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A Diophantine Equation

px` 1qk ` px` 2qk ` ¨ ¨ ¨ ` px` dqk “ yn.

Question

Fix k ě 2 and d ě 2. Determine all of the integer solutions
px, y, nq.
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A Diophantine Equation

xk ` px` 1qk ` ¨ ¨ ¨ ` px` d´ 1qk “ yn.

Question

Fix k ě 2 and d ě 2. Determine all of the integer solutions
px, y, nq.

Remark: We can let n “ p be a prime.

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive like Powers



Intro Results and Methods Parity Parrot Density Proof of Theorem Proof of Proposition

A Brief History: Sums of Consecutive Cubes

Euler:
63 “ 33 ` 43 ` 53.

Dickson’s “History of the Theory of Numbers”:

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

1 Pagliani (1829): parametric solutions.

2 Uchiyama (1979): d “ 3, n “ 2 independently to Cassels.

3 Cassels (1985): y2 “ x3 ` px` 1q3 ` px` 2q3.

4 Zhongfeng Zhang (2014): yn “ x3 ` px` 1q3 ` px` 2q3.

5 Bennett, Patel, Siksek (2016): 2 ď d ď 50, n ě 2.
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A Brief History

Well–Known:

d
ÿ

i“0

i3 “
d
ÿ

i“1

i3 “

ˆ

dpd` 1q

2

˙2

.

Pagliani:

v3
ÿ

i“1

ˆ

v4 ´ 3v3 ´ 2v2 ´ 2

6
` i

˙3

“

ˆ

v5 ` v3 ´ 2v

6

˙3

.

where v ” 2, 4 pmod 6q.
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The Results

px` 1qk ` px` 2qk ` ¨ ¨ ¨ ` px` dqk “ yn.

Theorem (M. A. Bennett, V. Patel, S. Siksek)

Let k “ 3 and 2 ď d ď 50. Then, any “non–trivial” integer
solution px, y, nq must have n “ 2 or n “ 3.

y ‰ 0,˘1.

Without loss of any generality, we can let x ě 1.
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Cubes that are Sums of Consecutive Cubes

33 ` 43 ` 53 “ 63, attributed to Lucas

113 ` 123 ` 133 ` 143 “ 203,

33 ` 43 ` 53 ` ¨ ¨ ¨ ` 223 “ 403,

153 ` 163 ` 173 ` ¨ ¨ ¨ ` 343 “ 703,

63 ` 73 ` 83 ` ¨ ¨ ¨ ` 303 “ 603,

2913 ` 2923 ` 2933 ` ¨ ¨ ¨ ` 3393 “ 11553.

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive like Powers



Intro Results and Methods Parity Parrot Density Proof of Theorem Proof of Proposition

Cubes that are Sums of Consecutive Cubes

p´2q3 ` p´1q3 ` 03 ` 13 ` 23` 33 ` 43 ` 53 “ 63,

113 ` 123 ` 133 ` 143 “ 203,

33 ` 43 ` 53 ` ¨ ¨ ¨ ` 223 “ 403,

153 ` 163 ` 173 ` ¨ ¨ ¨ ` 343 “ 703,

63 ` 73 ` 83 ` ¨ ¨ ¨ ` 303 “ 603,

2913 ` 2923 ` 2933 ` ¨ ¨ ¨ ` 3393 “ 11553.
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The Methodology

Step Method Number of Equations

to Solve

1. Useful equations and identities pp, p, pq 49 equations in px, y, pq

2. p “ 2: Integer points on elliptic curves 49 equations in px, yq

3. d “ 2: Results of Nagell 2 equations px, y, pq

4. First descent: a factorisation for p ě 5 906 equations in px, y, pq

5. Linear Forms in two logarithms: p ě 5 906 ˆ 216814 “ 196, 433, 484

Bounding p ă 3 ˆ 106 equations in px, yq

6. Sophie-Germain type criterion (case r ‰ t)

879 ˆ 216814 “ 190, 579, 506 in px, yq 224 remain in px, yq

7. Modularity (case r “ t)

27 ˆ 216814 “ 5, 853, 978 in px, yq 53 remain in px, yq

8. First descent when p “ 3 942 in px, yq

Equations remaining via 8., 6. and 7. 1219

9. Local solubility tests 507

10. A further descent 226

11. Thue solver! 6 solutions found!
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Step 1. (and 4.) is the Key!

1 By a pp, p, pq equation, we mean Axp `Byp “ Czp.

2 Roughly speaking we have
(Linear Factor in x)(Quadratic Factor in x) “ yp.

3 Linear Factor = αyp1 .

4 Quadratic Factor = (Linear Factor)2 + Constant = βyp2 .

5 Substitution should give α2py21q
p ` Constant ¨ 1p “ βpy2q

p

Step 2.

