RIGIDITY OF PRESSURES OF HOLDER POTENTIALS AND THE
FITTING OF ANALYTIC FUNCTIONS VIA THEM

LIANGANG MA and MARK POLLICOTT

ABSTRACT. The first part of this work is devoted to the study of higher differentials
of pressure functions of Holder potentials on shift spaces of finite type. By describing
the differentials of pressure functions via the Central Limit Theorem for the associated
random processes, we discover some rigid relationships between differentials of various
orders. The rigidity imposes obstructions on fitting candidate convex analytic func-
tions by pressure functions of Holder potentials globally, which answers a question of
Kucherenko-Quas. In the second part of the work we consider fitting candidate analytic
germs by pressure functions of locally constant potentials. We prove that all 1-level
candidate germs can be realised by pressures of some locally constant potentials, as
long as number of the symbolic set is large enough. There are also some results on
fitting 2-level germs by pressures of locally constant potentials obtained in the work.

1. INTRODUCTION

This work deals with traditional topics in thermodynamic formalism [Bowi Ruell,
which originates from theoretical physics. We focus on shift spaces of finite type here,
which model dynamics of some smooth systems such as Axiom-A Diffeomorphisms
through Markov partitions. Given a symbolic set A of finite symbols and a continu-
ous potential (observable) ¢ on the shift space AN, a core concept in thermodynamic
formalism is the pressure P(¢). People are particularly interested in the pressure func-
tion P(t¢) with the variable ¢ > 0 representing the inverse temperature. A sharp change
in the pressure function (or other terms) is usually called a phase transition as ¢ varies,
see for example [IRV], IT1) TT2, KQW| [Lopl], [Lop2, [Lop3, [Sax].

For Holder continuous potentials, Ruelle [Rue2] proved that the pressure function
P(t¢) is analytic for ¢t € (0,00) (in fact he proved that P(1) depends analytically on
1 for ¢ in the Holder space C%"(X) with X being a transitive subshift space of finite
type and 0 < h < 1 being the exponent [GT]). A key ingredient in his proof is the
use of Ruelle (transfer) operator [BDL, [GLP] acting on functions in the Holder space.
Moreover, the equilibrium measure of t¢ for any ¢ > 0 and Holder potential ¢ is always
unique, so there are in fact no phase transitions in this case. Let

Pt = PO (1) = L0
be the n-th differential of the pressure function P(t¢) with respect to t € (0,00) for
some fixed Holder potential ¢. We also write

PO(t) = P'(t), PA(t) = P'(t), PO (t) = P"(t),- -
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intermittently in the following. We discover that there is some rigid relationship between
the differentials of the pressure function.

1.1. Theorem.
For a Hélder potential ¢ on a full shift space of finite type, let P(t) = P(t¢) be its
pressure. Then there exists some positive number My depending on ¢, such that

(1.1) 2m3(PA(1))¥2|1 PO (1) < 9| PP (#)] + 2|PW(t)] + 3V2m3 M4 (PP (t))?/?
for any t > 0.

A potential ¢ is said to be generic (or we say it defines a non-lattice distribution,
cf. [CPl [Fel, [PP]), if for any normalised potential v, the spectral radius of the complex
Ruelle operator Lyt is less than 1 for any ¢t # 0. For pressure functions of generic
potentials, Theorem [1.1]| can be strengthened to the following result.

1.2. Theorem.
For a generic Hélder potential ¢ on a full shift space of finite type, let P(t) = P(t¢) be
its pressure. Then there exists some positive number My depending on ¢, such that

(1.2) PO () (1 — V2r(PP(1)*?)| < 3MuPP(t)
for any t > 0.

This means the second differential of the pressure function of a generic Holder potential
imposes some global subtle restriction on its third differential. It would be interesting
to try to interpret the meaning of P”(t) = \3/#27 for the pressure function at individual
parameters. Let o : AN — AN denote the shift map. Both the proofs of Theorem [1.1
and require use of the Ruelle operator and the Central Limit Theorem (CLT) for
the process {f o 0"},en, with the latter one depending on a finer CLT in the generic
case. Recall that there are some expressions on the higher differentials of the pressure
function by Kotani and Sunada in [KS1] for smooth systems, and we refer the readers
to [KS2| for a CLT for random walks on crystal lattices.

It is well-known that P(t¢) is convex and Lipschitz for continuous ¢, moreover, the
supporting lines of its graph must intersect the vertical axis in a closed bounded interval
in [0, 00). Kucherenko and Quas have shown that any such function can be realised by
the pressure function of some continuous potential on some shift space of finite type [KQ),
Theorem 1], whose result fits into Katok’s flexibility programme [BKR]. However, the
continuous potentials constructed in their work are not Holder, so they ask the following

question (their original problem is set in the multidimensional case).

1.3. Problem (Kucherenko-Quas).

Can a convex, Lipschitz analytic function with its supporting lines intersecting the ver-
tical azxis in a closed bounded interval in [0,00) be realised by the pressure function of
some Holder potential on some shift space of finite type?

Our following results are dedicated to an answer to their problem. We first point out
that any convex, Lipschitz analytic function with its supporting lines intersecting the
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vertical axis in a closed bounded interval in [0, 00) can be approximated by sequences of
pressure functions of locally constant potentials on some shift space of finite type.

1.4. Corollary.

Let F(t) be a convex Lipschitz function on (a, 00) for some oo > 0 with Lipschitz constant
L > 0, such that its supporting lines intersect the vertical axis in [y,7] with0 <y <7 <
o0o. Then there exists a sequence of locally constant potentials {p,}5° | on some shift
space of finite type, such that

(1.3) lim P(t¢,) = F(t)

n—oo

for any t € (a, 00).

Proof. This is an instant corollary of Kucherenko-Quas’ result. Let

A:{Oalv"' ) LevJ} X {LZJv 7[7]}} X {L_Ljv ) [L—|}7

in which | | and [ | represent the floor and ceiling function respectively. According to
[KQ, Theorem 1], there exists a continuous potential ¢ : AZ — R, such that

on (a, 00). Now let

¢n(x) = an,—(z) = inf{qu(x) MRS [x—nx—n—&-l T xn]}

for any @ = T (1) Ton - TpnTpy1 - € A% and n € N, in which [z_,2_, 11 x,)
means the corresponding cylinder set. ¢, is a locally constant potential for any fixed n.
Now fix t € (a, 00), by properties of the pressure function (see for example [Ruell 6.8]),

(1.4) |P(t¢n) — Ptor)| < [t | ¢n — dF [loc -

Since ¢ is continuous, this implies (1.3]).
|

One can see that in the above proof the increasing sequence of pressures { P(t¢y, ) }nen
satisfies

P(ton,-) /" F(t)
as n — 0o since {¢, — }nen is an increasing sequence tending to ¢p (see [Walll, Theorem
9.7(ii)]). Alternatively, one can take

¢n,+(x) = SUP{¢F<5U> NS [x*najfnJrl s xn]}7

which results in a decreasing sequence of locally constant potentials approximating
¢p(x), or

¢n,—(x) + ¢n,+(x)

¢n,i (ZE) = 9 s

which also results in a sequence of locally constant potentials approximating ¢z (z), while
their pressure functions both approximate F'(t). See Corollary for an interpretation
of the result from another point of view.
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1.5. Remark.
The convergence in Corollary is uniform for t in a bounded domain since A% is a
compact metric space by considering .

1.6. Remark.
A locally constant potential is of course Holder, so according to Ruelle’s result, the
pressure functions {P(t¢,, _)}nen are all analytic.

The following result confirms that some convex analytic functions cannot be fitted
by the pressure of any Holder potential on any shift space of finite type, which gives a
negative answer to Problem [1.3]

1.7. Theorem.

For any o > 0, there exists a strictly convex analytic function F(t) on (a,00), with its
supporting lines intersecting the vertical azis in [7y,7] C [0,00), such that there does not
exist any Holder potential ¢ on any shift space of finite type satisfying

P(t6) = F(1)

on (o, 00).

For an explicit example of convex analytic functions in Theorem one can simply

take
2%+ 3t +te ¥ et
Fy3.(t) = ;

on («,00) for any o > 0. See Proposition for a family of such examples. Thus one
can see that there are in fact elementary functions which cannot be fitted by pressures
of Holder potentials on shift spaces of finite type.

