Perfect Powers that are Sums of Consecutive like Powers

Vandita Patel
University of Warwick
Number Theory Seminar,
University of Warwick

June 12-13, 2017
A Diophantine Equation

\[(x + 1)^k + (x + 2)^k + \cdots + (x + d)^k = y^n.\]

Question

Fix \(k \geq 2 \) and \(d \geq 2 \). Determine all of the integer solutions \((x, y, n)\).
A Diophantine Equation

\[x^k + (x + 1)^k + \cdots + (x + d - 1)^k = y^n. \]

Question

Fix \(k \geq 2 \) and \(d \geq 2 \). Determine all of the integer solutions \((x, y, n)\).

Remark: We can let \(n = p \) be a prime.
A Brief History: Sums of Consecutive Cubes

Euler:

\[6^3 = 3^3 + 4^3 + 5^3. \]

Dickson’s “History of the Theory of Numbers”:
Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

2. Uchiyama (1979): \(d = 3, n = 2 \) independently to Cassels.
3. Cassels (1985): \(y^2 = x^3 + (x + 1)^3 + (x + 2)^3. \)
4. Zhongfeng Zhang (2014): \(y^n = x^3 + (x + 1)^3 + (x + 2)^3. \)
5. Bennett, Patel, Siksek (2016): \(2 \leq d \leq 50, n \geq 2. \)
A Brief History: Sums of Consecutive Cubes

Euler:

\[6^3 = 3^3 + 4^3 + 5^3. \]

Dickson’s “History of the Theory of Numbers”:

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

2. Uchiyama (1979): \(d = 3, n = 2 \) independently to Cassels.
3. Cassels (1985): \(y^2 = x^3 + (x + 1)^3 + (x + 2)^3. \)
4. Zhongfeng Zhang (2014): \(y^n = x^3 + (x + 1)^3 + (x + 2)^3. \)
5. Bennett, Patel, Siksek (2016): \(2 \leq d \leq 50, \, n \geq 2. \)
A Brief History: Sums of Consecutive Cubes

Euler:

\[6^3 = 3^3 + 4^3 + 5^3.\]

Dickson’s “History of the Theory of Numbers”:
Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

2. Uchiyama (1979): \(d = 3, n = 2\) independently to Cassels.
3. Cassels (1985): \(y^2 = x^3 + (x + 1)^3 + (x + 2)^3.\)
4. Zhongfeng Zhang (2014): \(y^n = x^3 + (x + 1)^3 + (x + 2)^3.\)
5. Bennett, Patel, Siksek (2016): \(2 \leq d \leq 50, n \geq 2.\)
A Brief History: Sums of Consecutive Cubes

Euler:

\[6^3 = 3^3 + 4^3 + 5^3. \]

Dickson’s “History of the Theory of Numbers”:

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

2. Uchiyama (1979): \(d = 3, n = 2 \) independently to Cassels.
3. Cassels (1985): \(y^2 = x^3 + (x + 1)^3 + (x + 2)^3. \)
4. Zhongfeng Zhang (2014): \(y^n = x^3 + (x + 1)^3 + (x + 2)^3. \)
5. Bennett, Patel, Siksek (2016): \(2 \leq d \leq 50, \, n \geq 2. \)
A Brief History: Sums of Consecutive Cubes

Euler:

\[6^3 = 3^3 + 4^3 + 5^3. \]

Dickson’s “History of the Theory of Numbers”:

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

2. Uchiyama (1979): \(d = 3, n = 2 \) independently to Cassels.
3. Cassels (1985): \(y^2 = x^3 + (x + 1)^3 + (x + 2)^3. \)
4. Zhongfeng Zhang (2014): \(y^n = x^3 + (x + 1)^3 + (x + 2)^3. \)
5. Bennett, Patel, Siksek (2016): \(2 \leq d \leq 50, n \geq 2. \)
A Brief History: Sums of Consecutive Cubes

Euler:

\[6^3 = 3^3 + 4^3 + 5^3. \]

Dickson’s “History of the Theory of Numbers”:
Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

2. Uchiyama (1979): \(d = 3, n = 2 \) independently to Cassels.
3. Cassels (1985): \(y^2 = x^3 + (x + 1)^3 + (x + 2)^3. \)
4. Zhongfeng Zhang (2014): \(y^n = x^3 + (x + 1)^3 + (x + 2)^3. \)
5. Bennett, Patel, Siksek (2016): \(2 \leq d \leq 50, n \geq 2. \)
A Brief History

Well–Known:

\[
\sum_{i=0}^{d} i^3 = \sum_{i=1}^{d} i^3 = \left(\frac{d(d+1)}{2} \right)^2.
\]

Pagliani:

\[
\sum_{i=1}^{v^3} \left(\frac{v^4 - 3v^3 - 2v^2 - 2}{6} + i \right)^3 = \left(\frac{v^5 + v^3 - 2v}{6} \right)^3.
\]

where \(v \equiv 2, 4 \pmod{6} \).
A Brief History

Well–Known:

$$\sum_{i=0}^{d} i^3 = \sum_{i=1}^{d} i^3 = \left(\frac{d(d+1)}{2} \right)^2.$$

Pagliani:

$$\sum_{i=1}^{v^3} \left(\frac{v^4 - 3v^3 - 2v^2 - 2}{6} + i \right)^3 = \left(\frac{v^5 + v^3 - 2v}{6} \right)^3.$$

where $v \equiv 2, 4 \pmod{6}$.
The Results

\[(x + 1)^k + (x + 2)^k + \cdots + (x + d)^k = y^n.\]

Theorem (M. A. Bennett, V. Patel, S. Siksek)

Let \(k = 3\) and \(2 \leq d \leq 50\). Then, any “non–trivial” integer solution \((x, y, n)\) must have \(n = 2\) or \(n = 3\).

\(y \neq 0, \pm 1.\)

Without loss of any generality, we can let \(x \geq 1.\)
The Results

\[(x + 1)^k + (x + 2)^k + \cdots + (x + d)^k = y^n.\]

Theorem (M. A. Bennett, V. Patel, S. Siksek)

Let \(k = 3 \) and \(2 \leq d \leq 50 \). Then, any “non–trivial” integer solution \((x, y, n)\) must have \(n = 2 \) or \(n = 3 \).

\[y \neq 0, \pm 1.\]

Without loss of any generality, we can let \(x \geq 1 \).
The Results

\[(x + 1)^k + (x + 2)^k + \cdots + (x + d)^k = y^n.\]

Theorem (M. A. Bennett, V. Patel, S. Siksek)

Let \(k = 3\) and \(2 \leq d \leq 50\). Then, any “non–trivial” integer solution \((x, y, n)\) must have \(n = 2\) or \(n = 3\).

\[y \neq 0, \pm 1.\]

