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A Diophantine Equation

(x+ 1)k + (x+ 2)k + · · ·+ (x+ d)k = yn.

Question

Fix k ≥ 2 and d ≥ 2. Determine all of the integer solutions
(x, y, n).
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A Brief History The Result An Example Proof of Theorem Proof of Proposition

A Diophantine Equation

xk + (x+ 1)k + · · ·+ (x+ d− 1)k = yn.

Question

Fix k ≥ 2 and d ≥ 2. Determine all of the integer solutions
(x, y, n).

Remark: We can let n = p be a prime.
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A Brief History

Euler:
63 = 33 + 43 + 53.

Dickson’s “History of the Theory of Numbers”:

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

1 Pagliani (1829): parametric solutions.

2 Cassels (1985): y2 = x3 + (x+ 1)3 + (x+ 2)3.

3 Uchiyama (1979): independently to Cassels.

4 Zhongfeng Zhang (2014): yp = x3 + (x+ 1)3 + (x+ 2)3.
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A Brief History

Well–Known:

d∑
i=0

i3 =

d∑
i=1

i3 =

(
d(d+ 1)

2

)2

.

Pagliani:

v3∑
i=1

(
v4 − 3v3 − 2v2 − 2

6
+ i

)3

=

(
v5 + v3 − 2v

6

)3

.

where v ≡ 2, 4 (mod 6).
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Recent work

(x+ 1)k + (x+ 2)k + · · ·+ (x+ d)k = yn.

Theorem (M. A. Bennett, V. Patel, S. Siksek)

Let k = 3 and 2 ≤ d ≤ 50. Then, any integer solution (x, y, n)
must have n = 2 or n = 3.

2913 + 2923 + · · ·+ 3383 + 3393 = 11553.
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The Result

Theorem (V. Patel, S. Siksek)

Let k ≥ 2 be an even integer. Let Ak be the set of integers d ≥ 2
such that the equation

xk + (x+ 1)k + · · · (x+ d− 1)k = yn, x, y, n ∈ Z, n ≥ 2

has a solution (x, y, n). Then Ak has natural density zero. In
other words we have

lim
X→∞

#{d ∈ Ak : d ≤ X}
X

= 0.
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The Case k = 2

(x+ 1)2 + (x+ 2)2 + · · ·+ (x+ d)2 = yn.

dx2 + d(d+ 1)x+
d(d+ 1)(2d+ 1)

6
= yn.

d

(
x2 + (d+ 1)x+

(d+ 1)(2d+ 1)

6

)
= yn.

Idea

Let q be a prime (not 2 or 3) such that ordq(d) = 1. Suppose
that q - x2 + (d+ 1)x+ (d+ 1)(2d+ 1)/6. Then we must have
n = 1.
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The Bernoulli Polynomial!!!

Idea

Let q be a prime (not 2 or 3) such that ordq(d) = 1. Suppose
that q - x2 + (d+ 1)x+ (d+ 1)(2d+ 1)/6. Then we must have
n = 1.

A reduction modulo q:

x2 + x+ 1/6 6≡ 0 (mod q).

We complete the square and make a sensible change of variables.

Y 2 6≡ 12 (mod q).
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Legendre Symbols and a Density!

We want 12 to NOT be a square modulo q.

Y 2 6≡ 12 (mod q).

(
12

q

)
=

(
3

q

)
= −1

Precisely when q ≡ 5, 7 (mod 12).

Lemma

Let q be a prime such that q ≡ 5, 7 (mod 12). Suppose q | d.
Then the equation (x+ 1)2 + (x+ 2)2 + · · ·+ (x+ d)2 = yn has
no integer solutions.
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Legendre Symbols and a Density!

Lemma

Let q be a prime such that q ≡ 5, 7 (mod 12). Suppose q | d.
Then the equation (x+ 1)2 + (x+ 2)2 + · · ·+ (x+ d)2 = yn has
no integer solutions.

Theorem (Dirichlet)

Let a and n be coprime integers. Then there exists infinitely
many primes, {pi} such that pi ≡ a (mod n). Moreover,∑

p−1i =∞.
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Legendre Symbols and a Density!

