Intro Results and Methods

Density Proof of Theorem

Proof of Proposition

Perfect Powers that are Sums of Consecutive like Powers

Vandita Patel University of Warwick

Number Theory Seminar, University of Warwick

June 12-13, 2017

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

A B A A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

IntroResults and MethodsParity ParrotDensityProof of TheoremProof of Proposition•••

A DIOPHANTINE EQUATION

$$(x+1)^k + (x+2)^k + \dots + (x+d)^k = y^n.$$

QUESTION

Fix $k \ge 2$ and $d \ge 2$. Determine all of the integer solutions (x, y, n).

Vandita Patel

A DIOPHANTINE EQUATION

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = y^{n}.$$

QUESTION

Fix $k \ge 2$ and $d \ge 2$. Determine all of the integer solutions (x, y, n).

Remark: We can let n = p be a prime.

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

Euler:

 $6^3 = 3^3 + 4^3 + 5^3.$

Dickson's *"History of the Theory of Numbers"*: Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

1 Pagliani (1829): parametric solutions.

2 Uchiyama (1979): d = 3, n = 2 independently to Cassels.

B Cassels (1985): $y^2 = x^3 + (x+1)^3 + (x+2)^3$.

4 Zhongfeng Zhang (2014): $y^n = x^3 + (x+1)^3 + (x+2)^3$.

5 Bennett, Patel, Siksek (2016): $2 \leq d \leq 50, n \geq 2$.

Vandita Patel

University of Warwick

Euler:

$$6^3 = 3^3 + 4^3 + 5^3.$$

Dickson's "History of the Theory of Numbers":

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

- **1** Pagliani (1829): parametric solutions.
- **2** Uchiyama (1979): d = 3, n = 2 independently to Cassels.
- **B** Cassels (1985): $y^2 = x^3 + (x+1)^3 + (x+2)^3$.
- 4 Zhongfeng Zhang (2014): $y^n = x^3 + (x+1)^3 + (x+2)^3$.
- **5** Bennett, Patel, Siksek (2016): $2 \leq d \leq 50, n \geq 2$.

Vandita Patel

University of Warwick

A B A A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Euler:

$$6^3 = 3^3 + 4^3 + 5^3.$$

Dickson's "History of the Theory of Numbers":

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

- **1** Pagliani (1829): parametric solutions.
- **2** Uchiyama (1979): d = 3, n = 2 independently to Cassels.
- **3** Cassels (1985): $y^2 = x^3 + (x+1)^3 + (x+2)^3$.
- 4 Zhongfeng Zhang (2014): $y^n = x^3 + (x+1)^3 + (x+2)^3$.
- **5** Bennett, Patel, Siksek (2016): $2 \leq d \leq 50, n \geq 2$.

Vandita Patel

University of Warwick

A B A A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Euler:

$$6^3 = 3^3 + 4^3 + 5^3.$$

Dickson's "History of the Theory of Numbers":

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

- **1** Pagliani (1829): parametric solutions.
- **2** Uchiyama (1979): d = 3, n = 2 independently to Cassels.
- **B** Cassels (1985): $y^2 = x^3 + (x+1)^3 + (x+2)^3$.
- 4 Zhongfeng Zhang (2014): $y^n = x^3 + (x+1)^3 + (x+2)^3$.
- **5** Bennett, Patel, Siksek (2016): $2 \leq d \leq 50, n \geq 2$.

Vandita Patel

University of Warwick

Euler:

$$6^3 = 3^3 + 4^3 + 5^3.$$

Dickson's "History of the Theory of Numbers":

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

- **1** Pagliani (1829): parametric solutions.
- **2** Uchiyama (1979): d = 3, n = 2 independently to Cassels.
- **B** Cassels (1985): $y^2 = x^3 + (x+1)^3 + (x+2)^3$.
- **4** Zhongfeng Zhang (2014): $y^n = x^3 + (x+1)^3 + (x+2)^3$.
- **5** Bennett, Patel, Siksek (2016): $2 \leq d \leq 50, n \geq 2$.

Vandita Patel

University of Warwick

Image: A matrix and a matrix

Euler:

$$6^3 = 3^3 + 4^3 + 5^3.$$

Dickson's "History of the Theory of Numbers":

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

- **1** Pagliani (1829): parametric solutions.
- **2** Uchiyama (1979): d = 3, n = 2 independently to Cassels.
- **B** Cassels (1985): $y^2 = x^3 + (x+1)^3 + (x+2)^3$.
- **4** Zhongfeng Zhang (2014): $y^n = x^3 + (x+1)^3 + (x+2)^3$.
- **5** Bennett, Patel, Siksek (2016): $2 \leq d \leq 50, n \geq 2$.

Vandita Patel

Image: A matrix and a matrix

Intro	Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
0000					

A BRIEF HISTORY

Well-Known:

$$\sum_{i=0}^{d} i^3 = \sum_{i=1}^{d} i^3 = \left(\frac{d(d+1)}{2}\right)^2.$$

Pagliani:

$$\sum_{i=1}^{v^3} \left(\frac{v^4 - 3v^3 - 2v^2 - 2}{6} + i \right)^3 = \left(\frac{v^5 + v^3 - 2v}{6} \right)^3.$$

where $v \equiv 2, 4 \pmod{6}$.

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

A B +
 A
 B +
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Intro	Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
0000					

A BRIEF HISTORY

Well-Known:

$$\sum_{i=0}^{d} i^3 = \sum_{i=1}^{d} i^3 = \left(\frac{d(d+1)}{2}\right)^2.$$

Pagliani:

$$\sum_{i=1}^{v^3} \left(\frac{v^4 - 3v^3 - 2v^2 - 2}{6} + i \right)^3 = \left(\frac{v^5 + v^3 - 2v}{6} \right)^3.$$

where $v \equiv 2, 4 \pmod{6}$.

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
••••••				

THE RESULTS

$$(x+1)^k + (x+2)^k + \dots + (x+d)^k = y^n.$$

THEOREM (M. A. BENNETT, V. PATEL, S. SIKSEK)

Let k = 3 and $2 \le d \le 50$. Then, any "non-trivial" integer solution (x, y, n) must have n = 2 or n = 3.

$y \neq 0, \pm 1.$

< D > < A > < B > < B >

University of Warwick

Without loss of any generality, we can let $x \ge 1$.

Vandita Patel

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
••••••				

THE RESULTS

$$(x+1)^k + (x+2)^k + \dots + (x+d)^k = y^n.$$

THEOREM (M. A. BENNETT, V. PATEL, S. SIKSEK)

Let k = 3 and $2 \le d \le 50$. Then, any "non-trivial" integer solution (x, y, n) must have n = 2 or n = 3.