In the following we consider fitting convex analytic functions locally instead of globally,
only by pressures of locally constant potentials on shift spaces of finite type. Let

A, ={1,2,--- ,n}

be the symbolic set of n symbols.

1.8. Theorem.
Let t, > 0 and (ag,a,) € R? satisfying
(1.5) % > ay.

Then for any n € N large enough, there exist some 0 < My, ap.arm < Mt ag.a1n < 00
depending on t., ag, a1, n, such that for any as € [My, ag.ay.ns Mt. .ap.a1.n), there exists some
sequence of reals {c;n }i |, such that the locally constant potential

Qb(fL’) = Czon
forx =---x_jwory -+ € [10] On the full shift space AZ satisfies
(1.6) P(te) = ao + ar(t — t.) + 2(t — £.)2 + O((t — 1,)?)

2!
on [t — dp, te + 9,) for some 6, > 0.
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This means we can fit some germs at ¢, up to level 2 by pressures of some locally
constant potentials when the number of symbols of the shift space is large enough. The
values 0, {¢;,}7, all depend on t,,ag,a;,n and ay in fact, while we only indicate the
dependence of My, 44.a,,n and My, 49.0,.n @8 We are particularly interested in their values
in the context of Theorem [I.8 There are some results on the values of

{mt*,ao,ahm Mt*,ao,al,n}nEN
subject to t, > 0 and (ag, a;) € R? satisfying at the end of Section .

We choose to present all our results in the one dimensional case, while many of these
results can in fact be extended to convex Lipschitz or analytic functions F'(t1,t2, - , )
of m variables naturally. Most of our results also hold on transitive subshift spaces of
finite type, with some technical adjustments in their proofs involving the transition
matrix.

The organization of the work is as following. In Section [2] we introduce some basics in
thermodynamic formalism and the Central Limit Theorem for the process generated by
a potential and the shift map on the symbolic space of finite type. We give an explicit
bound on the tail term in the CLT. Section |3| is devoted to the proof of Theorem
and . We formulate some expression of the derivatives of the pressure (Corollary
linking directly to the CLT, which allows us to unveil the relationship between
derivatives of the pressure function of various orders. Section [4|is devoted to the proof
of Theorem [1.7] In Section 5| we consider fitting 1- and 2-level candidate analytic germs
locally by pressure functions of locally constant potentials (Problem on symbolic
spaces of finite type. We conjecture that any reasonable analytic germ of finite level can
be fitted by the pressure function of some locally constant potential locally, as long as
the number of the symbols is large enough.

2. THERMODYNAMIC FORMALISM AND THE CLT

In this section we collect some basic notions and results in thermodynamic formalism
for later use. We start from the pressure. Let A be some symbolic set of finite symbols,
AN be the shift space equipped with the visual metric

1
d(x7y) = 9l(z,y)
for distinct © = xor122- -+ , ¥ = Yovry2 - - - € AV, in which

[(z,y) = min{i € N : z; # y;}.
For a continuous potential ¢ : AN — R on the compact metric space AN, Let

Sme(r) = Y1 pooi(x)

for m € N, in which o is the shift map.

2.1. Definition.
The pressure P(p) of a continuous potential ¢ on AN is defined to be

1
P(6) = limyysoe —108 3 ey Smaa (@)

One can refer to [Walll p208] for a definition for continuous potentials on general
compact metric spaces. It satisfies the well-known variational formula
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P(¢) = sup{h(p) + [ ¢du : pu is a o — invariant measure on AN}

Let CO(AY) be the collection of all the continuous potentials on AN. Two potentials
Y, ¢ € C°(AN) are said to be cohomologous [Wal2] in case there exists a continuous map
¢ : AN — R such that

U(z) — ¢(x) = ¢(x) — poo(x).
We write ¢ ~ ¢ to denote the equivalence relationship between two potentials cohomol-
ogous to each other. The maps in

{o(z) —poa(z): p e COAY)}
are called coboundaries. The importance of the cohomologous relationship is revealed in

the following result.

2.2. Proposition.
If i ~ ¢, then P(v) = P(¢). Moreover, 1) and ¢ share the same equilibrium state.

One can find a proof in [Ruel] or [PP]. Another important tool in thermodynamic
formalism is the Ruelle operator.

2.3. Definition.
For a continuous potential ¢ : AN — R, define the Ruelle operator Ly acting on C°(AN)
as

(‘C%Z)f)(‘r) = Zy:a(y):z 6w(y)f<y>

for f € CO(AYN).
One can see easily that its compositions satisfy
(2.1) (L) = Y, Sy
Yo (y)=z

for any m € N. In case of ¢ being Holder, it admits a simple maximum isolated
eigenvalue A = e’ such that,
(2.2) (Lywy)(x) = e"Pwy(x)

for some eigenfunction wy(z) € C%"(AN), refer to [Ruel]. The unique equilibrium
measure for the Holder potential v is denoted by p,. It then follows that

(2.3) (Ljwy) (@) = €™ Py (x)

for wy(z) € COM(AN). A potential ¢ is said to be normalized if
P(y) =0 and wy = 1y,
in which 1,v is the identity map on AYN. In case of 1) being not normalized, we call
b = +logwy —logwy o 0 — P(¥)
the normalization of v. It is easy to check that 1 is a normalized potential. Moreover,
1 and v share the same equilibrium state.

Now we turn to the Central Limit Theorem for the random process {¢oa’(z)}32, with
the equilibrium measure p,, defined by some Holder potential ¢, while ¢ is also assumed
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Sm
to be Holder. It deals with the asymptotic behaviour of the distribution of Zm? with
m

respect to jiy as m — oo. The Ruelle operator comes in here, see [CPl [Lal, Rou]. Let

Gm(y) = /w{ff €AY M\/ﬁ(gﬁ) < y}

for y € R. For a,b € R and b > 0, Let N,;(y) be the normal distribution with
expectation a and standard deviation v/ on R, that is,

dNaJ,(y) 1

_ Cf(yfa)2/2b

dy \V27h

for y € R. For Holder potentials 1, ¢ on a shift space of finite type, since the pressure
P(y) + t¢) is analytic in a small neighbourhood around 0, denote by

A,, = P (Y 4 to)]i—o

for m € N for convenience, while the readers can understand its dependence on 1, ¢
easily from the contexts in the following. Let

o A Ay,
Plp+to)=> "= S it (1),

A,
in which k() = > ym.

Central Limit Theorem.
Let 1, ¢ be Holder potentials on a shift space of finite type with ¢ being not cohomologous
to a constant. If [ ¢duy =0, we have

im0 G (y) = Noa, (y) + O(1//m),
i which
9|Az| + 2| Ay
(2.4) O(1/v/m) < VI D)

The convergence is uniform with respect to y. In case of ¢ being generic, the result can
be strengthened to

iy 00 G (y) = No,ao (y) + Hi(y) + 0(1/v/m),

A 2 y2
in which Hy,(y) = ’ (1 — y—){@.

This fits into special cases of the Berry-Esseen Theorem [Fel]. There is nothing new
in the version here comparing with [CP, Theorem 2, Theorem 3] or [PP, Theorem 4.13],
except the explicit bound on the tail term O(1/y/m) in (2.4). In the following we justify
this explicit bound. To do this, let

iz .o
Xm(2) = / e~ Vm d,
be the Fourier transformation of G,,(y). Note that the Fourier transformation of Ny a,(y)

. _2%A,
1S € 2
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2.4. Lemma.
Let 1, ¢ be Holder potentials on a shift space of finite type with ¢ being not cohomologous
to a constant. For € > 0 small enough, we have

1 [evml 22 2|A
(25) - - Xm(Z) e 2A2 d S \/_| 3|
27 J, 2 12¢/mm(Ay)3/2

for any m € N large enough.
Proof. According to [PP| (4.6)], we have

ev/m 1
[
for € > 0 small enough. So

1 [evm

2 Jo z

722A2 ZZSAg 722A2

Xm(z) —e 2 —1—6\/%6 2

dz = 0(1/m)

’A3| 6\/% 2 7Z2A2
12my/m J

(2.6) Xm (%) — e’$‘dz <O(1/m)+ z%e” 2 dz.

Considering

/OO 2 _ZQAQ V 27r

z-e 2dz:W,

o0

we obtain (2.5)) from ([2.6)). [ |

Equipped with Lemma [2.4] we can justify the explicit bound on the tail term in the
Central Limit Theorem in ([2.4)).

