with duality by setting l] = l′ and (l′)] = l for 0 ≤ l ≤ n. We will write ′ for
the duality ].
Now, let θ : [n] → [m] be a map in the simplicial category ∆. Then sending (θ : [n] → [m]) to
(θ : n → m), where θ(l) = θ(l) and θ(l′) = θ(l)′ makes the assignment [n] 7→ n into a cosimplicial
category with duality.
Now, denote by I(n) the category of arrows in n; that is to say, the objects of I(n) are pairs (p, q) ∈ n×n
such that p ≤ q, and the morphisms of I(n) are commutative squares in n. The duality on n induces
a duality on I(n). Also, the cosimplicial structure defined by [n] 7→ n makes I(n) into a cosimplicial
category with duality. With all of this information in place, we can now define the category R∗E .

Definition 4.1.6. Let (E , ], η) be an exact category with duality. Fix a zero object with 0 = 0] and
call it the base point. Then the simplicial exact category (R∗E , ], η) is defined as follows.
The objects of RnE are functors A : I(n)→ E where all the sequences Apq → Apr → Aqr are admissible
exact sequences in E whenever p ≤ q ≤ r in n, and where App = 0, the base point object of E . The
morphisms of RnE are natural transformations. The dual of an object is given by (A])pq = (Aq′p′)

], and
the dual of a morphism is given by taking the point-wise dual and re-indexing. We set (ηA)pq = ηApq .
Finally, the exact structure on RnE is defined pointwise by the additive split exact structure on E ; that
is, the exact structure where the admissible exact sequences are exactly the split exact sequences.
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Remark. We may write T ⊕Σ for the category TΣ equipped with the split exact structure; evidently, this
category is equivalent as an exact category to R0TΣ.

Now, the simplicial structure on (R∗E , ], η) is induced by the cosimplicial structure on I(∗). We write
Rh
∗E for the hermitian category of R∗E . Forgetting the duality, one easily sees that RnE is equivalent

to Sn+1E .

Definition 4.1.7. Given an exact category with duality (E , ], η), we define a topological space εW(E)
to be the geometric realization of a certain bisimplicial set:

εW(E) := |(p, q) 7→ N i
p εRh

qE|
As earlier, N∗ denotes the nerve of a category. We call this realization the W-theory space. We may
write εW (R) for the W -theory space associated with (P (R), ], id), where R is a ring with involution.
Finally, the U-theory space of an exact category with duality E is defined thus:

εU(E) := ΩεW(E)

4.2. The Hermitian K-theory Space of an Exact Category. Analogously to standard K-theory,
we wish to construct a space Kh(E), where E is an exact category with duality, such that the homotopy
groups of Kh(E) are the hermitian K-groups of E . In particular, we will define the hermitian K-groups
of a ring with involution R to be the homotopy groups of Kh(P(R)). To do this, we will have to define
a Hermitian analogue of Quillen’s Q-construction.

Definition 4.2.1. Let (E , ], η) be an exact category with duality, and consider the hermitian category
Eh. We define a category Qh(E , ], η) as follows. The objects are the objects of Eh. A map (M,φ)→ (N,ψ)
is an equivalence class of diagrams

M U N
j i

as in the ordinary Q-construction, but, as well as being either admissible epimorphisms or admissible
monomorphisms respectively, j and i must also be morphisms in Eh, and i must induce an isomorphism
from ker(j) to ker(i]ψ).

Remark. Per Remark 1.11 in [3], the category QhE has classifying space homotopy equivalent to the
space W(E) of the previous subsection.

With this definition in place, we can define the Hermitian K-theory space of an exact category with
duality.

Definition 4.2.2. Let (E , ], η) be an exact category with duality. The obvious forgetful functor from
QhE → QE which sends (M,φ) to M induces a map

BQhE → BQE
on classifying spaces whose homotopy fibre (considering a zero object of E to be a base point of QE) is
defined to be the Hermitian K-theory space Kh(E , ], η) of E . The Hermitian K-groups of E are defined
to be the homotopy groups of this space.

Definition 4.2.3. For a ring with involution R and ε equal to 1 or −1, the Hermitian K-theory space
is defined thus:

εK
h(R) = Kh(P(R), ], id),

where (P(R), ], id) is the exact category with duality defined in Example 4.1.5.

Remark. Hermitian K-theory is a generalization of algebraic K-theory in the following way: let R be
a ring, and consider the ring with involution R × Rop, where the involution is given by swapping the
factors. It is a fact ([3], Remark 3.3) that Kh(R×Rop) is homotopy equivalent to K(R).

15



4.3. Localization Theorems for Hermitian K-Theory. We now have all the elements in place
required to state localization theorems for Hermitian K-theory. We begin with the most general case.

Theorem 4.3.1 (Hermitian Localization). Let (R, ]) be a ring with involution, in which 2 is a unit,
and, as above, let Σ ⊂ R be a multiplicative subset of non-zero divisors closed under the involution ].
Then, there is a homotopy fibration

εU(TΣ)→ εK
h(R)→ ε(Σ

−1R),

where the map εK
h(R) →ε (Σ−1R) is obtained by applying the Hermitian K-theory functor to the

localization map (R, ])→ (Σ−1R, ]) which is a map of rings with invoution by assumption.

