Perfect Powers that are Sums of Consecutive like Powers

Vandita Patel
University of Warwick

Number Theory Seminar,
University of Warwick

$$
\text { June 12-13, } 2017
$$

A Diophantine Equation

$$
(x+1)^{k}+(x+2)^{k}+\cdots+(x+d)^{k}=y^{n} .
$$

Question

Fix $k \geqslant 2$ and $d \geqslant 2$. Determine all of the integer solutions (x, y, n).

A Diophantine Equation

$$
x^{k}+(x+1)^{k}+\cdots+(x+d-1)^{k}=y^{n} .
$$

Question

Fix $k \geqslant 2$ and $d \geqslant 2$. Determine all of the integer solutions (x, y, n).

Remark: We can let $n=p$ be a prime.

A Brief History: Sums of Consecutive Cubes

Euler:

$$
6^{3}=3^{3}+4^{3}+5^{3} .
$$

Dickson's "History of the Theory of Numbers":
Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

1 Pagliani (1829): parametric solutions.
2 Uchiyama (1979): $d=3, n=2$ independently to Cassels.
3 Cassels (1985):
4 Zhongfeng Zhang (2014):
5 Bennett, Patel, Siksek (2016): $2 \leqslant d \leqslant 50, n \geqslant 2$.

A Brief History: Sums of Consecutive Cubes

Euler:

$$
6^{3}=3^{3}+4^{3}+5^{3} .
$$

Dickson's "History of the Theory of Numbers":
Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:
1 Pagliani (1829): parametric solutions.
2 Uchiyama (1979): $d=3, n=2$ independently to Cassels.
3 Cassels (1985):
Zhongfeng Zhang (2014):
5 Bennett, Patel, Siksek (2016): $2 \leqslant d \leqslant 50, n \geqslant 2$.

A Brief History: Sums of Consecutive Cubes

Euler:

$$
6^{3}=3^{3}+4^{3}+5^{3} .
$$

Dickson's "History of the Theory of Numbers":
Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:
1 Pagliani (1829): parametric solutions.
2 Uchiyama (1979): $d=3, n=2$ independently to Cassels.
3 Cassels (1985):
4 Zhongfeng Zhang (2014):
■ Bennett, Patel, Siksek (2016): $2 \leqslant d \leqslant 50, n \geqslant 2$.

A Brief History: Sums of Consecutive Cubes

Euler:

$$
6^{3}=3^{3}+4^{3}+5^{3} .
$$

Dickson's "History of the Theory of Numbers":
Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:
1 Pagliani (1829): parametric solutions.
2 Uchiyama (1979): $d=3, n=2$ independently to Cassels.
3 Cassels (1985): $y^{2}=x^{3}+(x+1)^{3}+(x+2)^{3}$.
4 Zhongfeng Zhang (2014):
5 Bennett, Patel, Siksek (2016): $2 \leqslant d \leqslant 50, n \geqslant 2$.

A Brief History: Sums of Consecutive Cubes

Euler:

$$
6^{3}=3^{3}+4^{3}+5^{3} .
$$

Dickson's "History of the Theory of Numbers":
Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:
1 Pagliani (1829): parametric solutions.
2 Uchiyama (1979): $d=3, n=2$ independently to Cassels.
3 Cassels (1985): $y^{2}=x^{3}+(x+1)^{3}+(x+2)^{3}$.
4 Zhongfeng Zhang (2014): $y^{n}=x^{3}+(x+1)^{3}+(x+2)^{3}$.
5 Bennett, Patel, Siksek (2016): $2 \leqslant d \leqslant 50, n \geqslant 2$.

A Brief History: Sums of Consecutive Cubes

Euler:

$$
6^{3}=3^{3}+4^{3}+5^{3} .
$$

Dickson's "History of the Theory of Numbers":
Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:
1 Pagliani (1829): parametric solutions.
2 Uchiyama (1979): $d=3, n=2$ independently to Cassels.
3 Cassels (1985): $y^{2}=x^{3}+(x+1)^{3}+(x+2)^{3}$.
4 Zhongfeng Zhang (2014): $y^{n}=x^{3}+(x+1)^{3}+(x+2)^{3}$.
5 Bennett, Patel, Siksek (2016): $2 \leqslant d \leqslant 50, n \geqslant 2$.

A Brief History

Well-Known:

$$
\sum_{i=0}^{d} i^{3}=\sum_{i=1}^{d} i^{3}=\left(\frac{d(d+1)}{2}\right)^{2}
$$

Pagliani:

where $v \equiv 2,4(\bmod 6)$.

A Brief History

Well-Known:

$$
\sum_{i=0}^{d} i^{3}=\sum_{i=1}^{d} i^{3}=\left(\frac{d(d+1)}{2}\right)^{2}
$$

Pagliani:

$$
\sum_{i=1}^{v^{3}}\left(\frac{v^{4}-3 v^{3}-2 v^{2}-2}{6}+i\right)^{3}=\left(\frac{v^{5}+v^{3}-2 v}{6}\right)^{3}
$$

where $v \equiv 2,4(\bmod 6)$.

The Results

$$
(x+1)^{k}+(x+2)^{k}+\cdots+(x+d)^{k}=y^{n} .
$$

Theorem (M. A. Bennett, V. Patel, S. Siksek)

Let $k=3$ and $2 \leqslant d \leqslant 50$. Then, any "non-trivial" integer solution (x, y, n) must have $n=2$ or $n=3$.

Without loss of any generality, we can let $x \geqslant 1$.

The Results

$$
(x+1)^{k}+(x+2)^{k}+\cdots+(x+d)^{k}=y^{n} .
$$

Theorem (M. A. Bennett, V. Patel, S. Siksek)

Let $k=3$ and $2 \leqslant d \leqslant 50$. Then, any " $n o n-t r i v i a l " ~ i n t e g e r ~$ solution (x, y, n) must have $n=2$ or $n=3$.

$$
y \neq 0, \pm 1
$$

Without loss of any generality, we can let $x \geqslant 1$.

The Results

$$
(x+1)^{k}+(x+2)^{k}+\cdots+(x+d)^{k}=y^{n} .
$$

Theorem (M. A. Bennett, V. Patel, S. Siksek)

Let $k=3$ and $2 \leqslant d \leqslant 50$. Then, any " $n o n-t r i v i a l " ~ i n t e g e r ~$ solution (x, y, n) must have $n=2$ or $n=3$.

$$
y \neq 0, \pm 1 .
$$

Without loss of any generality, we can let $x \geqslant 1$.

