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1 Introduction

Let T : (0, 1]→ (0, 1] be the usual Gauss map defined by

T (x) =

{
1
x

if 0 < x < 1

0 otherwise

For each infinite probability vector in P = {p = (pk)
∞
k=1 ∈ [0, 1]N :

∑
k pk = 1} we can

associate a natural T -invariant measure µp := νpπ
−1, where νp is the usual countable state

Bernoulli measure on NZ and π : NN → [0, 1) is the usual continued fraction expansion
π(xn) = [x1, x2, x3, · · · ]. For such measures we can define the entropy and Lyapunov expo-
nents by

h(µp) = −
∞∑
n=1

pn log pn and λ(µp) =

∫
log |T ′|dµp(x),

whenever they are finite, and the dimension of µp by d(µp) =
h(µp)

λ(µp)
> 0. Kifer, Peres

and Weiss [2] observed that d(µp) is uniformly bounded away from 1 (making use of a

thermodynamic approach of Walters) 1 i.e.,

D := sup
{
d(µp) : h(µp), λ(µp) < +∞

}
< 1. (1.1)

We will give a simple proof of the following result.

Theorem 1.1. There exists p† ∈ P with h(µp†), λ(µp†) < +∞ such that:

1. µ†p realises the supremum in (1.1), i.e., d(µ†p) = D; and

2. p†k � k−2D.

This answers a question I was asked by K. Burns. I posed the question to my graduate
student N. Jurga who, in collaboration PDRA S. Baker, gave an elementary proof. The
proof presented below uses thermodynamical ideas and has the merit of being very short
and easy to generalize.

1In [2] they showed D < 1− 10−7, but Jenkinson and the author have improved this to D < 1− 5× 10−5
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2 PROOF OF THEOREM 1.1

2 Proof of Theorem 1.1

We can begin with the following standard lemma from [3] (see also [1], Lemma 3.2).

Lemma 2.1. If
h(µp)

λ(µp)
> 1

2
then h(µp), λ(µp) < +∞.

Since it is easy to exhibit p ∈ P with h(µp), λ(µp) < +∞ and d(µp) >
1
2

we can also write:

D = sup
n

sup
{
d(µp∗) : p∗ ∈ Pn

}
, (2.1)

where Pn consists of the probability vectors p∗ = (p∗k)
∞
k=1 satisfying p∗k = 0, for k > n. For

each n, the function Pn 3 p∗ 7→ d(µp∗) is easily seen to be smooth and since
∑n

k=1 p
∗
k = 1 we

can use the method of Lagrange multipliers to deduce that a critical point satisfies

∂d(µp∗)

∂pi
=
∂d(µp∗)

∂pj
for i 6= j. (2.2)

The logarithmic derivatives of d(µp∗) obviously take the form

1

d(µp∗)

∂d(µp∗)

∂pi
=

1

h(µp∗)

∂h(µp∗)

∂pi
− 1

λ(µp∗)

∂λ(µp∗)

∂pi
for 1 ≤ i ≤ n. (2.3)

We can rewrite the right hand side of (2.3) using the following two lemmas.

Lemma 2.2.
∂h(µp∗ )

∂p∗i
= log p∗i + 1.

We denote the intervals [i] := [ 1
i+1
, 1
i
], for i ≥ 1.

Lemma 2.3. 1
λ(µp∗ )

∂λ(µp∗ )

∂pi
= 1

p∗i

∫
[i] log |T

′|dµp∗∫
log |T ′|dµp∗

− 1

Proof. Following ([5], Question 5 (a) p.96) and ([4], Proposition 4.10), we can first rewrite

λ(µp∗) =
∂P (fp∗ − t log |T ′|)

∂t
|t=0 and

∂λ(µp∗)

∂pi
=
∂2P (fp∗ − s/p∗i − t log |T ′|)

∂s∂t
|t=0,s=0 (2.4)

where fp = −
∑n

j=1 χ[j] log pj and P (·) denotes the pressure function. Following ([5], Question
5 (b) p.96) and ([4], Proposition 4.11) we have

∂2P (fp∗ − s/p∗i − t log |T ′|)
∂s∂t

|t=0,s=0 =
1

p∗i

∫ (
χ[i] − p∗i

)(
− log |T ′|+

∫
log |T ′|dµp∗

)
dµp

+
2

p∗i

∞∑
n=1

∫
Lnfp∗

(
χ[i] − p∗i

)(
− log |T ′|+

∫
log |T ′|dµp∗

)
dµp

(2.5)
where Lfp∗ : C1([0, 1])→ C1(0, 1] is defined by w(x) =

∑∞
k=1 pkw

(
1

k+x

)
[5]. Since Lfp∗1 = 1

we can deduce that the series in (2.5) vanishes and using (2.4) we can write

1

λ(µp∗)

∂λ(µp∗)

∂pi
=

1

p∗i

∫
(χi − p∗i )

(
− log |T ′|∫

log |T ′|dµp∗
+ 1

)
dµp =

1

p∗i

∫
[i]

log |T ′|dµp∫
log |T ′|dµp

− 1.

(2.6)
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Applying Lemmas 2.2 and 2.3 to (2.3) we see that the critical point for d(µp∗) satisfies.

2D log

(
i+ 1

j + 1

)
≤ log

(
p∗j
p∗i

)
≤ 2D log

(
i

j

)
for any n ≥ 2 and i > j. (2.7)

Letting n tend to infinity, and using the tightness coming from the bounds on p∗i , we can
deduce that there exists a limit point p† ∈ P satisfying both D = d(µp†) (using (2.1)) and

(2.7). The proof of Theorem 1.1 follows immediately.

Remark 2.4. One easily can generalize this simple analysis to suitable f -expansions.
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