A Brief History	$\stackrel{\mathbf{ The \ Result}}{\circ}$	An Example	Proof of Theorem	Proof of Proposition

Perfect Powers that are Sums of Consecutive k-th Powers

Vandita Patel

University of Warwick

October 26, 2016

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A Brief History The Result 00000

An Example

Proof of Theorem

Proof of Proposition

A DIOPHANTINE EQUATION

$$(x+1)^k + (x+2)^k + \dots + (x+d)^k = y^n.$$

QUESTION

Fix $k \ge 2$ and $d \ge 2$. Determine all of the integer solutions (x, y, n).

Vandita Patel

A Brief HistoryThe Result $0 \bullet 000$ 0

An Example

Proof of Theorem

Proof of Proposition

A DIOPHANTINE EQUATION

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = y^{n}.$$

QUESTION

Fix $k \geq 2$ and $d \geq 2$. Determine all of the integer solutions (x, y, n).

Remark: We can let n = p be a prime.

<ロト < 回 > < 目 > く 目 > く 目 > 目 の Q () University of Warwick

Vandita Patel

A Brief History	The Result	An Example	Proof of Theorem	Proof of Proposition
00000				

Euler:

$$6^3 = 3^3 + 4^3 + 5^3.$$

Dickson's *"History of the Theory of Numbers"*: Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

1 Pagliani (1829): parametric solutions.

- **2** Cassels (1985): $y^2 = x^3 + (x+1)^3 + (x+2)^3$.
- **3** Uchiyama (1979): independently to Cassels.
- **4** Zhongfeng Zhang (2014): $y^p = x^3 + (x+1)^3 + (x+2)^3$.

Vandita Patel

University of Warwick

イロト イヨト イヨト イ

A Brief History	The Result	An Example	Proof of Theorem	Proof of Proposition
00000				

Euler:

$$6^3 = 3^3 + 4^3 + 5^3.$$

Dickson's "History of the Theory of Numbers":

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

- **1** Pagliani (1829): parametric solutions.
- **2** Cassels (1985): $y^2 = x^3 + (x+1)^3 + (x+2)^3$.
- **3** Uchiyama (1979): independently to Cassels.
- **4** Zhongfeng Zhang (2014): $y^p = x^3 + (x+1)^3 + (x+2)^3$.

Vandita Patel

University of Warwick

イロト イヨト イヨト イ

A Brief History	The Result	An Example	Proof of Theorem	Proof of Proposition
00000				

Euler:

$$6^3 = 3^3 + 4^3 + 5^3.$$

Dickson's "History of the Theory of Numbers":

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

- **1** Pagliani (1829): parametric solutions.
- **2** Cassels (1985): $y^2 = x^3 + (x+1)^3 + (x+2)^3$.
- **3** Uchiyama (1979): independently to Cassels.
- **4** Zhongfeng Zhang (2014): $y^p = x^3 + (x+1)^3 + (x+2)^3$.

Vandita Patel

University of Warwick

イロト イヨト イヨト イ

A Brief History	The Result	An Example	Proof of Theorem	Proof of Proposition
00000				

Euler:

$$6^3 = 3^3 + 4^3 + 5^3.$$

Dickson's "History of the Theory of Numbers":

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

- **1** Pagliani (1829): parametric solutions.
- **2** Cassels (1985): $y^2 = x^3 + (x+1)^3 + (x+2)^3$.
- **3** Uchiyama (1979): independently to Cassels.
- **4** Zhongfeng Zhang (2014): $y^p = x^3 + (x+1)^3 + (x+2)^3$.

Vandita Patel

University of Warwick

イロト イヨト イヨト イ

A Brief History	The Result	An Example	Proof of Theorem	Proof of Proposition
00000				

Euler:

$$6^3 = 3^3 + 4^3 + 5^3.$$

Dickson's "History of the Theory of Numbers":

Catalan, Cunningham, Lucas and Gennochi.

Later contributions from:

- **1** Pagliani (1829): parametric solutions.
- **2** Cassels (1985): $y^2 = x^3 + (x+1)^3 + (x+2)^3$.
- **3** Uchiyama (1979): independently to Cassels.
- **4** Zhongfeng Zhang (2014): $y^p = x^3 + (x+1)^3 + (x+2)^3$.

Vandita Patel

University of Warwick

イロト イヨト イヨト イ

A Brief HistoryThe ResultAn ExampleProof of TheoremProof of Proposition000000000000000000000000000000

A BRIEF HISTORY

Well–Known:

$$\sum_{i=0}^{d} i^3 = \sum_{i=1}^{d} i^3 = \left(\frac{d(d+1)}{2}\right)^2.$$

Pagliani:

$$\sum_{i=1}^{v^3} \left(\frac{v^4 - 3v^3 - 2v^2 - 2}{6} + i \right)^3 = \left(\frac{v^5 + v^3 - 2v}{6} \right)^3$$

where $v \equiv 2, 4 \pmod{6}$.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A Brief HistoryThe ResultAn ExampleProof of TheoremProof of Proposition000000000000000000000000000000

A BRIEF HISTORY

Well-Known:

$$\sum_{i=0}^{d} i^3 = \sum_{i=1}^{d} i^3 = \left(\frac{d(d+1)}{2}\right)^2.$$

Pagliani:

$$\sum_{i=1}^{v^3} \left(\frac{v^4 - 3v^3 - 2v^2 - 2}{6} + i \right)^3 = \left(\frac{v^5 + v^3 - 2v}{6} \right)^3.$$

where $v \equiv 2, 4 \pmod{6}$.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

< ∃ >

A Brief History	The Result	An Example	Proof of Theorem	Proof of Proposition
00000				

RECENT WORK

$$(x+1)^k + (x+2)^k + \dots + (x+d)^k = y^n.$$

THEOREM (M. A. BENNETT, V. PATEL, S. SIKSEK)

Let k = 3 and $2 \le d \le 50$. Then, any integer solution (x, y, n) must have n = 2 or n = 3.