1 p “ 2 solved by Stroeker (1995).

2 Integer points on Elliptic Curves.

3 Cubic in x “ y2. Ask magma!
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The Magic of Sophie Germain

After Step 4. We have equations of the form:

ryp2 ´ sy
2p
1 “ t (1)

where r, s, t are positive integers, and gcdpr, s, tq “ 1.
The linear forms in two logarithms bounds p. For each tuple
pr, s, tq we can apply the methods of Sophie Germain to
eliminate equations/tuples for a fixed value of p.
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The Magic of Sophie Germain

Lemma

Let p ě 3 be prime. Let r, s and t be positive integers satisfying
gcdpr, s, tq “ 1. Let q “ 2kp` 1 be a prime that does not divide
r. Define

µpp, qq “ tη2p : η P Fqu “ t0u Y tζ P F˚q : ζk “ 1u (2)

and

Bpp, qq “
!

ζ P µpp, qq : ppsζ ` tq{rq2k P t0, 1u
)

.

If Bpp, qq “ H, then equation (1) does not have integral
solutions.
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The Magic of Sophie Germain

Proof.

Suppose Bpp, qq “ H. Let py1, y2q be a solution to (1). Let
ζ “ y1

2p P µpp, qq. From equation (1) we have

psζ ` tq{r ” yp2 mod q.

Thus
ppsζ ` tq{rq2k ” yq´12 ” 0 or 1 mod q.

This shows that ζ P Bpp, qq giving a contradiction.
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The Magic of Sophie Germain - Why Does it
Work?

1 If there are no solutions to ryp2 ´ sy
2p
1 “ t,

2 and we take p to be large, then

3 notice that #µpp, qq “ k ` 1.

4 For ζ P µpp, qq, the element ppsζ ` tq{rq2k P Fq is either 0 or
an p-th root of unity.

5 The “probability” that it belongs to the set t0, 1u is
2{pp` 1q.

6 The “expected size” of Bpp, qq is 2pk ` 1q{pp` 1q « 2q{p2.

7 For large p we expect to find a prime q “ 2kp` 1 such that
2q{p2 is tiny and so we likewise expect that #Bpp, qq “ 0.
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The Modular Way! pr “ tq

ryp2 ´ sy
2p
1 “ t

yp2 ´ ps{rqy
2p
1 “ 1

Has solutions py1, y2q “ p0, 1q. This causes our previous lemma
to fail.
However, the Modular Method does not see this solution. When
constructing the Frey Curve, the discriminant is non-zero.
Hence if y1 “ 0 then the discriminant is zero. (Similar to
Fermat’s Last Theorem).
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The Methodology

Step Method Number of Equations

to Solve

1. Useful equations and identities pp, p, pq 49 equations in px, y, pq

2. p “ 2: Integer points on elliptic curves 49 equations in px, yq

3. d “ 2: Results of Nagell 2 equations px, y, pq

4. First descent: a factorisation for p ě 5 906 equations in px, y, pq

5. Linear Forms in two logarithms: p ě 5 906 ˆ 216814 “ 196, 433, 484

Bounding p ă 3 ˆ 106 equations in px, yq

6. Sophie-Germain type criterion (case r ‰ t)

879 ˆ 216814 “ 190, 579, 506 in px, yq 224 remain in px, yq

7. Modularity (case r “ t)

27 ˆ 216814 “ 5, 853, 978 in px, yq 53 remain in px, yq

8. First descent when p “ 3 942 in px, yq

Equations remaining via 8., 6. and 7. 1219

9. Local solubility tests 507

10. A further descent 226

11. Thue solver! 6 solutions found!
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Pieter’s Parity Parrot: Designed by Pieter
Moree, Drawn by Kate Kattegat
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The case k “ 2