$y \neq 0, \pm 1.$

University of Warwick

Without loss of any generality, we can let $x \ge 1$.

Vandita Patel

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
••••••				

THE RESULTS

$$(x+1)^k + (x+2)^k + \dots + (x+d)^k = y^n.$$

THEOREM (M. A. BENNETT, V. PATEL, S. SIKSEK)

Let k = 3 and $2 \le d \le 50$. Then, any "non-trivial" integer solution (x, y, n) must have n = 2 or n = 3.

$y \neq 0, \pm 1.$

University of Warwick

Without loss of any generality, we can let $x \ge 1$.

Vandita Patel

Results and Methods Parity Parrot Density Proof of Theorem

 $3^{3} + 4^{3} + 5^{3} = 6^{3}, \text{ attributed to Lucas}$ $11^{3} + 12^{3} + 13^{3} + 14^{3} = 20^{3},$ $3^{3} + 4^{3} + 5^{3} + \dots + 22^{3} = 40^{3},$ $15^{3} + 16^{3} + 17^{3} + \dots + 34^{3} = 70^{3},$ $6^{3} + 7^{3} + 8^{3} + \dots + 30^{3} = 60^{3},$ $291^{3} + 292^{3} + 293^{3} + \dots + 339^{3} = 1155^{3}.$

Vandita Patel

Intro

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

Proof of Proposition

CUBES THAT ARE SUMS OF CONSECUTIVE CUBES

Results and Methods Parity Parrot Density Proof of Theorem

$$(-2)^{3} + (-1)^{3} + 0^{3} + 1^{3} + 2^{3} + 3^{3} + 4^{3} + 5^{3} = 6^{3},$$

$$11^{3} + 12^{3} + 13^{3} + 14^{3} = 20^{3},$$

$$3^{3} + 4^{3} + 5^{3} + \dots + 22^{3} = 40^{3},$$

$$15^{3} + 16^{3} + 17^{3} + \dots + 34^{3} = 70^{3},$$

$$6^{3} + 7^{3} + 8^{3} + \dots + 30^{3} = 60^{3},$$

$$291^{3} + 292^{3} + 293^{3} + \dots + 339^{3} = 1155^{3}.$$

University of Warwick

Image: A matrix

Proof of Proposition

Vandita Patel

Intro

00000000000

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
0000000000				

The Methodology

Step	Method	Number of Equations
		to Solve
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)
2.	p = 2: Integer points on elliptic curves	49 equations in (x, y)
3.	d = 2: Results of Nagell	2 equations (x, y, p)
4.	First descent: a factorisation for $p \geqslant 5$	906 equations in (x, y, p)
5.	Linear Forms in two logarithms: $p \geqslant 5$	$906 \times 216814 = 196, 433, 484$
	Bounding $p < 3 \times 10^6$	equations in (x, y)
6.	Sophie-Germain type criterion (case $r \neq t$)	
	$879 \times 216814 = 190, 579, 506$ in (x, y)	224 remain in (x, y)
7.	Modularity (case $r = t$)	
	$27 \times 216814 = 5,853,978$ in (x, y)	53 remain in (x, y)
8.	First descent when $p = 3$	942 in (x, y)
	Equations remaining via 8., 6. and 7.	1219
9.	Local solubility tests	507
10.	A further descent	226
11.	Thue solver!	6 solutions found!
		(日) (四) (日) (日) (日)

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

IntroResults and MethodsParity ParrotDensityProof of TheoremProof of Proposition000000000000000000000000000000000

Step 1. (and 4.) is the Key!

- **1** By a (p, p, p) equation, we mean $Ax^p + By^p = Cz^p$.
- 2 Roughly speaking we have (Linear Factor in x)(Quadratic Factor in x) = y^p .
- **3** Linear Factor $= \alpha y_1^p$.
- 4 Quadratic Factor = $(\text{Linear Factor})^2 + \text{Constant} = \beta y_2^p$.
- **5** Substitution should give $\alpha^2 (y_1^2)^p + \text{Constant} \cdot 1^p = \beta (y_2)^p$

・ロッ ・回 ・ ・ ヨ ・ ・

University of Warwick

Step 2.

1 p = 2 solved by Stroeker (1995).

2 Integer points on Elliptic Curves.

3 Cubic in $x = y^2$. Ask magma!

Vandita Patel

Step 1. (and 4.) is the Key!

- **1** By a (p, p, p) equation, we mean $Ax^p + By^p = Cz^p$.
- 2 Roughly speaking we have (Linear Factor in x)(Quadratic Factor in x) = y^p .
- 3 Linear Factor = αy_1^p .
- 4 Quadratic Factor = $(\text{Linear Factor})^2 + \text{Constant} = \beta y_2^p$.
- **5** Substitution should give $\alpha^2 (y_1^2)^p + \text{Constant} \cdot 1^p = \beta (y_2)^p$

・ロッ ・回 ・ ・ ヨ ・ ・

University of Warwick

Step 2.

- **1** p = 2 solved by Stroeker (1995).
- **2** Integer points on Elliptic Curves.
- **3** Cubic in $x = y^2$. Ask magma!

Vandita Patel

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
0000000000				

The Methodology

Step	Method	Number of Equations
		to Solve
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)
2.	p = 2: Integer points on elliptic curves	49 equations in (x, y)
3.	d = 2: Results of Nagell	2 equations (x, y, p)
4.	First descent: a factorisation for $p \geqslant 5$	906 equations in (x, y, p)
5.	Linear Forms in two logarithms: $p \ge 5$	$906 \times 216814 = 196, 433, 484$
	Bounding $p < 3 \times 10^6$	equations in (x, y)
6.	Sophie-Germain type criterion (case $r \neq t$)	
	$879 \times 216814 = 190, 579, 506$ in (x, y)	224 remain in (x, y)
7.	Modularity (case $r = t$)	
	$27 \times 216814 = 5,853,978$ in (x, y)	53 remain in (x, y)
8.	First descent when $p = 3$	942 in (x, y)
	Equations remaining via 8., 6. and 7.	1219
9.	Local solubility tests	507
10.	A further descent	226
11.	Thue solver!	6 solutions found!
		・ロト ・四ト ・ヨト ・ヨト

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

The Magic of Sophie Germain

After Step 4. We have equations of the form:

$$ry_2^p - sy_1^{2p} = t (1)$$

University of Warwick

where r, s, t are positive integers, and gcd(r, s, t) = 1. The linear forms in two logarithms bounds p. For each tuple (r, s, t) we can apply the methods of Sophie Germain to eliminate equations/tuples for a fixed value of p.