Corollary 4.3.2. Under the hypotheses of Theorem 4.3.1, we have a long exact sequence

· · · → εK
h
n+1(Σ−1R)→ εUn(TΣ)→ εK

h
n(R)→ εK

h
n(Σ−1R)→ · · ·

Proof. This is the long exact sequence associated to the homotopy fibration of Theorem 4.3.1. �

Remark. The long exact sequence above ends at εK
h
0 (Σ−1R), since the map εK

h
0 (R) → εK

h
0 (Σ−1R)

is not surjective in general. This turns out to be implied by the fact that the map of Witt groups
W (R)→ W (Σ−1R) is not surjective in general.
If R is a Dedekind domain and Σ = R\{0}, we proved (Corollary 3.3.7) that the map on Witt groups
is injective; however it is not an isomorphism in general.

There also exists a version of Devissage (Theorem 2.2.2) for Hermitian K-theory, which we will now
outline; it will be necessary in considering localization for Dedekind domains.
As before, let (R, ]) be a ring with involution, let f ∈ R be a central non-zero divisor with f ] = f , and
let Σ = {fn | n ∈ N}. Then there exists a functor from R to TΣ (considering R to be a preadditive
category with one object) which sends R to f : R → R and sends a map r : R → R to the map of
arrows (r, r) : f → f . This is a map of arrows since f is central, so the required diagram commutes.
Also, since we assume f ] = f , the functor preserves dualities. Since the map f : R → R is sent to the
zero object in TΣ, we obtain a functor of categories with duality from the quotient R/fR to TΣ.
At this point, we will require some definitions.

Definition 4.3.3. Let A be a preadditive category with duality. An A-module is an additive functor
from Aop to the category of abelian groups. Denote the category of A-modules by A-mod. Recall that
the Yoneda embedding A → A-mod sending A to HomA(−, A) is fully faithful, and write A for the
representable functor HomA(−, A).
Now, let A-free be the full subcategory of A-mod consisting of those modules which are finite direct
sums of representable modules. Analogously to our practice in Section 4.1, we define a functorial version
F(A) of A-free as follows. The objects of F(A) are sequences (A1, . . . , An) of objects of A and maps
are matrices of maps Ai → Bj, i = 1, . . . , n,= 1, . . . ,m, where (B1, . . . , Bm) is another object of F(A).
Composition is given by matrix multiplication. We declare the empty sequence to be the zero object, call
it the basepoint, and identify it with the objects (0, . . . , 0). Thus, F(A) is a preadditive category with
duality. Going further, F(A) has a direct sum operation ⊕, which sends (A1, . . . , An)× (B1, . . . , Bm) to
(A1, . . . , An, B1, . . . , Bm).
Now, let A-proj be the full subcategory of A-mod consisting of those modules which are direct factors
of finitely generated free A-modules, and let P(A) be the idempotent completion of F(A). Clearly, these
two categories are equivalent.

Now, since TΣ is idempotent complete, the aforementioned functor from R/fR to TΣ extends to
a duality preserving functor from P(R/fR) to TΣ. More precisely, there exist two duality-preserving
functors P(R/fR) → P(TΣ) ← TΣ, where the right arrow is an equivalence because TΣ is idempotent
complete.
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Theorem 4.3.4 (Hermitian Devissage). Let (R, ]) be a commutative ring with involution in which 2 is
a unit, and let f be a non-zero divisor with f ] = f. Assume that R and R/fR are regular rings, and,
as above, let Σ = {fn | n ∈ N}.
Then the inclusion of exact categories with duality P(R/fR) → TΣ defined above induces homotopy
equivalences

εW(R/fR)
'−→ε W(TΣ)

and

εU(R/fR)
'−→ε U(TΣ).

We now turn our attention to the case of Dedekind domains. Let R be a Dedekind domain with
trivial involution, and let Σ = R\{0}. For p a nonzero prime ideal of R, let Σp = Rp\{0}, where Rp is
the localization at p.
The localization maps R→ Rp induce, by functoriality, maps of categories with duality from TΣ to TΣp

which assemble to a duality-preserving functor

TΣ →
⊕

(0)6=p⊂R

TΣp

since the support of a finitely generated torsion module (recall that TΣ is equivalent to the category
of Σ-torsion modules) is a finite set of non-zero prime ideals. In fact, this functor is an equivalence of
categories.
Now, choosing a local parameter πp for the discrete valuation ring Rp, we have that R/p = Rp/πp and
that Σ−1

p Rp = R[π−1
p ]. Applying Theorem 4.3.4 to the situation where R = Rp and f = πp, we obtain a

homotopy equivalence

εW(R/p)→ε W(TΣp).