Proof of the tail term in CLT:

Proof. Without loss of generality, suppose ¢ is normalized and [ ¢du, = 0. It suffices
for us to justify considering [CP, Theorem 2, Theorem 3]. Similar to the proof
of [CPL Theorem 2], apply [Fel, Lemma 2] with the cumulative functions G,,(y) and
No.a,(y) in our case, one gets (c.f. [CPL (20)])

@1 1Gnl) ~ Noas) € o= [ fne) e e ——
J— JR— p— J— 2 e —
' m\Y 08201 = o0 0 Xm= e T 2mm3 Ay
Now let us take
I 2 JAs] A4
S G A L BT

for some small § > 0, such that it satisfies (c.f. [CP (10)])

(8, )
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for any |t| < € in (2.7). Considering (2.5]), we have

|G (y) — No,a, (y)|

V2[4 24 2 |Ag] | |A
+ (—+—=+9)
12¢/mm(A2)32  \2mm3 A, As 6 24
(2.8) B V2| As] . 8| As| . 2| A . 485
12(/mm(A2)32 ° \2m3m(A5)32  V2m3m(Ag)32 V213 m(Ay)3/2
9|Ay] 2|A,| 486

+ + .
V2m3m(Ag)32  V2m3m(A2)32 V2m3m(Ag)3/?

Finally, let § — 0 in (2.8]), we get (2.4)).
|

We will deal with the pressure function P(v) + t¢) for t > 0 and ¢, ¢ € CO*(AN) for
some 0 < h < 1 in the following sections. By [Rue2], P(¢ + t¢) depends analytically on
t in case that ¢, ¢ are Holder. We will often assume that

J bdpy =0

in the following when dealing with the higher differentials of P(¢) + t¢) because if
[ ¢dpy = ¢ # 0, we have

Py +i(¢ —c)) = P(¢ + 1) — ct,
then
TP +t(o—0) d"PW+10)

dtn dtn

for any n > 2 while [(¢ — ¢)duy = 0. We can also assume that ¢ is normalized when

dealing with the differentials of P(¢) +t¢). If this is not the case we can simply change
1 to its normalization v while

d"P(Y+1t¢)  d"P(y + to)
dtn N dtm

(2.9)

(2.10)

for n > 1 because

P(y +t¢) = P(¢ +t¢) — P(¥)
for any t € R.

3. DERIVATIVES OF THE PRESSURES OF HOLDER POTENTIALS

In this section we formulate some explicit expressions for the derivatives of the pressure
P(t$) = P(t) in terms of the derivatives of the eigenfunction of L4 for ¢ € C%"(AY) with
respect to t. We give basically two expressions of the derivatives, one of which allows
the introduction of the random stochastic process {¢ o 07 (x)}72, for m € N. Upon the
expression we prove Theorem and in virtue of the CLT for the random process
{¢ 00’ (x)}52,-

First we define some basics to deal with the higher derivatives of compositional func-
tions by the Faa di Bruno’s formula. For an integer j € N, we say
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T =TTy " Ty
with ¢ € N is a partition of j if the non-increasing sequence of positive integers j >
T, > Tg > -+ > 7, > 1 satisfies ;1:1 7; = 7. Denote the collection of all the possible
partitions of j by B(j). For example, Table [1] lists all the partitions in (5).

TABLE 1. Partitions of 5

) q=1

4,1 q=2

3,2 q=2

31,1  gq=3

2,21  q=3

2,1,1,1 q=4
1,1,1,1,1 g=5

We sometimes simply write 7 to denote the set {71, 72, -+ ,7,} for convenience in the

following, so #7 = q. Now for 7 being a partition of j > 1, let {B7} be the number of

different choices of dividing a set of j different elements into #7 = ¢ sets of sizes {7;}_,

respectively (with no order on the sets of partitions). Set Bj = 1 for convenience. For

example, consider the cases j = 5 and 7 = 3,1,1, the number of different choices of

dividing a set of 5 different elements into ¢ = 3 sets of sizes 3,1, 1 respectively is
C3=10=By".

Table 2 lists all the numbers {B] }-cq(s).-

TABLE 2. The coefficients Bf

Br=1
By'=5
B =10

ByM =10

B> =15

Byttt =10

B;,l,l,l,l -1

For a smooth map f : X — Y between two metric spaces X,Y and some partition
T="T1,Te, -, T, € P(j) with j > 1, let
fO(z) = fT) () f02D)(2) - - f) ()
be the product of the derivatives. For j = 0 and 7 = 0 € (0), set f(©(2) = 1. Then
for two smooth functions f : X — Y and g : Y — Z between metric spaces X,Y, Z, we
have

(3.1) oo I _ S Brg#(@)r @)
TER()

in virtue of Faa di Bruno’s formula.
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Now we turn to the higher differentials of the pressure function. We start by consid-
ering some standard case, then extend the result to the general case.

3.1. Theorem.
Let 1, ¢ € COM(AN) with 1 being normalized for some finite symbolic set A. Assume
[ ¢pdpy =0, in which y is the equilibrium state of v. Let w(t,x) be the eigenfunction
of the mazimum isolated eigenvalue e ) of Ly, which depends analytically on t
i a small neighbourhood of 0. Considering the differentials of the pressure function
P(¢ +1t¢) at t =0, we have
(3 2)
MW +t)limo = X 10 S (@) w0, x)duw( )
Z O ZTE‘B(] ),1¢T BT (¢+t¢ |t OfAN (=) 0 x)d:ul/)( )
zTefp(n),{Ln}mT:@ By PT (¢ + t¢)]1=o

for any n > 2.

Proof. According to the above notations, note that
(3.3 (Loseswlt, ) (@) = "+ u(t, )

The n-th derivative of (Ly5w(t,))(2) = 32— €'V TP w(t, y) gives

d"Lygw(t, ) (z)
dtm

di e ttd)(v) (i)
_ e —j
(3.4) - Zy wo(y)== Z] =0 C dti <t7 y)

= Zy:a(y):x Z?:O C’%e(lﬁ+t¢)(y) (gb(y))Jw(nij) (t, y)
= Z;’L:o C) Loyr16 ((¢(‘))jw(n_j)(t> ))

All differentials are with respect to ¢t. In case of ¢ = 0 this means

d"£¢+t<2ﬁ(t, -)($)|t:0 _ Z C%£¢((¢(-))jw(”_j)(0, ))

J=0

(3.5)

Note that the dual operator L7, fixes i, so integration of both sides of (3.5) gives

(3.6)

/dnﬁwtzq;(t,-)( )|t e ZCJ/ ) Vw9 (0, )y ().
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In order to get the n-th derivative of P(¢ + t¢), differentiate ef ¥+ (¢, x) for n

times by (3.1]), we get
(3.7)

d" (ep(qp“‘b)w(t, x))
dtm
d]e (¢+t¢) )
= Z] —0 Cj dt] w( 7) (t’ x)

A ePW+te) , dnePW+te)
n—1 n—
= 250 Tw( Dt x) + Tw(t,@

= 3000 Ch ey BP0 + )P T (¢, )
+ 2 e BT PO (3 + tg)ePWHOy(t, 1)
- Z;:S a < 2 rep () 1gr B}P(T) (v +1tg) + Zrem(j),mT B}P(T) (v + tﬁb))ep(mw)w(”_j)(t, )

Remember P(¢) = 0 and w(0,z) = 1 as ¢ is normalized ([PP, p66]). Take ¢t = 0 in

(B7) we get
(3.3)

d" <6P(¢+t¢)w(t, x))
d =0
333 O (S BIPOW + 19)hco + Srenpacs BP0+ 16)lo ) (0.2)

+ ey mer Br P (W) + t¢)]imo0 + P (¢ + )] 10

Since [ ¢dpy = P'(¢ + t¢)|i=o = 0 and [ w'(0, z)dpy, = 0 (JPPL p66]), integrate both
sides of (3.8]) with respect to fi, we get

d"( (p+to) (t, :1:))
/ din |t:0d:u¢
(3.9) = 3000 O Creptiyage BIPT (W + t0) o [ w90, 2)dpry

+ 2 ey qrmynr—o BaP T (0 4 1) |10 + P (¢ + t¢)]1=0.

Finally, combining (3.6 and . 3.9)) together we get (3.2 .