$291^3 + 292^3 + \dots + 338^3 + 339^3 = 1155^3.$

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

イロト イヨト イヨト

A Brief History	The Result	An Example	Proof of Theorem	Proof of Proposition
00000				

RECENT WORK

$$(x+1)^k + (x+2)^k + \dots + (x+d)^k = y^n.$$

THEOREM (M. A. BENNETT, V. PATEL, S. SIKSEK)

Let k = 3 and $2 \le d \le 50$. Then, any integer solution (x, y, n) must have n = 2 or n = 3.

$$291^3 + 292^3 + \dots + 338^3 + 339^3 = 1155^3.$$

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A Brief History	The Result	An Example	Proof of Theorem	Proof of Proposition
	•			

THE RESULT

THEOREM (V. PATEL, S. SIKSEK)

Let $k \geq 2$ be an even integer. Let \mathcal{A}_k be the set of integers $d \geq 2$ such that the equation

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = y^{n}, \quad x, y, n \in \mathbb{Z}, \quad n \ge 2$$

has a solution (x, y, n). Then \mathcal{A}_k has natural density zero. In other words we have

$$\lim_{X \to \infty} \frac{\#\{d \in \mathcal{A}_k : d \le X\}}{X} = 0.$$

University of Warwick

Image: A math a math

Vandita Patel

A Brief History The Result An Example Proof of Theorem Proof of Proposition

THE CASE k = 2

$$(x+1)^{2} + (x+2)^{2} + \dots + (x+d)^{2} = y^{n}.$$
$$dx^{2} + d(d+1)x + \frac{d(d+1)(2d+1)}{6} = y^{n}.$$
$$d\left(x^{2} + (d+1)x + \frac{(d+1)(2d+1)}{6}\right) = y^{n}.$$

Idea

Let q be a prime (not 2 or 3) such that $\operatorname{ord}_q(d) = 1$. Suppose that $q \nmid x^2 + (d+1)x + (d+1)(2d+1)/6$. Then we must have n = 1.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A Brief History The Result An Example Proof of Theorem Proof of Proposition 0000 0 0 0 000000 0000000 00000000

THE CASE k = 2

$$(x+1)^{2} + (x+2)^{2} + \dots + (x+d)^{2} = y^{n}.$$
$$dx^{2} + d(d+1)x + \frac{d(d+1)(2d+1)}{6} = y^{n}.$$
$$d\left(x^{2} + (d+1)x + \frac{(d+1)(2d+1)}{6}\right) = y^{n}.$$

Idea

Let q be a prime (not 2 or 3) such that $\operatorname{ord}_q(d) = 1$. Suppose that $q \nmid x^2 + (d+1)x + (d+1)(2d+1)/6$. Then we must have n = 1.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A Brief History The Result An Example Proof of Theorem Proof of Proposition 0000 0 0 0 000000 0000000 00000000

The Case k = 2

$$(x+1)^{2} + (x+2)^{2} + \dots + (x+d)^{2} = y^{n}.$$
$$dx^{2} + d(d+1)x + \frac{d(d+1)(2d+1)}{6} = y^{n}.$$
$$d\left(x^{2} + (d+1)x + \frac{(d+1)(2d+1)}{6}\right) = y^{n}.$$

IDEA

Let q be a prime (not 2 or 3) such that $\operatorname{ord}_q(d) = 1$. Suppose that $q \nmid x^2 + (d+1)x + (d+1)(2d+1)/6$. Then we must have n = 1.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A Brief History The Result An Example Proof of Theorem Proof of Proposition 0000 0 0 0 000000 0000000 00000000

THE CASE k = 2

$$(x+1)^{2} + (x+2)^{2} + \dots + (x+d)^{2} = y^{n}.$$
$$dx^{2} + d(d+1)x + \frac{d(d+1)(2d+1)}{6} = y^{n}.$$
$$d\left(x^{2} + (d+1)x + \frac{(d+1)(2d+1)}{6}\right) = y^{n}.$$

IDEA

Let q be a prime (not 2 or 3) such that $\operatorname{ord}_q(d) = 1$. Suppose that $q \nmid x^2 + (d+1)x + (d+1)(2d+1)/6$. Then we must have n = 1.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

イロト イヨト イヨト イ

Proof of Theorem

University of Warwick

Proof of Proposition

The Bernoulli Polynomial!!!

IDEA

Let q be a prime (not 2 or 3) such that $\operatorname{ord}_q(d) = 1$. Suppose that $q \nmid x^2 + (d+1)x + (d+1)(2d+1)/6$. Then we must have n = 1.

A reduction modulo q:

 $x^2 + x + 1/6 \not\equiv 0 \pmod{q}.$

We complete the square and make a sensible change of variables.

$$Y^2 \not\equiv 12 \pmod{q}.$$

Vandita Patel

Proof of Proposition

LEGENDRE SYMBOLS AND A DENSITY!

We want 12 to ${\bf NOT}$ be a square modulo q.

 $Y^2 \not\equiv 12 \pmod{q}.$

$$\left(\frac{12}{q}\right) = \left(\frac{3}{q}\right) = -1$$

Precisely when $q \equiv 5,7 \pmod{12}$.

Lemma

Let q be a prime such that $q \equiv 5,7 \pmod{12}$. Suppose $q \mid d$. Then the equation $(x+1)^2 + (x+2)^2 + \cdots + (x+d)^2 = y^n$ has no integer solutions.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Proposition

LEGENDRE SYMBOLS AND A DENSITY!

We want 12 to ${\bf NOT}$ be a square modulo q.