Without loss of any generality, we can let \(x \geq 1\).
Cubes that are Sums of Consecutive Cubes

\[3^3 + 4^3 + 5^3 = 6^3, \text{ attributed to Lucas} \]
\[11^3 + 12^3 + 13^3 + 14^3 = 20^3, \]
\[3^3 + 4^3 + 5^3 + \cdots + 22^3 = 40^3, \]
\[15^3 + 16^3 + 17^3 + \cdots + 34^3 = 70^3, \]
\[6^3 + 7^3 + 8^3 + \cdots + 30^3 = 60^3, \]
\[291^3 + 292^3 + 293^3 + \cdots + 339^3 = 1155^3. \]
CUBES that are Sums of Consecutive Cubes

\[(−2)^3 + (−1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 6^3,\]

\[11^3 + 12^3 + 13^3 + 14^3 = 20^3,\]

\[3^3 + 4^3 + 5^3 + \cdots + 22^3 = 40^3,\]

\[15^3 + 16^3 + 17^3 + \cdots + 34^3 = 70^3,\]

\[6^3 + 7^3 + 8^3 + \cdots + 30^3 = 60^3,\]

\[291^3 + 292^3 + 293^3 + \cdots + 339^3 = 1155^3.\]
The Methodology

<table>
<thead>
<tr>
<th>Step</th>
<th>Method</th>
<th>Number of Equations to Solve</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Useful equations and identities ((p, p, p))</td>
<td>49 equations in ((x, y, p))</td>
</tr>
<tr>
<td>2.</td>
<td>(p = 2): Integer points on elliptic curves</td>
<td>49 equations in ((x, y))</td>
</tr>
<tr>
<td>3.</td>
<td>(d = 2): Results of Nagell</td>
<td>2 equations ((x, y, p))</td>
</tr>
<tr>
<td>4.</td>
<td>First descent: a factorisation for (p \geq 5)</td>
<td>906 equations in ((x, y, p))</td>
</tr>
<tr>
<td>5.</td>
<td>Linear Forms in two logarithms: (p \geq 5)</td>
<td>(906 \times 216814 = 196,433,484) equations in ((x, y))</td>
</tr>
<tr>
<td></td>
<td>Bounding (p < 3 \times 10^6)</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Sophie-Germain type criterion (case (r \neq t))</td>
<td>224 remain in ((x, y))</td>
</tr>
<tr>
<td></td>
<td>(879 \times 216814 = 190,579,506) in ((x, y))</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Modularity (case (r = t))</td>
<td>53 remain in ((x, y))</td>
</tr>
<tr>
<td></td>
<td>(27 \times 216814 = 5,853,978) in ((x, y))</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>First descent when (p = 3)</td>
<td>942 in ((x, y))</td>
</tr>
<tr>
<td></td>
<td>Equations remaining via 8., 6. and 7.</td>
<td>1219</td>
</tr>
<tr>
<td>9.</td>
<td>Local solubility tests</td>
<td>507</td>
</tr>
<tr>
<td>10.</td>
<td>A further descent</td>
<td>226</td>
</tr>
<tr>
<td>11.</td>
<td>Thue solver!</td>
<td>6 solutions found!</td>
</tr>
</tbody>
</table>
Step 1. (and 4.) is the Key!

1 By a \((p,p,p)\) equation, we mean \(Ax^p + By^p = Cz^p\).

2 Roughly speaking we have
 (Linear Factor in \(x\))(Quadratic Factor in \(x\)) = \(y^p\).

3 Linear Factor = \(\alpha y_1^p\).

4 Quadratic Factor = (Linear Factor)\(^2\) + Constant = \(\beta y_2^p\).

5 Substitution should give \(\alpha^2(y_1^2)^p + \text{Constant} \cdot 1^p = \beta(y_2)^p\)

Step 2.

1 \(p = 2\) solved by Stroeker (1995).

2 Integer points on Elliptic Curves.

3 Cubic in \(x = y^2\). Ask magma!
Step 1. (and 4.) is the Key!

1. By a \((p, p, p)\) equation, we mean \(Ax^p + By^p = Cz^p\).

2. Roughly speaking we have
 (Linear Factor in \(x\))(Quadratic Factor in \(x\)) = \(y^p\).

3. Linear Factor = \(\alpha y_1^p\).

4. Quadratic Factor = (Linear Factor)\(^2\) + Constant = \(\beta y_2^p\).

5. Substitution should give \(\alpha^2(y_1^2)^p + \text{Constant} \cdot 1^p = \beta(y_2)^p\)

Step 2.

2. Integer points on Elliptic Curves.

3. Cubic in \(x = y^2\). Ask magma!
The Methodology

<table>
<thead>
<tr>
<th>Step</th>
<th>Method</th>
<th>Number of Equations to Solve</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Useful equations and identities ((p, p, p))</td>
<td>49 equations in ((x, y, p))</td>
</tr>
<tr>
<td>2.</td>
<td>(p = 2): Integer points on elliptic curves</td>
<td>49 equations in ((x, y))</td>
</tr>
<tr>
<td>3.</td>
<td>(d = 2): Results of Nagell</td>
<td>2 equations ((x, y, p))</td>
</tr>
<tr>
<td>4.</td>
<td>First descent: a factorisation for (p \geq 5)</td>
<td>906 equations in ((x, y, p))</td>
</tr>
<tr>
<td>5.</td>
<td>Linear Forms in two logarithms: (p \geq 5)</td>
<td>(906 \times 216814 = 196,433,484) equations in ((x, y))</td>
</tr>
<tr>
<td></td>
<td>Bounding (p < 3 \times 10^6)</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Sophie-Germain type criterion (case (r \neq t))</td>
<td>224 remain in ((x, y))</td>
</tr>
<tr>
<td></td>
<td>(879 \times 216814 = 190,579,506) in ((x, y))</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Modularity (case (r = t))</td>
<td>53 remain in ((x, y))</td>
</tr>
<tr>
<td></td>
<td>(27 \times 216814 = 5,853,978) in ((x, y))</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>First descent when (p = 3)</td>
<td>942 in ((x, y))</td>
</tr>
<tr>
<td></td>
<td>Equations remaining via 8., 6. and 7.</td>
<td>1219</td>
</tr>
<tr>
<td>9.</td>
<td>Local solubility tests</td>
<td>507</td>
</tr>
<tr>
<td>10.</td>
<td>A further descent</td>
<td>226</td>
</tr>
<tr>
<td>11.</td>
<td>Thue solver!</td>
<td>6 solutions found!</td>
</tr>
</tbody>
</table>

Vandita Patel
University of Warwick
Perfect Powers that are Sums of Consecutive like Powers
The Magic of Sophie Germain

After Step 4. We have equations of the form:

\[r y_2^p - s y_1^{2p} = t \] (1)

where \(r, s, t \) are positive integers, and \(\gcd(r, s, t) = 1 \).

The linear forms in two logarithms bounds \(p \). For each tuple \((r, s, t) \) we can apply the methods of Sophie Germain to eliminate equations/tuples for a fixed value of \(p \).
Lemma

Let $p \geq 3$ be prime. Let r, s and t be positive integers satisfying $\gcd(r, s, t) = 1$. Let $q = 2kp + 1$ be a prime that does not divide r. Define

$$\mu(p, q) = \{\eta^{2p} : \eta \in \mathbb{F}_q\} = \{0\} \cup \{\zeta \in \mathbb{F}_q^* : \zeta^k = 1\} \quad (2)$$

and

$$B(p, q) = \left\{\zeta \in \mu(p, q) : ((s\zeta + t)/r)^{2k} \in \{0, 1\}\right\}.$$

If $B(p, q) = \emptyset$, then equation (1) does not have integral solutions.
THE MAGIC OF SOPHIE GERMAINE

Proof.