3.2. Remark.
The terms

— i ;Cl > repiyagr BI P D+ t)|1=0 [y 0" (0, x)dpuy ()

and
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— D rep(n),{Linynr=0 B P4+ t¢)]i=o
n are null in case of n < 3. This also applies to the corresponding terms later.

3.3. Remark.
These appear to be inductive formulas, while one can always get non-inductive ones
via substituting the lower differentials P (¢ 4 t¢)|i—o by their non-inductive versions

depending only on ¢(z), {w") (0, ) "y and py(x). This also applies to Theorem .

One can find some description of derivatives of the pressure function by covariance
of the sequence of functions {¢ o 07};ey in [KSI, Corollary 1] for smooth ¢. Without
the assumptions of ¢ being normalized and [ ¢dpu, = 0, Theorem evolves into the
following form.

3.4. Corollary.

Let i, ¢ € COM(AN) with some finite symbolic set . L1y admits a mazimum isolated
eigenvalue PV close to W) with eigenfunction w(t,x) whose projection depends
analytically on t in a small neighbourhood of 0. Considering the differentials of the
pressure P(¢ 4+ tg) at t = 0, we have

(3.10)

PO+ 0o = T [ (o) = [ odie) w0, 2)dny (o)

AN
~ S S g BP0+ 0l [ 00, 0)d (o)

AN
B Zre‘ﬁ(n),{l,n}m:@ BZLP(T)(@/} + t¢)|t:0
for any n > 2.

Proof. Let
=1+ log wy(x) —logwy 0 0 — P(1)

in which wy() is the eigenfunction of £, corresponding to the eigenvalue e’ ¥). Take
pressure in the following equation

U +tp =P+t + logwy(z) — logwy o o — P(y),
then apply Proposition we see that

P(y +td) = P(¢ + t¢) — P(¢).
This implies
d"P(¢y +t¢)  d"P(y +t¢)
dtn dtn
for any n > 1. Now apply Theorem to the normalized potential v and ¢ — [ pdpug,

(note that [ (¢ — [ ¢dpy)dpy = 0 and gy = p;), we justify the corollary considering
B11). m

In the following we present some concrete formulas of some special order n in virtue
of Theorem [3.1] for later use.

(3.11)
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3.5. Corollary.

Let v, ¢ € CO"(AN) with ¢ being normalized. Let py be the equilibrium state of ¢ and
[ ¢dpy = 0. Let ePWHe) be the mazimum eigenvalue of Ly 1o with eigenfunction w(t, )
for small t. Then we have

///

(3.12) (@Z)+t¢|to—3/¢w Oxdu¢+3/¢w Oa:duw%—/gbd,%
Proof. This follows instantly from Theorem [3.1] with n = 3, along with some direct
computations on the Faa di Bruno’s coeflicients {B]},cqys)- [ |

3.6. Corollary.

Let i, ¢ € CO"(AN) with ¢ being normalized. Let pu, be the equilibrium state of ¢ and
[ ¢pdpy = 0. Let ePWHt9) be the maximum eigenvalue of Lyt with eigenfunction w(t, x)
for small t. Then we have

(3.13)
W(?/J +t9) =0

= 4 [ow"(0,2)dpy + 6 [ ¢*w" (0, 2)dpy + 4 [ ¢*w (0, 2)dpy + [ ¢*dpy
—6P" (Y + 1) |i=o [ w" (0, 2)dpiy — 3(P" (¢ + td)|i=0)?

ll/

= 4 [ow" (0,2)dpy + 6 [ ¢*w" (0,2)dpy + 4 [ ¢*w (0, 2)dpy + [ d*duy
—6( [ ¢*dpy + 2 [ ow'(0,2)dpy) [w" (0,2)dpy — 3([ ¢*dpy + 2 [ dw' (0, x)dpuy ).

Proof. The first equality follows instantly from Theorem with n = 4 along with some
direct computations on the Faa di Bruno’s coefficients {B]} ep). The second one is
true as

P (¢ +1d) |10 = [ $*dpy + 2 [ dw' (0, 2)dpuy.
The latter description depends only on ¢(z), {w(0,2)}3_, and py(x). [ |

One can also get some precise formulas for some particular n in Corollary [3.4) and
some non-inductive ones as we indicate in Remark . While the formulas , 7
, all give interesting descriptions of the differentials of the pressure function
P(¢ + t¢), it seems to us difficult to discover any essential rigid restriction on them,
or relationships between them. In the following we turn to the description of them by
the random stochastic process {¢ o 0/(x)}32. This is not a new idea on exploring the
regularity of the pressure function P(¢ + t¢), as one can recall it from many others’
work in thermodynamic formalism. Again we first consider some standard case, then
extend to the general case.

3.7. Theorem.

Let v, ¢ € CO"(AN) with ¢ being normalized. Let puy be the equilibrium state of ¢ and
f odpy, = 0. Let ePWHe) be the mazimum isolated eigenvalue of W) with eigenfunc-
tion w(t, ) whose projection depends analytically on t. Considering the differentials of
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the pressure P(¢ +t¢) at t =0, we have
PO () + t¢)]1—g
1 , . .
— i (7 C [ (Sal@) 090, )0
m AN
(3.14) L -
=205 OO epyage MBI PO (4 +16) =g / w0, x)dpy (x)

AN

- ZTem(n),{l,n}ﬂ‘r:@ m#TB;;P(T) (1/1 + t¢) |t:0>

for any n > 2.

Proof. The proof follows the routine of Proof of Theorem . Considering (2.1)), we do
n-differentials on both sides of ({2.3]), take ¢ = 0, then integrate both sides with respect
to py (), divided by m, we get

PM () + t6) 1=
1 N . T
= (T [ (Susle) 0o

m AN
(3.15) o (i)
- ijz &4 ZTem(j)ngT m#TB;'—P(T) (¥ +19)|i=0 /AN w"(0, x)dpy ()
= 2 ey, (Lnyrrmn M T BRPT (Y + 1) |t=o>
as (3.2). Now since w(”_l)((), x) is bounded on X, the ergodic theorem guarantees

1

3.16 lim — [ S, "=1(0,2)d = 0.
(3.16) Jim [ S0, s ()
Then (3.14) follows from (3.15)) as m — oo considering ([3.16]). [ |

Theorem establishes some link between the differentials of the pressure function
and the the process {¢ o 07(z)}32, through S,, 4 with respect to the equilibrium state
iy We also formulate a general version of the result.

3.8. Corollary.

Let i, ¢ € COM(AN) with puy be the equilibrium state of 1. Lyyy admits a mazimum
isolated eigenvalue eVt close to e with eigenfunction w(t, z) whose projection
depends analytically on t in a small neighbourhood of 0. Considering the differentials of
the pressure function P(i) +td) at t =0, we have

PM () + t) |1=
1 . , .
= limy, 00 —( Z;;Q C’f@/ (Sm#, — m/gbdu¢)]w(”—ﬂ)(0, x)dpy ()
m AN
(3.17) L By
= 3055 O Erepgyage MBI P (4 + t¢)|to/ w (0, 2)dpay ()

AN

—= 2 e (Lmyrr—o 7T B PO (3 4 1) |t:0)
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for any n > 2.

Proof. Equipped with Theorem [3.7], the proof follows in line with the Proof of Corollary
3.4 [ ]

Now we give some precise descriptions of the third and fourth differentials of P(¢)+t¢)
in virtue of Theorem

3.9. Corollary.

Let 1, ¢ € CO"(AN) with ¢ being normalized. Let piy be the equilibrium state of ¢ and
[ ¢dpy = 0. Let ePWH9 be the mazimum eigenvalue of Ly with eigenfunction w(t, x)
for small t. Then we have

Z . 1
(3.18) P+ t0)imo = lim — [ 52 .

3.10. Remark.
P" (¢ 4+ t®)|s—o is called variance of the random process {¢ o o’ (z)}32y, whose name can
be interpreted from the Central Limit Theorem. See [Ruell, [PP].