Step Method Number of Equations k “ 2

to Solve

1. Useful equations and identities pp, p, pq 49 equations in px, y, pq pp, p, 2q 3

2. p “ 2: Integer points on elliptic curves 49 equations in px, yq 8 3

3. d “ 2: Results of Nagell 2 equations px, y, pq

4. First descent: a factorisation for p ě 5 906 equations in px, y, pq 7

5. Linear Forms in two logarithms: p ě 5 906 ˆ 216814 “ 196, 433, 484

Bounding p ă 3 ˆ 106 equations in px, yq A

6. Sophie-Germain type criterion (case r ‰ t)

879 ˆ 216814 “ 190, 579, 506 in px, yq 224 remain in px, yq O

7. Modularity (case r “ t) Levels too

27 ˆ 216814 “ 5, 853, 978 in px, yq 53 remain in px, yq big!! 7

8. First descent when p “ 3 942 in px, yq

Equations remaining via 8., 6. and 7. 1219

9. Local solubility tests 507

10. A further descent 226

11. Thue solver! 6 solutions found!
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Dimensions of S2pNq

When k “ 2...
d “ 22, dim “ 5280

Dimension 200 is reasonable to compute with. We can push
computations to dimension 2000 with some clever tricks.
When k “ 4...

d “ 21, dim « 1, 500, 000

d “ 30, dim « 804, 000, 000
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The case k “ 2

Step Method Number of Equations k “ 2

to Solve

1. Useful equations and identities pp, p, pq 49 equations in px, y, pq pp, p, 2q 3

2. p “ 2: Integer points on elliptic curves 49 equations in px, yq 8 3

3. d “ 2: Results of Nagell 2 equations px, y, pq

4. First descent: a factorisation for p ě 5 906 equations in px, y, pq 7

5. Linear Forms in two logarithms: p ě 5 906 ˆ 216814 “ 196, 433, 484

Bounding p ă 3 ˆ 106 equations in px, yq A

6. Sophie-Germain type criterion (case r ‰ t)

879 ˆ 216814 “ 190, 579, 506 in px, yq 224 remain in px, yq O

7. Modularity (case r “ t) Levels too

27 ˆ 216814 “ 5, 853, 978 in px, yq 53 remain in px, yq big!! 7

8. First descent when p “ 3 942 in px, yq

Equations remaining via 8., 6. and 7. 1219

9. Local solubility tests 507

10. A further descent 226

11. Thue solver! 6 solutions found!
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Linear Forms in Three Logarithms

If I try... naively
« 1020

If Mike Bennett tries... naively

« 1014

If we manage to locate Mike Bennett and then get him to
work...

« 1010

which also needs a lot of luck!! WWWWWWW
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Pythagoras

32 ` 42 “ 52

202 ` 212 “ 292

An infinite family of solutions - can be given parametrically!
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Even k and Towards Densities

Theorem (Zhang and Bai, 2013)

Let q be a prime such that q ” 5, 7 pmod 12q. Suppose q ‖ d.
Then the equation x2 ` px` 1q2 ` ¨ ¨ ¨ ` px` d´ 1q2 “ yn has no
integer solutions.

Corollary (Use Dirichlet’s Theorem)

Let A2 be the set of integers d ě 2 such that the equation

x2 ` px` 1q2 ` ¨ ¨ ¨ ` px` d´ 1q2 “ yn

has a solution px, y, nq. Then A2 has natural density zero.
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The Result

Theorem (V. Patel, S. Siksek)

Let k ě 2 be an even integer. Let Ak be the set of integers d ě 2
such that the equation

xk ` px` 1qk ` ¨ ¨ ¨ px` d´ 1qk “ yn, x, y, n P Z, n ě 2

has a solution px, y, nq. Then Ak has natural density zero. In
other words we have

lim
XÑ8

#td P Ak : d ď Xu

X
“ 0.
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The Result

Theorem (V. Patel, S. Siksek)

Let k ě 2 be an even integer and let r be a non-zero integer. Let
Ak,r be the set of integers d ě 2 such that the equation

xk ` px` rqk ` ¨ ¨ ¨ px` rpd´ 1qqk “ yn, x, y, n P Z, n ě 2

has a solution px, y, nq. Then Ak,r has natural density zero. In
other words we have

lim
XÑ8

#td P Ak,r : d ď Xu

X
“ 0.
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Bernoulli polynomials and relation to sums
of consecutive powers

Definition (Bernoulli Numbers, bk)

x

ex ´ 1
“

8
ÿ

k“0

bk
xk

k!
.

b0 “ 1, b1 “ ´1{2, b2 “ 1{6, b3 “ 0, b4 “ ´1{30, b5 “ 0, b6 “ 1{42.