The setup:

1 Let A be a set of positive integers.

2 Define: A(X) = #{d ∈ A : d ≤ X} for positive X.

3 Natural Density: δ(A) = limX→∞A(X)/X.

4 Given a prime q, define: A(q) = {d ∈ A : ordq(d) = 1}.

Theorem (Niven)

Let {qi} be a set of primes such that δ(A(qi)) = 0 and∑
q−1i =∞. Then δ(A) = 0.

Recall: If q is a prime such that q ≡ 5, 7 (mod 12), then we
have no solutions.

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers



A Brief History The Result An Example Proof of Theorem Proof of Proposition

Legendre Symbols and a Density!

The setup:

1 Let A be a set of positive integers.

2 Define: A(X) = #{d ∈ A : d ≤ X} for positive X.

3 Natural Density: δ(A) = limX→∞A(X)/X.

4 Given a prime q, define: A(q) = {d ∈ A : ordq(d) = 1}.

Theorem (Niven)

Let {qi} be a set of primes such that δ(A(qi)) = 0 and∑
q−1i =∞. Then δ(A) = 0.

Recall: If q is a prime such that q ≡ 5, 7 (mod 12), then we
have no solutions.

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers



A Brief History The Result An Example Proof of Theorem Proof of Proposition

Legendre Symbols and a Density!

The setup:

1 Let A be a set of positive integers.

2 Define: A(X) = #{d ∈ A : d ≤ X} for positive X.

3 Natural Density: δ(A) = limX→∞A(X)/X.

4 Given a prime q, define: A(q) = {d ∈ A : ordq(d) = 1}.

Theorem (Niven)

Let {qi} be a set of primes such that δ(A(qi)) = 0 and∑
q−1i =∞. Then δ(A) = 0.

Recall: If q is a prime such that q ≡ 5, 7 (mod 12), then we
have no solutions.

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers



A Brief History The Result An Example Proof of Theorem Proof of Proposition

Legendre Symbols and a Density!

The setup:

1 Let A be a set of positive integers.

2 Define: A(X) = #{d ∈ A : d ≤ X} for positive X.

3 Natural Density: δ(A) = limX→∞A(X)/X.

4 Given a prime q, define: A(q) = {d ∈ A : ordq(d) = 1}.

Theorem (Niven)

Let {qi} be a set of primes such that δ(A(qi)) = 0 and∑
q−1i =∞. Then δ(A) = 0.

Recall: If q is a prime such that q ≡ 5, 7 (mod 12), then we
have no solutions.

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers



A Brief History The Result An Example Proof of Theorem Proof of Proposition

Legendre Symbols and a Density!

The setup:

1 Let A be a set of positive integers.

2 Define: A(X) = #{d ∈ A : d ≤ X} for positive X.

3 Natural Density: δ(A) = limX→∞A(X)/X.

4 Given a prime q, define: A(q) = {d ∈ A : ordq(d) = 1}.

Theorem (Niven)

Let {qi} be a set of primes such that δ(A(qi)) = 0 and∑
q−1i =∞. Then δ(A) = 0.

Recall: If q is a prime such that q ≡ 5, 7 (mod 12), then we
have no solutions.

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers



A Brief History The Result An Example Proof of Theorem Proof of Proposition

Result for k = 2

Proposition

Let A2 be the set of integers d ≥ 2 such that the equation

(x+ 1)2 + (x+ 2)2 + · · ·+ (x+ d)2 = yn

has a solution (x, y, n). Then A2 has natural density zero.

Can we extend this result to any exponent k?
Answer: No.
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The Result

Theorem (V. Patel, S.Siksek)

Let k ≥ 2 be an even integer. Let Ak be the set of integers d ≥ 2
such that the equation

xk + (x+ 1)k + · · · (x+ d− 1)k = yn, x, y, n ∈ Z, n ≥ 2

has a solution (x, y, n). Then Ak has natural density zero. In
other words we have

lim
X→∞

#{d ∈ Ak : d ≤ X}
X

= 0.
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Bernoulli polynomials and relation to sums
of consecutive powers

Definition (Bernoulli Numbers, bk)

x

ex − 1
=

∞∑
k=0

bk
xk

k!
.

b0 = 1, b1 = −1/2, b2 = 1/6, b3 = 0, b4 = −1/30, b5 = 0, b6 = 1/42.