Cubes that are Sums of Consecutive Cubes

$$
\begin{gathered}
3^{3}+4^{3}+5^{3}=6^{3}, \quad \text { attributed to Lucas } \\
11^{3}+12^{3}+13^{3}+14^{3}=20^{3} \\
3^{3}+4^{3}+5^{3}+\cdots+22^{3}=40^{3} \\
15^{3}+16^{3}+17^{3}+\cdots+34^{3}=70^{3} \\
6^{3}+7^{3}+8^{3}+\cdots+30^{3}=60^{3} \\
291^{3}+292^{3}+293^{3}+\cdots+339^{3}=1155^{3} .
\end{gathered}
$$

Cubes that are Sums of Consecutive Cubes

$$
\begin{gathered}
(-2)^{3}+(-1)^{3}+0^{3}+1^{3}+2^{3}+3^{3}+4^{3}+5^{3}=6^{3} \\
11^{3}+12^{3}+13^{3}+14^{3}=20^{3} \\
3^{3}+4^{3}+5^{3}+\cdots+22^{3}=40^{3} \\
15^{3}+16^{3}+17^{3}+\cdots+34^{3}=70^{3} \\
6^{3}+7^{3}+8^{3}+\cdots+30^{3}=60^{3} \\
291^{3}+292^{3}+293^{3}+\cdots+339^{3}=1155^{3}
\end{gathered}
$$

The Methodology

Step	Method	Number of Equations to Solve
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)
2.	$p=2$: Integer points on elliptic curves	49 equations in (x, y)
3.	$d=2$: Results of Nagell	2 equations (x, y, p)
4.	First descent: a factorisation for $p \geqslant 5$	906 equations in (x, y, p)
5.	Linear Forms in two logarithms: $p \geqslant 5$ Bounding $p<3 \times 10^{6}$	$\begin{gathered} 906 \times 216814=196,433,484 \\ \text { equations in }(x, y) \end{gathered}$
6.	Sophie-Germain type criterion (case $r \neq t$) $879 \times 216814=190,579,506 \text { in }(x, y)$	224 remain in (x, y)
7.	$\begin{aligned} & \text { Modularity }(\text { case } r=t) \\ 27 \times & 216814=5,853,978 \text { in }(x, y) \end{aligned}$	53 remain in (x, y)
8.	First descent when $p=3$	942 in (x, y)
	Equations remaining via 8., 6. and 7.	1219
$\begin{gathered} 9 . \\ 10 . \\ 11 . \end{gathered}$	Local solubility tests A further descent Thue solver!	$\begin{gathered} 507 \\ 226 \\ 6 \text { solutions found! } \end{gathered}$

Step 1. (And 4.) IS the Key!

1 By a (p, p, p) equation, we mean $A x^{p}+B y^{p}=C z^{p}$.
2 Roughly speaking we have
(Linear Factor in x) (Quadratic Factor in $x)=y^{p}$.
3 Linear Factor $=\alpha y_{1}^{p}$.
4 Quadratic Factor $=(\text { Linear Factor })^{2}+$ Constant $=\beta y_{2}^{p}$.
5 Substitution should give $\alpha^{2}\left(y_{1}^{2}\right)^{p}+$ Constant $\cdot 1^{p}=\beta\left(y_{2}\right)^{p}$
Step 2.
$1 p=2$ solved by Stroeker (1995).
2 Integer points on Elliptic Curves.
3 Cubic in $x=y^{2}$. Ask magma!

Step 1. (And 4.) is the Key!

1 By a (p, p, p) equation, we mean $A x^{p}+B y^{p}=C z^{p}$.
2 Roughly speaking we have
(Linear Factor in x) (Quadratic Factor in $x)=y^{p}$.
3 Linear Factor $=\alpha y_{1}^{p}$.
4 Quadratic Factor $=(\text { Linear Factor })^{2}+$ Constant $=\beta y_{2}^{p}$.
5 Substitution should give $\alpha^{2}\left(y_{1}^{2}\right)^{p}+$ Constant $\cdot 1^{p}=\beta\left(y_{2}\right)^{p}$
Step 2.
$1 p=2$ solved by Stroeker (1995).
2 Integer points on Elliptic Curves.
3 Cubic in $x=y^{2}$. Ask magma!

The Methodology

Step	Method	Number of Equations to Solve
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)
2.	$p=2$: Integer points on elliptic curves	49 equations in (x, y)
3.	$d=2$: Results of Nagell	2 equations (x, y, p)
4.	First descent: a factorisation for $p \geqslant 5$	906 equations in (x, y, p)
5.	Linear Forms in two logarithms: $p \geqslant 5$ Bounding $p<3 \times 10^{6}$	$\begin{gathered} 906 \times 216814=196,433,484 \\ \text { equations in }(x, y) \end{gathered}$
6.	Sophie-Germain type criterion (case $r \neq t$) $879 \times 216814=190,579,506 \text { in }(x, y)$	224 remain in (x, y)
7.	$\begin{aligned} & \text { Modularity }(\text { case } r=t) \\ 27 \times & 216814=5,853,978 \text { in }(x, y) \end{aligned}$	53 remain in (x, y)
8.	First descent when $p=3$	942 in (x, y)
	Equations remaining via 8., 6. and 7.	1219
$\begin{gathered} 9 . \\ 10 . \\ 11 . \end{gathered}$	Local solubility tests A further descent Thue solver!	$\begin{gathered} 507 \\ 226 \\ 6 \text { solutions found! } \end{gathered}$

The Magic of Sophie Germain

After Step 4. We have equations of the form:

$$
\begin{equation*}
r y_{2}^{p}-s y_{1}^{2 p}=t \tag{1}
\end{equation*}
$$

where r, s, t are positive integers, and $\operatorname{gcd}(r, s, t)=1$.
The linear forms in two logarithms bounds p. For each tuple (r, s, t) we can apply the methods of Sophie Germain to eliminate equations/tuples for a fixed value of p.

The Magic of Sophie Germain

LEMMA

Let $p \geqslant 3$ be prime. Let r, s and t be positive integers satisfying $\operatorname{gcd}(r, s, t)=1$. Let $q=2 k p+1$ be a prime that does not divide r. Define

$$
\begin{equation*}
\mu(p, q)=\left\{\eta^{2 p}: \eta \in \mathbb{F}_{q}\right\}=\{0\} \cup\left\{\zeta \in \mathbb{F}_{q}^{*}: \zeta^{k}=1\right\} \tag{2}
\end{equation*}
$$

and

$$
B(p, q)=\left\{\zeta \in \mu(p, q):((s \zeta+t) / r)^{2 k} \in\{0,1\}\right\} .
$$

If $B(p, q)=\varnothing$, then equation (1) does not have integral solutions.

The Magic of Sophie Germain

Proof.