Lemma

b2k`1 “ 0 for k ě 1.
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Bernoulli polynomials and relation to sums
of consecutive powers

Definition (Bernoulli Polynomial, Bk)

Bkpxq :“
k
ÿ

m“0

ˆ

k

m

˙

bmx
k´m.

Lemma

xk`px`1qk`¨ ¨ ¨`px`d´1qk “
1

k ` 1
pBk`1px` dq ´Bkpxqq .
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Bernoulli polynomials and relation to sums
of consecutive powers

Lemma

xk`px`1qk`¨ ¨ ¨`px`d´1qk “
1

k ` 1
pBk`1px` dq ´Bkpxqq .

Apply Taylor’s Theorem and use B1k`1pxq “ pk ` 1q ¨Bkpxq.

Lemma

Let q ě k ` 3 be a prime. Let d ě 2. Suppose that q | d. Then

xk ` px` 1qk ` ¨ ¨ ¨ ` px` d´ 1qk ” d ¨Bkpxq pmod q2q.
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Bernoulli polynomials and relation to sums
of consecutive powers

xk ` px` 1qk ` ¨ ¨ ¨ ` px` d´ 1qk “ yn.

Proposition (Criterion)

Let k ě 2. Let q ě k ` 3 be a prime such that the congruence
Bkpxq ” 0 pmod qq has no solutions. Let d be a positive integer
such that ordqpdq “ 1. Then the equation has no solutions. (i.e.
d R Ak).

Remark: Computationally we checked k ď 75,000 and we
could always find such a q.
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Relation to Densities?

We need to use Chebotarev’s density theorem, which can be
seen as “a generalisation of Dirichlet’s theorem” on primes in
arithmetic progression.

Proposition

Let k ě 2 be even and let G be the Galois group of Bkpxq. Then
there is an element µ P G that acts freely on the roots of Bkpxq.

Assuming the proposition, we may then use Chebotarev’s
density theorem to find a set of primes qi with positive Dirichlet
density such that Frobqi P G is conjugate to µ. Then we can
apply Niven’s results to deduce our Theorem.
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Niven’s Results (Flash!)

The setup:

1 Let A be a set of positive integers.

2 Define: ApXq “ #td P A : d ď Xu for positive X.

3 Natural Density: δpAq “ limXÑ8ApXq{X.

4 Given a prime q, define: Apqq “ td P A : ordqpdq “ 1u.

Theorem (Niven)

Let tqiu be a set of primes such that δpApqiqq “ 0 and
ř

q´1i “ 8. Then δpAq “ 0.
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A Legendre Symbol analogue

Proposition

Let k ě 2 be even and let G be the Galois group Bkpxq. Then
there is an element µ P G that acts freely on the roots of Bkpxq.

Conjecture

For any even integer k, Bkpxq is irreducible over Q.

Remark: The conjecture implies the Proposition. This then
proves our Theorem.
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Tough Stuff

A sketch of an unconditional proof!

Proposition

Let k ě 2 be even and let G be the Galois group Bkpxq. Then
there is an element µ P G that acts freely on the roots of Bkpxq.

Theorem (von Staudt-Clausen)

Let n ě 2 be even. Then

bn `
ÿ

pp´1q|n

1

p
P Z.
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2 is the Oddest Prime

The Newton Polygon of Bkpxq for k “ 2s ¨ t, s ě 1.

Bkpxq “
k
ÿ

i“0

ˆ

k

k ´ i

˙

bk´ix
i “

k
ÿ

i“0

aix
i

i

ν2paiq

slope “ 1{2s
(0, 0)

(0, ´1)

pk, 0qpk ´ 2s, 0q

pk ´ 2s,´1q
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Another nice result

1 Sloping part corresponds to irreducible factor over Q2.

2 Root in Q2 must have valuation zero.

3 Root belongs to Z2 and is odd.

4 Symmetry p´1qkBkpxq “ Bkp1´ xq gives a contradiction.

Theorem (V. Patel, S. Siksek)

Let k ě 2 be an even integer. Then Bkpxq has no roots in Q2.

