Effective intinsic ergodicity for expanding interval maps

Mark Pollicott

1 Introduction

The variational principle is one of the central pillars of smooth ergodic theory and thermodynamic formalism. It was originally formulated for hyperbolic systems by Ruelle [11] and proved in full generality by Walters [16]. It relates the thermodynamic pressure function to entropies and integrals with respect to invariant measures.

We will consider the particular case where $T: I \rightarrow I$ is a piecewise C^{2} mixing expanding map of the interval $I=[0,1)$ and where $\phi: I \rightarrow R$ is a Hölder continuous function.

Definition 1.1. We can denote by m_{ϕ} the unique equilibrium state associated to ϕ, i.e., m is the unique probability measure realising the following supremum

$$
P(\phi):=\sup \left\{h(\mu)+\int \phi d \mu: \mu=T \text {-invariant probability }\right\}
$$

where $h(\mu)$ is the entropy (i.e., the variational principle).
For definiteness, we will consider the following well known examples.
Example 1.2. Let $\beta>1$ and consider $T:[0,1) \rightarrow[0,1)$ defined by

$$
T(x)=\beta x \quad(\bmod 1)
$$

then T is called a β-transformation. This is piecewise affine on the intervals

$$
\left[0, \frac{1}{\beta}\right),\left[\frac{1}{\beta}, \frac{2}{\beta}\right), \cdots\left[\frac{[1 / \beta]-1}{\beta}, \frac{[1 / \beta]}{\beta}\right),\left[\frac{[1 / \beta]}{\beta}, 1\right)
$$

where [•] denotes the integer part of a real number. example
We claim the following analogue of the Einseidler-Kaydev-Polo inequality (originally established for Markov expanding maps, subshifts of finite type and Anosov diffeomorphisms [2], [12]) also holds in this context.

Theorem 1.3. There exists a constant $C_{0}=C_{0}(\phi)$ such that for any T-invariant probability μ we have

$$
\begin{equation*}
\left|\int f d \mu-\int f d m_{\phi}\right| \leq C_{0}\|f\| \sqrt{P(\phi)-\left(h(\mu)+\int \phi d \mu\right)} \tag{1.1}
\end{equation*}
$$

where $\|\cdot\|$ is the norm of bounded variation.

Figure 1: Graph of a β-transformation

In the special case that $\beta \in \mathbb{N}$ (or more generally the orbit of $1 / \beta$ is finite) the map is Markov. In this case Theorem 1.3 would be a consequence of Kaydev's theorem [2]..

Example 1.4 (Parry measure). If we take $\phi=0$ then $P(0)=h(T)$ is the topological entropy and the equilibrium state is the unique measure m_{0} which maximizes the the entropy. In particular, Parry showed that m_{0} is absolutely continuous with density $\rho:[0,1] \rightarrow \mathbb{R}^{+}$given by

$$
\rho(x)=\frac{\sum_{n: T^{n}(1)>x} \beta^{-n}}{\int\left(\sum_{n: T^{n}(1)>x} \beta^{-n}\right) d x}
$$

with normalization constant $K>0$ [9].
Theorem 1.3 now has the following corollary (when $\phi=0$).
Corollary 1.5. There exists a constant $C_{0}>0$ such that for any T-invariant measure μ we have

$$
\begin{equation*}
\left|\int f d \mu-\int f d m_{0}\right| \leq C_{0}\|f\| \sqrt{h(T)-h(\mu)} \tag{1.2}
\end{equation*}
$$

A little history. A version of this result was apparently first proved in the thesis of Polo for doubling maps [10], where it was attributed to Einseidler. The above theorem was proved by Kadyrov for finite state shift spaces when $\phi=0$ (which was called effective intrinsic ergodicity) [2]. This was extended to Hölder potentials and infinite state shift spaces by Ruhr [12]. Subsequently, Ruhr-Sarig gave an alternative proof and a local version where the upper bound has the variance replacing the norm [13].