Vandita Patel

Density Proof of Theorem

Proof of Proposition

THE MAGIC OF SOPHIE GERMAIN

LEMMA

Let $p \ge 3$ be prime. Let r, s and t be positive integers satisfying gcd(r, s, t) = 1. Let q = 2kp + 1 be a prime that does not divide r. Define

$$\mu(p,q) = \{\eta^{2p} : \eta \in \mathbb{F}_q\} = \{0\} \cup \{\zeta \in \mathbb{F}_q^* : \zeta^k = 1\}$$
(2)

and

$$B(p,q) = \left\{ \zeta \in \mu(p,q) : ((s\zeta + t)/r)^{2k} \in \{0,1\} \right\}$$

If $B(p,q) = \emptyset$, then equation (1) does not have integral solutions.

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Proposition

THE MAGIC OF SOPHIE GERMAIN

Proof.

Suppose $B(p,q) = \emptyset$. Let (y_1, y_2) be a solution to (1). Let $\zeta = \overline{y_1}^{2p} \in \mu(p,q)$. From equation (1) we have

$$(s\zeta + t)/r \equiv y_2^p \mod q.$$

Thus

$$((s\zeta + t)/r)^{2k} \equiv y_2^{q-1} \equiv 0 \text{ or } 1 \mod q.$$

This shows that $\zeta \in B(p,q)$ giving a contradiction.

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

A B M A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Magic of Sophie Germain - Why Does it Work?

- **1** If there are no solutions to $ry_2^p sy_1^{2p} = t$,
- **2** and we take p to be large, then
- **3** notice that $\#\mu(p,q) = k+1$.
- 4 For $\zeta \in \mu(p,q)$, the element $((s\zeta + t)/r)^{2k} \in \mathbb{F}_q$ is either 0 or an *p*-th root of unity.
- **5** The "probability" that it belongs to the set $\{0, 1\}$ is 2/(p+1).
- **6** The "expected size" of B(p,q) is $2(k+1)/(p+1) \approx 2q/p^2$.
- 7 For large p we expect to find a prime q = 2kp + 1 such that $2q/p^2$ is tiny and so we likewise expect that #B(p,q) = 0.

Vandita Patel

イロト イヨト イヨト イ

The Magic of Sophie Germain - Why Does it Work?

- **1** If there are no solutions to $ry_2^p sy_1^{2p} = t$,
- **2** and we take p to be large, then
- **3** notice that $\#\mu(p,q) = k+1$.
- **4** For $\zeta \in \mu(p,q)$, the element $((s\zeta + t)/r)^{2k} \in \mathbb{F}_q$ is either 0 or an *p*-th root of unity. **4**
- **5** The "probability" that it belongs to the set $\{0, 1\}$ is 2/(p+1).
- **6** The "expected size" of B(p,q) is $2(k+1)/(p+1) \approx 2q/p^2$.
- 7 For large p we expect to find a prime q = 2kp + 1 such that $2q/p^2$ is tiny and so we likewise expect that #B(p,q) = 0.

Vandita Patel

イロト イヨト イヨト イ

Results and Methods	Parity Parrot	$\mathbf{Density}$	Proof of Theorem	Proof of Proposition
000000000000				

- **1** If there are no solutions to $ry_2^p sy_1^{2p} = t$,
- **2** and we take p to be large, then
- **3** notice that $\#\mu(p,q) = k+1$.
- 4 For $\zeta \in \mu(p,q)$, the element $((s\zeta + t)/r)^{2k} \in \mathbb{F}_q$ is either 0 or an *p*-th root of unity.
- **5** The "probability" that it belongs to the set $\{0, 1\}$ is 2/(p+1).
- **6** The "expected size" of B(p,q) is $2(k+1)/(p+1) \approx 2q/p^2$.
- 7 For large p we expect to find a prime q = 2kp + 1 such that $2q/p^2$ is tiny and so we likewise expect that #B(p,q) = 0.

Vandita Patel

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
000000000000				

- **1** If there are no solutions to $ry_2^p sy_1^{2p} = t$,
- **2** and we take p to be large, then
- **3** notice that $\#\mu(p,q) = k+1$.
- 4 For $\zeta \in \mu(p,q)$, the element $((s\zeta + t)/r)^{2k} \in \mathbb{F}_q$ is either 0 or an *p*-th root of unity.
- **5** The "probability" that it belongs to the set $\{0, 1\}$ is 2/(p+1).
- **6** The "expected size" of B(p,q) is $2(k+1)/(p+1) \approx 2q/p^2$.
- 7 For large p we expect to find a prime q = 2kp + 1 such that $2q/p^2$ is tiny and so we likewise expect that #B(p,q) = 0.

Vandita Patel

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
000000000000				

- **1** If there are no solutions to $ry_2^p sy_1^{2p} = t$,
- **2** and we take p to be large, then
- **3** notice that $\#\mu(p,q) = k+1$.
- 4 For $\zeta \in \mu(p,q)$, the element $((s\zeta + t)/r)^{2k} \in \mathbb{F}_q$ is either 0 or an *p*-th root of unity.
- **5** The "probability" that it belongs to the set $\{0, 1\}$ is 2/(p+1).
- **6** The "expected size" of B(p,q) is $2(k+1)/(p+1) \approx 2q/p^2$.
- 7 For large p we expect to find a prime q = 2kp + 1 such that $2q/p^2$ is tiny and so we likewise expect that #B(p,q) = 0.

Vandita Patel

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
000000000000				

- **1** If there are no solutions to $ry_2^p sy_1^{2p} = t$,
- **2** and we take p to be large, then
- **3** notice that $\#\mu(p,q) = k+1$.
- 4 For $\zeta \in \mu(p,q)$, the element $((s\zeta + t)/r)^{2k} \in \mathbb{F}_q$ is either 0 or an *p*-th root of unity.
- **5** The "probability" that it belongs to the set $\{0, 1\}$ is 2/(p+1).
- **6** The "expected size" of B(p,q) is $2(k+1)/(p+1) \approx 2q/p^2$.

7 For large p we expect to find a prime q = 2kp + 1 such that $2q/p^2$ is tiny and so we likewise expect that #B(p,q) = 0.

Vandita Patel

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
000000000000				

- **1** If there are no solutions to $ry_2^p sy_1^{2p} = t$,
- **2** and we take p to be large, then
- **3** notice that $\#\mu(p,q) = k+1$.
- 4 For $\zeta \in \mu(p,q)$, the element $((s\zeta + t)/r)^{2k} \in \mathbb{F}_q$ is either 0 or an *p*-th root of unity.
- **5** The "probability" that it belongs to the set $\{0, 1\}$ is 2/(p+1).
- 6 The "expected size" of B(p,q) is $2(k+1)/(p+1) \approx 2q/p^2$.
- 7 For large p we expect to find a prime q = 2kp + 1 such that $2q/p^2$ is tiny and so we likewise expect that #B(p,q) = 0.