Suppose \(B(p, q) = \emptyset \). Let \((y_1, y_2)\) be a solution to (1). Let \(\zeta = \overline{y_1}^{2p} \in \mu(p, q) \). From equation (1) we have

\[
(s\zeta + t)/r \equiv y_2^p \pmod{q}.
\]

Thus

\[
((s\zeta + t)/r)^{2k} \equiv y_2^{q-1} \equiv 0 \text{ or } 1 \pmod{q}.
\]

This shows that \(\zeta \in B(p, q) \) giving a contradiction. \(\Box \)
THE MAGIC OF SOPHIE GERMAIN - WHY DOES IT WORK?

1. If there are no solutions to $ry_2^{p} - sy_1^{2p} = t$,
2. and we take p to be large, then
3. notice that $\#\mu(p, q) = k + 1$.
4. For $\zeta \in \mu(p, q)$, the element $((s\zeta + t)/r)^{2k} \in \mathbb{F}_q$ is either 0 or an p-th root of unity.
5. The “probability” that it belongs to the set $\{0, 1\}$ is $2/(p + 1)$.
6. The “expected size” of $B(p, q)$ is $2(k + 1)/(p + 1) \approx 2q/p^2$.
7. For large p we expect to find a prime $q = 2kp + 1$ such that $2q/p^2$ is tiny and so we likewise expect that $\#B(p, q) = 0$.

Vandita Patel
University of Warwick

Perfect Powers that are Sums of Consecutive like Powers
The Magic of Sophie Germain - Why Does it Work?

1. If there are no solutions to \(r y_2^p - s y_1^{2p} = t \),
2. and we take \(p \) to be large, then
3. notice that \(\# \mu(p, q) = k + 1 \).
4. For \(\zeta \in \mu(p, q) \), the element \(((s \zeta + t)/r)^{2k} \in \mathbb{F}_q \) is either 0 or an \(p \)-th root of unity.
5. The “probability” that it belongs to the set \(\{0, 1\} \) is \(2/(p + 1) \).
6. The “expected size” of \(B(p, q) \) is \(2(k + 1)/(p + 1) \approx 2q/p^2 \).
7. For large \(p \) we expect to find a prime \(q = 2kp + 1 \) such that \(2q/p^2 \) is tiny and so we likewise expect that \(\# B(p, q) = 0 \).
The Magic of Sophie Germain - Why Does it Work?

1. If there are no solutions to \(ry_2^p - sy_1^{2p} = t \),
2. and we take \(p \) to be large, then
3. notice that \(\# \mu(p, q) = k + 1 \).
4. For \(\zeta \in \mu(p, q) \), the element \((s\zeta + t)/r)^{2k} \in \mathbb{F}_q \) is either 0 or an \(p \)-th root of unity.
5. The “probability” that it belongs to the set \(\{0, 1\} \) is \(2/(p + 1) \).
6. The “expected size” of \(B(p, q) \) is \(2(k + 1)/(p + 1) \approx 2q/p^2 \).
7. For large \(p \) we expect to find a prime \(q = 2kp + 1 \) such that \(2q/p^2 \) is tiny and so we likewise expect that \(\#B(p, q) = 0 \).
The Magic of Sophie Germain - Why Does it Work?

1. If there are no solutions to \(ry_2^p - s y_1^{2p} = t \),
2. and we take \(p \) to be large, then
3. notice that \(\#\mu(p, q) = k + 1 \).
4. For \(\zeta \in \mu(p, q) \), the element \(((s\zeta + t)/r)^{2k} \in \mathbb{F}_q \) is either 0 or an \(p \)-th root of unity.
5. The “probability” that it belongs to the set \(\{0, 1\} \) is \(2/(p + 1) \).
6. The “expected size” of \(B(p, q) \) is \(2(k + 1)/(p + 1) \approx 2q/p^2 \).
7. For large \(p \) we expect to find a prime \(q = 2kp + 1 \) such that \(2q/p^2 \) is tiny and so we likewise expect that \(\#B(p, q) = 0 \).
The Magic of Sophie Germain - Why Does it Work?

1. If there are no solutions to \(ry_2^p - sy_1^{2p} = t \),
2. and we take \(p \) to be large, then
3. notice that \(\#\mu(p, q) = k + 1 \).
4. For \(\zeta \in \mu(p, q) \), the element \(((s\zeta + t)/r)^{2k} \in \mathbb{F}_q \) is either 0 or an \(p \)-th root of unity.
5. The “probability” that it belongs to the set \(\{0, 1\} \) is \(2/(p + 1) \).
6. The “expected size” of \(B(p, q) \) is \(2(k + 1)/(p + 1) \approx 2q/p^2 \).
7. For large \(p \) we expect to find a prime \(q = 2kp + 1 \) such that \(2q/p^2 \) is tiny and so we likewise expect that \(\#B(p, q) = 0 \).
The Magic of Sophie Germain - Why Does it Work?

1. If there are no solutions to $r y_2^p - s y_1^{2p} = t$,
2. and we take p to be large, then
3. notice that $#\mu(p, q) = k + 1$.
4. For $\zeta \in \mu(p, q)$, the element $((s\zeta + t)/r)^{2k} \in \mathbb{F}_q$ is either 0 or an p-th root of unity.
5. The “probability” that it belongs to the set $\{0, 1\}$ is $2/(p + 1)$.
6. The “expected size” of $B(p, q)$ is $2(k + 1)/(p + 1) \approx 2q/p^2$.
7. For large p we expect to find a prime $q = 2kp + 1$ such that $2q/p^2$ is tiny and so we likewise expect that $#B(p, q) = 0$.

Vandita Patel
University of Warwick

Perfect Powers that are Sums of Consecutive like Powers
The Magic of Sophie Germain - Why Does it Work?

1. If there are no solutions to $ry_2^p - sy_1^{2p} = t$,
2. and we take p to be large, then
3. notice that $\#\mu(p, q) = k + 1$.
4. For $\zeta \in \mu(p, q)$, the element $((s\zeta + t)/r)^{2k} \in \mathbb{F}_q$ is either 0 or an p-th root of unity.
5. The “probability” that it belongs to the set $\{0, 1\}$ is $2/(p + 1)$.
6. The “expected size” of $B(p, q)$ is $2(k + 1)/(p + 1) \approx 2q/p^2$.
7. For large p we expect to find a prime $q = 2kp + 1$ such that $2q/p^2$ is tiny and so we likewise expect that $\#B(p, q) = 0$.

Vandita Patel
University of Warwick
Perfect Powers that are Sums of Consecutive like Powers
The Modular Way! \((r = t)\)

\[ry_2^p - sy_1^{2p} = t\]

\[y_2^p - (s/r)y_1^{2p} = 1\]

Has solutions \((y_1, y_2) = (0, 1)\). This causes our previous lemma to fail.

However, the Modular Method does not see this solution. When constructing the Frey Curve, the discriminant is non-zero. Hence if \(y_1 = 0\) then the discriminant is zero. (Similar to Fermat’s Last Theorem).
THE MODULAR WAY! \((r = t)\)

\[ry_2^p - sy_1^{2p} = t \]

\[y_2^p - (s/r)y_1^{2p} = 1 \]

Has solutions \((y_1, y_2) = (0, 1)\). This causes our previous lemma to fail.