2 Proof of Theorem 1.2

We begin by recalling the definition of the bounded variation semi-norm of a function ψ : $I \rightarrow \mathbb{R}$ which takes the form

$$
\|\psi\|_{B V}=\sup \left\{\left|\sum_{i=0}^{n} \psi\left(x_{i}\right)-\psi\left(x_{i+1}\right)\right|: 0=x_{0}<x_{1} \cdots<x_{n}<x_{n+1}=1\right\}
$$

and let $\|\psi\|_{L^{1}}=\int_{I}|\psi(x)| d x$ denote the L^{1}-norm. We let $B V(I)$ denote the Banach space of measurable functions $\psi: I \rightarrow \mathbb{C}$ with norm $\|\psi\|:=\|\psi\|_{B V}+\|\psi\|_{L^{1}}<+\infty$.

Definition 2.1. Let $T: I \rightarrow I$ be a monotone piecewise continuous map. Given $\phi \in B V(I)$ we can define the transfer operator $\mathcal{L}_{\phi}: B V(I) \rightarrow B V(I)$ by

$$
\mathcal{L}_{\phi} w(x)=\sum_{T y=x} e^{\phi(y)} w(y) .
$$

Under additional assumptions on the function ϕ the operator $\mathcal{L}_{\phi}: B V(I) \rightarrow B V(I)$ has a number of useful properties. For simplicity we first assume that ϕ is Lipschitz so that we can use more of the specific methods form [16]. In $\S 4$ we will consider more general results using the subsequent analysis in [3], [7].

Lemma 2.2. Let $\phi: I \rightarrow \mathbb{R}$ be Lipschitz.

1. There exists a maximal eigenfunction $h \in B V(I)$ with $h>0$ such that $\mathcal{L}_{\phi} h=e^{P(\phi)} h$ and, in particular,

$$
e^{P(\phi)}=\lim _{n \rightarrow+\infty}\left\|\mathcal{L}_{\phi}^{n} 1(x)\right\|_{\infty}^{\frac{1}{n}}
$$

2. There exists a non-atomic probability measure ν_{ϕ} such that $\mathcal{L}_{\phi}^{*} \nu_{\phi}=e^{P(\phi)} \nu_{\phi}$.
3. There exists $a>0$ such that $h(x) \geq a>0$
4. h is continuous except at the points $\left\{T^{n}(\beta): n \geq 0\right\}$.
5. There exists $C>0$ and $0<\rho<1$ such that $\left\|\mathcal{L}_{\phi}^{n}(w)-e^{n P(\phi)} h \nu(w)\right\| \leq C\left(\rho e^{P(\phi)}\right)^{n}\|w\|$ for any $w \in B V(I)$ and $n \geq 1$.
Proof. The existence of the eigenfunction h in part 1 follows from ([7], Remark 6.8) (as observed in [1] on p. 460, where the authors also observe that it follows from their own Theorem 2). The existence of the measure in ν_{ϕ} in Part 2 follows from Proposition 6.10 of [7] (as also observed in [1], p.460.) ${ }^{1}$

Part 3 appears as Part (iii) in Lemma 9 in [16] (which in turn is based on Lemma 1 (i) in [16]) and we briefly recall the proof. Let \mathcal{P} be the partition of I into intervals of the form

$$
\begin{equation*}
\mathcal{P}=\left\{\left[0, \frac{1}{\beta}\right),\left[\frac{1}{\beta}, \frac{2}{\beta}\right), \cdots\left[\frac{[1 / \beta]-1}{\beta}, \frac{[1 / \beta]}{\beta}\right),\left[\frac{[1 / \beta]}{\beta}, 1\right)\right\} . \tag{2.1}
\end{equation*}
$$

[^0]An interval $J \in \vee_{i=0}^{n-1} T^{-i} \mathcal{P}$ is called a full interval of rank n if $T^{n}: J \rightarrow I$ is a bijection. Let $N>0$ then I is covered by full intervals of rank at least N (by Lemma 1 (i) in [16]). Thus for any x there is a sequence $k_{j} \rightarrow+\infty$ of full intervals $J_{j} \in \vee_{i=0}^{k_{j}-1} T^{-i} \mathcal{P}$ with rank at least k_{j} with $\{x\}=\cap_{j=1}^{\infty} J_{j}$. We claim that there exists some $N>0$ and some interval J with $T^{N}: J \rightarrow I$ a bijection (i.e., J is of full rank N) and for which $b:=\inf _{y \in J} h(y)>0$. If this was not the case then for all N we could choose x with $h(x)=0$ and since $\mathcal{L}_{\phi}^{N} h(x)=e^{N P(\phi)} h(x)$ we have that $h(y)=0$ for all preimages $y \in T^{-N} x$, which in turn would imply h is identically zero giving the contradiction. Thus for J as in this claim, since by assumption $T^{N} J=I$ we have that for $x \in I$:

$$
h(x)=e^{-P(\phi) N} \mathcal{L}_{\phi}^{N} h(x) \geq e^{-P(\phi) N} b e^{-N\|\phi\|_{\infty}}=: a
$$

Part 4 follows the same lines as the proof of Lemma 9 (iv) in [16], and we briefly recall the idea. We observe that $e^{-n P(\phi)} \mathcal{L}_{\phi}^{n} 1(x)$ is continuous at points not in $\cup_{i=1}^{n} T^{i}(\{\beta\})$ (where $\{\beta\}=\beta-[\beta]$ denotes the fractional part of β) and continuous from the right at these points. The result then follows from $h(x)=\lim _{n \rightarrow+\infty} e^{-n P(\phi)} \mathcal{L}_{\phi}^{n} 1(x)$.

For Part 5, we first observe that replacing ϕ by $\psi=\phi-\log h \circ T+\log h \in B V(I)$ (by virtue of Part 3) we have that the associated operator satisfies $\mathcal{L}_{\psi} 1=1$ and has spectral radius 1. Moreover

$$
\theta_{\psi}:=\limsup _{n \rightarrow+\infty}\left\|\exp \left(\sum_{k=0}^{n-1} \psi\left(T^{k} x\right)\right)\right\|_{\infty}^{\frac{1}{n}}<1
$$

This corresponds to $\theta_{\phi}<e^{P(\phi)}$. By Theorem 1 in [1] we have that \mathcal{L}_{ϕ} is quasi-compact and the essential spectral radius. is at most θ_{ϕ}. Therefore, it suffices to observe that $e^{P(\phi)}$ is a simple eigenvalue and that there are no other eigenvalues of absolute value $e^{P(\phi)}$.

It is convenient to consider coboundaries $u \circ T-u$ where $u \in B V(I)$. The following result follows easily from the definitions (and Part (iii) of Lemma 2.2).

Lemma 2.3. We can add constants and coboundaries in $B V(I)$ to ϕ without changing the equilibrium state m_{ϕ}. ${ }^{2}$

In particular, we can consider $h \in B V(I)$ as in Lemma 2.2 (1) and observe that since Lemma 2.2 (3) we have $h \geq a>0$ we have that $\log h \in B V(I)$. In particular, we can replace ϕ by $\psi=\phi-P(\phi)+\log h-\log h \circ T$ and then we can assume can assume that the associated transfer operator $\mathcal{L}_{\psi}: B V(I) \rightarrow B V(I)$ satisfies $\mathcal{L}_{\psi} 1=1$. Thus, without loss of generality we can assume $P(\phi)=0$.

We now consider a simple lemma, which is a special case of the well known Pinsker inequality.

Lemma 2.4 (Pinsker Inequality). Given probability vectors $\underline{q}=\left(q_{1}, \cdots, q_{k}\right)$ and $\underline{p}=\left(p_{1}, \cdots, p_{k}\right)$ we then have the basic inequality

$$
\begin{equation*}
-\sum_{i=1}^{k} q_{i} \log q_{i}+\sum_{i=1}^{k} q_{i} \log p_{i} \leq-\frac{1}{2} \sum_{i=1}^{k}\left|p_{i}-q_{i}\right|^{2} \tag{2.2}
\end{equation*}
$$

[^1]We can now follow the lines of the standard proof of the variational principle (cf. [16]). Let $\mathcal{P}=\left\{P_{i}\right\}_{i=1}^{k}$ be the partition of I into intervals given in (2.1) where $k=k(x)=[1 / \beta]$ or $[1 / \beta]+1$, as appropriate. Since this is clearly a generating partition we have that the entropy satisfies $h(\mu)=H_{\mu}\left(\mathcal{P} \mid T^{-1} \mathcal{P}\right)[16]$. We can also make the following choices:.