The Modular Way! (r = t)

$$ry_2^p - sy_1^{2p} = t$$

$$y_2^p - (s/r)y_1^{2p} = 1$$

Has solutions $(y_1, y_2) = (0, 1)$. This causes our previous lemma to fail.

However, the Modular Method does not see this solution. When constructing the Frey Curve, the discriminant is non-zero. Hence if $y_1 = 0$ then the discriminant is zero. (Similar to Fermat's Last Theorem).

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Warwick

Vandita Patel

THE MODULAR WAY! (r = t)

$$ry_2^p - sy_1^{2p} = t$$

$$y_2^p - (s/r)y_1^{2p} = 1$$

Has solutions $(y_1, y_2) = (0, 1)$. This causes our previous lemma to fail.

However, the Modular Method does not see this solution. When constructing the Frey Curve, the discriminant is non-zero. Hence if $y_1 = 0$ then the discriminant is zero. (Similar to Fermat's Last Theorem).

(日) (同) (三) (

University of Warwick

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
00000000000				

The Methodology

Step	Method	Number of Equations	
		to Solve	
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)	
2.	p = 2: Integer points on elliptic curves	49 equations in (x, y)	
3.	d = 2: Results of Nagell	2 equations (x, y, p)	
4.	First descent: a factorisation for $p \geqslant 5$	906 equations in (x, y, p)	
5.	Linear Forms in two logarithms: $p \geqslant 5$	$906 \times 216814 = 196, 433, 484$	
	Bounding $p < 3 \times 10^6$	equations in (x, y)	
6.	Sophie-Germain type criterion (case $r \neq t$)		
	$879 \times 216814 = 190, 579, 506$ in (x, y)	224 remain in (x, y)	
7.	Modularity (case $r = t$)		
	$27 \times 216814 = 5,853,978$ in (x,y)	53 remain in (x, y)	
8.	First descent when $p = 3$	942 in (x, y)	
	Equations remaining via 8., 6. and 7.	1219	
9.	Local solubility tests	507	
10.	A further descent	226	
11.	Thue solver!	6 solutions found!	
		(日) (四) (日) (日) (日)	

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

Parity Parrot Density Proof of Theorem

Proof of Proposition

PIETER'S PARITY PARROT: DESIGNED BY PIETER MOREE, DRAWN BY KATE KATTEGAT

Vandita Patel

University of Warwick

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
	00000000			

The case k = 2

Step	Method	Number of Equations	k = 2
		to Solve	
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)	(p, p, 2) 🗸
2.	p = 2: Integer points on elliptic curves	49 equations in (x, y)	∞ ✓
3.	d = 2: Results of Nagell	2 equations (x, y, p)	
4.	First descent: a factorisation for $p \ge 5$	906 equations in (x, y, p)	×
5.	Linear Forms in two logarithms: $p \ge 5$	$906 \times 216814 = 196, 433, 484$	
	Bounding $p < 3 \times 10^6$	equations in (x, y)	ent.
6.	Sophie-Germain type criterion (case $r \neq t$)		
	$879 \times 216814 = 190, 579, 506 \text{ in } (x, y)$	224 remain in (x, y)	Ť
7.	Modularity (case $r = t$)		Levels too
	$27 \times 216814 = 5,853,978$ in (x, y)	53 remain in (x, y)	big!! 🗶
8.	First descent when $p = 3$	942 in (x, y)	
	Equations remaining via 8., 6. and 7.	1219	
9.	Local solubility tests	507	
10.	A further descent	226	
11.	Thue solver!	6 solutions found!	

Vandita Patel

University of Warwick

DIMENSIONS OF $S_2(N)$

When k = 2...

d = 22, dim = 5280

Dimension 200 is reasonable to compute with. We can push computations to dimension 2000 with some clever tricks. When k = 4...

$$d = 21, \quad \dim \approx 1,500,000$$

d = 30, dim $\approx 804,000,000$

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick
Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
	00000000			

DIMENSIONS OF $S_2(N)$

When k = 2...

$$d = 22$$
, $\dim = 5280$

Dimension 200 is reasonable to compute with. We can push computations to dimension 2000 with some clever tricks. When k = 4...

 $d = 21, \quad \dim \approx 1,500,000$

d = 30, dim $\approx 804,000,000$

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

(日)、

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
	00000000			

DIMENSIONS OF $S_2(N)$

When k = 2...

$$d = 22$$
, $\dim = 5280$

Dimension 200 is reasonable to compute with. We can push computations to dimension 2000 with some clever tricks. When k = 4...

$$d = 21, \quad \dim \approx 1,500,000$$

d = 30, dim $\approx 804,000,000$

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

Image: A matrix

DIMENSIONS OF $S_2(N)$

When k = 2...

$$d = 22$$
, $\dim = 5280$

Dimension 200 is reasonable to compute with. We can push computations to dimension 2000 with some clever tricks. When k = 4...

$$d = 21, \quad \dim \approx 1,500,000$$

d = 30, dim $\approx 804,000,000$

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
	00000000			

The case k = 2

Step	Method	Number of Equations	k = 2
		to Solve	
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)	(p, p, 2) 🗸
2.	p = 2: Integer points on elliptic curves	49 equations in (x, y)	∞ ✓
3.	d = 2: Results of Nagell	2 equations (x, y, p)	
4.	First descent: a factorisation for $p \ge 5$	906 equations in (x, y, p)	×
5.	Linear Forms in two logarithms: $p \ge 5$	$906 \times 216814 = 196, 433, 484$	
	Bounding $p < 3 \times 10^6$	equations in (x, y)	ей Х
6.	Sophie-Germain type criterion (case $r \neq t$)		
	$879 \times 216814 = 190, 579, 506 \text{ in } (x, y)$	224 remain in (x, y)	Ť
7.	Modularity (case $r = t$)		Levels too
	$27 \times 216814 = 5,853,978$ in (x, y)	53 remain in (x, y)	big!! 🗡
8.	First descent when $p = 3$	942 in (x, y)	
	Equations remaining via 8., 6. and 7.	1219	
9.	Local solubility tests	507	
10.	A further descent	226	
11.	Thue solver!	6 solutions found!	