Lemma

b2k+1 = 0 for k ≥ 1.
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Bernoulli polynomials and relation to sums
of consecutive powers

Definition (Bernoulli Polynomial, Bk)

Bk(x) :=

k∑
m=0

(
k

m

)
bmx

k−m.

Lemma

xk + (x+ 1)k + · · ·+ (x+d−1)k =
1

k + 1
(Bk+1(x+ d)−Bk(x)) .
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Bernoulli polynomials and relation to sums
of consecutive powers

Lemma

xk + (x+ 1)k + · · ·+ (x+d−1)k =
1

k + 1
(Bk+1(x+ d)−Bk(x)) .

Apply Taylor’s Theorem and use B′k+1(x) = (k + 1) ·Bk(x).

Lemma

Let q ≥ k + 3 be a prime. Let d ≥ 2. Suppose that q | d. Then

xk + (x+ 1)k + · · ·+ (x+ (d− 1))k ≡ d ·Bk(x) (mod q2).

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers



A Brief History The Result An Example Proof of Theorem Proof of Proposition

Bernoulli polynomials and relation to sums
of consecutive powers

Lemma

xk + (x+ 1)k + · · ·+ (x+d−1)k =
1

k + 1
(Bk+1(x+ d)−Bk(x)) .

Apply Taylor’s Theorem and use B′k+1(x) = (k + 1) ·Bk(x).

Lemma

Let q ≥ k + 3 be a prime. Let d ≥ 2. Suppose that q | d. Then

xk + (x+ 1)k + · · ·+ (x+ (d− 1))k ≡ d ·Bk(x) (mod q2).

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers



A Brief History The Result An Example Proof of Theorem Proof of Proposition

Bernoulli polynomials and relation to sums
of consecutive powers

xk + (x+ 1)k + · · ·+ (x+ (d− 1))k = yn.

Proposition (Criterion)

Let k ≥ 2. Let q ≥ k + 3 be a prime such that the congruence
Bk(x) ≡ 0 (mod q) has no solutions. Let d be a positive integer
such that ordq(d) = 1. Then the equation has no solutions. (i.e.
d /∈ Ak).

Remark: Computationally we checked k ≤ 75,000 and we
could always find such a q.

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers



A Brief History The Result An Example Proof of Theorem Proof of Proposition

Bernoulli polynomials and relation to sums
of consecutive powers

xk + (x+ 1)k + · · ·+ (x+ (d− 1))k = yn.

Proposition (Criterion)

Let k ≥ 2. Let q ≥ k + 3 be a prime such that the congruence
Bk(x) ≡ 0 (mod q) has no solutions. Let d be a positive integer
such that ordq(d) = 1. Then the equation has no solutions. (i.e.
d /∈ Ak).

Remark: Computationally we checked k ≤ 75,000 and we
could always find such a q.

Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers



A Brief History The Result An Example Proof of Theorem Proof of Proposition

Recall: Result for k = 2

Proposition

Let A2 be the set of integers d ≥ 2 such that the equation

x2 + (x+ 1)2 + · · ·+ (x+ d)2 = yn

has a solution (x, y, n). Then A2 has natural density zero.

Can we extend this result to any exponent k?
Answer: No.
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Odd k: A Complete Disaster

This is one of the few slides where we consider k to be
odd!

xk + (x+ 1)k + · · ·+ (x+ (d− 1))k ≡ d ·Bk(x) (mod q2).

We want to find a prime q such that Bk(x) ≡ 0 (mod q) has no
solutions.
However, it is well–known that the odd degree Bernoulli
polynomials have linear factors!

Bk(x) = x(x− 1)(x− 1/2)h(x) ≡ 0 (mod q).

Hence our criterion fails for every single prime q.
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Relation to Densities?

We need to use Chebotarev’s density theorem, which can be
seen as “a generalisation of Dirichlet’s theorem” on primes in
arithmetic progression.