1. Given $x \in I$ we can let $p_{1}(x), \cdots p_{k(x)}(x)$ take the values $\left\{e^{\psi(y)}: T y=x\right\}$; and
2. For any T-invariant probability measure μ we let $q_{1}(x), \cdots, q_{k}(x)(1 \leq i \leq k(x))$ take the values $\mu\left(\mathcal{P} \mid T^{-1} \mathcal{B}\right)(y)$ where $T(y)=x$ for a.e. $(\mu) x \in X$ where \mathcal{B} is the Borel sigma algebra.

We can substitute these choices into (2.2) and integrate with respect to μ to get:

$$
\begin{align*}
& h(T, \mu)+\int \psi(x) d \mu(x) \\
& =-\int\left(\sum_{y \in T^{-1}} \mu\left(\mathcal{P} \mid T^{-1} \mathcal{B}\right)(y) \log \mu\left(\mathcal{P} \mid T^{-1} \mathcal{B}\right)(y)+\sum_{y \in T^{-1} x} \mu\left(\mathcal{P} \mid T^{-1} \mathcal{B}\right)(y) \psi(y)\right) d \mu(x) \\
& =-\int\left(\sum_{i=1}^{k} q_{i}(x) \log q_{i}(x)+\sum_{i=1}^{k} q_{i}(x) \psi(x)\right) d \mu(x) \\
& \leq-\frac{1}{2} \int \sum_{i=1}^{k}\left|p_{i}(x)-q_{i}(x)\right|^{2} d \mu(x) . \tag{2.3}
\end{align*}
$$

We can get a slightly weaker, but more useful, lower bound by using the Cauchy-Schwartz inequality to write

$$
\begin{equation*}
\left(\int \sum_{i=1}^{k}\left|p_{i}(x)-q_{i}(x)\right| d \mu(x)\right)^{2} \leq \int \sum_{i=1}^{k}\left|p_{i}(x)-q_{i}(x)\right|^{2} d \mu(x) \tag{2.4}
\end{equation*}
$$

Moreover, we can define the usual norm on the dual space $B V(I)^{*}$ of $B V(I)$ by

$$
\|\nu\|=\sup \left\{\left|\int g d \nu\right|: g \in B V(I) \text { with }\|g\| \leq 1\right\}
$$

for $\nu \in B V(I)^{*}$. This leads to the following.
Lemma 2.5. $\left\|\mathcal{L}_{\psi}^{*} \mu-\mu\right\| \leq \int \sum_{i=1}^{k}\left|p_{i}(x)-q_{i}(x)\right| d \mu(x)$.

Proof. Given $g \in B_{B V}$ with $\|g\|_{\infty} \leq 1$ we have

$$
\begin{aligned}
\left|\int\left(\mathcal{L}_{\psi} g-g\right) d \mu\right| & \leq \int \sum_{i=1}^{k} g(y)\left|p_{i}(x)-q_{i}(x)\right| d \mu(x) \\
& \leq \int \sum_{i}\left|p_{i}(x)-q_{i}(x)\right| d \mu(x)
\end{aligned}
$$

as required.

Finally, we have the following lemma.
Lemma 2.6. There exists $C_{1}>0$ such that $\left\|\mu-m_{\phi}\right\| \leq C_{1}\left\|\mathcal{L}_{\psi}^{*} \mu-\mu\right\|$.
Proof. It is at this point that we use the result from part 5 of Lemma 2.2 that there exists $0<\rho<1$ such that $\mathcal{L}^{* n} \mu=m+U^{* n} \mu$ where $\left\|U^{* n}\right\|=O\left(\rho^{n}\right)$. From this we conclude that the series $Q=\sum_{n=0}^{\infty} U^{n}$ converges. We can then write

$$
m_{\phi}=\lim _{n \rightarrow+\infty} \mathcal{L}_{\psi}^{* n} \mu=\mu+\sum_{n=0}^{\infty} \mathcal{L}_{\psi}^{* n}\left(\mathcal{L}_{\psi}^{*}-I\right) \mu
$$

Finally, we can write $\left.\left\|\mu-m_{\phi}\right\| \leq\|Q\| \cdot \mid \mathcal{L}_{\psi}^{*}-I\right) \mu \|$.
Combining (2.3), (2.4) and the inequalities in Lemma 2.6 and 2.7 completes the proof of Theorem 1.2.