 $Y^2 \not\equiv 12 \pmod{q}.$

$$\left(\frac{12}{q}\right) = \left(\frac{3}{q}\right) = -1$$

Precisely when $q \equiv 5, 7 \pmod{12}$.

Lemma

Let q be a prime such that $q \equiv 5,7 \pmod{12}$. Suppose $q \mid d$. Then the equation $(x+1)^2 + (x+2)^2 + \cdots + (x+d)^2 = y^n$ has no integer solutions.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Proposition

LEGENDRE SYMBOLS AND A DENSITY!

Lemma

Let q be a prime such that $q \equiv 5,7 \pmod{12}$. Suppose $q \mid d$. Then the equation $(x+1)^2 + (x+2)^2 + \cdots + (x+d)^2 = y^n$ has no integer solutions.

THEOREM (DIRICHLET)

Let a and n be coprime integers. Then there exists infinitely many primes, $\{p_i\}$ such that $p_i \equiv a \pmod{n}$. Moreover,

$$\sum p_i^{-1} = \infty.$$

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

Proof of Proposition

LEGENDRE SYMBOLS AND A DENSITY!

The setup:

- **1** Let \mathcal{A} be a set of positive integers.
- **2** Define: $\mathcal{A}(X) = \#\{d \in \mathcal{A} : d \leq X\}$ for positive X.
- **3** Natural Density: $\delta(\mathcal{A}) = \lim_{X \to \infty} \mathcal{A}(X)/X$.
- **4** Given a prime q, define: $\mathcal{A}^{(q)} = \{ d \in \mathcal{A} : \operatorname{ord}_q(d) = 1 \}.$

THEOREM (NIVEN)

Let $\{q_i\}$ be a set of primes such that $\delta(\mathcal{A}^{(q_i)}) = 0$ and $\sum q_i^{-1} = \infty$. Then $\delta(\mathcal{A}) = 0$.

Recall: If q is a prime such that $q \equiv 5, 7 \pmod{12}$, then we have no solutions.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

Proof of Proposition

LEGENDRE SYMBOLS AND A DENSITY!

The setup:

- **1** Let \mathcal{A} be a set of positive integers.
- **2** Define: $\mathcal{A}(X) = \#\{d \in \mathcal{A} : d \leq X\}$ for positive X.
- **3** Natural Density: $\delta(\mathcal{A}) = \lim_{X \to \infty} \mathcal{A}(X)/X$.
- **4** Given a prime q, define: $\mathcal{A}^{(q)} = \{ d \in \mathcal{A} : \operatorname{ord}_q(d) = 1 \}.$

THEOREM (NIVEN)

Let $\{q_i\}$ be a set of primes such that $\delta(\mathcal{A}^{(q_i)}) = 0$ and $\sum q_i^{-1} = \infty$. Then $\delta(\mathcal{A}) = 0$.

Recall: If q is a prime such that $q \equiv 5, 7 \pmod{12}$, then we have no solutions.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

Proof of Proposition

LEGENDRE SYMBOLS AND A DENSITY!

The setup:

- **1** Let \mathcal{A} be a set of positive integers.
- **2** Define: $\mathcal{A}(X) = \#\{d \in \mathcal{A} : d \leq X\}$ for positive X.
- **3** Natural Density: $\delta(\mathcal{A}) = \lim_{X \to \infty} \mathcal{A}(X)/X$.
- **4** Given a prime q, define: $\mathcal{A}^{(q)} = \{ d \in \mathcal{A} : \operatorname{ord}_q(d) = 1 \}.$

THEOREM (NIVEN)

Let $\{q_i\}$ be a set of primes such that $\delta(\mathcal{A}^{(q_i)}) = 0$ and $\sum q_i^{-1} = \infty$. Then $\delta(\mathcal{A}) = 0$.

Recall: If q is a prime such that $q \equiv 5, 7 \pmod{12}$, then we have no solutions.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

Proof of Proposition

LEGENDRE SYMBOLS AND A DENSITY!

The setup:

- **1** Let \mathcal{A} be a set of positive integers.
- **2** Define: $\mathcal{A}(X) = \#\{d \in \mathcal{A} : d \leq X\}$ for positive X.
- **3** Natural Density: $\delta(\mathcal{A}) = \lim_{X \to \infty} \mathcal{A}(X)/X$.
- 4 Given a prime q, define: $\mathcal{A}^{(q)} = \{d \in \mathcal{A} : \operatorname{ord}_q(d) = 1\}.$

Theorem (Niven)

Let $\{q_i\}$ be a set of primes such that $\delta(\mathcal{A}^{(q_i)}) = 0$ and $\sum q_i^{-1} = \infty$. Then $\delta(\mathcal{A}) = 0$.

Recall: If q is a prime such that $q \equiv 5, 7 \pmod{12}$, then we have no solutions.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

Proof of Proposition

LEGENDRE SYMBOLS AND A DENSITY!

The setup:

- **1** Let \mathcal{A} be a set of positive integers.
- **2** Define: $\mathcal{A}(X) = \#\{d \in \mathcal{A} : d \leq X\}$ for positive X.
- **3** Natural Density: $\delta(\mathcal{A}) = \lim_{X \to \infty} \mathcal{A}(X)/X$.
- 4 Given a prime q, define: $\mathcal{A}^{(q)} = \{ d \in \mathcal{A} : \operatorname{ord}_q(d) = 1 \}.$

THEOREM (NIVEN)

Let $\{q_i\}$ be a set of primes such that $\delta(\mathcal{A}^{(q_i)}) = 0$ and $\sum q_i^{-1} = \infty$. Then $\delta(\mathcal{A}) = 0$.