3.11. Corollary.

Let v, ¢ € CO"(AN) with v being normalized. Let py be the equilibrium state of ¢ and
[ ¢pdpy = 0. Let ePWH9) be the maximum eigenvalue of Loy 11 with eigenfunction w(t, )
for small t. Then we have

1 . 3 2 ’ . 1 3
(3.19) P (¢ +1t)|i=o = Wlllgl)o m S (0, 2)dpy + Wlllfgo m S h-
Proof. This follows instantly from Theorem [3.7] with n = 3. [ |

3.12. Corollary.

Let 1, ¢ € COM(AN) with ¢ being normalized. Let puy be the equilibrium state of ¢ and
[ ¢dpy = 0. Let ePWH9) be the mazimum eigenvalue of Ly with eigenfunction w(t, x)
for small t. Then we have

PO (4 + t)]1=o
~ 6 2 4 3 1 4
= limy,_e0 (E/Sm@w (0, )dpy + E/S"Ww (0, )dpy + E/Sm,¢dﬂ¢

6P (04 t9)lmo [ 0 (020 — (P (0 -+ t0)]i0)?)

6

m

6 " 3
—E/ngd:“w/w (0, 2)dpy — E(/ Srzn,¢dﬂw)2>

S2 " (0, x)dpy + —4 S3 w' (0, x)dpy + —1 Shd
m,pW ( ) J]) Hoap m m,pW ( ) ZL’) Hap m m,¢PHy

= liInm—>oo (
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Proof. The first equality follows instantly from Theorem [3.7|with n = 4, while the second
one is true considering |} The last description depends only on ¢(z), {w")(0, x) ?:1
and gy (z). [ |

Through the above formulas we see the importance of the asymptotic distribution of
the random variable S, 4 with respect to p,, which is describe by the Central Limit
Theorem for the process {¢ o o7 (z) 22o- Equipped with all the above results, now we
are in a position to prove the rigidity results on the third differentials of P (1) +t¢) upon
Corollary [3.11] We first show Theorem [I.2

Proof of Theorem[1.2. From now on we fix t. € (0,00). Let 1) = t.¢. Simply by making
a change of variable we can see that

PM(t,) = P (t)]i—, = P (¢ + to)]i—g
for any n > 0. So is equivalent to
(3.21) |P" (4 + t9) =0 (1 — V2r (P" (¢ + 10)|i=0)**) | < BMyP" (¢) + t&)]1=o-

We can assume v is normalized as otherwise we can change it to its normalization
considering . Moreover, it suffices for us to prove it under the assumption [ ¢dpy, =
0 in virtue of (2.9). If P"(v+tp)|i—o = 0, then ¢ is cohomologous to a constant according
to [PPl, Proposition 4.12]. This forces P" (¢ + t¢)|i=0 = 0, so is satisfied in this
case. In the following we assume P”(¢ + t¢)|—o > 0. We resort to Corollary to

1

justify (3.21)) under the above assumptions. We first estimate the term — [ S?, sdptp in
m b

(3.19). Now the Central Limit Theorem comes in.

% / Sty
= Vm / (%ﬂ’—j)gdﬂw
= Vm / y’dGn(y)

= \/m/ySdNo,P”(wm)h_o(y) + \/E/ySde(y) +v/m - o(1/v/m)

_ P + 1)l Ve
s [T
+v/m - o(1/y/m)

= P"(¢) +10)|e—oV2r (P" (¢ + 1) |0)*? + /m - o(1/v/m).

By taking m — oo we get

(3.22) lim — S8 sdiy = P (1) +t¢)|i—oV2m(P" (¢ + t¢)|1—0)*/>.

m—o0 M,
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Considering (3.19) we have

(3.23)  P"(¥ +1d)|imo(1 — V21(P" (¢ + t¢)|1=0)*?) = lim — [ S2 ,w'(0,z)dpy.

m—oo 11

Since w' (0,x) depends continuously on = € X, there exists some M, depending on ¢,
such that

(3.24) lw'(0,2)] < M,.

Now taking absolute values on both sides of (3.23) we justify (3.21]), considering (3.24))

and (3.19).

The proof of Theorem on the pressure functions of non-generic Holder potentials
follows a similar way.

Proof of Theorem[1.1. Fix t, € (0,00), we can simply assume ¢ = t.¢ is normalised
and [ ¢dpy = 0. In case that P"(¢ + t¢)|=o = 0, so ¢ is cohomologous to a constant,
holds obviously. In the following we assume ¢ is not cohomologous to a constant,
so P"(1 + td)|;—o > 0. We again resort to Corollary [3.11] to justify under these

1
assumptions. Now for the term — [ S?  du, in (3.19), in virtue of the Central Limit
m b

Theorem,
LT
= \/_/ d,u¢
— Vi [ $dGuy)
(3.25) _ 9| P (1) + t)|i—o| + 2| PD () + t)]1—o|

3
\/m/ Yy dNOyP”(’l[}—i—t(ﬁ”t:O (y) + vm \/M(P”(w + t¢)‘t:0)3/2

9| P" () + td)|i=o| + 2’P(4)(¢ + 1) i=o|
V213 (P (¢ + t¢) |i=0)/?

9P (1) + t¢)|o| + 2| PP (1) + &) 1o
V213 (P (Y + ) |1=0)3/2

for m large enough. By taking m — oo in (3.25)), we get

— Jm-0+

.1 _ P + 1) ol + 2A P (Y + )]0
. lim — i .
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Taking modulus on both sides of (3.26]) we get
[P (¥ + t9) 1ol

IN

1
limmﬂoog/ m¢duw‘ —l—’ lim —/ ¢w (0 x)d,uwl
(3.27)  _ 9P () +t)]1=o| + 2| P (¢ + t¢)]1=0]
>~ /271'3 P”(@/J—I—t¢)|t:0)3/2

(
9P () + t¢)|1=o| + 2| P (¢ + t¢)|1=o|
23 (P (¢ + 1) |1=0)*/*

for some |w'(0, )| < My, which results in (1.1)). |

+3M,

3

+ 3MyP" (¢ + to)|i=o

One can predict from Corollary [3.12] Theorem [3.7 and the proof of Theorem [L.1], The-
orem that some more rigid relationships between higher differentials of the pressure
function {P™(t¢)}nen are possible. These rigidity relationships impose restrictions on
fitting convex analytic functions whose supporting lines intersecting the vertical axis in
some bounded set in [0, 00) by pressures of Holder potentials.

4. GLOBAL FITTING OF CONVEX ANALYTIC FUNCTIONS VIA PRESSURES OF
HOLDER POTENTIALS

This section is dedicated to the proof of Theorem [[.7 We start from the following
result on some global behaviour of the pressure functions of generic Holder potentials.

4.1. Theorem.
Let a > 0. If a strictly convex analytic function F(t) on (a, 00), with its supporting lines
intersecting the vertical axis in [y,%] C [0, 00), such that

(4.1) sup {‘ — V21 F"( ‘}
te(a,00)

then there does not exist any generic Holder potential ¢ on any shift space X of finite
type satisfying

P(te) = F(t)

on (a, 00).

Proof. This follows directly from Theorem|[I.2]in fact. Suppose on the contrary that there
exist some shift space X of finite type and some generic Holder potential ¢ € C%"*(X)
satisfying P(t¢) = F(t) on («, o), then according to Theorem [1.2] we have

/// t
SUDye (a,00) { 10 — /27 F"(t) ‘} < 3M,

for some finite My > 0. This contradicts (4.1)). [ |
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Be careful that we cannot exclude the possibility that one can locally fit some convex
analytic function through the pressure of some generic Holder potential on some shift
space of finite type by Theorem [I.2l This is because for any strictly convex analytic
function F'(t) on («,00) and o < a < @, we always have

S {ﬁ,—g _ m\} <.

So one cannot exclude the possibility that there exists some generic Holder potential ¢
on some shift space of finite type satisfying

P(tg) = F(t)
on [a,@| through Theorem [1.2] See Section [5| for more results on the problem of local

fitting of some convex analytic functions through the pressures of Holder potentials.
Now for a > 0, let

Fo= {F(t): F(t) is a strictly convex analytic function on (o, co) satisfying (4.1,

its supporting lines intersect the vertical axis in a bounded interval in [0, 00)}.

We will show that F, # 0 for any o > 0 in the following,.