Vandita Patel

University of Warwick

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
	00000000			

The case k = 2

Step	Method	Number of Equations	k = 2
		to Solve	
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)	(p, p, 2) 🗸
2.	p = 2: Integer points on elliptic curves	49 equations in (x, y)	∞ ✓
3.	d = 2: Results of Nagell	2 equations (x, y, p)	
4.	First descent: a factorisation for $p \ge 5$	906 equations in (x, y, p)	×
5.	Linear Forms in two logarithms: $p \ge 5$	$906 \times 216814 = 196, 433, 484$	
	Bounding $p < 3 \times 10^6$	equations in (x, y)	^S
6.	Sophie-Germain type criterion (case $r \neq t$)		
	$879 \times 216814 = 190, 579, 506 \text{ in } (x, y)$	224 remain in (x, y)	Ť
7.	Modularity (case $r = t$)		Levels too
	$27 \times 216814 = 5,853,978$ in (x, y)	53 remain in (x, y)	big!! 🗡
8.	First descent when $p = 3$	942 in (x, y)	
	Equations remaining via 8., 6. and 7.	1219	
9.	Local solubility tests	507	
10.	A further descent	226	
11.	Thue solver!	6 solutions found!	

Vandita Patel

University of Warwick

Parity Parrot Density Proof of Theorem

Proof of Proposition

LINEAR FORMS IN THREE LOGARITHMS

If I try... naively

 $\approx 10^{20}$

 $\approx 10^{14}$

 $\approx 10^{10}$

which also needs a lot of luck!!

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

イロト イヨト イヨト

Parity Parrot Density Proof of Theorem

Proof of Proposition

LINEAR FORMS IN THREE LOGARITHMS

If I try... naively

 $\approx 10^{20}$

If Mike Bennett tries... naively

 $\approx 10^{14}$

 $\approx 10^{10}$

which also needs a lot of luck!!

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

イロト イヨト イヨト

Density Proof of Theorem

Proof of Proposition

LINEAR FORMS IN THREE LOGARITHMS

If I try... naively

 $\approx 10^{20}$

If Mike Bennett tries... naively

 $\approx 10^{14}$

If we manage to locate Mike Bennett and then get him to work... $\approx 10^{10}$

which also needs a lot of luck!! *********

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

Image: A matrix

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
	000000000			

The case k = 2

Step	Method	Number of Equations	k = 2
		to Solve	
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)	(p, p, 2) 🗸
2.	p = 2: Integer points on elliptic curves	49 equations in (x, y)	∞ ✓
3.	d = 2: Results of Nagell	2 equations (x, y, p)	
4.	First descent: a factorisation for $p \ge 5$	906 equations in (x, y, p)	×
5.	Linear Forms in two logarithms: $p \ge 5$	$906 \times 216814 = 196, 433, 484$	
	Bounding $p < 3 \times 10^6$	equations in (x, y)	Ø.
6.	Sophie-Germain type criterion (case $r \neq t$)		
	$879 \times 216814 = 190, 579, 506 \text{ in } (x, y)$	224 remain in (x, y)	t
7.	Modularity (case $r = t$)		Levels too
	$27 \times 216814 = 5,853,978$ in (x, y)	53 remain in (x, y)	big!! 🗡
8.	First descent when $p = 3$	942 in (x, y)	
	Equations remaining via 8., 6. and 7.	1219	
9.	Local solubility tests	507	
10.	A further descent	226	
11.	Thue solver!	6 solutions found!	

Vandita Patel

University of Warwick

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
	000000000			

The case k = 2

Step	Method	Number of Equations	k = 2
		to Solve	
1.	Useful equations and identities (p, p, p)	49 equations in (x, y, p)	$(p,p,2)\checkmark$
2.	p = 2: Integer points on elliptic curves	49 equations in (x, y)	∞ ✓
3.	d = 2: Results of Nagell	2 equations (x, y, p)	
4.	First descent: a factorisation for $p \ge 5$	906 equations in (x, y, p)	×
5.	Linear Forms in two logarithms: $p \ge 5$	$906 \times 216814 = 196, 433, 484$	
	Bounding $p < 3 \times 10^6$	equations in (x, y)	ей Х
6.	Sophie-Germain type criterion (case $r \neq t$)		
	$879 \times 216814 = 190, 579, 506 \text{ in } (x, y)$	224 remain in (x, y)	Ť
7.	Modularity (case $r = t$)		Levels too
	$27 \times 216814 = 5,853,978$ in (x, y)	53 remain in (x, y)	big!! 🗡
8.	First descent when $p = 3$	942 in (x, y)	
	Equations remaining via 8., 6. and 7.	1219	
9.	Local solubility tests	507	
10.	A further descent	226	
11.	Thue solver!	6 solutions found!	► = ~

Vandita Patel

University of Warwick

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
	00000000			

Pythagoras

$$3^2 + 4^2 = 5^2$$

$$20^2 + 21^2 = 29^2$$

An infinite family of solutions - can be given parametrically!

Vandita Patel

University of Warwick

A B +
 A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Density Proof of Theorem 000

Proof of Proposition

EVEN k and Towards Densities

THEOREM (ZHANG AND BAI, 2013)

Let q be a prime such that $q \equiv 5,7 \pmod{12}$. Suppose $q \parallel d$. Then the equation $x^{2} + (x+1)^{2} + \dots + (x+d-1)^{2} = y^{n}$ has no integer solutions.

Let \mathcal{A}_2 be the set of integers $d \ge 2$ such that the equation

$$x^{2} + (x+1)^{2} + \dots + (x+d-1)^{2} = y^{n}$$

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

イロト イヨト イヨト

Density Proof of Theorem 000

Proof of Proposition

EVEN k and Towards Densities

THEOREM (ZHANG AND BAI, 2013)

Let q be a prime such that $q \equiv 5,7 \pmod{12}$. Suppose $q \parallel d$. Then the equation $x^{2} + (x+1)^{2} + \dots + (x+d-1)^{2} = y^{n}$ has no integer solutions.

COROLLARY (USE DIRICHLET'S THEOREM)

Let \mathcal{A}_2 be the set of integers $d \ge 2$ such that the equation

$$x^{2} + (x+1)^{2} + \dots + (x+d-1)^{2} = y^{n}$$

has a solution (x, y, n). Then \mathcal{A}_2 has natural density zero.