Recall: If q is a prime such that $q \equiv 5, 7 \pmod{12}$, then we have no solutions.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

 A Brief History
 The Result
 An Example
 Proof of Theorem
 Proof of Proposition

 00000
 0
 000000
 000000000
 000000000
 000000000

Result for k = 2

PROPOSITION

Let \mathcal{A}_2 be the set of integers $d \geq 2$ such that the equation

$$(x+1)^2 + (x+2)^2 + \dots + (x+d)^2 = y^n$$

has a solution (x, y, n). Then A_2 has natural density zero.

Can we extend this result to any exponent k? Answer: No.

Vandita Patel

University of Warwick

Image: A matrix

 A Brief History
 The Result
 An Example
 Proof of Theorem
 Proof of Proposition

 00000
 0
 000000
 00000000
 000000000
 000000000

Result for k = 2

PROPOSITION

Let \mathcal{A}_2 be the set of integers $d \geq 2$ such that the equation

$$(x+1)^2 + (x+2)^2 + \dots + (x+d)^2 = y^n$$

Image: A matrix

University of Warwick

has a solution (x, y, n). Then \mathcal{A}_2 has natural density zero.

Can we extend this result to any exponent k? Answer: No.

Vandita Patel

THE RESULT

THEOREM (V. PATEL, S.SIKSEK)

Let $k \geq 2$ be an even integer. Let \mathcal{A}_k be the set of integers $d \geq 2$ such that the equation

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = y^{n}, \quad x, y, n \in \mathbb{Z}, \quad n \ge 2$$

has a solution (x, y, n). Then \mathcal{A}_k has natural density zero. In other words we have

$$\lim_{X \to \infty} \frac{\#\{d \in \mathcal{A}_k : d \le X\}}{X} = 0.$$

University of Warwick

A B M A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Vandita Patel

An Example

Proof of Theorem

Proof of Proposition

BERNOULLI POLYNOMIALS AND RELATION TO SUMS OF CONSECUTIVE POWERS

DEFINITION (BERNOULLI NUMBERS, b_k)

$$\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} b_k \frac{x^k}{k!}.$$

 $b_0 = 1, b_1 = -1/2, b_2 = 1/6, b_3 = 0, b_4 = -1/30, b_5 = 0, b_6 = 1/42.$

LEMMA

$$b_{2k+1} = 0$$
 for $k \ge 1$.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

An Example 000000

Proof of Theorem

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Proposition

BERNOULLI POLYNOMIALS AND RELATION TO SUMS OF CONSECUTIVE POWERS

Definition (Bernoulli Polynomial, B_k)

$$B_k(x) := \sum_{m=0}^k \binom{k}{m} b_m x^{k-m}.$$

Lemma

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = \frac{1}{k+1} (B_{k+1}(x+d) - B_{k}(x)).$$

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

 $\begin{array}{c} \mathbf{An} \ \mathbf{Example} \\ \texttt{0000000} \end{array}$

Proof of Theorem

Proof of Proposition

BERNOULLI POLYNOMIALS AND RELATION TO SUMS OF CONSECUTIVE POWERS

Definition (Bernoulli Polynomial, B_k)

$$B_k(x) := \sum_{m=0}^k \binom{k}{m} b_m x^{k-m}.$$

LEMMA

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = \frac{1}{k+1} \left(B_{k+1}(x+d) - B_{k}(x) \right).$$

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

・ロト ・ 同ト ・ ヨト ・ ヨ

An Example 000000

Proof of Theorem

Proof of Proposition

BERNOULLI POLYNOMIALS AND RELATION TO SUMS OF CONSECUTIVE POWERS

Lemma

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = \frac{1}{k+1} \left(B_{k+1}(x+d) - B_{k}(x) \right).$$

Apply Taylor's Theorem and use $B'_{k+1}(x) = (k+1) \cdot B_k(x)$.

LEMMA

Let
$$q \ge k+3$$
 be a prime. Let $d \ge 2$. Suppose that $q \mid d$. Then
 $x^k + (x+1)^k + \dots + (x+(d-1))^k \equiv d \cdot B_k(x) \pmod{q^2}.$

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

An Example 000000

Proof of Theorem $000 \bullet 00000$

Proof of Proposition

BERNOULLI POLYNOMIALS AND RELATION TO SUMS OF CONSECUTIVE POWERS

Lemma

$$x^{k} + (x+1)^{k} + \dots + (x+d-1)^{k} = \frac{1}{k+1} \left(B_{k+1}(x+d) - B_{k}(x) \right).$$

Apply Taylor's Theorem and use $B'_{k+1}(x) = (k+1) \cdot B_k(x)$.

LEMMA

Let
$$q \ge k+3$$
 be a prime. Let $d \ge 2$. Suppose that $q \mid d$. Then
 $x^k + (x+1)^k + \dots + (x+(d-1))^k \equiv d \cdot B_k(x) \pmod{q^2}.$

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

An Example 000000

イロト イヨト イヨト イ

University of Warwick

Proof of Proposition

BERNOULLI POLYNOMIALS AND RELATION TO SUMS OF CONSECUTIVE POWERS

$$x^{k} + (x+1)^{k} + \dots + (x+(d-1))^{k} = y^{n}.$$

PROPOSITION (CRITERION)

Let $k \ge 2$. Let $q \ge k+3$ be a prime such that the congruence $B_k(x) \equiv 0 \pmod{q}$ has no solutions. Let d be a positive integer such that $\operatorname{ord}_q(d) = 1$. Then the equation has no solutions. (i.e. $d \notin \mathcal{A}_k$).

Remark: Computationally we checked $k \leq 75,000$ and we could always find such a q.

Vandita Patel

Proof of Proposition

BERNOULLI POLYNOMIALS AND RELATION TO SUMS OF CONSECUTIVE POWERS

$$x^{k} + (x+1)^{k} + \dots + (x+(d-1))^{k} = y^{n}.$$

PROPOSITION (CRITERION)

Let $k \ge 2$. Let $q \ge k+3$ be a prime such that the congruence $B_k(x) \equiv 0 \pmod{q}$ has no solutions. Let d be a positive integer such that $\operatorname{ord}_q(d) = 1$. Then the equation has no solutions. (i.e. $d \notin \mathcal{A}_k$).