Suppose $B(p, q)=\varnothing$. Let $\left(y_{1}, y_{2}\right)$ be a solution to (1). Let $\zeta={\overline{y_{1}}}^{2 p} \in \mu(p, q)$. From equation (1) we have

$$
(s \zeta+t) / r \equiv y_{2}^{p} \quad \bmod q .
$$

Thus

$$
((s \zeta+t) / r)^{2 k} \equiv y_{2}^{q-1} \equiv 0 \text { or } 1 \quad \bmod q .
$$

This shows that $\zeta \in B(p, q)$ giving a contradiction.

The Magic of Sophie Germain - Why Does it WORK?

1 If there are no solutions to $r y_{2}^{p}-s y_{1}^{2 p}=t$,
2 and we take p to be large, then
3 notice that $\# \mu(p, q)=k+1$.
4 For $\zeta \in \mu(p, q)$, the element $((s \zeta+t) / r)^{2 k} \in \mathbb{F}_{q}$ is either 0 or an p-th root of unity.
(5) The "probability" that it belongs to the set $\{0,1\}$ is $2 /(p+1)$.
6 The "expected size" of $B(p, q)$ is $2(k+1) /(p+1) \approx 2 q / p^{2}$.
7 For large p we expect to find a prime $q=2 k p+1$ such that $2 q / p^{2}$ is tiny and so we likewise expect that $\# B(p, q)=0$.

The Magic of Sophie Germain - Why Does it Work?

1 If there are no solutions to $r y_{2}^{p}-s y_{1}^{2 p}=t$,
2 and we take p to be large, then
3 notice that $\# \mu(p, q)=k+1$.
4 For $\zeta \in \mu(p, q)$, the element $((s \zeta+t) / r)^{2 k} \in \mathbb{F}_{q}$ is either 0 or an p-th root of unity.
(5 The "probability" that it belongs to the set $\{0,1\}$ is $2 /(p+1)$.
6 The "expected size" of $B(p, q)$ is $2(k+1) /(p+1) \approx 2 q / p^{2}$.
7 For large p we expect to find a prime $q=2 k p+1$ such that $2 q / p^{2}$ is tiny and so we likewise expect that $\# B(p, q)=0$.

The Magic of Sophie Germain - Why Does it WORK?

1 If there are no solutions to $r y_{2}^{p}-s y_{1}^{2 p}=t$,
2 and we take p to be large, then
3 notice that $\# \mu(p, q)=k+1$.
© For $\zeta \in \mu(p, q)$, the element $((s \zeta+t) / r)^{2 k} \in \mathbb{F}_{q}$ is either 0 or an p-th root of unity.
(5 The "probability" that it belongs to the set $\{0,1\}$ is $2 /(p+1)$.
6 The "expected size" of $B(p, q)$ is $2(k+1) /(p+1) \approx 2 q / p^{2}$.
7 For large p we expect to find a prime $q=2 k p+1$ such that $2 q / p^{2}$ is tiny and so we likewise expect that $\# B(p, q)=0$.

The Magic of Sophie Germain - Why Does it WORk?

1 If there are no solutions to $r y_{2}^{p}-s y_{1}^{2 p}=t$,
2 and we take p to be large, then
3 notice that $\# \mu(p, q)=k+1$.
4 For $\zeta \in \mu(p, q)$, the element $((s \zeta+t) / r)^{2 k} \in \mathbb{F}_{q}$ is either 0 or an p-th root of unity.
■ The "probability" that it belongs to the set $\{0,1\}$ is $2 /(p+1)$.
6 The "expected size" of $B(p, q)$ is $2(k+1) /(p+1) \approx 2 q / p^{2}$.
7 For large p we expect to find a prime $q=2 k p+1$ such that $2 q / p^{2}$ is tiny and so we likewise expect that $\# B(p, q)=0$.

The Magic of Sophie Germain - Why Does it WORk?

1 If there are no solutions to $r y_{2}^{p}-s y_{1}^{2 p}=t$,
2 and we take p to be large, then
3 notice that $\# \mu(p, q)=k+1$.
4 For $\zeta \in \mu(p, q)$, the element $((s \zeta+t) / r)^{2 k} \in \mathbb{F}_{q}$ is either 0 or an p-th root of unity.
5 The "probability" that it belongs to the set $\{0,1\}$ is $2 /(p+1)$.
6 The "expected size" of $B(p, q)$ is $2(k+1) /(p+1) \approx 2 q / p^{2}$.
7 For large p we expect to find a prime $q=2 k p+1$ such that $2 q / p^{2}$ is tiny and so we likewise expect that $\# B(p, q)=0$.

The Magic of Sophie Germain - Why Does it WORK?

1 If there are no solutions to $r y_{2}^{p}-s y_{1}^{2 p}=t$,
2 and we take p to be large, then
3 notice that $\# \mu(p, q)=k+1$.
4 For $\zeta \in \mu(p, q)$, the element $((s \zeta+t) / r)^{2 k} \in \mathbb{F}_{q}$ is either 0 or an p-th root of unity.
5 The "probability" that it belongs to the set $\{0,1\}$ is $2 /(p+1)$.
6 The "expected size" of $B(p, q)$ is $2(k+1) /(p+1) \approx 2 q / p^{2}$.
7 For large p we expect to find a prime $q=2 k p+1$ such that $2 q / p^{2}$ is tiny and so we likewise expect that $\# B(p, q)=0$.

The Magic of Sophie Germain - Why Does it WORK?

1 If there are no solutions to $r y_{2}^{p}-s y_{1}^{2 p}=t$,
2 and we take p to be large, then
3 notice that $\# \mu(p, q)=k+1$.
4 For $\zeta \in \mu(p, q)$, the element $((s \zeta+t) / r)^{2 k} \in \mathbb{F}_{q}$ is either 0 or an p-th root of unity.
5 The "probability" that it belongs to the set $\{0,1\}$ is $2 /(p+1)$.
6 The "expected size" of $B(p, q)$ is $2(k+1) /(p+1) \approx 2 q / p^{2}$.
7 For large p we expect to find a prime $q=2 k p+1$ such that $2 q / p^{2}$ is tiny and so we likewise expect that $\# B(p, q)=0$.

The Modular Way! $(r=t)$

$$
\begin{gathered}
r y_{2}^{p}-s y_{1}^{2 p}=t \\
y_{2}^{p}-(s / r) y_{1}^{2 p}=1
\end{gathered}
$$

Has solutions $\left(y_{1}, y_{2}\right)=(0,1)$. This causes our previous lemma to fail.
However, the Modular Method does not see this solution. When constructing the Frey Curve, the discriminant is non-zero. Hence if $y_{1}=0$ then the discriminant is zero. (Similar to Fermat's Last Theorem).