However, the Modular Method does not see this solution. When constructing the Frey Curve, the discriminant is non-zero. Hence if \(y_1 = 0\) then the discriminant is zero. (Similar to Fermat’s Last Theorem).
The Methodology

<table>
<thead>
<tr>
<th>Step</th>
<th>Method</th>
<th>Number of Equations to Solve</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Useful equations and identities ((p, p, p))</td>
<td>49 equations in ((x, y, p))</td>
</tr>
<tr>
<td>2.</td>
<td>(p = 2): Integer points on elliptic curves</td>
<td>49 equations in ((x, y))</td>
</tr>
<tr>
<td>3.</td>
<td>(d = 2): Results of Nagell</td>
<td>2 equations ((x, y, p))</td>
</tr>
<tr>
<td>4.</td>
<td>First descent: a factorisation for (p \geq 5)</td>
<td>906 equations in ((x, y, p))</td>
</tr>
<tr>
<td>5.</td>
<td>Linear Forms in two logarithms: (p \geq 5) Bounding (p < 3 \times 10^6)</td>
<td>906 \times 216814 = 196, 433, 484 equations in ((x, y))</td>
</tr>
<tr>
<td>6.</td>
<td>Sophie-Germain type criterion (case (r \neq t)) (879 \times 216814 = 190, 579, 506) in ((x, y))</td>
<td>224 remain in ((x, y))</td>
</tr>
<tr>
<td>7.</td>
<td>Modularity (case (r = t)) (27 \times 216814 = 5, 853, 978) in ((x, y))</td>
<td>53 remain in ((x, y))</td>
</tr>
<tr>
<td>8.</td>
<td>First descent when (p = 3)</td>
<td>942 in ((x, y))</td>
</tr>
<tr>
<td></td>
<td>Equations remaining via 8., 6. and 7.</td>
<td>1219</td>
</tr>
<tr>
<td>9.</td>
<td>Local solubility tests</td>
<td>507</td>
</tr>
<tr>
<td>10.</td>
<td>A further descent</td>
<td>226</td>
</tr>
<tr>
<td>11.</td>
<td>Thue solver!</td>
<td>6 solutions found!</td>
</tr>
</tbody>
</table>
Pieter’s Parity Parrot: Designed by Pieter Moree, Drawn by Kate Kattegat
The Case $k = 2$

<table>
<thead>
<tr>
<th>Step</th>
<th>Method</th>
<th>Number of Equations to Solve</th>
<th>$k = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Useful equations and identities (p, p, p)</td>
<td>49 equations in (x, y, p)</td>
<td>$(p, p, 2)$ ✓</td>
</tr>
<tr>
<td>2.</td>
<td>$p = 2$: Integer points on elliptic curves</td>
<td>49 equations in (x, y)</td>
<td>∞ ✓</td>
</tr>
<tr>
<td>3.</td>
<td>$d = 2$: Results of Nagell</td>
<td>2 equations (x, y, p)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>First descent: a factorisation for $p \geq 5$</td>
<td>906 equations in (x, y, p)</td>
<td>✗</td>
</tr>
<tr>
<td>5.</td>
<td>Linear Forms in two logarithms: $p \geq 5$</td>
<td>906 × 216814 = 196, 433, 484 equations in (x, y)</td>
<td>➕</td>
</tr>
<tr>
<td>6.</td>
<td>Sophie-Germain type criterion (case $r \neq t$)</td>
<td>879 × 216814 = 190, 579, 506 in (x, y)</td>
<td>224 remain in (x, y)</td>
</tr>
<tr>
<td>7.</td>
<td>Modularity (case $r = t$)</td>
<td>$27 \times 216814 = 5, 853, 978$ in (x, y)</td>
<td>53 remain in (x, y)</td>
</tr>
<tr>
<td>8.</td>
<td>First descent when $p = 3$</td>
<td></td>
<td>942 in (x, y)</td>
</tr>
<tr>
<td></td>
<td>Equations remaining via 8., 6. and 7.</td>
<td></td>
<td>1219</td>
</tr>
<tr>
<td>9.</td>
<td>Local solubility tests</td>
<td></td>
<td>507</td>
</tr>
<tr>
<td>10.</td>
<td>A further descent</td>
<td></td>
<td>226</td>
</tr>
<tr>
<td>11.</td>
<td>Thue solver!</td>
<td></td>
<td>6 solutions found!</td>
</tr>
</tbody>
</table>

Vandita Patel
University of Warwick
Perfect Powers that are Sums of Consecutive like Powers
Dimensions of $S_2(N)$

When $k = 2$...

$$d = 22, \quad \dim = 5280$$

Dimension 200 is reasonable to compute with. We can push computations to dimension 2000 with some clever tricks.

When $k = 4$...

$$d = 21, \quad \dim \approx 1,500,000$$

$$d = 30, \quad \dim \approx 804,000,000$$
Dimensions of $S_2(N)$

When $k = 2...$

$$d = 22, \quad \dim = 5280$$

Dimension 200 is reasonable to compute with. We can push computations to dimension 2000 with some clever tricks.

When $k = 4...$

$$d = 21, \quad \dim \approx 1,500,000$$

$$d = 30, \quad \dim \approx 804,000,000$$
Dimensions of $S_2(N)$

When $k = 2$...

$$d = 22, \quad \text{dim} = 5280$$

Dimension 200 is reasonable to compute with. We can push computations to dimension 2000 with some clever tricks.

When $k = 4$...

$$d = 21, \quad \text{dim} \approx 1,500,000$$

$$d = 30, \quad \text{dim} \approx 804,000,000$$
Dimensions of $S_2(N)$

When $k = 2...$

\[d = 22, \quad \text{dim} = 5280 \]

Dimension 200 is reasonable to compute with. We can push computations to dimension 2000 with some clever tricks.

When $k = 4...$

\[d = 21, \quad \text{dim} \approx 1,500,000 \]

\[d = 30, \quad \text{dim} \approx 804,000,000 \]
The Case $k = 2$

<table>
<thead>
<tr>
<th>Step</th>
<th>Method</th>
<th>Number of Equations to Solve</th>
<th>$k = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Useful equations and identities (p, p, p)</td>
<td>49 equations in (x, y, p)</td>
<td>$(p, p, 2)$ ✓</td>
</tr>
<tr>
<td>2.</td>
<td>$p = 2$: Integer points on elliptic curves</td>
<td>49 equations in (x, y)</td>
<td>∞ ✓</td>
</tr>
<tr>
<td>3.</td>
<td>$d = 2$: Results of Nagell</td>
<td>2 equations (x, y, p)</td>
<td>✓</td>
</tr>
<tr>
<td>4.</td>
<td>First descent: a factorisation for $p \geq 5$</td>
<td>906 equations in (x, y, p)</td>
<td>✗</td>
</tr>
<tr>
<td>5.</td>
<td>Linear Forms in two logarithms: $p \geq 5$ Bounding $p < 3 \times 10^6$</td>
<td>$906 \times 216814 = 196,433,484$ equations in (x, y)</td>
<td>✗</td>
</tr>
<tr>
<td>6.</td>
<td>Sophie-Germain type criterion (case $r \neq t$)</td>
<td>224 remain in (x, y)</td>
<td>✗</td>
</tr>
<tr>
<td>7.</td>
<td>Modularity (case $r = t$)</td>
<td>53 remain in (x, y)</td>
<td>Levels too big!! ✗</td>
</tr>
<tr>
<td>8.</td>
<td>First descent when $p = 3$</td>
<td>942 in (x, y)</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Equations remaining via 8., 6. and 7.</td>
<td>1219</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Local solubility tests</td>
<td>507</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>A further descent</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thue solver!</td>
<td>6 solutions found!</td>
<td></td>
</tr>
</tbody>
</table>