Remark: Computationally we checked $k \leq 75,000$ and we could always find such a q.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

イロト イヨト イヨト イ
Proof of Proposition

Recall: Result for k = 2

PROPOSITION

Let \mathcal{A}_2 be the set of integers $d \geq 2$ such that the equation

$$x^{2} + (x+1)^{2} + \dots + (x+d)^{2} = y^{n}$$

has a solution (x, y, n). Then A_2 has natural density zero.

Can we extend this result to any exponent k? Answer: No.

Vandita Patel

University of Warwick

Image: A matrix

 $_{\rm O}^{\rm The \ Result}$

An Example 000000

Proof of Proposition

Odd k: A Complete Disaster

This is one of the few slides where we consider k to be odd!

$$x^{k} + (x+1)^{k} + \dots + (x+(d-1))^{k} \equiv d \cdot B_{k}(x) \pmod{q^{2}}.$$

We want to find a prime q such that $B_k(x) \equiv 0 \pmod{q}$ has no solutions.

However, it is well-known that the odd degree Bernoulli polynomials have linear factors!

$$B_k(x) = x(x-1)(x-1/2)h(x) \equiv 0 \pmod{q}.$$

Hence our criterion fails for every single prime q.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Proposition

Odd k: A Complete Disaster

This is one of the few slides where we consider k to be odd!

$$x^{k} + (x+1)^{k} + \dots + (x+(d-1))^{k} \equiv d \cdot B_{k}(x) \pmod{q^{2}}.$$

We want to find a prime q such that $B_k(x) \equiv 0 \pmod{q}$ has no solutions.

However, it is well-known that the odd degree Bernoulli polynomials have linear factors!

$$B_k(x) = x(x-1)(x-1/2)h(x) \equiv 0 \pmod{q}.$$

Hence our criterion fails for every single prime q.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Proposition

Odd k: A Complete Disaster

This is one of the few slides where we consider k to be odd!

$$x^{k} + (x+1)^{k} + \dots + (x+(d-1))^{k} \equiv d \cdot B_{k}(x) \pmod{q^{2}}.$$

We want to find a prime q such that $B_k(x) \equiv 0 \pmod{q}$ has no solutions.

However, it is well-known that the odd degree Bernoulli polynomials have linear factors!

$$B_k(x) = x(x-1)(x-1/2)h(x) \equiv 0 \pmod{q}.$$

Hence our criterion fails for every single prime q.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

Image: A math a math

An Example 000000

Image: A math a math

Proof of Proposition

University of Warwick

Odd k: A Complete Disaster

This is one of the few slides where we consider k to be odd!

$$x^{k} + (x+1)^{k} + \dots + (x+(d-1))^{k} \equiv d \cdot B_{k}(x) \pmod{q^{2}}.$$

We want to find a prime q such that $B_k(x) \equiv 0 \pmod{q}$ has no solutions.

However, it is well-known that the odd degree Bernoulli polynomials have linear factors!

$$B_k(x) = x(x-1)(x-1/2)h(x) \equiv 0 \pmod{q}.$$

Hence our criterion fails for every single prime q.

Vandita Patel

An Example 000000

Proof of Proposition

Odd k: A Complete Disaster

This is one of the few slides where we consider k to be odd!

$$x^{k} + (x+1)^{k} + \dots + (x+(d-1))^{k} \equiv d \cdot B_{k}(x) \pmod{q^{2}}.$$

We want to find a prime q such that $B_k(x) \equiv 0 \pmod{q}$ has no solutions.

However, it is well-known that the odd degree Bernoulli polynomials have linear factors!

$$B_k(x) = x(x-1)(x-1/2)h(x) \equiv 0 \pmod{q}.$$

Hence our criterion fails for every single prime q.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

Image: A math a math

 $_{\rm O}^{\rm The \ Result}$

An Example

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Warwick

Proof of Proposition

RELATION TO DENSITIES?

We need to use Chebotarev's density theorem, which can be seen as "a generalisation of Dirichlet's theorem" on primes in arithmetic progression.

PROPOSITION

Let $k \geq 2$ be even and let G be the Galois group of $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

Assuming the proposition, we may then use Chebotarev's density theorem to find a set of primes q_i with positive Dirichlet density such that $\operatorname{Frob}_{q_i} \in G$ is conjugate to μ . Then we can apply Niven's results to deduce our Theorem.

Vandita Patel

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Warwick

Proof of Proposition

RELATION TO DENSITIES?

We need to use Chebotarev's density theorem, which can be seen as "a generalisation of Dirichlet's theorem" on primes in arithmetic progression.

PROPOSITION

Let $k \geq 2$ be even and let G be the Galois group of $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

Assuming the proposition, we may then use Chebotarev's density theorem to find a set of primes q_i with positive Dirichlet density such that $\operatorname{Frob}_{q_i} \in G$ is conjugate to μ . Then we can apply Niven's results to deduce our Theorem.

Vandita Patel

Proof of Theorem ○○○○○○○● **Proof of Proposition**

A Legendre Symbol analogue

PROPOSITION

Let $k \geq 2$ be even and let G be the Galois group $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

Conjecture

For any even integer k, $B_k(x)$ is irreducible over \mathbb{Q} .

Remark: The conjecture implies the Proposition. This then proves our Theorem.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Theorem ○○○○○○○● **Proof of Proposition**

A Legendre Symbol analogue

PROPOSITION

Let $k \geq 2$ be even and let G be the Galois group $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

Conjecture

For any even integer k, $B_k(x)$ is irreducible over \mathbb{Q} .