$3 \quad$ A generalization of Theorem 1.3

Theorem 1.3 for β-transformations is a special case of a more general result for piecewise monotonic transformation where there exist $b_{0}=0<b_{1}<\cdots<b_{N}=1$ such that the restriction $\left.T\right|_{\left(b_{i}, b_{i+1}\right)}:\left(b_{i}, b_{i+1}\right) \rightarrow I$ is continuous and strictly monotone.

We recall the following property for T
Definition 3.1. We will say that T is topologically exact if the any $\epsilon>0$ there exists n such that for any $x \in I$ we have $T^{n}(B(x, \epsilon)=I$.

Definition 3.2. We say that a function $\phi: I \rightarrow \mathbb{R}$ has summable variation if

$$
\sum_{n} \operatorname{var}_{n}(\phi)<+\infty
$$

where $\operatorname{var}_{n}(\phi)=\sup \left\{|\phi(x)-\phi(y)|: x, y\right.$ are in same monotonicity interval of $\left.T^{n}\right\}$, for $n \geq$ 1.

The generalization of Theorem 1.3 takes the following form:
Theorem 3.3. Let T be a piecewise monotonic transformation which is topologically exact. Let $\phi: I \rightarrow \mathbb{R}$ be a (continuous) function of bounded variation such that either
a) ψ has summable variation; or
b) ψ is Hölder continuous.

Then exists a constant $C_{0}=C_{0}(\phi)$ such that for any T-invariant probability μ we have

$$
\begin{equation*}
\left|\int f d \mu-\int f d m_{\phi}\right| \leq C_{0}\|f\| \sqrt{P(\phi)-\left(h(\mu)+\int \phi d \mu\right)} \tag{3.1}
\end{equation*}
$$

where $\|\cdot\|$ is the norm of bounded variation.

The definition of bounded variation can be generalized as follows
Definition 3.4. For $p \geq 1$ we can define the bounded p-variation semi-norm of a function $\psi: I \rightarrow \mathbb{R}$ which takes the form

$$
\|\psi\|_{B V}=\left(\sup \left\{\sum_{i=0}^{n}\left|\psi\left(x_{i}\right)-\psi\left(x_{i+1}\right)\right|^{p}: 0=x_{0}<x_{1} \cdots<x_{n}<x_{n+1}=1\right\}\right)^{1 / p}
$$

and let $\|\psi\|_{L^{1}}=\int_{I}|\psi(x)| d x$ denote the L^{1}-norm. We let $B V_{p}(I)$ denote the Banach space of measurable functions $\psi: I \rightarrow \mathbb{C}$ with norm $\|\psi\|:=\|\psi\|_{B V}+\|\psi\|_{L^{1}}<+\infty$.

An even larger space of functions in [6] are the following:
Definition 3.5. Given $\epsilon>0$ we denote

$$
\operatorname{osc}_{1}(x, \phi, \epsilon)=\operatorname{esssup}(\phi \mid B(x, \epsilon))-\operatorname{essinf}(\phi \mid B(x, \epsilon))
$$

and then we denote $\operatorname{osc}_{1}(\phi, \epsilon):=\int_{I} \operatorname{osc}_{1}(x, \phi, \epsilon) d x$. Fix $\alpha>0$ and then for $\epsilon_{0}>0$ we can then write

$$
\|\phi\|_{\alpha, 1}:=\sup _{0<\epsilon \leq \epsilon_{0}} \frac{\operatorname{osc}_{1}(\phi, \epsilon)}{\epsilon^{\alpha}} .
$$

We can then define a norm $\|\phi\|=\|\phi\|_{\alpha, 1}+\|\phi\|_{L^{1}}$ and let $H^{\alpha, 1}$ be the associated Banach space (see [6], Theorem 1.13,b).

The following relationships between these spaces come from [6] and [8]
Lemma 3.6. . Let $p=\frac{1}{\alpha}$.