4.2. Proposition.
For any a > 0, we have

at® + bt + te=t" + =<t
fa - {Fa,b,c(t) =

t

o

} c
(a,00) ) a,b>0,c>1/2v/2

Proof. The restricted functions on («, 00) are of course analytic. Considering the second
derivative of a function F,,.(t) € F,, we have

11

F

a,b,c

(t) = 42t2e~ " + 4dte " — 2ce™t" 4 2ct et 4 2Bt
for t € (0,00). Now since
4%t + 2t~ > 24/8¢3 > 2¢

(t) > 0 on (0,00). This shows that for
any o > 0, F,p.(t) € F, is a convex function. Considering the third differential of a
function Fy;.(t) € F,, we have

considering ¢ > 1/2v/2, we can see that F,

a,b,c

111

F

e(t) = =833t — 8c3t2e ™" 4+ 12c%te ™" — 6ot 2emt — 6t et

for t € (0,00). Then we have
_ 8c3t3€—ct2

i (Fo ) T ) =i S
Fope(t) whe 4ct2e—ct?

a,b,c

This means that F,;.(t) € F, satisfies (4.1). To see that the supporting lines of a
function F,;.(t) € F, intersect the vertical axis in a bounded domain in [0, c0), write
the function as
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Fope(t) =at +b+e ¥ 4t 1e

Its graph on (0,00) is a strictly convex smooth curve with asymptotes y = at 4+ b and
t=0. ]

In Figure |1l we provide the readers with the graph of the function
212 + 3t +te ¥ +e "

Fyz.(t) = ;
on (0, 00).
101
5 -
0 >
0 t
5t ]
40 F ]
-2 -1 0 1 2

FIGURE 1. Graph of F53,(t)

This means that any function in the family F,, cannot be fitted by any generic Holder
potential on any shift space of finite type globally, considering Theorem [4.1 In the
following we deny the possibility that they can be fitted by non-generic Holder potentials
on shift spaces of finite type.

4.3. Definition.

A continuous potential ¢ : X — R on a shift space X of finite type is said to be non-
generic if for some normalised potential 1, the spectral radius of the complex Ruelle
operator Lyiiy equals 1 for somet # 0.
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One can show that if ¢ is non-generic then there exists a continuous function u : X —
R, ¢; € R and a locally constant potential ¢ : X — R, such that

(4.2) o(z) = uoo(z) — u(z) + cs + o(x).
4.4. Proposition. .
For any o > 0 and any F,p.(t) € Fo with a,b > 0,c > #ﬁ, there does not exist any
non-generic Holder potential ¢ on any shift space of finite type such that
P(tp) = F(t)

on (o, 00).

Proof. Note that for a non-generic Holder potential ¢ on a shift space of finite type,
according to (4.2), we have

P(t¢) = tcy + P(t9),

in which ¢ is some locally constant potential. By the explicit formula (see Lemma
for the pressure functions of locally constant potentials on shift spaces of finite type, we
see that any F,,.(t) cannot be fitted by pressure of any non-generic Holder potential ¢
globally. |

Equipped with all the above results, Theorem follows instantly from Proposition
(4.2 and .41

5. LOCAL FITTING OF ANALYTIC GERMS VIA PRESSURES OF LOCALLY CONSTANT
POTENTIALS

In this section we deal with the local fitting of analytic functions by the pressures of
Holder potentials, especially the pressures of piecewise constant ones. Firstly we borrow
some notion originating from analytic continuation.

5.1. Definition.
A germ at t, is the sum of infinite power series

a a
g(t) :a0+a1(t—t*)—|—2_T(t_t*)2+3_?(75_15*)3_’_”'

for some (ag,ay,---) € R>.
The convergent radius (the superior of values § > 0 on [t,—d, t,+0] the germ converges)

of the power series is called the radius of the germ. We are only interested in germs of
radius 6 > 0. The following problem will be our concern in this section.

5.2. Problem.
For a germ

a
g(t) = a0+a1(t—t*)+2—f(t—t*)2+---

at t, with some strictly positive radius, does there exist some Holder potential ¢ on some
shift space of finite type and some 6 > 0, such that

P(tg) = g(t)
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on [t. —d,t.+6]?

The question can still be understood in Katok’s flexibility program in the class of
symbolic dynamical systems, or even in some smooth systems. Obvious conditions to
guarantee a positive answer to the problem are ((1.5)) and

(51) as > 0.

Condition guarantees convexity of the germ (in some neighbourhood of ¢,) while
(1.5) guarantees the supporting lines of the germ intersect the vertical axis in a bounded
set in [0, 00) (also in some neighbourhood of t,). We are especially interested in its answer
when the Holder potential in Problem is required to be a piecewise constant one. We
have seen the importance of the family of locally constant potentials in approximating
convex analytic functions in Corollary [I.4 In fact Corollary has some interesting
interpretation in approximation theory [Tim], when we consider the explicit expressions
of the pressures of locally constant potentials on the shift space of finite type. For n € N,
recall that

A, ={1,2,--- ,n}.

5.3. Lemma.
For an integer k > 0, consider some locally constant potential

¢($) = Co_px_jyqT0 - Th_1Tk

Z
n’

P(t¢) = log Z(m_k,n- o) EAZRH 6tCI—k”'zk

forxz =---x_jxoxy--- € [X_f - x| On the shift space AL, we have

for any t € (—o0, 00).

Proof. This follows from [Wall, Theorem 9.6] by some direct calculations through Defi-
nition [2.1| of the pressure. See also [Walll, p214]. [ |

5.4. Remark.
The result can be extended to transitive subshifts of finite type. In this case the pressure
1s the logarithm of the mazimal eigenvalue of some appropriate matriz.

Now combining Corollary and Lemma 5.3 we have the following result.

5.5. Corollary.

Let F(t) be a convex Lipschitz function on (a,00) for some o > 0, such that its sup-
porting lines intersect the vertical azxis in [y,7] with 0 < v <7 < oco. Then there ezists
some K € N and some sequences of constants B

{Cn,j ]I'(:nlf
such that
Kn
. ten,j —
(5.2) nh—>1£10 log‘Z1 e F(t)
j:

for any t € (a, 00).
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Proof. Take K = #A for the symbolic set in the proof of Corollary then the locally
constant potential ¢,(x) = ¢, () admits K™ constant values respectively on corre-
sponding level-n cylinder sets. Denote these values by {cmj}f:nl for n € N. According
to Lemma 5.3

P(t(lﬁn’i) = lOg Z;(':"I etCn,j

for any n > 1. This gives (5.2)) by virtue of (1.3)).
[ |

Corollary indicates that logarithm of the finite sums of the exponential maps in
the family {e'“}.cr are dense in the space of certain convex Lipschitz maps on (a, 00).
The above approximation is uniform with respect to t in a bounded set. This makes
the family {e“}.cr (family of locally constant potentials) important in detecting the
properties of certain convex Lipschitz maps (among continuous or Holder potentials).

From now on we turn our attention to Problem [5.2] but with restriction on locally
constant potentials. We focus on locally constant potentials defined on the level-0 cylin-
der sets, whose theory is presumably parallel to the ones defined on the deeper cylinder
sets. On the shift space AZ with n > 2, consider the locally constant potential

qb(l') = Zag

for x = ---x_yxoxy -+ € [7], in which {z;}1<i<, are all constants. Let

Qo(t, 21,22, ,2) = D0, €7,
SO

P(tp) =log Qo(t, 21, , zn)

by Lemma [5.3] Let

Qi(t, 21,22, 2) = Dy ze™
and

Qat, 21,22, 2n) = D1 ciejan(Zi — zj)%etzitz),

Through some elementary calculations one can check that

dP(tg) _ Qu(t,z1,---,zn)

PO = =3 = Qoo o)
while

1" dZPt(b Q ta Ty Rn
(5-3) P (t(b) = dt(2 ) - Qggt;; e ,zn;
Let

R2(ta R1y 22y 7Zn) = Z?:l Z?etzia

one can check that

Q2(ta 21y 7Zn) = Q0<t7 21,0 7Zn)R2(t7 21,0 7271) - Q%(ta 21, 7Zn)-
In the following we will often fix ¢t = ¢, > 0, so we will frequently write

Qolts, 21,22, ,2n) = Qol(21, 22, , Zn)



RIGIDITY OF PRESSURES OF HOLDER POTENTIALS 25

with ¢, omitted for convenience. Similar notations apply to other terms above. Let

n

(54) QO(ZI, A ’zn) — Zet*zz' — eao)

i=1
n

(5.5) Q21,5 20) = Z 2" = ay e
i=1

be two equations with unknowns {z1, z, - - - , 2, } for fixed t, > 0, (ap, a;) € R? and some

n > 2. Let

IEg={(21,22, - ,2n) €ER" 1 21,20, -+, 2, satisfy }
and

F: {(217227 e 7Zn) e R™: 1,22,y %n SatiSfy }

They are both n — 1 dimensional smooth hypersurfaces. We first present readers with
the following result on fitting an analytic function

ag + al(t - t*) + O((t - t*>2)

with t,, ag, a; subject to ([1.5)) around some fixed ¢, > 0 by pressures of locally constant
potentials on general shift spaces of finite type.

