Computing modular forms: sheet 1
Ariel Pacetti - a.pacetti@warwick.ac.uk

The problems include two different topics, students should hand in (at least) 2/3 of the problems of each part.

Generalities on modular forms. Let \(\mathfrak{h} \) denote the upper half plane.

1. Let \(\text{GL}_2(\mathbb{R})^+ \) denote the set of \(2 \times 2 \) matrices with real entries and positive determinant.

 (a) Prove that the action of \(\text{GL}_2(\mathbb{R})^+ \) in \(\mathfrak{h} \) is transitive.

 (b) Compute the stabiliser of the point \(\sqrt{-1} \in \mathfrak{h} \).

 (c) Express \(\mathfrak{h} \) as the quotient of two real groups.

2. Let \(D = \{ z \in \mathfrak{h} : |z| \geq 1 \text{ and } |\text{Re}(z)| \leq 1/2 \} \). Prove the following facts:

 (a) Given \(z \in \mathfrak{h} \), there exists \(\gamma \in \text{SL}_2(\mathbb{Z}) \) such that \(\gamma \cdot z \in D \).
 (Hint: prove that there exists \(g \in \text{SL}_2(\mathbb{Z}) \) such that \(\text{Im}(g \cdot z) \) is maximum, and then prove that a translate of it lies in \(D \)).

 (b) Prove that if \(z_1, z_2 \in D \) are equivalent under the action of \(\text{SL}_2(\mathbb{Z}) \) then either \(\text{Re}(z_1) = \pm 1 \) and \(z_2 = z_1 \mp 1 \) or \(|z_1| = 1 \) and \(z_2 = -1/z_1 \).

3. Let \(\Gamma(2) \subset \text{SL}_2(\mathbb{Z}) \) be the normal subgroup of matrices congruent to the identity modulo 2. Prove that \([\text{SL}_2(\mathbb{Z}) : \Gamma(2)] = 6 \) and compute a connected fundamental domain for it. How many cusps has \(\Gamma(2) \)?

4. Let \(k > 1 \) be a positive integer. Let

\[
G_k(z) = \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} \frac{1}{(mz+n)^{2k}}.
\]

Prove that \(G_k(z) \) converges absolutely and uniformly on compact sets of \(\mathfrak{h} \) and defines a modular form of weight \(2k \) for \(\text{SL}_2(\mathbb{Z}) \).

(Hint: to prove uniform convergence in compact sets, suppose first that \(z \in D \) and prove the lower bound \(|mz+n|^2 \leq |m\rho+n|^2 \), where \(\rho = \exp(2\pi i/3) \)).

Generalities on quaternion algebras. Let \(K \) denote a field.

1. Let \(B/K \) be a quaternion algebra. Prove that the map

\[
B \to \text{End}_B(B)^{\text{op}}, \quad \alpha \to \phi_\alpha(x) = x\alpha,
\]

is an isomorphism, where \(\text{End}_B(B) \) are endomorphisms of \(B \)-modules, and the superscript \(\text{op} \) means with the opposite operation, i.e. \(\phi^{\text{op}} \psi = \psi \circ \phi \).
2. Fill in the details to prove that if \(B/K \) is a quaternion algebra, then either \(B \) is a division algebra, or \(B \simeq M_2(K) \).

3. Let \(B/K \) be a quaternion algebra, where \(\text{char}(K) \neq 2 \). Let \(b(x, y) := \frac{1}{2} \text{Tr}(x\epsilon(y)) \) be the bilinear form attached to the reduced norm quadratic form. Prove that \(b(x, y) \) is non-degenerate, and that \(\{1, i, j, k\} \) is an orthogonal basis for it.

4. Recall that if \((V_1, q_1)\) and \((V_2, q_2)\) are quadratic spaces, and isometry between is a vector space isomorphism which preserves the quadratic forms (and so the bilinear forms attached to them). Recall that if \(B/K \) is a quaternion algebra, we defined \(B^0 \) as the pure quaternions (those of zero trace). In this problem we will prove the following result (for \(\text{char}(K) \neq 2 \)):

Theorem: Let \(B \) and \(\tilde{B} \) be quaternion algebras over \(K \). Then \(B \) and \(B' \) are isomorphic if and only if \(B^0 \) and \(\tilde{B}^0 \) are isometric (as quadratic spaces with the reduced norm).

(a) Prove that the nonzero elements in \(B^0 \) are the elements in \(B \) which are not in \(K \), but whose square is in \(K \). With this characterisation prove that if \(\phi : B \to \tilde{B} \) is an isomorphism, then it induces an isomorphism between \(B^0 \) and \(\tilde{B}^0 \) which is an isometry.

(b) Reciprocally, prove that if \(\sigma : B^0 \to \tilde{B}^0 \) is an isometry, then the set \(\{\sigma(i), \sigma(j), \sigma(k)\} \) is a basis of \(\tilde{B}^0 \) and \(\{1, \sigma(i), \sigma(j), \sigma(k)\} \) is a basis for \(\tilde{B} \) satisfying the axioms of a quaternion algebra.