Remark: The conjecture implies the Proposition. This then proves our Theorem.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

イロト イヨト イヨト

A Brief HistoryThe ResultAn ExampleProof of Theorem000000000000000000000

Proof of Proposition

Tough Stuff

A sketch of an unconditional proof!

PROPOSITION

Let $k \geq 2$ be even and let G be the Galois group $B_k(x)$. Then there is an element $\mu \in G$ that acts freely on the roots of $B_k(x)$.

THEOREM (VON STAUDT-CLAUSEN)

Let $n \geq 2$ be even. Then

$$b_n + \sum_{(p-1)|n} \frac{1}{p} \in \mathbb{Z}.$$

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A B M A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

"Bad Prime 2"

The Newton Polygon of $B_k(x)$ for $k = 2^s \cdot t, s \ge 1$.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

・日・ ・ヨ・ ・

ANOTHER NICE RESULT

- **1** Sloping part corresponds to irreducible factor over \mathbb{Q}_2 .
- **2** Root in \mathbb{Q}_2 must have valuation zero.
- **3** Root belongs to \mathbb{Z}_2 and is odd.
- **4** Symmetry $(-1)^k B_k(x) = B_k(1-x)$ gives a contradiction.

Гнеогем (V. Patel, S. Siksek)

Let $k \geq 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q}_2 .

Theorem (K. Inkeri, 1959)

Let $k \geq 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q} .

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

イロト イボト イヨト イヨ

ANOTHER NICE RESULT

- **1** Sloping part corresponds to irreducible factor over \mathbb{Q}_2 .
- **2** Root in \mathbb{Q}_2 must have valuation zero.
- **3** Root belongs to \mathbb{Z}_2 and is odd.
- **4** Symmetry $(-1)^k B_k(x) = B_k(1-x)$ gives a contradiction.

THEOREM (V. PATEL, S. SIKSEK)

Let $k \geq 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q}_2 .

Theorem (K. Inkeri, 1959)

Let $k \geq 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q} .

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

(日) (四) (日) (日) (日)

ANOTHER NICE RESULT

- **1** Sloping part corresponds to irreducible factor over \mathbb{Q}_2 .
- **2** Root in \mathbb{Q}_2 must have valuation zero.
- **3** Root belongs to \mathbb{Z}_2 and is odd.
- **4** Symmetry $(-1)^k B_k(x) = B_k(1-x)$ gives a contradiction.

THEOREM (V. PATEL, S. SIKSEK)

Let $k \geq 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q}_2 .

THEOREM (K. INKERI, 1959)

Let $k \geq 2$ be an even integer. Then $B_k(x)$ has no roots in \mathbb{Q} .

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

<ロト <回ト < 注ト < 注

Proof of Proposition

A SKETCH PROOF OF THE PROPOSITION

The Setup:

- $k \ge 2$ is even.
- L is the splitting field of $B_k(x)$.
- G is the Galois group of $B_k(x)$.
- \mathfrak{P} be a prime above 2.
- ν_2 on \mathbb{Q}_2 which we extend uniquely to $L_{\mathfrak{P}}$ (also call it ν_2).
- $H = \operatorname{Gal}(L_{\mathfrak{P}}/\mathbb{Q}_2) \subset G$ be the decomposition subgroup corresponding to \mathfrak{P} .

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Theorem

A SKETCH PROOF OF THE PROPOSITION

The Setup:

- $k \ge 2$ is even.
- L is the splitting field of $B_k(x)$.
- G is the Galois group of $B_k(x)$.
- \mathfrak{P} be a prime above 2.
- ν_2 on \mathbb{Q}_2 which we extend uniquely to $L_{\mathfrak{P}}$ (also call it ν_2).
- $H = \operatorname{Gal}(L_{\mathfrak{P}}/\mathbb{Q}_2) \subset G$ be the decomposition subgroup corresponding to \mathfrak{P} .

Vandita Patel

University of Warwick

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Theorem

Proof of Proposition

A SKETCH PROOF OF THE PROPOSITION

The Setup:

- $k \ge 2$ is even.
- L is the splitting field of $B_k(x)$.
- G is the Galois group of $B_k(x)$.
- \mathfrak{P} be a prime above 2.
- ν_2 on \mathbb{Q}_2 which we extend uniquely to $L_{\mathfrak{P}}$ (also call it ν_2).
- $H = \operatorname{Gal}(L_{\mathfrak{P}}/\mathbb{Q}_2) \subset G$ be the decomposition subgroup corresponding to \mathfrak{P} .

Vandita Patel

University of Warwick

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Theorem

< 口 > < 同 >

Proof of Proposition

A SKETCH PROOF OF THE PROPOSITION

The Setup:

- $k \ge 2$ is even.
- L is the splitting field of $B_k(x)$.
- G is the Galois group of $B_k(x)$.
- \mathfrak{P} be a prime above 2.
- ν_2 on \mathbb{Q}_2 which we extend uniquely to $L_{\mathfrak{P}}$ (also call it ν_2).
- $H = \operatorname{Gal}(L_{\mathfrak{P}}/\mathbb{Q}_2) \subset G$ be the decomposition subgroup corresponding to \mathfrak{P} .

Vandita Patel

University of Warwick

Proof of Theorem

Proof of Proposition

A SKETCH PROOF OF THE PROPOSITION

The Setup:

- $k \ge 2$ is even.
- L is the splitting field of $B_k(x)$.
- G is the Galois group of $B_k(x)$.
- \mathfrak{P} be a prime above 2.
- ν_2 on \mathbb{Q}_2 which we extend uniquely to $L_{\mathfrak{P}}$ (also call it ν_2).
- $H = \operatorname{Gal}(L_{\mathfrak{P}}/\mathbb{Q}_2) \subset G$ be the decomposition subgroup corresponding to \mathfrak{P} .