Vandita Patel
University of Warwick

Perfect Powers that are Sums of Consecutive like Powers
The Case $k = 2$

<table>
<thead>
<tr>
<th>Step</th>
<th>Method</th>
<th>Number of Equations to Solve</th>
<th>$k = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Useful equations and identities (p, p, p)</td>
<td>49 equations in (x, y, p)</td>
<td>$(p, p, 2)$ ✓</td>
</tr>
<tr>
<td>2.</td>
<td>$p = 2$: Integer points on elliptic curves</td>
<td>49 equations in (x, y)</td>
<td>∞ ✓</td>
</tr>
<tr>
<td>3.</td>
<td>$d = 2$: Results of Nagell</td>
<td>2 equations (x, y, p)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>First descent: a factorisation for $p \geq 5$</td>
<td>906 equations in (x, y, p)</td>
<td>×</td>
</tr>
</tbody>
</table>
| 5. | Linear Forms in two logarithms: $p \geq 5$
Bounding $p < 3 \times 10^6$ | $906 \times 216814 = 196,433,484$ equations in (x, y) | ☹ |
| 6. | Sophie-Germain type criterion (case $r \neq t$)
$879 \times 216814 = 190,579,506$ in (x, y) | 224 remain in (x, y) | ✱ |
| 7. | Modularity (case $r = t$)
$27 \times 216814 = 5,853,978$ in (x, y) | 53 remain in (x, y) | Levels too big!! × |
| 8. | First descent when $p = 3$ | 942 in (x, y) | |
| 9. | Equations remaining via 8., 6. and 7. | 1219 | |
| 10. | Local solubility tests | 507 | |
| 11. | A further descent | 226 | |
| | Thue solver! | 6 solutions found! | |

Vandita Patel
University of Warwick
Perfect Powers that are Sums of Consecutive like Powers
If I try... naively

\[\approx 10^{20} \]

If Mike Bennett tries... naively

\[\approx 10^{14} \]

If we manage to locate Mike Bennett and then get him to work...

\[\approx 10^{10} \]

which also needs a lot of luck!! 💚💚💚💚💚💚
Linear Forms in Three Logarithms

If I try... naively

\[\approx 10^{20} \]

If Mike Bennett tries... naively

\[\approx 10^{14} \]

If we manage to locate Mike Bennett and then get him to work...

\[\approx 10^{10} \]

which also needs a lot of luck!! ★★★★★★★★★
LINEAR FORMS IN THREE LOGARITHMS

If I try... naively

\[\approx 10^{20} \]

If Mike Bennett tries... naively

\[\approx 10^{14} \]

If we manage to locate Mike Bennett and then get him to work...

\[\approx 10^{10} \]

which also needs a lot of luck!! 🌾🌾🌾🌾🌾🌾
The case $k = 2$

<table>
<thead>
<tr>
<th>Step</th>
<th>Method</th>
<th>Number of Equations to Solve</th>
<th>$k = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Useful equations and identities (p, p, p)</td>
<td>49 equations in (x, y, p)</td>
<td>$(p, p, 2)$ ✓</td>
</tr>
<tr>
<td>2.</td>
<td>$p = 2$: Integer points on elliptic curves</td>
<td>49 equations in (x, y)</td>
<td>∞ ✓</td>
</tr>
<tr>
<td>3.</td>
<td>$d = 2$: Results of Nagell</td>
<td>2 equations (x, y, p)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>First descent: a factorisation for $p \geq 5$</td>
<td>906 equations in (x, y, p)</td>
<td>x</td>
</tr>
<tr>
<td>5.</td>
<td>Linear Forms in two logarithms: $p \geq 5$</td>
<td>$906 \times 216814 = 196,433,484$ equations in (x, y)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bounding $p < 3 \times 10^6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Sophie-Germain type criterion (case $r \neq t$)</td>
<td>224 remain in (x, y)</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>$879 \times 216814 = 190,579,506$ in (x, y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Modularity (case $r = t$)</td>
<td>53 remain in (x, y)</td>
<td>Levels too big!! x</td>
</tr>
<tr>
<td></td>
<td>$27 \times 216814 = 5,853,978$ in (x, y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>First descent when $p = 3$</td>
<td>942 in (x, y)</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Local solubility tests</td>
<td>507</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>A further descent</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Thue solver!</td>
<td>6 solutions found!</td>
<td></td>
</tr>
</tbody>
</table>

Vandita Patel
University of Warwick
Perfect Powers that are Sums of Consecutive like Powers
The Case \(k = 2 \)

<table>
<thead>
<tr>
<th>Step</th>
<th>Method</th>
<th>Number of Equations to Solve</th>
<th>(k = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Useful equations and identities ((p, p, p))</td>
<td>49 equations in ((x, y, p))</td>
<td>((p, p, 2) \ ✓)</td>
</tr>
<tr>
<td>2.</td>
<td>(p = 2): Integer points on elliptic curves</td>
<td>49 equations in ((x, y))</td>
<td>(\infty \ ✓)</td>
</tr>
<tr>
<td>3.</td>
<td>(d = 2): Results of Nagell</td>
<td>2 equations ((x, y, p))</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>First descent: a factorisation for (p \geq 5)</td>
<td>906 equations in ((x, y, p))</td>
<td>(\times)</td>
</tr>
<tr>
<td>5.</td>
<td>Linear Forms in two logarithms: (p \geq 5)</td>
<td>906 \times 216814 = 196,433,484 equations in ((x, y))</td>
<td>(\nexists)</td>
</tr>
<tr>
<td></td>
<td>Bounding (p < 3 \times 10^6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Sophie-Germain type criterion (case (r \neq t))</td>
<td>224 remain in ((x, y))</td>
<td>(\dagger)</td>
</tr>
<tr>
<td></td>
<td>(879 \times 216814 = 190,579,506) in ((x, y))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Modularity (case (r = t))</td>
<td>53 remain in ((x, y))</td>
<td>Levels too big!! (\times)</td>
</tr>
<tr>
<td></td>
<td>(27 \times 216814 = 5,853,978) in ((x, y))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>First descent when (p = 3)</td>
<td>942 in ((x, y))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equations remaining via 8., 6. and 7.</td>
<td>1219</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Local solubility tests</td>
<td>507</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>A further descent</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Thue solver!</td>
<td>6 solutions found!</td>
<td></td>
</tr>
</tbody>
</table>
Pythagoras

\[3^2 + 4^2 = 5^2 \]

\[20^2 + 21^2 = 29^2 \]

An infinite family of solutions - can be given parametrically!
Even k and Towards Densities

Theorem (Zhang and Bai, 2013)

Let q be a prime such that $q \equiv 5, 7 \pmod{12}$. Suppose $q \parallel d$. Then the equation $x^2 + (x + 1)^2 + \cdots + (x + d - 1)^2 = y^n$ has no integer solutions.