The Modular Way! $(r=t)$

$$
\begin{gathered}
r y_{2}^{p}-s y_{1}^{2 p}=t \\
y_{2}^{p}-(s / r) y_{1}^{2 p}=1
\end{gathered}
$$

Has solutions $\left(y_{1}, y_{2}\right)=(0,1)$. This causes our previous lemma to fail.
However, the Modular Method does not see this solution. When constructing the Frey Curve, the discriminant is non-zero. Hence if $y_{1}=0$ then the discriminant is zero. (Similar to Fermat's Last Theorem).

The Methodology

Step	Method	Number of Equations to Solve
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)
2.	$p=2$: Integer points on elliptic curves	49 equations in (x, y)
3.	$d=2$: Results of Nagell	2 equations (x, y, p)
4.	First descent: a factorisation for $p \geqslant 5$	906 equations in (x, y, p)
5.	Linear Forms in two logarithms: $p \geqslant 5$ Bounding $p<3 \times 10^{6}$	$\begin{gathered} 906 \times 216814=196,433,484 \\ \text { equations in }(x, y) \end{gathered}$
6.	Sophie-Germain type criterion (case $r \neq t$) $879 \times 216814=190,579,506 \text { in }(x, y)$	224 remain in (x, y)
7.	$\begin{aligned} & \text { Modularity }(\text { case } r=t) \\ 27 \times & 216814=5,853,978 \text { in }(x, y) \end{aligned}$	53 remain in (x, y)
8.	First descent when $p=3$	942 in (x, y)
	Equations remaining via 8., 6. and 7.	1219
$\begin{gathered} 9 . \\ 10 . \\ 11 . \end{gathered}$	Local solubility tests A further descent Thue solver!	$\begin{gathered} 507 \\ 226 \\ 6 \text { solutions found! } \end{gathered}$

Pieter's Parity Parrot: Designed by Pieter Moree, Drawn by Kate Kattegat

THE CASE $k=2$

Step	Method	Number of Equations to Solve	$k=2$
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)	$(p, p, 2) \checkmark$
2.	$p=2$: Integer points on elliptic curves	49 equations in (x, y)	$\infty \checkmark$
3.	$d=2$: Results of Nagell	2 equations (x, y, p)	
4.	First descent: a factorisation for $p \geqslant 5$	906 equations in (x, y, p)	x
5.	Linear Forms in two logarithms: $p \geqslant 5$ Bounding $p<3 \times 10^{6}$	$\begin{gathered} 906 \times 216814=196,433,484 \\ \text { equations in }(x, y) \end{gathered}$	\%
6.	$\begin{aligned} & \text { Sophie-Germain type criterion (case } r \neq t \text {) } \\ & 879 \times 216814=190,579,506 \text { in }(x, y) \end{aligned}$	224 remain in (x, y)	土
7.	$\begin{aligned} & \text { Modularity }(\text { case } r=t) \\ & 27 \times 216814=5,853,978 \text { in }(x, y) \end{aligned}$	53 remain in (x, y)	Levels too big!! x
8.	First descent when $p=3$	942 in (x, y)	
	Equations remaining via 8., 6. and 7.	1219	
$\begin{gathered} 9 . \\ 10 . \\ 11 . \end{gathered}$	Local solubility tests A further descent Thue solver!	$\begin{gathered} 507 \\ 226 \\ 6 \text { solutions found! } \end{gathered}$	三 \quad a

Dimensions of $S_{2}(N)$

When $k=2$...

$$
d=22, \quad \operatorname{dim}=5280
$$

Dimension 200 is reasonable to compute with. We can push computations to dimension 2000 with some clever tricks. When $k=4$...

$$
\begin{gathered}
d=21, \quad \operatorname{dim} \approx 1,500,000 \\
d=30, \quad \operatorname{dim} \approx 804,000,000
\end{gathered}
$$

Dimensions of $S_{2}(N)$

When $k=2$...

$$
d=22, \quad \operatorname{dim}=5280
$$

Dimension 200 is reasonable to compute with. We can push computations to dimension 2000 with some clever tricks. When $k=4$...

$$
\begin{gathered}
d=21, \quad \operatorname{dim} \approx 1,500,000 \\
d=30, \quad \operatorname{dim} \approx 804,000,000
\end{gathered}
$$

Dimensions of $S_{2}(N)$

When $k=2 \ldots$

$$
d=22, \quad \operatorname{dim}=5280
$$

Dimension 200 is reasonable to compute with. We can push computations to dimension 2000 with some clever tricks. When $k=4$...

$$
\begin{aligned}
& d=21, \quad \operatorname{dim} \approx 1,500,000 \\
& d=30, \quad \operatorname{dim} \approx 804,000,000
\end{aligned}
$$

Dimensions of $S_{2}(N)$

When $k=2 \ldots$

$$
d=22, \quad \operatorname{dim}=5280
$$

Dimension 200 is reasonable to compute with. We can push computations to dimension 2000 with some clever tricks. When $k=4$...

$$
\begin{gathered}
d=21, \quad \operatorname{dim} \approx 1,500,000 \\
d=30, \quad \operatorname{dim} \approx 804,000,000
\end{gathered}
$$

THE CASE $k=2$

Step	Method	Number of Equations to Solve	$k=2$
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)	$(p, p, 2) \checkmark$
2.	$p=2$: Integer points on elliptic curves	49 equations in (x, y)	$\infty \checkmark$
3.	$d=2$: Results of Nagell	2 equations ($x, y, p)$	
4.	First descent: a factorisation for $p \geqslant 5$	906 equations in (x, y, p)	x
5.	Linear Forms in two logarithms: $p \geqslant 5$ Bounding $p<3 \times 10^{6}$	$\begin{gathered} 906 \times 216814=196,433,484 \\ \text { equations in }(x, y) \end{gathered}$	\%
6.	$\begin{gathered} \text { Sophie-Germain type criterion (case } r \neq t \text {) } \\ 879 \times 216814=190,579,506 \text { in }(x, y) \end{gathered}$	224 remain in (x, y)	土
7.	$\begin{gathered} \text { Modularity (case } r=t) \\ 27 \times 216814=5,853,978 \text { in }(x, y) \end{gathered}$	53 remain in (x, y)	Levels too big!!
8.	First descent when $p=3$	942 in (x, y)	
	Equations remaining via 8., 6. and 7.	1219	
$\begin{gathered} \hline 9 . \\ 10 . \\ 11 . \end{gathered}$	Local solubility tests A further descent Thue solver!	$\begin{gathered} 507 \\ 226 \\ 6 \text { solutions found! } \end{gathered}$	三