Vandita Patel

University of Warwick

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

An Example 000000

Proof of Theorem

< 口 > < 同 >

A SKETCH PROOF OF THE PROPOSITION

The Setup:

- $k \ge 2$ is even.
- L is the splitting field of $B_k(x)$.
- G is the Galois group of $B_k(x)$.
- \mathfrak{P} be a prime above 2.
- ν_2 on \mathbb{Q}_2 which we extend uniquely to $L_{\mathfrak{P}}$ (also call it ν_2).
- $H = \operatorname{Gal}(L_{\mathfrak{P}}/\mathbb{Q}_2) \subset G$ be the decomposition subgroup corresponding to \mathfrak{P} .

A Brief History The I

An Example 000000

Proof of Theorem

A SKETCH PROOF OF THE PROPOSITION

 $B_k(x) = g(x)h(x)$

where g(x) has degree $k - 2^s$. Label the roots $\{\alpha_1, \ldots, \alpha_{k-2^s}\}$, and h(x) has degree 2^s . Label the roots $\{\beta_1, \ldots, \beta_{2^s}\}$.

- All roots $\subset L_{\beta}$.
- h(x) is irreducible.
- Therefore H acts transitively on β_j .
- Pick $\mu \in H$ such that μ acts freely on the roots of h(x).
- Check it doesn't end up fixing a root of g(x).

Vandita Patel

Perfect Powers that are Sums of Consecutive *k*-th Powers

University of Warwick

<ロト <回ト < 回ト

An Example 000000

Proof of Theorem

"Bad Prime = Extremely Useful Prime!"

The Newton Polygon of $B_k(x)$ for $k = 2^s \cdot t$, $s \ge 1$.

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A Brief History	${f The \ Result}$	An Example 000000	Proof of Theorem	Proof of Proposition
FINDING //				

Let H be a finite group acting transitively on a finite set $\{\beta_1, \ldots, \beta_n\}$. Let $H_i \subset H$ be the stabiliser of β_i and suppose $H_1 = H_2$. Let $\pi : H \to C$ be a surjective homomorphism from H onto a cyclic group C. Then there exists some $\mu \in H$ acting freely on $\{\beta_1, \ldots, \beta_n\}$ such that $\pi(\mu)$ is a generator of C.

- **1** Let $\mathbb{F}_{\mathfrak{P}}$ be the residue field of \mathfrak{P} .
- **2** Let $C = \operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_2)$.
- **3** C is cyclic generated by the Frobenius map: $\bar{\gamma} \to \bar{\gamma}^2$.
- **4** Let $\pi: H \to C$ be the induced surjection.
- **5** Finally use the Lemma.

Vandita Patel

University of Warwick

Image: A math a math

A Brief History	The Result \circ	An Example 000000	Proof of Theorem	Proof of Proposition
FINDING //				

Let H be a finite group acting transitively on a finite set $\{\beta_1, \ldots, \beta_n\}$. Let $H_i \subset H$ be the stabiliser of β_i and suppose $H_1 = H_2$. Let $\pi : H \to C$ be a surjective homomorphism from H onto a cyclic group C. Then there exists some $\mu \in H$ acting freely on $\{\beta_1, \ldots, \beta_n\}$ such that $\pi(\mu)$ is a generator of C.

1 Let $\mathbb{F}_{\mathfrak{P}}$ be the residue field of \mathfrak{P} .

- **2** Let $C = \operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_2)$.
- **3** C is cyclic generated by the Frobenius map: $\bar{\gamma} \to \bar{\gamma}^2$.

・ロト ・ 同ト ・ ヨト

University of Warwick

- 4 Let $\pi: H \to C$ be the induced surjection.
- **5** Finally use the Lemma.

Vandita Patel

A Brief History	$\stackrel{\mathbf{ O}}{\overset{\mathbf{ O}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Com}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Com}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Com}}{\overset{\mathbf{ Com}}{\overset{ \mathbf{ Com}}{{\overset{ \mathbf{ Com}}}{{{{ }{{{{ }} {{{{{ }} { }{{ }} { \\{ }} {{$	An Example 000000	Proof of Theorem	Proof of Proposition
FINDING //				

Let H be a finite group acting transitively on a finite set $\{\beta_1, \ldots, \beta_n\}$. Let $H_i \subset H$ be the stabiliser of β_i and suppose $H_1 = H_2$. Let $\pi : H \to C$ be a surjective homomorphism from H onto a cyclic group C. Then there exists some $\mu \in H$ acting freely on $\{\beta_1, \ldots, \beta_n\}$ such that $\pi(\mu)$ is a generator of C.

- **1** Let $\mathbb{F}_{\mathfrak{P}}$ be the residue field of \mathfrak{P} .
- **2** Let $C = \operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_2)$.
- **3** C is cyclic generated by the Frobenius map: $\bar{\gamma} \to \bar{\gamma}^2$.

Image: A math a math

University of Warwick

- **4** Let $\pi: H \to C$ be the induced surjection.
- **5** Finally use the Lemma.

Vandita Patel

A Brief History	$\stackrel{\mathbf{ O}}{\overset{\mathbf{ O}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Com}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Comp}}{\overset{\mathbf{ Com}}{\overset{\mathbf{ Com}}{\overset{ \mathbf{ Com}}{\overset{ \mathbf{ Com}}{\overset{ \mathbf{ Com}}{\overset{\mathbf{ Com}}{\overset{ \mathbf{ Com}}{{ {\overset{ Com}}{{ {{ { $	An Example 000000	Proof of Theorem	Proof of Proposition
FINDING (

 \mathbf{T} , \mathbf{T} \mathbf{T}

Let H be a finite group acting transitively on a finite set $\{\beta_1, \ldots, \beta_n\}$. Let $H_i \subset H$ be the stabiliser of β_i and suppose $H_1 = H_2$. Let $\pi : H \to C$ be a surjective homomorphism from H onto a cyclic group C. Then there exists some $\mu \in H$ acting freely on $\{\beta_1, \ldots, \beta_n\}$ such that $\pi(\mu)$ is a generator of C.