Vandita Patel

University of Warwick

The Result

THEOREM (V. PATEL, S. SIKSEK)

Let $k \ge 2$ be an even integer. Let \mathcal{A}_k be the set of integers $d \ge 2$ such that the equation

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = y^{n}, \quad x, y, n \in \mathbb{Z}, \quad n \ge 2$$

has a solution (x, y, n). Then \mathcal{A}_k has natural density zero. In other words we have

$$\lim_{X \to \infty} \frac{\#\{d \in \mathcal{A}_k : d \leqslant X\}}{X} = 0.$$

University of Warwick

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Vandita Patel

The Result

THEOREM (V. PATEL, S. SIKSEK)

Let $k \ge 2$ be an even integer and let r be a non-zero integer. Let $\mathcal{A}_{k,r}$ be the set of integers $d \ge 2$ such that the equation

$$x^{k} + (x+r)^{k} + \dots (x+r(d-1))^{k} = y^{n}, \quad x, y, n \in \mathbb{Z}, \quad n \ge 2$$

has a solution (x, y, n). Then $\mathcal{A}_{k,r}$ has natural density zero. In other words we have

$$\lim_{X \to \infty} \frac{\#\{d \in \mathcal{A}_{k,r} : d \le X\}}{X} = 0.$$

University of Warwick

A B M A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Vandita Patel

Proof of Theorem 000000

Proof of Proposition

Bernoulli polynomials and relation to sums OF CONSECUTIVE POWERS

DEFINITION (BERNOULLI NUMBERS, b_k)

$$\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} b_k \frac{x^k}{k!}.$$

 $b_0 = 1, b_1 = -1/2, b_2 = 1/6, b_3 = 0, b_4 = -1/30, b_5 = 0, b_6 = 1/42.$

Lemma

$$b_{2k+1} = 0 \text{ for } k \ge 1.$$

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

イロト イボト イヨト イヨ

Proof of Theorem 000000

Proof of Proposition

Bernoulli polynomials and relation to sums OF CONSECUTIVE POWERS

DEFINITION (BERNOULLI POLYNOMIAL, B_k)

$$B_k(x) := \sum_{m=0}^k \binom{k}{m} b_m x^{k-m}.$$

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = \frac{1}{k+1} (B_{k+1}(x+d) - B_{k}(x)).$$

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

イロト イヨト イヨト

Proof of Theorem 000000

Bernoulli polynomials and relation to sums OF CONSECUTIVE POWERS

DEFINITION (BERNOULLI POLYNOMIAL, B_k)

$$B_k(x) := \sum_{m=0}^k \binom{k}{m} b_m x^{k-m}.$$

LEMMA

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = \frac{1}{k+1} \left(B_{k+1}(x+d) - B_{k}(x) \right).$$

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

イロト イヨト イヨト

Lemma

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = \frac{1}{k+1} \left(B_{k+1}(x+d) - B_{k}(x) \right).$$

Apply Taylor's Theorem and use $B'_{k+1}(x) = (k+1) \cdot B_k(x)$.

LEMMA

Let
$$q \ge k+3$$
 be a prime. Let $d \ge 2$. Suppose that $q \mid d$. Then
 $x^k + (x+1)^k + \dots + (x+d-1)^k \equiv d \cdot B_k(x) \pmod{q^2}.$

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

Lemma

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = \frac{1}{k+1} \left(B_{k+1}(x+d) - B_{k}(x) \right).$$

Apply Taylor's Theorem and use $B'_{k+1}(x) = (k+1) \cdot B_k(x)$.

LEMMA

Let
$$q \ge k+3$$
 be a prime. Let $d \ge 2$. Suppose that $q \mid d$. Then
 $x^k + (x+1)^k + \dots + (x+d-1)^k \equiv d \cdot B_k(x) \pmod{q^2}.$

Vandita Patel

University of Warwick

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = y^{n}.$$

PROPOSITION (CRITERION)

Let $k \ge 2$. Let $q \ge k+3$ be a prime such that the congruence $B_k(x) \equiv 0 \pmod{q}$ has no solutions. Let d be a positive integer such that $\operatorname{ord}_q(d) = 1$. Then the equation has no solutions. (i.e. $d \notin \mathcal{A}_k$).

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Warwick

Remark: Computationally we checked $k \leq 75,000$ and we could always find such a q.

Vandita Patel

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = y^{n}.$$

PROPOSITION (CRITERION)

Let $k \ge 2$. Let $q \ge k+3$ be a prime such that the congruence $B_k(x) \equiv 0 \pmod{q}$ has no solutions. Let d be a positive integer such that $\operatorname{ord}_q(d) = 1$. Then the equation has no solutions. (i.e. $d \notin \mathcal{A}_k$).

A B M A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Warwick

Remark: Computationally we checked $k \leq 75,000$ and we could always find such a q.

Vandita Patel

RELATION TO DENSITIES?

We need to use Chebotarev's density theorem, which can be seen as "a generalisation of Dirichlet's theorem" on primes in arithmetic progression.

PROPOSITION

Let $k \ge 2$ be even and let G be the Galois group of $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

Assuming the proposition, we may then use Chebotarev's density theorem to find a set of primes q_i with positive Dirichlet density such that $\operatorname{Frob}_{q_i} \in G$ is conjugate to μ . Then we can apply Niven's results to deduce our Theorem.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Warwick

RELATION TO DENSITIES?

We need to use Chebotarev's density theorem, which can be seen as "a generalisation of Dirichlet's theorem" on primes in arithmetic progression.

PROPOSITION

Let $k \ge 2$ be even and let G be the Galois group of $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

Assuming the proposition, we may then use Chebotarev's density theorem to find a set of primes q_i with positive Dirichlet density such that $\operatorname{Frob}_{q_i} \in G$ is conjugate to μ . Then we can apply Niven's results to deduce our Theorem.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Warwick

NIVEN'S RESULTS (FLASH!)

The setup:

- **1** Let \mathcal{A} be a set of positive integers.
- **2** Define: $\mathcal{A}(X) = \#\{d \in \mathcal{A} : d \leq X\}$ for positive X.
- **3** Natural Density: $\delta(\mathcal{A}) = \lim_{X \to \infty} \mathcal{A}(X)/X$.
- 4 Given a prime q, define: $\mathcal{A}^{(q)} = \{d \in \mathcal{A} : \operatorname{ord}_q(d) = 1\}.$

THEOREM (NIVEN)

Let $\{q_i\}$ be a set of primes such that $\delta(\mathcal{A}^{(q_i)}) = 0$ and $\sum q_i^{-1} = \infty$. Then $\delta(\mathcal{A}) = 0$.

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

イロト イヨト イヨト イ

A Legendre Symbol analogue

PROPOSITION

Let $k \ge 2$ be even and let G be the Galois group $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

Conjecture

For any even integer k, $B_k(x)$ is irreducible over \mathbb{Q} .

Remark: The conjecture implies the Proposition. This then proves our Theorem.