THE CASE $k=2$

Step	Method	Number of Equations to Solve	$k=2$
1.	Useful equations and identities（ p, p, p ）	49 equations in（ x, y, p ）	$(p, p, 2) \checkmark$
2.	$p=2$ ：Integer points on elliptic curves	49 equations in (x, y)	$\infty \checkmark$
3.	$d=2$ ：Results of Nagell	2 equations（ x, y, p ）	
4.	First descent：a factorisation for $p \geqslant 5$	906 equations in (x, y, p)	x
5.	Linear Forms in two logarithms：$p \geqslant 5$ Bounding $p<3 \times 10^{6}$	$\begin{gathered} 906 \times 216814=196,433,484 \\ \text { equations in }(x, y) \end{gathered}$	愹
6.	$\begin{gathered} \text { Sophie-Germain type criterion (case } r \neq t \text {) } \\ 879 \times 216814=190,579,506 \text { in }(x, y) \end{gathered}$	224 remain in（ x, y ）	土
7.	$\begin{gathered} \text { Modularity (case } r=t) \\ 27 \times 216814=5,853,978 \text { in }(x, y) \end{gathered}$	53 remain in (x, y)	Levels too big！！
8.	First descent when $p=3$	942 in（ x, y ）	
	Equations remaining via 8．，6．and 7.	1219	
$\begin{gathered} 9 . \\ 10 . \\ 11 . \end{gathered}$	Local solubility tests A further descent Thue solver！	$\begin{gathered} 507 \\ 226 \\ 6 \text { solutions found! } \end{gathered}$	三

Linear Forms in Three Logarithms

If I try... naively

$$
\approx 10^{20}
$$

If Mike Bennett tries... naively

$$
\approx 10^{14}
$$

If we manage to locate Mike Bennett and then get him to work...

$$
\approx 10^{10}
$$

Linear Forms in Three Logarithms

If I try... naively

$$
\approx 10^{20}
$$

If Mike Bennett tries... naively

$$
\approx 10^{14}
$$

If we manage to locate Mike Bennett and then get him to work...

$$
\approx 10^{10}
$$

Linear Forms in Three Logarithms

If I try... naively

$$
\approx 10^{20}
$$

If Mike Bennett tries... naively

$$
\approx 10^{14}
$$

If we manage to locate Mike Bennett and then get him to work...

$$
\approx 10^{10}
$$

THE CASE $k=2$

Step	Method	Number of Equations to Solve	$k=2$
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)	$(p, p, 2) \checkmark$
2.	$p=2$: Integer points on elliptic curves	49 equations in (x, y)	$\infty \checkmark$
3.	$d=2:$ Results of Nagell	2 equations (x, y, p)	
4.	First descent: a factorisation for $p \geqslant 5$	906 equations in (x, y, p)	x
5.	Linear Forms in two logarithms: $p \geqslant 5$ Bounding $p<3 \times 10^{6}$	$\begin{gathered} 906 \times 216814=196,433,484 \\ \text { equations in }(x, y) \end{gathered}$	\%
6.	$\begin{gathered} \text { Sophie-Germain type criterion }(\text { case } r \neq t) \\ 879 \times 216814=190,579,506 \text { in }(x, y) \end{gathered}$	224 remain in (x, y)	む
7.	$\begin{gathered} \text { Modularity }(\text { case } r=t) \\ 27 \times 216814=5,853,978 \text { in }(x, y) \end{gathered}$	53 remain in (x, y)	Levels too big!! x
8.	First descent when $p=3$	942 in (x, y)	
	Equations remaining via 8., 6. and 7.	1219	
$\begin{gathered} 9 . \\ 10 . \\ 11 . \end{gathered}$	Local solubility tests A further descent Thue solver!	$\begin{gathered} 507 \\ 226 \\ 6 \text { solutions found! } \end{gathered}$	三 \quad ¢

THE CASE $k=2$

Step	Method	Number of Equations to Solve	$k=2$
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)	$(p, p, 2) \checkmark$
2.	$p=2$: Integer points on elliptic curves	49 equations in (x, y)	$\infty \checkmark$
3.	$d=2$: Results of Nagell	2 equations (x, y, p)	
4.	First descent: a factorisation for $p \geqslant 5$	906 equations in (x, y, p)	x
5.	Linear Forms in two logarithms: $p \geqslant 5$ Bounding $p<3 \times 10^{6}$	$\begin{gathered} 906 \times 216814=196,433,484 \\ \text { equations in }(x, y) \end{gathered}$	\%
6.	$\begin{gathered} \text { Sophie-Germain type criterion (case } r \neq t \text {) } \\ 879 \times 216814=190,579,506 \text { in }(x, y) \end{gathered}$	224 remain in (x, y)	土
7.	$\begin{gathered} \text { Modularity (case } r=t) \\ 27 \times 216814=5,853,978 \text { in }(x, y) \end{gathered}$	53 remain in (x, y)	Levels too big!! X
8.	First descent when $p=3$	942 in (x, y)	
	Equations remaining via 8., 6. and 7.	1219	
$\begin{gathered} 9 . \\ 10 . \\ 11 . \end{gathered}$	Local solubility tests A further descent Thue solver!	507 226 6 solutions found!	三

Pythagoras

$$
\begin{gathered}
3^{2}+4^{2}=5^{2} \\
20^{2}+21^{2}=29^{2}
\end{gathered}
$$

An infinite family of solutions - can be given parametrically!

Even k and Towards Densities

Theorem (Zhang and Bai, 2013)

Let q be a prime such that $q \equiv 5,7(\bmod 12)$. Suppose $q \| d$. Then the equation $x^{2}+(x+1)^{2}+\cdots+(x+d-1)^{2}=y^{n}$ has no integer solutions.

Corollary (Use Dirichlet's Theorem)

Let A_{2} be the set of integers $d \geqslant 2$ such that the equation

$$
x^{2}+(x+1)^{2}+\cdots+(x+d-1)^{2}=y^{n}
$$

has a solution (x, y, n). Then \mathcal{A}_{2} has natural density zero.

Even k and Towards Densities

Theorem (Zhang and Bai, 2013)

Let q be a prime such that $q \equiv 5,7(\bmod 12)$. Suppose $q \| d$. Then the equation $x^{2}+(x+1)^{2}+\cdots+(x+d-1)^{2}=y^{n}$ has no integer solutions.

Corollary (Use Dirichlet's Theorem)

Let \mathcal{A}_{2} be the set of integers $d \geqslant 2$ such that the equation

$$
x^{2}+(x+1)^{2}+\cdots+(x+d-1)^{2}=y^{n}
$$

has a solution (x, y, n). Then \mathcal{A}_{2} has natural density zero.