Theorem (K. Inkeri, 1959)

Let k ě 2 be an even integer. Then Bkpxq has no roots in Q.

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive like Powers



Intro Results and Methods Parity Parrot Density Proof of Theorem Proof of Proposition

Another nice result

1 Sloping part corresponds to irreducible factor over Q2.

2 Root in Q2 must have valuation zero.

3 Root belongs to Z2 and is odd.

4 Symmetry p´1qkBkpxq “ Bkp1´ xq gives a contradiction.

Theorem (V. Patel, S. Siksek)

Let k ě 2 be an even integer. Then Bkpxq has no roots in Q2.

Theorem (K. Inkeri, 1959)

Let k ě 2 be an even integer. Then Bkpxq has no roots in Q.

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive like Powers



Intro Results and Methods Parity Parrot Density Proof of Theorem Proof of Proposition

Another nice result

1 Sloping part corresponds to irreducible factor over Q2.

2 Root in Q2 must have valuation zero.

3 Root belongs to Z2 and is odd.

4 Symmetry p´1qkBkpxq “ Bkp1´ xq gives a contradiction.

Theorem (V. Patel, S. Siksek)

Let k ě 2 be an even integer. Then Bkpxq has no roots in Q2.

Theorem (K. Inkeri, 1959)

Let k ě 2 be an even integer. Then Bkpxq has no roots in Q.

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive like Powers



Intro Results and Methods Parity Parrot Density Proof of Theorem Proof of Proposition

What is Going On?

L “ Splitting Field of Bkpxq LP FP

Q Q2 F2 “ Residue Field

G = Galois Group H Ă G C = Cyclic
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What is Going On?

L “ Splitting Field of Bkpxq LP FP

Q Q2 F2 “ Residue Field

µ lives here!

G = Galois Group H Ă G C = Cyclic
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A sketch proof of the Proposition

The Setup:

k ě 2 is even.

L is the splitting field of Bkpxq.

G is the Galois group of Bkpxq.

P be a prime above 2.

ν2 on Q2 which we extend uniquely to LP (also call it ν2).

H “ GalpLP{Q2q Ă G be the decomposition subgroup
corresponding to P.
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A sketch proof of the Proposition

Bkpxq “ gpxqhpxq

where gpxq has degree k ´ 2s. Label the roots tα1, . . . , αk´2su,
and hpxq has degree 2s. Label the roots tβ1, . . . , β2su.

All roots Ă Lβ.

hpxq is irreducible.

Therefore H acts transitively on βj .

Pick µ P H such that µ acts freely on the roots of hpxq.

Check it doesn’t end up fixing a root of gpxq.
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“Bad Prime = Extremely Useful Prime!”

The Newton Polygon of Bkpxq for k “ 2s ¨ t, s ě 1.

i

ν2paiq

slope “ 1{2s
(0, 0)

(0, ´1)

pk, 0qpk ´ 2s, 0q

pk ´ 2s,´1q
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Finding µ

Lemma

Let H be a finite group acting transitively on a finite set
tβ1, . . . , βnu. Let Hi Ă H be the stabiliser of βi and suppose
H1 “ H2. Let π : H Ñ C be a surjective homomorphism from
H onto a cyclic group C. Then there exists some µ P H acting
freely on tβ1, . . . , βnu such that πpµq is a generator of C.

1 Let FP be the residue field of P.

2 Let C “ Gal pFP{F2q.

3 C is cyclic generated by the Frobenius map: γ̄ Ñ γ̄2.

4 Let π : H Ñ C be the induced surjection.

5 Finally use the Lemma.
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Check gpxq

Bkpxq “ gpxqhpxq

where gpxq has degree k ´ 2s. Label the roots tα1, . . . , αk´2su,
and hpxq has degree 2s. Label the roots tβ1, . . . , β2su.

Lemma

µ acts freely on the αi.

1 Suppose not. Let α be a root that is fixed by µ.

2 ν2pαq “ 0 so let ᾱ “ α pmod Pq, ᾱ P FP.

3 α fixed by µ hence ᾱ fixed by xπpµqy “ C.

4 Hence ᾱ P F2. fpxq “ 2Bkpxq P Z2rxs.

5 fp1̄q “ fp0̄q “ 1̄. A contradiction!
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Thank you for Listening!