Corollary (Use Dirichlet’s Theorem)

Let A_2 be the set of integers $d \geq 2$ such that the equation

$$x^2 + (x + 1)^2 + \cdots + (x + d - 1)^2 = y^n$$

has a solution (x, y, n). Then A_2 has natural density zero.
Theorem (Zhang and Bai, 2013)

Let q be a prime such that $q \equiv 5, 7 \pmod{12}$. Suppose $q \mid d$. Then the equation

$$x^2 + (x + 1)^2 + \cdots + (x + d - 1)^2 = y^n$$

has no integer solutions.

Corollary (Use Dirichlet’s Theorem)

Let A_2 be the set of integers $d \geq 2$ such that the equation

$$x^2 + (x + 1)^2 + \cdots + (x + d - 1)^2 = y^n$$

has a solution (x, y, n). Then A_2 has natural density zero.
The Result

Theorem (V. Patel, S. Siksek)

Let \(k \geq 2 \) be an even integer. Let \(A_k \) be the set of integers \(d \geq 2 \) such that the equation

\[
x^k + (x + 1)^k + \cdots (x + d - 1)^k = y^n, \quad x, y, n \in \mathbb{Z}, \quad n \geq 2
\]

has a solution \((x, y, n)\). Then \(A_k \) has natural density zero. In other words we have

\[
\lim_{X \to \infty} \frac{\#\{d \in A_k : d \leq X\}}{X} = 0.
\]
The Result

Theorem (V. Patel, S. Siksek)

Let $k \geq 2$ be an even integer and let r be a non-zero integer. Let $A_{k,r}$ be the set of integers $d \geq 2$ such that the equation

$$x^k + (x + r)^k + \cdots (x + r(d - 1))^k = y^n, \quad x, y, n \in \mathbb{Z}, \quad n \geq 2$$

has a solution (x, y, n). Then $A_{k,r}$ has natural density zero. In other words we have

$$\lim_{X \to \infty} \frac{\# \{ d \in A_{k,r} : d \leq X \}}{X} = 0.$$
Bernoulli polynomials and relation to sums of consecutive powers

Definition (Bernoulli Numbers, \(b_k\))

\[
x \frac{e^x - 1}{x} = \sum_{k=0}^{\infty} b_k \frac{x^k}{k!}.
\]

\(b_0 = 1, b_1 = -1/2, b_2 = 1/6, b_3 = 0, b_4 = -1/30, b_5 = 0, b_6 = 1/42.\)

Lemma

\(b_{2k+1} = 0 \text{ for } k \geq 1.\)
Bernoulli polynomials and relation to sums of consecutive powers

Definition (Bernoulli Polynomial, B_k)

$$B_k(x) := \sum_{m=0}^{k} \binom{k}{m} b_m x^{k-m}.$$

Lemma

$$x^k + (x+1)^k + \cdots + (x+d-1)^k = \frac{1}{k+1} (B_{k+1}(x+d) - B_k(x)).$$
Bernoulli polynomials and relation to sums of consecutive powers

Definition (Bernoulli Polynomial, B_k)

$$B_k(x) := \sum_{m=0}^{k} \binom{k}{m} b_m x^{k-m}.$$

Lemma

$$x^k + (x+1)^k + \cdots + (x+d-1)^k = \frac{1}{k+1} (B_{k+1}(x+d) - B_k(x)).$$
Bernoulli polynomials and relation to sums of consecutive powers

Lemma

\[x^k + (x + 1)^k + \cdots + (x + d - 1)^k = \frac{1}{k+1} \left(B_{k+1}(x + d) - B_k(x) \right). \]

Apply Taylor’s Theorem and use \(B'_{k+1}(x) = (k + 1) \cdot B_k(x) \).

Lemma

Let \(q \geq k + 3 \) be a prime. Let \(d \geq 2 \). Suppose that \(q \mid d \). Then

\[x^k + (x + 1)^k + \cdots + (x + d - 1)^k \equiv d \cdot B_k(x) \quad (\text{mod } q^2). \]
BERNOULLI POLYNOMIALS AND RELATION TO SUMS OF CONSECUTIVE POWERS

Lemma

\[x^k + (x+1)^k + \cdots + (x+d-1)^k = \frac{1}{k+1} \left(B_{k+1}(x+d) - B_k(x) \right). \]

Apply Taylor’s Theorem and use \(B'_{k+1}(x) = (k+1) \cdot B_k(x) \).

Lemma

Let \(q \geq k + 3 \) be a prime. Let \(d \geq 2 \). Suppose that \(q \mid d \). Then

\[x^k + (x+1)^k + \cdots + (x+d-1)^k \equiv d \cdot B_k(x) \pmod{q^2}. \]
Bernoulli polynomials and relation to sums of consecutive powers

\[x^k + (x + 1)^k + \cdots + (x + d - 1)^k = y^n. \]

Proposition (Criterion)

Let \(k \geq 2 \). Let \(q \geq k + 3 \) be a prime such that the congruence

\[B_k(x) \equiv 0 \pmod{q} \]

has no solutions. Let \(d \) be a positive integer such that \(\text{ord}_q(d) = 1 \). Then the equation has no solutions. (i.e. \(d \notin A_k \)).

Remark: Computationally we checked \(k \leq 75,000 \) and we could always find such a \(q \).
BERNOULLI POLYNOMIALS AND RELATION TO SUMS OF CONSECUTIVE POWERS

\[x^k + (x + 1)^k + \cdots + (x + d - 1)^k = y^n. \]

Proposition (Criterion)

Let \(k \geq 2 \). Let \(q \geq k + 3 \) be a prime such that the congruence \(B_k(x) \equiv 0 \pmod{q} \) has no solutions. Let \(d \) be a positive integer such that \(\text{ord}_q(d) = 1 \). Then the equation has no solutions. (i.e. \(d \notin A_k \)).

Remark: Computationally we checked \(k \leq 75,000 \) and we could always find such a \(q \).
Relation to Densities?

We need to use Chebotarev’s density theorem, which can be seen as “a generalisation of Dirichlet’s theorem” on primes in arithmetic progression.

Proposition

Let $k \geq 2$ be even and let G be the Galois group of $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

Assuming the proposition, we may then use Chebotarev’s density theorem to find a set of primes q_i with positive Dirichlet density such that $\text{Frob}_{q_i} \in G$ is conjugate to μ. Then we can apply Niven’s results to deduce our Theorem.
Relation to Densities?

We need to use Chebotarev’s density theorem, which can be seen as “a generalisation of Dirichlet’s theorem” on primes in arithmetic progression.

Proposition

Let $k \geq 2$ be even and let G be the Galois group of $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

Assuming the proposition, we may then use Chebotarev’s density theorem to find a set of primes q_i with positive Dirichlet density such that $\text{Frob}_{q_i} \in G$ is conjugate to μ. Then we can apply Niven’s results to deduce our Theorem.
Niven’s Results (Flash!)

The setup:

1. Let A be a set of positive integers.
2. Define: $A(X) = \#\{d \in A : d \leq X\}$ for positive X.
3. Natural Density: $\delta(A) = \lim_{X \to \infty} A(X)/X$.
4. Given a prime q, define: $A^{(q)} = \{d \in A : \text{ord}_q(d) = 1\}$.

Theorem (Niven)

Let $\{q_i\}$ be a set of primes such that $\delta(A^{(q_i)}) = 0$ and $\sum q_i^{-1} = \infty$. Then $\delta(A) = 0$.
A Legendre Symbol analogue

Proposition

Let \(k \geq 2 \) be even and let \(G \) be the Galois group \(B_k(x) \). Then there is an element \(\mu \in G \) that acts freely on the roots of \(B_k(x) \).