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

< 口 > < 同 >

A Legendre Symbol analogue

PROPOSITION

Let $k \ge 2$ be even and let G be the Galois group $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

Conjecture

For any even integer k, $B_k(x)$ is irreducible over \mathbb{Q} .

Remark: The conjecture implies the Proposition. This then proves our Theorem.

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

< 口 > < 同 >

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
				0000000000

TOUGH STUFF

A sketch of an unconditional proof!

PROPOSITION

Let $k \ge 2$ be even and let G be the Galois group $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

THEOREM (VON STAUDT-CLAUSEN)

Let $n \ge 2$ be even. Then

$$b_n + \sum_{(p-1)|n} \frac{1}{p} \in \mathbb{Z}.$$

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

< □ > < □ >

2 is the Oddest Prime

The Newton Polygon of $B_k(x)$ for $k = 2^s \cdot t$, $s \ge 1$.

Vandita Patel

University of Warwick

< (1) > < (1) > <

ANOTHER NICE RESULT

- **1** Sloping part corresponds to irreducible factor over \mathbb{Q}_2 .
- **2** Root in \mathbb{Q}_2 must have valuation zero.
- **3** Root belongs to \mathbb{Z}_2 and is odd.
- **4** Symmetry $(-1)^k B_k(x) = B_k(1-x)$ gives a contradiction.

Γ heorem (V. Patel, S. Siksek)

Let $k \ge 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q}_2 .

Theorem (K. Inkeri, 1959)

Let $k \ge 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q} .

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

ANOTHER NICE RESULT

- **1** Sloping part corresponds to irreducible factor over \mathbb{Q}_2 .
- **2** Root in \mathbb{Q}_2 must have valuation zero.
- **3** Root belongs to \mathbb{Z}_2 and is odd.
- **4** Symmetry $(-1)^k B_k(x) = B_k(1-x)$ gives a contradiction.

THEOREM (V. PATEL, S. SIKSEK)

Let $k \ge 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q}_2 .

Theorem (K. Inkeri, 1959)

Let $k \ge 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q} .

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

イロト イボト イヨト イヨ

ANOTHER NICE RESULT

- **1** Sloping part corresponds to irreducible factor over \mathbb{Q}_2 .
- **2** Root in \mathbb{Q}_2 must have valuation zero.
- **3** Root belongs to \mathbb{Z}_2 and is odd.
- **4** Symmetry $(-1)^k B_k(x) = B_k(1-x)$ gives a contradiction.

THEOREM (V. PATEL, S. SIKSEK)

Let $k \ge 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q}_2 .

THEOREM (K. INKERI, 1959)

Let $k \ge 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q} .

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

イロト イボト イヨト イヨ

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
				000000000

What is Going On?

$$L = \text{Splitting Field of } B_k(x) \quad L_{\mathfrak{P}} \qquad \mathbb{F}_{\mathfrak{P}}$$
$$G = \text{Galois Group} \qquad H \subset G \qquad C = \text{Cyclic}$$
$$\mathbb{Q} \qquad \mathbb{Q}_2 \qquad \mathbb{F}_2 = \text{Residue Field}$$

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

・ロト ・日下 ・ヨト

WHAT IS GOING ON?

$$L = \text{Splitting Field of } B_k(x) \quad L_{\mathfrak{P}} \qquad \mathbb{F}_{\mathfrak{P}}$$

$$G = \text{Galois Group} \qquad H \subset G \qquad C = \text{Cyclic}$$

$$\mathbb{Q} \qquad \mathbb{Q}_2 \qquad \mathbb{F}_2 = \text{Residue Field}$$

 μ lives here!

Vandita Patel

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

・ロト ・ 同ト ・ ヨト

A SKETCH PROOF OF THE PROPOSITION

The Setup:

- $k \ge 2$ is even.
- L is the splitting field of $B_k(x)$.
- G is the Galois group of $B_k(x)$.
- \mathfrak{P} be a prime above 2.
- ν_2 on \mathbb{Q}_2 which we extend uniquely to $L_{\mathfrak{P}}$ (also call it ν_2).
- $H = \operatorname{Gal}(L_{\mathfrak{P}}/\mathbb{Q}_2) \subset G$ be the decomposition subgroup corresponding to \mathfrak{P} .

< 口 > < 同 >

Density Proof of Theorem

A SKETCH PROOF OF THE PROPOSITION

 $B_k(x) = g(x)h(x)$

where g(x) has degree $k - 2^s$. Label the roots $\{\alpha_1, \ldots, \alpha_{k-2^s}\}$, and h(x) has degree 2^s . Label the roots $\{\beta_1, \ldots, \beta_{2^s}\}$.

- All roots $\subset L_{\beta}$.
- h(x) is irreducible.
- Therefore H acts transitively on β_j .
- Pick $\mu \in H$ such that μ acts freely on the roots of h(x).
- Check it doesn't end up fixing a root of g(x).

Vandita Patel

University of Warwick

イロト イヨト イヨト
"Bad Prime = Extremely Useful Prime!"

The Newton Polygon of $B_k(x)$ for $k = 2^s \cdot t, s \ge 1$.

Parity Parrot

Density Proof of Theorem

Vandita Patel

Intro

Results and Methods

Perfect Powers that are Sums of Consecutive like Powers

University of Warwick

Image: A math a math

Proof of Proposition

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
				00000000000

Finding μ

LEMMA

Let *H* be a finite group acting transitively on a finite set $\{\beta_1, \ldots, \beta_n\}$. Let $H_i \subset H$ be the stabiliser of β_i and suppose $H_1 = H_2$. Let $\pi : H \to C$ be a surjective homomorphism from *H* onto a cyclic group *C*. Then there exists some $\mu \in H$ acting freely on $\{\beta_1, \ldots, \beta_n\}$ such that $\pi(\mu)$ is a generator of *C*.

- **1** Let $\mathbb{F}_{\mathfrak{P}}$ be the residue field of \mathfrak{P} .
- **2** Let $C = \operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_2)$.
- **3** C is cyclic generated by the Frobenius map: $\bar{\gamma} \to \bar{\gamma}^2$.

イロト イヨト イヨト イ

University of Warwick

- **4** Let $\pi: H \to C$ be the induced surjection.
- **5** Finally use the Lemma.

Vandita Patel

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
				00000000000

FINDING μ

LEMMA

Let *H* be a finite group acting transitively on a finite set $\{\beta_1, \ldots, \beta_n\}$. Let $H_i \subset H$ be the stabiliser of β_i and suppose $H_1 = H_2$. Let $\pi : H \to C$ be a surjective homomorphism from *H* onto a cyclic group *C*. Then there exists some $\mu \in H$ acting freely on $\{\beta_1, \ldots, \beta_n\}$ such that $\pi(\mu)$ is a generator of *C*.