The Result

Theorem (V. Patel, S. Siksek)

Let $k \geqslant 2$ be an even integer. Let \mathcal{A}_{k} be the set of integers $d \geqslant 2$ such that the equation

$$
x^{k}+(x+1)^{k}+\cdots(x+d-1)^{k}=y^{n}, \quad x, y, n \in \mathbb{Z}, \quad n \geqslant 2
$$

has a solution (x, y, n). Then \mathcal{A}_{k} has natural density zero. In other words we have

$$
\lim _{X \rightarrow \infty} \frac{\#\left\{d \in \mathcal{A}_{k}: d \leqslant X\right\}}{X}=0 .
$$

The Result

Theorem (V. Patel, S. Siksek)

Let $k \geqslant 2$ be an even integer and let r be a non-zero integer. Let $\mathcal{A}_{k, r}$ be the set of integers $d \geqslant 2$ such that the equation

$$
x^{k}+(x+r)^{k}+\cdots(x+r(d-1))^{k}=y^{n}, \quad x, y, n \in \mathbb{Z}, \quad n \geqslant 2
$$

has a solution (x, y, n). Then $\mathcal{A}_{k, r}$ has natural density zero. In other words we have

$$
\lim _{X \rightarrow \infty} \frac{\#\left\{d \in \mathcal{A}_{k, r}: d \leqslant X\right\}}{X}=0
$$

Bernoulli polynomials and relation to sums of CONSECUTIVE POWERS

Definition (Bernoulli Numbers, b_{k})

$$
\frac{x}{e^{x}-1}=\sum_{k=0}^{\infty} b_{k} \frac{x^{k}}{k!}
$$

$b_{0}=1, b_{1}=-1 / 2, b_{2}=1 / 6, b_{3}=0, b_{4}=-1 / 30, b_{5}=0, b_{6}=1 / 42$.

LEMMA

$b_{2 k+1}=0$ for $k \geqslant 1$.

BERNOULLI POLYNOMIALS AND RELATION TO SUMS of CONSECUTIVE POWERS

Definition (Bernoulli Polynomial, B_{k})

$$
B_{k}(x):=\sum_{m=0}^{k}\binom{k}{m} b_{m} x^{k-m}
$$

LEMMA

$$
x^{k}+(x+1)^{k}+\cdots+(x+d-1)^{k}=\frac{1}{k+1}\left(B_{k+1}(x+d)-B_{k}(x)\right) .
$$

Bernoulli polynomials and Relation to sums of CONSECUTIVE POWERS

Definition (Bernoulli Polynomial, B_{k})

$$
B_{k}(x):=\sum_{m=0}^{k}\binom{k}{m} b_{m} x^{k-m}
$$

LEMMA

$$
x^{k}+(x+1)^{k}+\cdots+(x+d-1)^{k}=\frac{1}{k+1}\left(B_{k+1}(x+d)-B_{k}(x)\right) .
$$

Bernoulli polynomials and Relation to sums OF CONSECUTIVE POWERS

LEMMA

$$
x^{k}+(x+1)^{k}+\cdots+(x+d-1)^{k}=\frac{1}{k+1}\left(B_{k+1}(x+d)-B_{k}(x)\right) .
$$

Apply Taylor's Theorem and use $B_{k+1}^{\prime}(x)=(k+1) \cdot B_{k}(x)$.

Lemma

Let $q \geqslant k+3$ be a prime. Let $d \geqslant 2$. Suppose that $q \mid d$. Then

$$
x^{k}+(x+1)^{k}+\cdots+(x+d-1)^{k} \equiv d \cdot B_{k}(x) \quad\left(\bmod q^{2}\right) .
$$

Bernoulli polynomials and relation to sums of CONSECUTIVE POWERS

LEMMA

$$
x^{k}+(x+1)^{k}+\cdots+(x+d-1)^{k}=\frac{1}{k+1}\left(B_{k+1}(x+d)-B_{k}(x)\right) .
$$

Apply Taylor's Theorem and use $B_{k+1}^{\prime}(x)=(k+1) \cdot B_{k}(x)$.
LEMMA
Let $q \geqslant k+3$ be a prime. Let $d \geqslant 2$. Suppose that $q \mid d$. Then

$$
x^{k}+(x+1)^{k}+\cdots+(x+d-1)^{k} \equiv d \cdot B_{k}(x) \quad\left(\bmod q^{2}\right)
$$

Bernoulli polynomials and relation to sums of CONSECUTIVE POWERS

$$
x^{k}+(x+1)^{k}+\cdots+(x+d-1)^{k}=y^{n} .
$$

Proposition (Criterion)

Let $k \geqslant 2$. Let $q \geqslant k+3$ be a prime such that the congruence $B_{k}(x) \equiv 0(\bmod q)$ has no solutions. Let d be a positive integer such that $\operatorname{ord}_{q}(d)=1$. Then the equation has no solutions. (i.e. $d \notin \mathcal{A}_{k}$).

Remark: Computationally we checked $k \leqslant 75,000$ and we could always find such a q.

Bernoulli polynomials and relation to sums of CONSECUTIVE POWERS

$$
x^{k}+(x+1)^{k}+\cdots+(x+d-1)^{k}=y^{n} .
$$

Proposition (Criterion)

Let $k \geqslant 2$. Let $q \geqslant k+3$ be a prime such that the congruence $B_{k}(x) \equiv 0(\bmod q)$ has no solutions. Let d be a positive integer such that $\operatorname{ord}_{q}(d)=1$. Then the equation has no solutions. (i.e. $d \notin \mathcal{A}_{k}$).

Remark: Computationally we checked $k \leqslant 75,000$ and we could always find such a q.

Relation to Densities?

We need to use Chebotarev's density theorem, which can be seen as "a generalisation of Dirichlet's theorem" on primes in arithmetic progression.

PROPOSITION

Let $k \geqslant 2$ be even and let G be the Galois group of $B_{k}(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_{k}(x)$.

Assuming the proposition, we may then use Chebotarev's density theorem to find a set of primes q_{i} with positive Dirichlet density such that $\operatorname{Frob}_{q_{i}} \in G$ is conjugate to μ. Then we can apply Niven's results to deduce our Theorem.

Relation to Densities?

We need to use Chebotarev's density theorem, which can be seen as "a generalisation of Dirichlet's theorem" on primes in arithmetic progression.

Proposition

Let $k \geqslant 2$ be even and let G be the Galois group of $B_{k}(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_{k}(x)$.

Assuming the proposition, we may then use Chebotarev's density theorem to find a set of primes q_{i} with positive Dirichlet density such that $\operatorname{Frob}_{q_{i}} \in G$ is conjugate to μ. Then we can apply Niven's results to deduce our Theorem.