Conjecture

For any even integer \(k \), \(B_k(x) \) is irreducible over \(\mathbb{Q} \).

Remark: The conjecture implies the Proposition. This then proves our Theorem.
A Legendre Symbol analogue

Proposition

Let \(k \geq 2 \) be even and let \(G \) be the Galois group \(B_k(x) \). Then there is an element \(\mu \in G \) that acts freely on the roots of \(B_k(x) \).

Conjecture

For any even integer \(k \), \(B_k(x) \) is irreducible over \(\mathbb{Q} \).

Remark: The conjecture implies the Proposition. This then proves our Theorem.
Tough Stuff

A sketch of an unconditional proof!

Proposition

Let $k \geq 2$ be even and let G be the Galois group $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

Theorem (von Staudt-Clausen)

Let $n \geq 2$ be even. Then

\[b_n + \sum_{(p-1)|n} \frac{1}{p} \in \mathbb{Z}. \]
2 is the Oddest Prime

The Newton Polygon of $B_k(x)$ for $k = 2^s \cdot t$, $s \geq 1$.

$$B_k(x) = \sum_{i=0}^{k} \binom{k}{k-i} b_{k-i} x^i = \sum_{i=0}^{k} a_i x^i$$

The Newton Polygon with points:
- $(0, 0)$
- $(0, -1)$
- $(k - 2^s, 0)$
- $(k - 2^s, -1)$
- $(k, 0)$

Slope: $1/2^s$
Another nice result

1. Sloping part corresponds to irreducible factor over \mathbb{Q}_2.
2. Root in \mathbb{Q}_2 must have valuation zero.
3. Root belongs to \mathbb{Z}_2 and is odd.
4. Symmetry $(-1)^kB_k(x) = B_k(1-x)$ gives a contradiction.

Theorem (V. Patel, S. Siksek)

Let $k \geq 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q}_2.

Theorem (K. Inkeri, 1959)

Let $k \geq 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q}.
Another nice result

1. Sloping part corresponds to irreducible factor over \mathbb{Q}_2.
2. Root in \mathbb{Q}_2 must have valuation zero.
3. Root belongs to \mathbb{Z}_2 and is odd.
4. Symmetry $(-1)^kB_k(x) = B_k(1-x)$ gives a contradiction.

Theorem (V. Patel, S. Siksek)

Let $k \geq 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q}_2.

Theorem (K. Inkeri, 1959)

Let $k \geq 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q}.
Another nice result

1. Sloping part corresponds to irreducible factor over \(\mathbb{Q}_2 \).
2. Root in \(\mathbb{Q}_2 \) must have valuation zero.
3. Root belongs to \(\mathbb{Z}_2 \) and is odd.
4. Symmetry \((-1)^k B_k(x) = B_k(1 - x)\) gives a contradiction.

Theorem (V. Patel, S. Siksek)

Let \(k \geq 2 \) be an even integer. Then \(B_k(x) \) has no roots in \(\mathbb{Q}_2 \).

Theorem (K. Inkeri, 1959)

Let \(k \geq 2 \) be an even integer. Then \(B_k(x) \) has no roots in \(\mathbb{Q} \).
What is Going On?

$L = \text{Splitting Field of } B_k(x)$

$G = \text{Galois Group}$

$H \subset G$

\mathbb{Q}

$C = \text{Cyclic}$

\mathbb{Q}_2

$\mathbb{F}_2 = \text{Residue Field}$
What is Going On?

\[L = \text{Splitting Field of } B_k(x) \quad L_{\mathbb{Q}} \quad \mathbb{F}_{\mathbb{Q}} \]

\[G = \text{Galois Group} \quad H \subset G \quad C = \text{Cyclic} \]

\[\mathbb{Q} \quad \mathbb{Q}_2 \quad \mathbb{F}_2 = \text{Residue Field} \]

\[\mu \text{ lives here!} \]
A sketch proof of the Proposition

The Setup:

- $k \geq 2$ is even.
- L is the splitting field of $B_k(x)$.
- G is the Galois group of $B_k(x)$.
- \mathfrak{p} be a prime above 2.
- ν_2 on \mathbb{Q}_2 which we extend uniquely to $L_\mathfrak{p}$ (also call it ν_2).
- $H = \text{Gal}(L_\mathfrak{p}/\mathbb{Q}_2) \subset G$ be the decomposition subgroup corresponding to \mathfrak{p}.
A sketch proof of the Proposition

\[B_k(x) = g(x)h(x) \]

where \(g(x) \) has degree \(k - 2^s \). Label the roots \(\{\alpha_1, \ldots, \alpha_{k-2^s}\} \), and \(h(x) \) has degree \(2^s \). Label the roots \(\{\beta_1, \ldots, \beta_{2^s}\} \).

- All roots \(\subset L_\beta \).
- \(h(x) \) is irreducible.
- Therefore \(H \) acts transitively on \(\beta_j \).
- Pick \(\mu \in H \) such that \(\mu \) acts freely on the roots of \(h(x) \).
- Check it doesn’t end up fixing a root of \(g(x) \).
“Bad Prime = Extremely Useful Prime!”

The Newton Polygon of $B_k(x)$ for $k = 2^s \cdot t$, $s \geq 1$.
Finding μ

Lemma

Let H be a finite group acting transitively on a finite set \{\(\beta_1, \ldots, \beta_n\)\}. Let $H_i \subset H$ be the stabiliser of β_i and suppose $H_1 = H_2$. Let $\pi : H \rightarrow C$ be a surjective homomorphism from H onto a cyclic group C. Then there exists some $\mu \in H$ acting freely on \{\(\beta_1, \ldots, \beta_n\)\} such that $\pi(\mu)$ is a generator of C.

1. Let $F_\mathfrak{p}$ be the residue field of \mathfrak{p}.
2. Let $C = \text{Gal} \left(F_\mathfrak{p} / F_2 \right)$.
3. C is cyclic generated by the Frobenius map: $\bar{\gamma} \rightarrow \bar{\gamma}^2$.
4. Let $\pi : H \rightarrow C$ be the induced surjection.
5. Finally use the Lemma.
Finding μ

Lemma

Let H be a finite group acting transitively on a finite set \{\(\beta_1, \ldots, \beta_n\)\}. Let $H_i \subset H$ be the stabiliser of β_i and suppose $H_1 = H_2$. Let $\pi : H \to C$ be a surjective homomorphism from H onto a cyclic group C. Then there exists some $\mu \in H$ acting freely on \{\(\beta_1, \ldots, \beta_n\)\} such that $\pi(\mu)$ is a generator of C.

1. Let $F_{\mathfrak{p}}$ be the residue field of \mathfrak{p}.
2. Let $C = \text{Gal}(F_{\mathfrak{p}}/F_2)$.
3. C is cyclic generated by the Frobenius map: $\bar{\gamma} \to \bar{\gamma}^2$.
4. Let $\pi : H \to C$ be the induced surjection.
5. Finally use the Lemma.
Check $g(x)$

$$B_k(x) = g(x)h(x)$$

where $g(x)$ has degree $k - 2^s$. Label the roots $\{\alpha_1, \ldots, \alpha_{k-2^s}\}$, and $h(x)$ has degree 2^s. Label the roots $\{\beta_1, \ldots, \beta_{2^s}\}$.