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive like Powers



Intro Results and Methods Parity Parrot Density Proof of Theorem Proof of Proposition

Solving the equations for k “ 2

d

˜

ˆ

x`
d` 1

2

˙2

`
pd´ 1qpd` 1q

12

¸

“ yp.

X2 ` C ¨ 1p “ p1{dqyp
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Solving the equations for k “ 2

d Equation Level Dimension

6 2yp ´ 5 ˆ 7 “ 3p2x ` 7q2 27 ˆ 32 ˆ 5 ˆ 7 480

11 11p´1yp ´ 2 ˆ 5 “ px ` 6q2 27 ˆ 5 ˆ 11 160

13 13p´1yp ´ 2 ˆ 7 “ px ` 7q2 27 ˆ 7 ˆ 13 288

22 2 ˆ 11p´1yp ´ 7 ˆ 23 “ p2x ` 23q2 27 ˆ 7 ˆ 11 ˆ 23 5,280

23 23p´1yp ´ 22 ˆ 11 “ px ` 12q2 23 ˆ 11 ˆ 23 54

26 2 ˆ 13p´1yp ´ 32 ˆ 52 “ p2x ` 27q2 27 ˆ 3 ˆ 5 ˆ 13 384

33 11p´1yp ´ 24 ˆ 17 “ 3px ` 17q2 23 ˆ 32 ˆ 11 ˆ 17 200

37 37p´1yp ´ 2 ˆ 3 ˆ 19 “ px ` 19q2 27 ˆ 3 ˆ 19 ˆ 37 5,184

39 13p´1yp ´ 22 ˆ 5 ˆ 19 “ 3px ` 20q2 23 ˆ 32 ˆ 5 ˆ 13 ˆ 19 1,080

46 2 ˆ 23p´1yp ´ 32 ˆ 5 ˆ 47 “ p2x ` 47q2 27 ˆ 3 ˆ 5 ˆ 23 ˆ 47 32,384

47 47p´1yp ´ 23 ˆ 23 “ px ` 24q2 25 ˆ 23 ˆ 47 1,012

59 59p´1yp ´ 2 ˆ 5 ˆ 29 “ px ` 30q2 27 ˆ 5 ˆ 29 ˆ 59 25,984
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Solving the equations for k “ 4

d Equation Level Dimension

5 yp ` 2 ˆ 73 “ 5pXq2 27 ˆ 52 ˆ 73 5,472

6 yp ` 7 ˆ 53 “ 6pXq2 28 ˆ 32 ˆ 7 ˆ 53 12,480

7 7p´1yp ` 22 ˆ 29 “ pXq2 23 ˆ 7 ˆ 29 42

10 yp ` 3 ˆ 11 ˆ 149 “ 10pXq2 28 ˆ 52 ˆ 3 ˆ 11 ˆ 149 449,920

13 13p´1yp ` 2 ˆ 7 ˆ 101 “ pXq2 27 ˆ 7 ˆ 13 ˆ 101 28,800

14 7p´1yp ` 13 ˆ 293 “ 2pXq2 28 ˆ 7 ˆ 13 ˆ 293 168,192

15 yp ` 23 ˆ 7 ˆ 673 “ 15pXq2 25 ˆ 32 ˆ 52 ˆ 7 ˆ 673 383,040

17 17p´1yp ` 23 ˆ 3 ˆ 173 “ pXq2 25 ˆ 3 ˆ 17 ˆ 173 5,504

19 19p´1yp ` 2 ˆ 3 ˆ 23 ˆ 47 “ pXq2 27 ˆ 3 ˆ 19 ˆ 23 ˆ 47 145,728

21 7p´1yp ` 2 ˆ 11 ˆ 1321 “ 3pXq2 27 ˆ 32 ˆ 7 ˆ 11 ˆ 1321 1,584,000

26 13p´1yp ` 32 ˆ 5 ˆ 1013 “ 2pXq2 28 ˆ 3 ˆ 5 ˆ 13 ˆ 1013 777,216

29 29p´1yp ` 2 ˆ 7 ˆ 2521 “ pXq2 27 ˆ 7 ˆ 29 ˆ 2521 1,693,440

30 yp ` 19 ˆ 29 ˆ 31 ˆ 71 “ 30pXq2 28 ˆ 32 ˆ 52 ˆ 19 ˆ 29 ˆ 31 ˆ 71 804,384,000

Where X is a quadratic in the original variable x.
Vandita Patel University of Warwick
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