Niven's Results (Flash!)

The setup:

1 Let \mathcal{A} be a set of positive integers.
】 Define: $\mathcal{A}(X)=\#\{d \in \mathcal{A}: d \leqslant X\}$ for positive X.
3 Natural Density: $\delta(\mathcal{A})=\lim _{X \rightarrow \infty} \mathcal{A}(X) / X$.
4 Given a prime q, define: $\mathcal{A}^{(q)}=\left\{d \in \mathcal{A}: \operatorname{ord}_{q}(d)=1\right\}$.

Theorem (Niven)

Let $\left\{q_{i}\right\}$ be a set of primes such that $\delta\left(\mathcal{A}^{\left(q_{i}\right)}\right)=0$ and $\sum q_{i}^{-1}=\infty$. Then $\delta(\mathcal{A})=0$.

A LEgEndre Symbol analogue

Proposition

Let $k \geqslant 2$ be even and let G be the Galois group $B_{k}(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_{k}(x)$.

Conjecture

For any even integer $k, B_{k}(x)$ is irreducible over \mathbb{Q}.
Remark: The conjecture implies the Proposition. This then proves our Theorem.

A Legendre Symbol analogue

Proposition

Let $k \geqslant 2$ be even and let G be the Galois group $B_{k}(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_{k}(x)$.

Conjecture

For any even integer $k, B_{k}(x)$ is irreducible over \mathbb{Q}.
Remark: The conjecture implies the Proposition. This then proves our Theorem.

Tough Stuff

A sketch of an unconditional proof!

PROPOSITION

Let $k \geqslant 2$ be even and let G be the Galois group $B_{k}(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_{k}(x)$.

Theorem (von Staudt-Clausen)

$$
\text { Let } n \geqslant 2 \text { be even. Then }
$$

$$
b_{n}+\sum_{(p-1) \mid n} \frac{1}{p} \in \mathbb{Z}
$$

2 Is the Oddest Prime

The Newton Polygon of $B_{k}(x)$ for $k=2^{s} \cdot t, s \geqslant 1$.

$$
B_{k}(x)=\sum_{i=0}^{k}\binom{k}{k-i} b_{k-i} x^{i}=\sum_{i=0}^{k} a_{i} x^{i}
$$

Another nice Result

1 Sloping part corresponds to irreducible factor over \mathbb{Q}_{2}.
2 Root in \mathbb{Q}_{2} must have valuation zero.
3 Root belongs to \mathbb{Z}_{2} and is odd.
4 Symmetry $(-1)^{k} B_{k}(x)=B_{k}(1-x)$ gives a contradiction.

Theorem (V. Patel, S. Siksek)

Let $k \geqslant 2$ be an even integer. Then $B_{k}(x)$ has no roots in \mathbb{Q}_{2}.

Theorem (K. Inkeri, 1959)

Let $k \geqslant 2$ be an even integer. Then $B_{k}(x)$ has no roots in \mathbb{Q}.

Another nice Result

1 Sloping part corresponds to irreducible factor over \mathbb{Q}_{2}.
2 Root in \mathbb{Q}_{2} must have valuation zero.
3 Root belongs to \mathbb{Z}_{2} and is odd.
4 Symmetry $(-1)^{k} B_{k}(x)=B_{k}(1-x)$ gives a contradiction.

Theorem (V. Patel, S. Siksek)

Let $k \geqslant 2$ be an even integer. Then $B_{k}(x)$ has no roots in \mathbb{Q}_{2}.

Theorem (K. Inkeri, 1959)

Let $k \geqslant 2$ be an even integer. Then $B_{k}(x)$ has no roots in \mathbb{Q}.

Another nice Result

1 Sloping part corresponds to irreducible factor over \mathbb{Q}_{2}.
■ Root in \mathbb{Q}_{2} must have valuation zero.
3 Root belongs to \mathbb{Z}_{2} and is odd.
4 Symmetry $(-1)^{k} B_{k}(x)=B_{k}(1-x)$ gives a contradiction.
Theorem (V. Patel, S. Siksek)
Let $k \geqslant 2$ be an even integer. Then $B_{k}(x)$ has no roots in \mathbb{Q}_{2}.

Theorem (K. Inkeri, 1959)

Let $k \geqslant 2$ be an even integer. Then $B_{k}(x)$ has no roots in \mathbb{Q}.

What is Going On?

What is Going On?

μ lives here!

A sketch proof of the Proposition

The Setup:

- $k \geqslant 2$ is even.
- L is the splitting field of $B_{k}(x)$.
- G is the Galois group of $B_{k}(x)$.
- \mathfrak{P} be a prime above 2 .
- ν_{2} on \mathbb{Q}_{2} which we extend uniquely to $L_{\mathfrak{P}}$ (also call it ν_{2}).
- $H=\operatorname{Gal}\left(L_{\mathfrak{F}} / \mathbb{Q}_{2}\right) \subset G$ be the decomposition subgroup corresponding to \mathfrak{P}.

A sketch proof of the Proposition

$$
B_{k}(x)=g(x) h(x)
$$

where $g(x)$ has degree $k-2^{s}$. Label the roots $\left\{\alpha_{1}, \ldots, \alpha_{k-2^{s}}\right\}$, and $h(x)$ has degree 2^{s}. Label the roots $\left\{\beta_{1}, \ldots, \beta_{2^{s}}\right\}$.

- All roots $\subset L_{\beta}$.
- $h(x)$ is irreducible.
- Therefore H acts transitively on β_{j}.

■ Pick $\mu \in H$ such that μ acts freely on the roots of $h(x)$.
■ Check it doesn't end up fixing a root of $g(x)$.

"Bad Prime = Extremely Useful Prime!"

The Newton Polygon of $B_{k}(x)$ for $k=2^{s} \cdot t, s \geqslant 1$.

Finding μ

LEMMA

Let H be a finite group acting transitively on a finite set $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$. Let $H_{i} \subset H$ be the stabiliser of β_{i} and suppose $H_{1}=H_{2}$. Let $\pi: H \rightarrow C$ be a surjective homomorphism from H onto a cyclic group C. Then there exists some $\mu \in H$ acting freely on $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ such that $\pi(\mu)$ is a generator of C.

1 Let $\mathbb{F}_{\mathfrak{P}}$ be the residue field of \mathfrak{P}.
凹 Let $C=\operatorname{Gal}\left(\mathbb{F}_{\mathfrak{P}} / \mathbb{F}_{2}\right)$.
B C is cyclic generated by the Frobenius map: $\bar{\gamma} \rightarrow \bar{\gamma}^{2}$.
4 Let $\pi: H \rightarrow C$ be the induced surjection.
■ Finally use the Lemma.