Proposition

Let k ≥ 2 be even and let G be the Galois group of Bk(x). Then
there is an element µ ∈ G that acts freely on the roots of Bk(x).

Assuming the proposition, we may then use Chebotarev’s
density theorem to find a set of primes qi with positive Dirichlet
density such that Frobqi ∈ G is conjugate to µ. Then we can
apply Niven’s results to deduce our Theorem.
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A Legendre Symbol analogue

Proposition

Let k ≥ 2 be even and let G be the Galois group Bk(x). Then
there is an element µ ∈ G that acts freely on the roots of Bk(x).

Conjecture

For any even integer k, Bk(x) is irreducible over Q.

Remark: The conjecture implies the Proposition. This then
proves our Theorem.
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Tough Stuff

A sketch of an unconditional proof!

Proposition

Let k ≥ 2 be even and let G be the Galois group Bk(x). Then
there is an element µ ∈ G that acts freely on the roots of Bk(x).

Theorem (von Staudt-Clausen)

Let n ≥ 2 be even. Then

bn +
∑

(p−1)|n

1

p
∈ Z.
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“Bad Prime 2”

The Newton Polygon of Bk(x) for k = 2s · t, s ≥ 1.

Bk(x) =

k∑
i=0

(
k

k − i

)
bk−ix

i =

k∑
i=0

aix
i

i

ν2(ai)

slope = 1/2s
(0, 0)

(0, −1)

(k, 0)(k − 2s, 0)

(k − 2s,−1)
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Another nice result

1 Sloping part corresponds to irreducible factor over Q2.

2 Root in Q2 must have valuation zero.

3 Root belongs to Z2 and is odd.

4 Symmetry (−1)kBk(x) = Bk(1− x) gives a contradiction.

Theorem (V. Patel, S. Siksek)

Let k ≥ 2 be an even integer. Then Bk(x) has no roots in Q2.

Theorem (K. Inkeri, 1959)

Let k ≥ 2 be an even integer. Then Bk(x) has no roots in Q.
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A sketch proof of the Proposition

The Setup:

k ≥ 2 is even.

L is the splitting field of Bk(x).

G is the Galois group of Bk(x).

P be a prime above 2.

ν2 on Q2 which we extend uniquely to LP (also call it ν2).

H = Gal(LP/Q2) ⊂ G be the decomposition subgroup
corresponding to P.
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A sketch proof of the Proposition

Bk(x) = g(x)h(x)

where g(x) has degree k − 2s. Label the roots {α1, . . . , αk−2s},
and h(x) has degree 2s. Label the roots {β1, . . . , β2s}.

All roots ⊂ Lβ.

h(x) is irreducible.

Therefore H acts transitively on βj .

Pick µ ∈ H such that µ acts freely on the roots of h(x).

Check it doesn’t end up fixing a root of g(x).
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“Bad Prime = Extremely Useful Prime!”

The Newton Polygon of Bk(x) for k = 2s · t, s ≥ 1.

i

ν2(ai)

slope = 1/2s
(0, 0)

(0, −1)

(k, 0)(k − 2s, 0)

(k − 2s,−1)
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Finding µ

Lemma

Let H be a finite group acting transitively on a finite set
{β1, . . . , βn}. Let Hi ⊂ H be the stabiliser of βi and suppose
H1 = H2. Let π : H → C be a surjective homomorphism from
H onto a cyclic group C. Then there exists some µ ∈ H acting
freely on {β1, . . . , βn} such that π(µ) is a generator of C.

1 Let FP be the residue field of P.

2 Let C = Gal (FP/F2).

3 C is cyclic generated by the Frobenius map: γ̄ → γ̄2.

4 Let π : H → C be the induced surjection.

5 Finally use the Lemma.
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Recap: A sketch proof of the Proposition

Bk(x) = g(x)h(x)

where g(x) has degree k − 2s. Label the roots {α1, . . . , αk−2s},
and h(x) has degree 2s. Label the roots {β1, . . . , β2s}.

All roots ⊂ Lβ.

h(x) is irreducible.

Therefore H acts transitively on βj .

Pick µ ∈ H such that µ acts freely on the roots of h(x).