1. If $\phi: I \rightarrow \mathbb{R}$ is α-Hölder continuous then $\psi \in B V_{p}(I)$.
2. $B V_{p} \subset H^{\alpha, 1}$.

The proof of Theorem 3.3 requires a suitable generalization of Lemma 2.2.
Lemma 3.7. Let T be a piecewise monotonic transformation which is topologically exact. Let $\phi: I \rightarrow \mathbb{R}$ be a (continuous) function of bounded variation such that either
a) ψ has p-summable variation; or
b) ψ is α-Hölder continuous.

Let \mathcal{L}_{ϕ} be the associated transfer operator on $B V_{p}$ and $H^{\alpha, 1}$, respectively.

1. There exists a maximal eigenfunction $h \in B V(I)$ with $h>0$ such that $\mathcal{L}_{\phi} h=e^{P(\phi)} h$ and, in particular,

$$
e^{P(\phi)}=\lim _{n \rightarrow+\infty}\left\|\mathcal{L}_{\phi}^{n} 1(x)\right\|_{\infty}^{\frac{1}{n}}
$$

2. There exists a non-atomic probability measure ν_{ϕ} such that $\mathcal{L}_{\phi}^{*} \nu_{\phi}=e^{P(\phi)} \nu_{\phi}$.
3. There exists $a>0$ such that $h(x) \geq a>0$
4. There exists $C>0$ and $0<\rho<1$ such that $\left\|\mathcal{L}_{\phi}^{n}(w)-e^{n P(\phi)} h \nu(w)\right\| \leq C\left(\rho e^{P(\phi)}\right)^{n}\|w\|$ for any $w \in B V(I)$ and $n \geq 1$.

Proof. Under hypothesis a) the results follow from the results in [3]. Under hypothesis b) the results follow from the results in [6]. We briefly recall the main ideas.

The measure ν_{ϕ} in Part 2 occurs as a fixed point for the map $\nu \mapsto \mathcal{L}_{\phi} \nu / \nu(1)$ on the space of probability measures, i.e., $\mathcal{L}_{\phi} \nu_{\phi}=\lambda \nu_{\phi}$, where $\lambda=\nu_{\phi}(1)$ (see p. 135 of [3]). Later one can identify $\lambda=e^{P(\phi)}$.

Let $g(x):=e^{\phi(x)} / \log \lambda$ and then in each of the two cases one show that for large enough n we have

$$
\left\|\prod_{i=0}^{n-1} g\left(T^{i} x\right)\right\|_{\infty}<1
$$

(see [3], pp. 135-136). This implies that the operator $P=\mathcal{L}_{\log g}$ satisfies a Lasota-Yorke inequality (see [3], Lemma 7), i.e., there exists $0<\rho<1$ and $\beta>0$ such that
a) under hypothesis a)

$$
\left\|P^{n} f\right\|_{B V} \leq \beta\|f\|_{L^{1}}+\rho\|f\|_{B V}, \quad n \geq 0
$$

b) under hypothesis b)

$$
\left\|P^{n} f\right\|_{1, \alpha} \leq \beta\|f\|_{L^{1}}+\rho\|f\|_{1, \alpha}, \quad n \geq 0
$$

Moreover, the unit balls in $B V(I)$ and $H^{1, \alpha}$ are compact in the L^{1}-norm (by [3], Lemma 5 and [6] respectively). This leads to the quasi-compactness of the transfer operator \mathcal{L}_{ϕ} on the respective spaces, i.e., \mathcal{L}_{ϕ} has spectral radius $e^{P(\phi)}$ and essential spectral radius at most $0<\rho<1$. The hypothesis of topological exactness implies that $e^{P(\phi)}$ is a simple eigenvalue and there are no other eigenvalues of modulus $e^{P(\phi)}$. This is nicely explained in the proof of Corollary 4.4 in [8]. If π_{ϕ} is the one dimensional eigenprojection associated to $e^{P(\phi)}$ then we can let $h=\pi_{\phi}(1)$, the image of the constant function 1, in Part 1. Part 4 is a standard application of the Ionescu-Tulcea and Marinescu theorem [4].