5.6. Theorem.
Let t, > 0, (ag,a;) € R* n > 2 satisfying and

ap — logn
(5.6) Ot—g < a.

Then there ezists some &, > 0 and some sequence {r;,}"; C R, such that the locally
constant potential

¢($) = Tz
forx =---x_jwoxy -+ € 0] On the full shift space AL satisfies
P(tg) = apg + a1 (t —t.) + O((t — t.)?)
on [t — Op, te + dy).

Proof. In fact it suffices for us to show that the system of equations

{ (5.4),
(-2)

with unknowns {z1, 2o, - - - , 2, } admits a solution under conditions of the theorem. With-
out loss of generality we assume
(5.7) <2< < 2,

Under this assumption, it is easy to see that

ag — logn a
t, Ty
Now we estimate the values of Q1(z1,- -, 2,) with z, approaching the terminals. When

z, approaches the right terminal from below, we have
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ag
1 e — —p%0 ao
llm(217z27.,,7z71)emﬂ7 ta 20 Q1(z1,++ ,2zn) = L€ > aze
*

in virtue of (1.5). When z, approaches the left terminal from above, we have

_ap—logn

1 e - - p,00 ao
hm(zhzz,"',zn)ef‘@m, 2 N\ G2 Ql(zh >Zn) - t, €’ < ae

in virtue of (5.6)). Since I} is a smooth hypersurface, by the mean value theorem, there

exists some (71, T2, ,nn) € [ satisfying (5.4) and (5.5)) simultaneously. At last,
for x = - x_jz01 -+ € [70] On the full shift space AZ, let

¢($) =Tzon

be the locally constant potential. As P(t¢) is analytic, there exists some §,, > 0 such
that

P(tp) = ag + a(t —t.) + O((t — t.)?)
for t € [t. — O, t + 0y). [ ]

5.7. Remark.
The core step in the proof of Theorem[5.0] is in fact finding the extremes of the function

Q1(2z1, -+, zn) subject to , and (@ One can detect the points of extremes
by the Karush-Kuhn-Tucker (KKT) conditions [Kar, IKT], which generalizes the method

of Lagrange multipliers by allowing inequality subjections.

Be careful that those {r;,,}? all depend on n in fact. Theorem induces the follow-
ing interesting flexibility result on fitting certain analytic functions locally by pressures
of locally constant potentials on general shift space of finite type.

5.8. Corollary.

Let t, > 0 and (ag,a;) € R? satisfy . Then there exists some N € N, such that for
any n > N, there exist some some &, > 0 and some sequence {r; ,}_; C R, such that
the locally constant potential

¢($) =Tzon
forx =---x_jmomy -+ € [10] ON the full shift space AZ satisfies
P(t¢) = ao + ar(t —t.) + O((t — t.)?)
on [t — Op, te + dy).
Proof. Under conditions of the corollary, for the given values t., ag, a; satisfying (|1.5)),
choose N € N large enough such that
ag — log N

< aj.
t, !

This means that for any n > N condition (5.6) is satisfied for t,,ag,a1,n. Then the
conclusion follows from Theorem [5.6 [ |
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Note that on some particular symbolic spaces Theorem [5.6] and 5.8/ may be trivial. For
example, for given (t,,ag,a;) € R® without any subjections, by choosing 3 = e+
consider the constant potential

$(z) =
on the §-shift space with symbols {0,1,---,|3]}. It is easy to see that
P(tgb) = Qg — t*al + alt = ag + (ll(t - t*)
on (—o0,00). However, our results guarantee conclusions on general shift spaces.

From now on we go towards the proof of Theorem . For fixed ¢, > 0, (ag, a;) € R?
and n > 3, let

I =1gaN [gg = {(z1,22, ,2n) ER™ 1 21,29, , 2, satisfy (5.4) and (5.5)}.
We describe some topological properties of the set F@@ in the following result.

5.9. Lemma.
For fized t. > 0, (ag,a1) € R? subject to and n > 3, in case [fgss # 0 and

ap —logn . . .

a; # — it is a compact (n — 2)-dimension smooth manifold.
Proof. The Jacobian of the functions Qo(z1, - ,2,) — €® and Qq(z1,- -+ ,2n) — a1
with respect to zq, 29, -+, 2, is

t,el* t.el?2 e t.etn

'] = txz1 tx21 tx22 tezg .. txzn txzn | -
e + t.z1€ e + ti20€ e + t.zne
Its rank is strictly less than 2 if and only if
21 = Rg = = Zp.

. ap — logn - . . . . .
Since a; # — this is excluded from points in IggEs By the implicit function
theorem [Lanl, if [[fgs= is not empty, it is an (n — 2)-dimension smooth manifold locally.
The gradient of the function Qg(z1, -+ ,2,) — €% is

V(Qo(z1, -+, 2n) — €%0) = (toet tet?2 o [ tel™n),

whose individual components will always be strictly positive. The gradient of the func-
tion Q1(z1,+ -, 2,) — a1e™ is

V(Ql(zla . 7Zn> _ a1€a0> — (et*z1 + t*Zlet*Zl, et*ZQ + t*22€t*z2’ . ,et*Zn + t*znet*zn),

1
with the ¢-th individual component vanishes if and only if z; = - for 1 <7<mn. So

I'5g and ['g cannot be tangent to each other. Moreover, note that
% Lt ze % > ()

1
if z; > - while

*

et#i Lt ze? < ()
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1
if z; < —— for any 1 <7 < n. These force the intersection of zeros of the two functions

Qo(z1,- -+ ,2n) —€e™ and Qq(21,- -+, 2n) — a1 to be connected, if the intersection is not

empty. This implies [5p7 is a manifold globally in case of being nonempty. Iy is

compact since it is a bounded set. |
Let

Fg@LQ,l = {(217 22, Z3) € R?) P R1, %2, %3 SatiSfy et e Fe® = 62}
and
FI§L5l1,2,1 = {(21, 22, 23) € R3: 2, 29, 23 satisfy z1€* + zp€% + z3¢™ = €?}

be the corresponding surfaces with t, = 1,a9 = 2,a; = 1. Figure [2| depicts parts of the
two 2-dimension surfaces, whose intersection will be a 1-dimension smooth curve.

Z, -20 -20 z

FIGURE 2. Tgg;,, (green) and I, ,, (red)

Equipped with all the above results, now we are ready to prove Theorem

Proof of Theorem[I.8. First, for the given ¢, > 0 and (ag, a;) € R? satisfying , if n
is large enough, F@@ is not empty according to Corollary So F@@ is a compact
(n—2)-dimension smooth manifold for n large enough. In the following we always assume
n is large enough. Now let

RQ(thl;Z?a e >Zn)

—a?: (21,22, ,2n) EF@@}

M, a0,a1,m = I { 0
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while
R2<t*a 1,22, Zn)

(5.8) M, ao.arn = max{ —a?: (21,20, ,2n) € F"@,@}

For any mu, a0n < a2 < My, a9.01.m, Since I is a smooth manifold, there exist
{cin}y C R, such that (¢1,,con, -+ ,Cnn) satisfies (5.4), (5.5) and
. Q2<t*’ Cln, - >Cn,n) . R?(t*a Cin, acn,n) 2

a9 =
Q%(t*a Cl,na e >Cn,n) e !

simultaneously. Now let

eao

(5.9)

O(x) = Cagn
for z = -z 2071 - - € [70] on the full shift space AZ. Tt is a locally constant potential.
According to (5.3)) and (5.9)), we have
. QZ(t*y Cin,: 7Cn,n)
Q%(t*7 Cl,n7 Ut 7cn,n>
Since (€1, Con, - -+, Cnp) satisfies (5.4) and (5.5)), we have
Q2(t*7 Cln, " 7cn,n>

(5.11) PU0) = ot oo onn)

(5.10) P"(t,¢)

= Qy.

while
- QQ(t*a Cin,y acn,n)
Q(%(t*a Cin,y acn,n)

Note that P(t¢) is analytic with respect to t on (a, 00) for any a > 0, so there exists

some d,, > 0, such that (1.6) holds on [t, — d,,t. + J,], considering (5.10)), (5.11]) and
G12). m

(5.12) P'(t.0)

=dai.