Check it doesn’t end up fixing a root of g(x).
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Check g(x)

Bk(x) = g(x)h(x)

where g(x) has degree k − 2s. Label the roots {α1, . . . , αk−2s},
and h(x) has degree 2s. Label the roots {β1, . . . , β2s}.

Lemma

µ acts freely on the αi.

1 Suppose not. Let α be a root that is fixed by µ.

2 ν2(α) = 0 so let ᾱ = α (mod P), ᾱ ∈ FP.

3 α fixed by µ hence ᾱ fixed by 〈π(µ)〉 = C.

4 Hence ᾱ ∈ F2. f(x) = 2Bk(x) ∈ Z2[x].

5 f(1̄) = f(0̄) = 1̄. A contradiction!
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3 α fixed by µ hence ᾱ fixed by 〈π(µ)〉 = C.
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Thank you for Listening!
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Solving the equations for k = 2

d

((
x+

d+ 1

2

)2

+
(d− 1)(d+ 1)

12

)
= yp.

X2 + C · 1p = (1/d)yp
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Solving the equations for k = 2

d Equation Level Dimension

6 2yp − 5 × 7 = 3(2x + 7)2 27 × 32 × 5 × 7 480

11 11p−1yp − 2 × 5 = (x + 6)2 27 × 5 × 11 160

13 13p−1yp − 2 × 7 = (x + 7)2 27 × 7 × 13 288

22 2 × 11p−1yp − 7 × 23 = (2x + 23)2 27 × 7 × 11 × 23 5,280

23 23p−1yp − 22 × 11 = (x + 12)2 23 × 11 × 23 54

26 2 × 13p−1yp − 32 × 52 = (2x + 27)2 27 × 3 × 5 × 13 384

33 11p−1yp − 24 × 17 = 3(x + 17)2 23 × 32 × 11 × 17 200

37 37p−1yp − 2 × 3 × 19 = (x + 19)2 27 × 3 × 19 × 37 5,184

39 13p−1yp − 22 × 5 × 19 = 3(x + 20)2 23 × 32 × 5 × 13 × 19 1,080

46 2 × 23p−1yp − 32 × 5 × 47 = (2x + 47)2 27 × 3 × 5 × 23 × 47 32,384

47 47p−1yp − 23 × 23 = (x + 24)2 25 × 23 × 47 1,012

59 59p−1yp − 2 × 5 × 29 = (x + 30)2 27 × 5 × 29 × 59 25,984
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Solving the equations for k = 4

d Equation Level Dimension

5 yp + 2 × 73 = 5(X)2 27 × 52 × 73 5,472

6 yp + 7 × 53 = 6(X)2 28 × 32 × 7 × 53 12,480

7 7p−1yp + 22 × 29 = (X)2 23 × 7 × 29 42

10 yp + 3 × 11 × 149 = 10(X)2 28 × 52 × 3 × 11 × 149 449,920

13 13p−1yp + 2 × 7 × 101 = (X)2 27 × 7 × 13 × 101 28,800

14 7p−1yp + 13 × 293 = 2(X)2 28 × 7 × 13 × 293 168,192

15 yp + 23 × 7 × 673 = 15(X)2 25 × 32 × 52 × 7 × 673 383,040

17 17p−1yp + 23 × 3 × 173 = (X)2 25 × 3 × 17 × 173 5,504

19 19p−1yp + 2 × 3 × 23 × 47 = (X)2 27 × 3 × 19 × 23 × 47 145,728

21 7p−1yp + 2 × 11 × 1321 = 3(X)2 27 × 32 × 7 × 11 × 1321 1,584,000

26 13p−1yp + 32 × 5 × 1013 = 2(X)2 28 × 3 × 5 × 13 × 1013 777,216

29 29p−1yp + 2 × 7 × 2521 = (X)2 27 × 7 × 29 × 2521 1,693,440

30 yp + 19 × 29 × 31 × 71 = 30(X)2 28 × 32 × 52 × 19 × 29 × 31 × 71 804,384,000

Where X is a quadratic in the original variable x.
Vandita Patel University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers


	A Brief History
	The Result
	An Example
	Proof of Theorem
	Proof of Proposition