Remark 3.8. Similar results will hold for transformations $T: I \rightarrow I$ with a finite number of monotone branches providing there are additional hypotheses which ensures part 3 of the lemma.
Remark 3.9. More generally, it would be sufficient to assume that $g: I \rightarrow \mathbb{R}$ has bounded p-variation, which would include the case of the g being Hölder continuous.

4 A Ruhr-Sarig type local result

In the case that in (1.1) that $P(\phi)-\left(h(\mu)+\int \phi d \mu\right)$ is sufficiently small then a sightly different bound can be given by modifying the proof in [13].

We can consider the pressure

$$
\begin{aligned}
P(\phi) & =\sup \left\{h(m)+\int \phi d m: m=T \text {-invariant }\right\} \\
& =\log \rho\left(\mathcal{L}_{\phi}\right)
\end{aligned}
$$

(where $\rho(\cdot)$ is the spectral radius) and for $t \in(-\epsilon, \epsilon)$

1. The function $t \mapsto p(t)=P(\phi+t \psi)$ is analytic.
2. $\left.\frac{d P(\phi+t \psi)}{d t}\right|_{t=0}=\int \psi d \mu_{\phi}=: a_{0}$
3. If ψ is not cohomologous to a coboundary plus a constant $\left.\frac{d P^{2}(\phi+t \psi)}{d t^{2}}\right|_{t=0}<0$ and $P(\phi+$ $t \psi$) is convex in a neighbourhood of 0 .

Provided that a_{1} is sufficiently close to a_{0} we can use the above properties to choose t (close to 0$)$ such that $\left.\frac{d P(\phi+t \psi)}{d t}\right|_{t=0}=\int \psi d \mu_{\phi}=: a_{1}$.

We can now introduce the following restricted pressure function.
Definition 4.1. For $a \in \mathbb{R}$ we define

$$
Q(a)=\sup \left\{h(\mu)+\int \phi d \mu: \int \psi d \mu=a\right\}
$$

which is well defined provided $\inf _{m}\left\{\int \psi d m\right\} \leq a \leq \sup _{m}\left\{\int \psi d m\right\}$
In particular, we observe $q(a) \leq P(\phi)$. Since the function $a \mapsto Q(a)$ is analytic we can deduce $\left.\frac{d Q(a)}{d a}\right|_{a_{0}}=0$

We can use the Taylor expansion at $a=a_{0}$ to write

$$
Q\left(a_{0}\right)-Q\left(a_{1}\right)=Q^{\prime}\left(a_{0}\right)+Q^{\prime \prime}\left(a_{0}\right)\left(a_{1}-a_{0}\right)^{2}(1+o(1))
$$

The function Q is actually the Legendre transform of P. More precisely,

$$
\begin{aligned}
P(t) & =h\left(m_{t}\right)+\int(\phi+t \psi) d m_{t} \\
& =\underbrace{h\left(m_{t}\right)+\int \phi d m_{t}}_{=: Q(t)}+t \int \psi d m_{t}
\end{aligned}
$$

where m_{t} is the equilibrium state of $\phi+t \psi$. This allows us to deduce that $\left.\frac{d Q^{2}(a)}{d t^{2}}\right|_{a=a_{0}}=$ $\left.\frac{d P^{2}(t)}{d t^{2}}\right|_{t=t_{0}}$.

Since

$$
Q\left(a_{1}\right) \geq h(\nu)+\int \phi d \nu
$$

since $\int \psi d \nu=a_{1}$ this implies

$$
\begin{aligned}
P(\phi)-\left(h(\nu)+\int \phi d \nu\right) & \geq Q\left(a_{0}\right)-Q\left(a_{1}\right) \\
& =\left.\frac{d Q^{2}(a)}{d t^{2}}\right|_{a=a_{0}}\left(a_{1}-a_{0}\right)^{2}(1+o(1))
\end{aligned}
$$

Finally, we conclude that for $\int \psi d \nu$ is sufficiently close to $\int \psi d \mu_{\phi}$ then we can bound

$$
\begin{equation*}
\left|\int f d \mu-\int f d m_{\phi}\right| \leq(1+o(1)) \sqrt{\left.\left|\frac{d P^{2}(t)}{d t^{2}}\right|_{t=0} \right\rvert\,} \sqrt{P(\phi)-\left(h(\mu)+\int \phi d \mu\right)} \tag{1.1}
\end{equation*}
$$