Lemma

μ acts freely on the α_i.

1. Suppose not. Let α be a root that is fixed by μ.
2. $\nu_2(\alpha) = 0$ so let $\bar{\alpha} = \alpha \pmod{\mathfrak{p}}$, $\bar{\alpha} \in \mathbb{F}_p$.
3. α fixed by μ hence $\bar{\alpha}$ fixed by $\langle \pi(\mu) \rangle = C$.
4. Hence $\bar{\alpha} \in \mathbb{F}_2$. $f(x) = 2B_k(x) \in \mathbb{Z}_2[x]$.
5. $f(\bar{1}) = f(\bar{0}) = \bar{1}$. A contradiction!
Thank you for listening!
SOLVING THE EQUATIONS FOR $k = 2$

$$d \left(\left(x + \frac{d + 1}{2} \right)^2 + \frac{(d - 1)(d + 1)}{12} \right) = y^p.$$

$$X^2 + C \cdot 1^p = \left(\frac{1}{d} \right) y^p$$
Solving the Equations for $k = 2$

<table>
<thead>
<tr>
<th>d</th>
<th>Equation</th>
<th>Level</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$2y^p - 5 \times 7 = 3(2x + 7)^2$</td>
<td>$2^7 \times 3^2 \times 5 \times 7$</td>
<td>480</td>
</tr>
<tr>
<td>11</td>
<td>$11^{p-1}y^p - 2 \times 5 = (x + 6)^2$</td>
<td>$2^7 \times 5 \times 11$</td>
<td>160</td>
</tr>
<tr>
<td>13</td>
<td>$13^{p-1}y^p - 2 \times 7 = (x + 7)^2$</td>
<td>$2^7 \times 7 \times 13$</td>
<td>288</td>
</tr>
<tr>
<td>22</td>
<td>$2 \times 11^{p-1}y^p - 7 \times 23 = (2x + 23)^2$</td>
<td>$2^7 \times 7 \times 11 \times 23$</td>
<td>5,280</td>
</tr>
<tr>
<td>23</td>
<td>$23^{p-1}y^p - 2^2 \times 11 = (x + 12)^2$</td>
<td>$2^3 \times 11 \times 23$</td>
<td>54</td>
</tr>
<tr>
<td>26</td>
<td>$2 \times 13^{p-1}y^p - 3^2 \times 5^2 = (2x + 27)^2$</td>
<td>$2^7 \times 3 \times 5 \times 13$</td>
<td>384</td>
</tr>
<tr>
<td>33</td>
<td>$11^{p-1}y^p - 2^4 \times 17 = 3(x + 17)^2$</td>
<td>$2^3 \times 3^2 \times 11 \times 17$</td>
<td>200</td>
</tr>
<tr>
<td>37</td>
<td>$37^{p-1}y^p - 2 \times 3 \times 19 = (x + 19)^2$</td>
<td>$2^7 \times 3 \times 19 \times 37$</td>
<td>5,184</td>
</tr>
<tr>
<td>39</td>
<td>$13^{p-1}y^p - 2^2 \times 5 \times 19 = 3(x + 20)^2$</td>
<td>$2^3 \times 3^2 \times 5 \times 13 \times 19$</td>
<td>1,080</td>
</tr>
<tr>
<td>46</td>
<td>$2 \times 23^{p-1}y^p - 3^2 \times 5 \times 47 = (2x + 47)^2$</td>
<td>$2^7 \times 3 \times 5 \times 23 \times 47$</td>
<td>32,384</td>
</tr>
<tr>
<td>47</td>
<td>$47^{p-1}y^p - 2^3 \times 23 = (x + 24)^2$</td>
<td>$2^5 \times 23 \times 47$</td>
<td>1,012</td>
</tr>
<tr>
<td>59</td>
<td>$59^{p-1}y^p - 2 \times 5 \times 29 = (x + 30)^2$</td>
<td>$2^7 \times 5 \times 29 \times 59$</td>
<td>25,984</td>
</tr>
</tbody>
</table>
SOLVING THE EQUATIONS FOR $k = 4$

<table>
<thead>
<tr>
<th>d</th>
<th>Equation</th>
<th>Level</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$y^p + 2 \times 73 = 5(X)^2$</td>
<td>$2^7 \times 5^2 \times 73$</td>
<td>5,472</td>
</tr>
<tr>
<td>6</td>
<td>$y^p + 7 \times 53 = 6(X)^2$</td>
<td>$2^8 \times 3^2 \times 7 \times 53$</td>
<td>12,480</td>
</tr>
<tr>
<td>7</td>
<td>$7^{p-1}y^p + 2^2 \times 29 = (X)^2$</td>
<td>$2^3 \times 7 \times 29$</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>$y^p + 3 \times 11 \times 149 = 10(X)^2$</td>
<td>$2^8 \times 5^2 \times 3 \times 11 \times 149$</td>
<td>449,920</td>
</tr>
<tr>
<td>13</td>
<td>$13^{p-1}y^p + 2 \times 7 \times 101 = (X)^2$</td>
<td>$2^7 \times 7 \times 13 \times 101$</td>
<td>28,800</td>
</tr>
<tr>
<td>14</td>
<td>$7^{p-1}y^p + 13 \times 293 = 2(X)^2$</td>
<td>$2^8 \times 7 \times 13 \times 293$</td>
<td>168,192</td>
</tr>
<tr>
<td>15</td>
<td>$y^p + 2^3 \times 7 \times 673 = 15(X)^2$</td>
<td>$2^5 \times 3^2 \times 5^2 \times 7 \times 673$</td>
<td>383,040</td>
</tr>
<tr>
<td>17</td>
<td>$17^{p-1}y^p + 2^3 \times 3 \times 173 = (X)^2$</td>
<td>$2^5 \times 3 \times 17 \times 173$</td>
<td>5,504</td>
</tr>
<tr>
<td>19</td>
<td>$19^{p-1}y^p + 2 \times 3 \times 23 \times 47 = (X)^2$</td>
<td>$2^7 \times 3 \times 19 \times 23 \times 47$</td>
<td>145,728</td>
</tr>
<tr>
<td>21</td>
<td>$7^{p-1}y^p + 2 \times 11 \times 1321 = 3(X)^2$</td>
<td>$2^7 \times 3^2 \times 7 \times 11 \times 1321$</td>
<td>1,584,000</td>
</tr>
<tr>
<td>26</td>
<td>$13^{p-1}y^p + 3^2 \times 5 \times 1013 = 2(X)^2$</td>
<td>$2^8 \times 3 \times 5 \times 13 \times 1013$</td>
<td>777,216</td>
</tr>
<tr>
<td>29</td>
<td>$29^{p-1}y^p + 2 \times 7 \times 2521 = (X)^2$</td>
<td>$2^7 \times 7 \times 29 \times 2521$</td>
<td>1,693,440</td>
</tr>
<tr>
<td>30</td>
<td>$y^p + 19 \times 29 \times 31 \times 71 = 30(X)^2$</td>
<td>$2^8 \times 3^2 \times 5^2 \times 19 \times 29 \times 31 \times 71$</td>
<td>804,384,000</td>
</tr>
</tbody>
</table>

Where X is a quadratic in the original variable x.

Vandita Patel
University of Warwick
Perfect Powers that are Sums of Consecutive like Powers