Thus, we have the following:

Corollary 4.3.5. Let R be a Dedekind domain with trivial involution, and let Σ = R\{0}. Suppose 2
is a unit of R. Then the inclusions P(R/p)→ TΣ of exact categories with duality induce isomoprhisms⊕

(0)6=p⊂R
εUn(R/p)→ εUn(TΣ)

Now, combining Theorem 4.3.1 and Corollary 4.3.5 we obtain the following Hermitian K-theory
version of Theorem 2.3.1 and Corollary 3.3.7:

Theorem 4.3.6. Let R be a Dedekind domain with trivial involution, and let Σ = R\{0}. Suppose 2 is
a unit of R. Then we have a long exact sequence

· · · → εK
h
n+1(Σ−1R)→ ⊕ εUn(R/p)→ εK

h
n(R)→ εK

h
n(Σ−1R)→ · · ·

where the direct sums are over every non-zero prime ideal of R.

4.4. Proof sketch and further directions. In this concluding subsection, we outline a proof of
localization for Hermitian K-theory, as well as possible directions for further research. The first step is
to construct a simplicial additive category with duality G∗, defined as follows:

Definition 4.4.1. Recall the cosimplicial category with duality n of Section 4.1, and consider the
category of additive functors P : n→ P(R) such that P (i ≤ j) : Pi → Pj is an inclusion with Σ-torsion
cokernel. We define Gn to be this category. Moreover, the duality ] on P(R) induces a duality ] on
Gn by P ](i ≤ j) = P (j′ ≤ i′)], so that (Gn, ], id) is an additive category with duality for each n. The
cosimplicial structure [n] 7→ n imbues (G∗, ], id) with the structure of a simplicial additive category with
duality.
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There exists an additive duality preserving functor ιn : P(R)→ Gn, which sends a projective module
Q to the constant functor P (i ≤ j) = idQ. Now, recall the construction RnTΣ; that is, the category of
functors A from I(n) to TΣ such that, for p ≤ q ≤ r, all of the sequences Apq → Apr → Aqr are short
exact sequences in TΣ, and such that App is zero for all p.
We also have an additive duality preserving functor ρn : Gn → RnTΣ which sends a functor P to
the functor ρn(P ), which is defined such that ρn(P )i,j is equal to P (i ≤ j), and such that maps from
ρn(P )i,j → ρn(P )k,l are given by the inclusions P (i) ⊂ P (j), P (k) ⊂ P (l).
Now, considering P(R) to be a constant simplicial additive category with duality, the two families of
functors ιn and ρn assemble to give functors of simplicial additive categories with duality and a sequence

(4.1) P(R)
ι∗−→ G∗

ρ∗−→ R∗TΣ.

This sequence forms the basis of the proof of Localization in [3]; first one shows that, in each degree,
the sequence 4.1 induces a homotopy fibration of Hermitian K-theory spaces. Then, by a theorem of
Bousfield and Friedlander (see [1], Theorem B.4 for details) the geometric realization of 4.1

Kh(R)
ι∗−→ |Kh(G∗)|

ρ∗−→ |Kh(R∗TΣ)|
is still a a homotopy fibration. Finally, one identifies (up to π0) |Kh(G∗)| and |Kh(R∗TΣ)| withKh(Σ−1R)
and W(TΣ), respectively. This proves Theorem 4.3.1.
A feature of the proof outlined above is that it relies on 2 being invertible in the ring R. This assumption
is common enough in Hermitian K-theory, but unfortunate, since it limits the scope of the theory. One
possible direction for further research would be to attempt to avoid this assumption.
A possible way of pursuing this would be to consider the sequence

P(R)
ι∗−→ G∗

ρ∗−→ R∗TΣ

again, but, this time, apply the Hermitian Q-construction (Definition 4.2.1) to it, to obtain

QhP(R)
Qhι∗−−−→ QhG∗

Qhρ∗−−−→ QhR∗TΣ,

and then to show that this sequence is a homotopy fibration for each n. This will still lead to a proof of
the localization theorem, but it will not require 2 to be a unit, since the Bousfield-Friedlander Theorem
and the identifications of |Kh(G∗)| with Kh(Σ−1R) and of |Kh(R∗TΣ)| with W(TΣ) do not depend on
the invertibility of 2.

Bibliographical Note. The preceding section is based primarily on [3] and [8].
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Appendix A. Description of Academic Activites

In this section, we outline activities undertaken during the 2016-2017 academic year. Firstly, we list
all attended modules, courses, seminars, and study groups; examined modules are in italics.

• TCC - Homological Algebra
• MA4A5 - Algebraic Geometry
• MA4J7- Cohomology and Poincaré Duality
• Weekly seminars with supervisor (Marco Schlichting) and his other students
• Winter School on Bordism, L-Theory, and Real Algebraic K-Theory, University of Regensburg,

December 5-9, 2016.

Secondly, we give a list of books and papers read.

• Localization in Hermitian K-Theory of Rings - Jens Hornbostel and Marco Schlichting
• Symmetric Bilinear Forms - Dale Husemoller and John Milnor
• Higher Algebraic K-theory I - Daniel Quillen
• Hermitian K-Theory of Exact Categories - Marco Schlichting
• The K-book: An Introduction to Algebraic K-theory - Charles A. Weibel
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