5 Miscellaneous Comments

(a) The original applications of these pressure results was to subshifts of finite type and Axiom A diffeomorphisms [12].[2] However, by using a simple model by suspension flows [?] the corresponding result also extends to Axiom A flows. More precisely, assume that $\phi_{t}: \Lambda \rightarrow \Lambda$ is a C^{1} Axiom A flow restricted to a basic set, m_{ϕ} is a ϕ-invariant equilibrium state for a Hölder continuous potential $\phi: \Lambda \rightarrow \mathbb{R}$ and $F: \Lambda \rightarrow \mathbb{R}$ is Hölder continuous then

$$
\left|\int F d \mu-\int F d m_{\phi}\right| \leq C\|F\| \sqrt{P(\phi)-\left(h(\mu)+\int \phi d \mu\right)}
$$

(b) The proof used the strong estimate in Part 5 of Lemma 2.2 to define Q in the proof of Lemma 2.6. However, under any weaker bounds on $\left\|U^{n}\right\| \rightarrow 0$ such that the series $Q=\sum_{n=0}^{\infty} U^{n}$ converges the same argument will hold.
(c) It may be possible to extend the result to higher dimensional transformations with singularities. In light of [13] one might ask if $\|f\|$ can be replaced by the variance $\sigma^{2}(f)$.
(d) Ruhr and Sarig have a corresponding result for subshifts where $\|f\|$ is replaced by an expression involving the variance $\sigma^{2}(f)$ which gives a more refined estimate. It is a natural question to ask if this is also true for (1.1).

References

[1] V. Baladi and G. Keller, Zeta functions and transfer operators for piecewise monotone transformations, Commun. Math. Phys. 127 (1990) 459-477.
[2] S. Kadyrov. Effective uniqueness of Parry measure and exceptional sets in ergodic theory. Monatshefte für Mathematik, 178(2):237-249, 2015
[3] F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations
[4] C. T. Ionescu Tulcea and G. Marinescu, Theorie Ergodique Pour Des Classes D'Operations Non Completement Continues, Annals of Mathematics, 52 (1950) 140147
[5] G. Keller, Generalized Bounded Variation and Applications to Piecewise Monotonic Transformations, Z. Wahrscheinlichkeitstheorie verw. Gebiete 69 (1985) 461-478
[6] G. Keller. Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrsch. Verw. Gebiete, 69(3):461-478, 1985.
[7] G. Keller, Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc. 314 (1989), 433-497
[8] H. Li and J. Rivera-Letelier, Equilibrium states of interval maps for hyperbolic potentials, Nonlinearity 27 (2014) 1779-1804
[9] W. Parry, On the β-expansion of real numbers, Acta math. Acad. Sci. Hungar. 11 (1960) 401-416
[10] F. Polo. Equidistribution in chaotic dynamical systems. ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.), The Ohio State University
[11] D. Ruelle, Statistical mechanics on a compact set with \mathbb{Z}^{v} action satisfying expansiveness and specification, Trans. Amer. Math. Soc., 185 (1973), 237-252
[12] R. Rühr, Pressure Inequalities for Gibbs Measures of Countable Markov Shifts (arXiv:2012.13226)
[13] R. Rühr and O. Sarig, Effective intrinsic ergodicity for countable state Markov shifts, to appear in Israel J. Math. (arXiv:2112.01186)
[14] M. Rychlik, Bounded variation and invariant measures. Studia math. 76 (1983) 69-80
[15] P. Walters, A Variational Principle for the Pressure of Continuous Transformations, Trans. Amer. Math. Soc., 97 (1975) 937-971
[16] P. Walters, Equilibrium states for β-transformations and related transforms, Math. Z. 159 (1978), no. 1, 65-88.

[^0]: ${ }^{1}$ See ([16], Lemma 3 and Lemma 9) for a proof of the first 2 parts for a different Banach space and under the additional assumption that ϕ is Lipschitz

[^1]: ${ }^{2}$ The new function ϕ may no longer be Lipschitz since h was not necessarily Lipschitz