In the following we illustrate some dependent relationship between

{mt*,ao,ahna Mt*,ao,al,n}nEN

and some particular t.,ag, ar,n satisfying (1.5). There should be some universal rela-
tionship between them, while we hope the following observations will provide some hints.
The first one is that it is possible for my, 444, » = 0 for some t., ag, a;,n.
5.10. Proposition.
Let t, > 0 and (ap,a1) € R? satisfy . Then my, ag.a,.m = 0 for n > 2 if and only if

ap — logn
(5.13) @ = Ot—g.

Proof. Note that my, 4,.4,» = 01s equivalent to say that there exists some locally constant
potential ¢ on AZ such that P”(t,¢) = 0 according to Theorem [L.8 By [PP] Proposition
4.12], this happens if and only if ¢ is a constant potential on AZ. In this case we have

_ag—logn

o(x) = =

for any x € AZ, which implies (5.13)). ]
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This result does not tell things about the sequence

{me.a0.arnt nen large enough

for given t,, ag, a1, since ([5.13]) will never be true for any n large enough for fixed t,, ag, a;.
The following result describes some limit behaviour of the sequence

{M. 00,01} pen large enough
fort, =1,a0 =2,a; = 1.

5.11. Proposition.
Lett, =1,a9 = 2,a1 = 1, in symbols of Theorem (1.8, we have
(514) lim M121n = OQ.

n—00 B

To justify Proposition [5.11} we first illustrate some basic properties about the function
zet** for t, > 0.

5.12. Lemma.
1

For t, > 0, ze™* is strictly decreasing on (—oo, _t_)’ strictly increasing on (_t_’ 00),

oo o . L 1 . . .
while it attains its minimum ——e™" at z = ——. It admits one and only one inflection
) 1
in (—oo, ——).

(~00,— 1)

Proof. One can check these conclusions by some direct computations on the first and
second derivatives of the function ze'*. [ |

In Figure 3| we depict the graph of ¢(z) = ze?.

Proof of Proposition |5.11 Since we are considering the limit behaviour of M4 ,, we
always assume n is large enough throughout the proof. Now consider the following two
equations

(5.15) (n—1)e™ +e* =¢?
and
(5.16) (n — 1)zee™ + ze® = e

with unknowns z,, z,. Let

T = {(24,2) € R? : z,, 2, satisfy (5.15)}

and

It = {(24, 20) € R? : 2, 2, satisfy (5.16)}.

We describe the graph of Iz and Iz1g separately in the following. Ig1gis a 1 dimen-
sional smooth curve with two asymptotes 2z, = 2 — log(n — 1) and z, = 2. It is strictly
decreasing when we consider the curve as the graph of the function

z = log (€? — (n — 1)e™)
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FIGURE 4. F and F
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for z, € (—00,2 —log(n — 1)). Igg is also a 1 dimensional smooth curve with two
2
e

-1

asymptotes z, = ¢ 1( ) and z, = ¢ !(e?). When we consider the Txg as the graph
n

of the function
2p = 1)(%a)
as the implicit function induced by ((5.16)), it is strictly increasing for z, € (—oo, —1),
. . 62 . . .
strictly decreasing for z, € (—1,§_1(—1)), with its maximum ¢~ 1(e? + (n — 1)e™!)
n p—

. 1 62
attained at z, = —1. Let ¢, " (—
n J—

2z, = 2 and Iy, then Ip1g and [p1g must intersection at some unique point ¢, , €

1) be the smaller one of the two intersections of

(—o0, gfl(—%)). Obviously

lim,, o0 Cqp = —00

62

since lim,,_, o gl_l(— ) = —oo. Now we analyse the order of ¢,, with respect to n

as n — 0o. Let nel
Zam = —logn —loglogn +log1 — 1.
One can check that
limy, 00 2y 2((n — 1)eon + e%) = ¢?
while
limy, o0 2y s2((n — 1)z ne®m + zpe™) = €2,
These imply that
Can = —logn —loglogn + o(loglogn).
Note that (can, Cams s Cams M(Can)) € F@@ fort, =1,a9 =2,a; = 1. Now
Ry(Cams Camy 5 Cans N(Can))
= (= e+ (lean) PN
= (n—1)(—logn —loglogn + o(loglogn))2e~ leen-leglogntolloglogn) 4 4e2 1 (1)
= logn + o(logn),
from which it is easy to see that
limy, o0 R2(Can, Cans - 5 Cans> N(Cam)) = 00.
This forces
lim,, yoo M7 21, = 00,

14ty

considering (/5.8]).



We provide the readers with the curves I'zg and Igqg in Figure ] Obviously some
more general conclusions are available if one considers variations of the parameters
t., ag, a; in Proposition . At last we provide the readers with some solutions {¢, , }nen

le

and {n(ca.n) , from which one can see the order of decay and increase of

RIGIDITY OF PRESSURES OF HOLDER POTENTIALS

the sequences with respect to n clearly.

TABLE 3. {Can}nen and {n(can) fnen

Ca,n

n(ca,n)

10

-1.8599539391797653780996686364493

1.7634042477581860636342812520981

102

-4.6278529940301947157458180305676

1.8580906928560505140960875180438

103

-7.22789233650463543039196 71475052

1.8965708210067454817129699066334

10%

-9.7529279223041958189401940128674

1.9180710389285259082138396366755

10°

-12.23426184122178540565187685582

1.9319494203818796717151866525306

10°

-14.686689485112383196253350885528

1.941701042038176132682488585943

107

-17.118475509130338419321449219176

1.9489507180131363431129601417792

108

-19.534737736752111249670741176574

1.9545628133690736391913141129777

10°

-21.938877884281897893422087428599

1.9590417833080193886068703580662

107

-24.333277592346602338263750350022

1.9627027620469153955488959845337

1011

-26.719672172461371813735932628894

1.9657531814729595378854181456218

1012

-29.099366670257435261982274861811

1.9683353707111573738492465130807

1013

-31.473368167571030624456199153849

1.970550350496947761285545176838

1014

-33.842470627269595326611535858951

1.9724718685216929582206115029034

1015

-36.20731141238751139407393422892

1.9741550583546827046855344007126

1016

-38.568410155198951836337896822881

1.97564198636943790477268372057

10"

-40.926196222869058989174011616314

1.9769653208730088904749619599928

10"

-43.28102858421294787781225809291

1.9781508271703613365389080750692

1019

-45.633210475623427729647938869856

1.9792191056459012534062976 747755

1020

-47.983000423353389741328990557576

1.9801868284846851379610473178804

1021

-50.330620660008332271820694306839

1.9810676363715292020369862557429

1022

-52.676263643082855194671803053742

1.9818727996772032079642260800619

10%

-55.020097168291592849066888176454

1.9826117134133018944596936081392

10°*

-57.362268427077060922578379063246

1.9832922728467949817312209115653

1025

-59.702907260160132201351723856461

1.9839211621102961084222105523408

1026

-62.042128791447074538616865826092

1.9845040784885601043186175801529

1027

-64.380035579030470553978577616248

1.9850459085371711281404342988732

1028

-66.716719386002755126963619613768

1.9855508677057357884921072471682

1029

-69.052262649137714881922574449762

1.9860226120088820356292880321385

1030

-71.386739705385277326962820249044

1.9864643280735340181774784668139

10°1

-73.7202178226698188293210417966

1.9868788063025456510398996161088

1032

-76.052758071376257724956806229201

1.9872685007417625212636588061233

1033

-78.384416065240707497606345034329

1.9876355783911370649894789906831

1034

-80.715242594490126828808238297291

1.9879819600725889180558042388717

1035

-83.045284169538297201269228695051

1.9883093544968926933418986392956

10%°

-85.374583490011093204926910773042

1.9886192868162322855194994642595

10°7

-87.703179851099500408441885242821

1.9889131226778662869710690898493

1038

-90.031109497045012553979249690171

1.9891920885858755212588911444123

1039

-92.358405929815521230622254914238

1.9894572892164831961499157326311

1 040

-94.685100179630439886817678169988

1.9897097222064583485549741614556
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