- **1** Let $\mathbb{F}_{\mathfrak{P}}$ be the residue field of \mathfrak{P} .
- **2** Let $C = \operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_2)$.
- **B** C is cyclic generated by the Frobenius map: $\bar{\gamma} \to \bar{\gamma}^2$.

イロト イヨト イヨト イ

University of Warwick

- **4** Let $\pi: H \to C$ be the induced surjection.
- **5** Finally use the Lemma.

Vandita Patel

Results and Methods	Parity Parrot	Density	Proof of Theorem	Proof of Proposition
				0000000000

CHECK g(x)

$$B_k(x) = g(x)h(x)$$

where g(x) has degree $k - 2^s$. Label the roots $\{\alpha_1, \ldots, \alpha_{k-2^s}\}$, and h(x) has degree 2^s . Label the roots $\{\beta_1, \ldots, \beta_{2^s}\}$.

University of Warwick

LEMMA

 μ acts freely on the α_i .

- **1** Suppose not. Let α be a root that is fixed by μ .
- **2** $\nu_2(\alpha) = 0$ so let $\bar{\alpha} = \alpha \pmod{\mathfrak{P}}, \ \bar{\alpha} \in \mathbb{F}_{\mathfrak{P}}.$
- **3** α fixed by μ hence $\bar{\alpha}$ fixed by $\langle \pi(\mu) \rangle = C$.
- 4 Hence $\bar{\alpha} \in \mathbb{F}_2$. $f(x) = 2B_k(x) \in \mathbb{Z}_2[x]$.
- 5 $f(\overline{1}) = f(\overline{0}) = \overline{1}$. A contradiction!

Vandita Patel

Intro Results and Methods

s Parity Parrot

 \mathbf{Proof} ensity \mathbf{Proof}

Proof of Theorem

THANK YOU FOR LISTENING!

Vandita Patel

University of Warwick

Solving the equations for k = 2

$$d\left(\left(x + \frac{d+1}{2}\right)^2 + \frac{(d-1)(d+1)}{12}\right) = y^p.$$
$$X^2 + C \cdot 1^p = (1/d)y^p$$

Vandita Patel

University of Warwick

イロト イヨト イヨト イ

Intro Results and Methods

Parity Parrot

Density Proof of Theorem

Proof of Proposition

Solving the equations for k = 2

d	Equation	Level	Dimension
6	$2y^p - 5 \times 7 = 3(2x + 7)^2$	$2^7 \times 3^2 \times 5 \times 7$	480
11	$11^{p-1}y^p - 2 \times 5 = (x+6)^2$	$2^7 \times 5 \times 11$	160
13	$13^{p-1}y^p - 2 \times 7 = (x+7)^2$	$2^7 \times 7 \times 13$	288
22	$2 \times 11^{p-1} y^p - 7 \times 23 = (2x+23)^2$	$2^7 \times 7 \times 11 \times 23$	5,280
23	$23^{p-1}y^p - 2^2 \times 11 = (x+12)^2$	$2^3 \times 11 \times 23$	54
26	$2 \times 13^{p-1}y^p - 3^2 \times 5^2 = (2x + 27)^2$	$2^7 \times 3 \times 5 \times 13$	384
33	$11^{p-1}y^p - 2^4 \times 17 = 3(x+17)^2$	$2^3 \times 3^2 \times 11 \times 17$	200
37	$37^{p-1}y^p - 2 \times 3 \times 19 = (x+19)^2$	$2^7 \times 3 \times 19 \times 37$	5,184
39	$13^{p-1}y^p - 2^2 \times 5 \times 19 = 3(x+20)^2$	$2^3 \times 3^2 \times 5 \times 13 \times 19$	1,080
46	$2 \times 23^{p-1}y^p - 3^2 \times 5 \times 47 = (2x+47)^2$	$2^7 \times 3 \times 5 \times 23 \times 47$	32,384
47	$47^{p-1}y^p - 2^3 \times 23 = (x+24)^2$	$2^5 \times 23 \times 47$	1,012
59	$59^{p-1}y^p - 2 \times 5 \times 29 = (x+30)^2$	$2^7 \times 5 \times 29 \times 59$	25,984

Vandita Patel

University of Warwick

イロト イヨト イヨト イ

Density Proof of Theorem

Proof of Proposition

Solving the equations for k = 4

d	Equation	Level	Dimension
5	$y^p + 2 \times 73 = 5(X)^2$	$2^7 \times 5^2 \times 73$	5,472
6	$y^p + 7 \times 53 = 6(X)^2$	$2^8 \times 3^2 \times 7 \times 53$	12,480
7	$7^{p-1}y^p + 2^2 \times 29 = (X)^2$	$2^3 \times 7 \times 29$	42
10	$y^p + 3 \times 11 \times 149 = 10(X)^2$	$2^8 \times 5^2 \times 3 \times 11 \times 149$	449,920
13	$13^{p-1}y^p + 2 \times 7 \times 101 = (X)^2$	$2^7 \times 7 \times 13 \times 101$	28,800
14	$7^{p-1}y^p + 13 \times 293 = 2(X)^2$	$2^8 \times 7 \times 13 \times 293$	168,192
15	$y^p + 2^3 \times 7 \times 673 = 15(X)^2$	$2^5 \times 3^2 \times 5^2 \times 7 \times 673$	383,040
17	$17^{p-1}y^p + 2^3 \times 3 \times 173 = (X)^2$	$2^5 \times 3 \times 17 \times 173$	5,504
19	$19^{p-1}y^p + 2 \times 3 \times 23 \times 47 = (X)^2$	$2^7 \times 3 \times 19 \times 23 \times 47$	145,728
21	$7^{p-1}y^p + 2 \times 11 \times 1321 = 3(X)^2$	$2^7 \times 3^2 \times 7 \times 11 \times 1321$	1,584,000
26	$13^{p-1}y^p + 3^2 \times 5 \times 1013 = 2(X)^2$	$2^8 \times 3 \times 5 \times 13 \times 1013$	777,216
29	$29^{p-1}y^p + 2 \times 7 \times 2521 = (X)^2$	$2^7 \times 7 \times 29 \times 2521$	1,693,440
30	$y^{p} + 19 \times 29 \times 31 \times 71 = 30(X)^{2}$	$2^8 \times 3^2 \times 5^2 \times 19 \times 29 \times 31 \times 71$	804,384,000

Where X is a quadratic in the original variable x.

Vandita Patel

University of Warwick