FINDING μ

LEMMA

Let H be a finite group acting transitively on a finite set $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$. Let $H_{i} \subset H$ be the stabiliser of β_{i} and suppose $H_{1}=H_{2}$. Let $\pi: H \rightarrow C$ be a surjective homomorphism from H onto a cyclic group C. Then there exists some $\mu \in H$ acting freely on $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ such that $\pi(\mu)$ is a generator of C.

1 Let $\mathbb{F}_{\mathfrak{P}}$ be the residue field of \mathfrak{P}.
$\mathbf{2}$ Let $C=\operatorname{Gal}\left(\mathbb{F}_{\mathfrak{P}} / \mathbb{F}_{2}\right)$.
$3 C$ is cyclic generated by the Frobenius map: $\bar{\gamma} \rightarrow \bar{\gamma}^{2}$.
4 Let $\pi: H \rightarrow C$ be the induced surjection.
5 Finally use the Lemma.

CHECK $g(x)$

$$
B_{k}(x)=g(x) h(x)
$$

where $g(x)$ has degree $k-2^{s}$. Label the roots $\left\{\alpha_{1}, \ldots, \alpha_{k-2^{s}}\right\}$, and $h(x)$ has degree 2^{s}. Label the roots $\left\{\beta_{1}, \ldots, \beta_{2^{s}}\right\}$.

LEMMA

μ acts freely on the α_{i}.

1 Suppose not. Let α be a root that is fixed by μ.
2 $\nu_{2}(\alpha)=0$ so let $\bar{\alpha}=\alpha(\bmod \mathfrak{P}), \bar{\alpha} \in \mathbb{F}_{\mathfrak{P}}$.
3α fixed by μ hence $\bar{\alpha}$ fixed by $\langle\pi(\mu)\rangle=C$.
4 Hence $\bar{\alpha} \in \mathbb{F}_{2} . f(x)=2 B_{k}(x) \in \mathbb{Z}_{2}[x]$.
5 f($\overline{1})=f(\overline{0})=\overline{1}$. A contradiction!

Thank you for Listening!

SOLVING THE EQUATIONS FOR $k=2$

$$
\begin{gathered}
d\left(\left(x+\frac{d+1}{2}\right)^{2}+\frac{(d-1)(d+1)}{12}\right)=y^{p} \\
X^{2}+C \cdot 1^{p}=(1 / d) y^{p}
\end{gathered}
$$

SOLVING THE EQUATIONS FOR $k=2$

d	Equation	Level	Dimension
6	$2 y^{p}-5 \times 7=3(2 x+7)^{2}$	$2^{7} \times 3^{2} \times 5 \times 7$	480
11	$11^{p-1} y^{p}-2 \times 5=(x+6)^{2}$	$2^{7} \times 5 \times 11$	160
13	$13^{p-1} y^{p}-2 \times 7=(x+7)^{2}$	$2^{7} \times 7 \times 13$	288
22	$2 \times 11^{p-1} y^{p}-7 \times 23=(2 x+23)^{2}$	$2^{7} \times 7 \times 11 \times 23$	5,280
23	$23^{p-1} y^{p}-2^{2} \times 11=(x+12)^{2}$	$2^{3} \times 11 \times 23$	54
26	$2 \times 13^{p-1} y^{p}-3^{2} \times 5^{2}=(2 x+27)^{2}$	$2^{7} \times 3 \times 5 \times 13$	384
33	$11^{p-1} y^{p}-2^{4} \times 17=3(x+17)^{2}$	$2^{3} \times 3^{2} \times 11 \times 17$	200
37	$37^{p-1} y^{p}-2 \times 3 \times 19=(x+19)^{2}$	$2^{7} \times 3 \times 19 \times 37$	5,184
39	$13^{p-1} y^{p}-2^{2} \times 5 \times 19=3(x+20)^{2}$	$2^{3} \times 3^{2} \times 5 \times 13 \times 19$	1,080
46	$2 \times 23^{p-1} y^{p}-3^{2} \times 5 \times 47=(2 x+47)^{2}$	$2^{7} \times 3 \times 5 \times 23 \times 47$	32,384
47	$47^{p-1} y^{p}-2^{3} \times 23=(x+24)^{2}$	$2^{5} \times 23 \times 47$	1,012
59	$59^{p-1} y^{p}-2 \times 5 \times 29=(x+30)^{2}$	$2^{7} \times 5 \times 29 \times 59$	25,984

Solving The equations for $k=4$

d	Equation	Level	Dimension
5	$y^{p}+2 \times 73=5(X)^{2}$	$2^{7} \times 5^{2} \times 73$	5,472
6	$y^{p}+7 \times 53=6(X)^{2}$	$2^{8} \times 3^{2} \times 7 \times 53$	12,480
7	$7^{p-1} y^{p}+2^{2} \times 29=(X)^{2}$	$2^{3} \times 7 \times 29$	42
10	$y^{p}+3 \times 11 \times 149=10(X)^{2}$	$2^{8} \times 5^{2} \times 3 \times 11 \times 149$	449,920
13	$13^{p-1} y^{p}+2 \times 7 \times 101=(X)^{2}$	$2^{7} \times 7 \times 13 \times 101$	28,800
14	$7^{p-1} y^{p}+13 \times 293=2(X)^{2}$	$2^{8} \times 7 \times 13 \times 293$	168,192
15	$y^{p}+2^{3} \times 7 \times 673=15(X)^{2}$	$2^{5} \times 3^{2} \times 5^{2} \times 7 \times 673$	383,040
17	$17^{p-1} y^{p}+2^{3} \times 3 \times 173=(X)^{2}$	$2^{5} \times 3 \times 17 \times 173$	5,504
19	$19^{p-1} y^{p}+2 \times 3 \times 23 \times 47=(X)^{2}$	$2^{7} \times 3 \times 19 \times 23 \times 47$	145,728
21	$7^{p-1} y^{p}+2 \times 11 \times 1321=3(X)^{2}$	$2^{7} \times 3^{2} \times 7 \times 11 \times 1321$	$1,584,000$
26	$13^{p-1} y^{p}+3^{2} \times 5 \times 1013=2(X)^{2}$	$2^{8} \times 3 \times 5 \times 13 \times 1013$	777,216
29	$29^{p-1} y^{p}+2 \times 7 \times 2521=(X)^{2}$	$2^{7} \times 7 \times 29 \times 2521$	$1,693,440$
30	$y^{p}+19 \times 29 \times 31 \times 71=30(X)^{2}$	$2^{8} \times 3^{2} \times 5^{2} \times 19 \times 29 \times 31 \times 71$	$804,384,000$

Where X is a quadratic in the original variable x.