- **1** Let $\mathbb{F}_{\mathfrak{P}}$ be the residue field of \mathfrak{P} .
- **2** Let $C = \operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_2)$.
- **B** C is cyclic generated by the Frobenius map: $\bar{\gamma} \to \bar{\gamma}^2$.

イロト イヨト イヨト イ

University of Warwick

- 4 Let $\pi: H \to C$ be the induced surjection.
- **5** Finally use the Lemma.

Vandita Patel

A Brief History	The Result \circ	An Example 000000	Proof of Theorem	Proof of Proposition
EINDING				

 \mathbf{T} IN \mathbf{D} IN

Let H be a finite group acting transitively on a finite set $\{\beta_1, \ldots, \beta_n\}$. Let $H_i \subset H$ be the stabiliser of β_i and suppose $H_1 = H_2$. Let $\pi : H \to C$ be a surjective homomorphism from H onto a cyclic group C. Then there exists some $\mu \in H$ acting freely on $\{\beta_1, \ldots, \beta_n\}$ such that $\pi(\mu)$ is a generator of C.

- **1** Let $\mathbb{F}_{\mathfrak{P}}$ be the residue field of \mathfrak{P} .
- **2** Let $C = \operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_2)$.
- **B** C is cyclic generated by the Frobenius map: $\bar{\gamma} \to \bar{\gamma}^2$.

イロト イヨト イヨト イ

University of Warwick

- **4** Let $\pi: H \to C$ be the induced surjection.
- **5** Finally use the Lemma.

Vandita Patel

A Brief History	$ \substack{ \circ \\ \mathbf{The \ Result} } $	An Example 000000	Proof of Theorem	Proof of Proposition
EINDING				

Let H be a finite group acting transitively on a finite set $\{\beta_1, \ldots, \beta_n\}$. Let $H_i \subset H$ be the stabiliser of β_i and suppose $H_1 = H_2$. Let $\pi : H \to C$ be a surjective homomorphism from H onto a cyclic group C. Then there exists some $\mu \in H$ acting freely on $\{\beta_1, \ldots, \beta_n\}$ such that $\pi(\mu)$ is a generator of C.

- **1** Let $\mathbb{F}_{\mathfrak{P}}$ be the residue field of \mathfrak{P} .
- **2** Let $C = \operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_2)$.
- **B** C is cyclic generated by the Frobenius map: $\bar{\gamma} \to \bar{\gamma}^2$.

< D > < A > < B > < B >

University of Warwick

- 4 Let $\pi: H \to C$ be the induced surjection.
- **5** Finally use the Lemma.

Vandita Patel

RECAP: A SKETCH PROOF OF THE PROPOSITION

An Example

 $B_k(x) = g(x)h(x)$

Proof of Theorem

イロト イヨト イヨト

Proof of Proposition

University of Warwick

where g(x) has degree $k - 2^s$. Label the roots $\{\alpha_1, \ldots, \alpha_{k-2^s}\}$, and h(x) has degree 2^s . Label the roots $\{\beta_1, \ldots, \beta_{2^s}\}$.

- All roots $\subset L_{\beta}$.
- h(x) is irreducible.

The Result

- Therefore H acts transitively on β_j .
- Pick $\mu \in H$ such that μ acts freely on the roots of h(x).
- Check it doesn't end up fixing a root of g(x).

Vandita Patel

A Brief History

$$B_k(x) = g(x)h(x)$$

where g(x) has degree $k - 2^s$. Label the roots $\{\alpha_1, \ldots, \alpha_{k-2^s}\}$, and h(x) has degree 2^s . Label the roots $\{\beta_1, \ldots, \beta_{2^s}\}$.

University of Warwick

LEMMA

μ acts freely on the α_i .

- **1** Suppose not. Let α be a root that is fixed by μ .
- **2** $\nu_2(\alpha) = 0$ so let $\bar{\alpha} = \alpha \pmod{\mathfrak{P}}, \ \bar{\alpha} \in \mathbb{F}_{\mathfrak{P}}.$
- **3** α fixed by μ hence $\bar{\alpha}$ fixed by $\langle \pi(\mu) \rangle = C$.
- 4 Hence $\bar{\alpha} \in \mathbb{F}_2$. $f(x) = 2B_k(x) \in \mathbb{Z}_2[x]$.
- 5 $f(\overline{1}) = f(\overline{0}) = \overline{1}$. A contradiction!

Vandita Patel

$$B_k(x) = g(x)h(x)$$

where g(x) has degree $k - 2^s$. Label the roots $\{\alpha_1, \ldots, \alpha_{k-2^s}\}$, and h(x) has degree 2^s . Label the roots $\{\beta_1, \ldots, \beta_{2^s}\}$.

LEMMA

 μ acts freely on the α_i .

- **1** Suppose not. Let α be a root that is fixed by μ .
- **2** $\nu_2(\alpha) = 0$ so let $\bar{\alpha} = \alpha \pmod{\mathfrak{P}}, \ \bar{\alpha} \in \mathbb{F}_{\mathfrak{P}}.$
- **3** α fixed by μ hence $\bar{\alpha}$ fixed by $\langle \pi(\mu) \rangle = C$.
- 4 Hence $\bar{\alpha} \in \mathbb{F}_2$. $f(x) = 2B_k(x) \in \mathbb{Z}_2[x]$.
- 5 $f(\overline{1}) = f(\overline{0}) = \overline{1}$. A contradiction!

Vandita Patel

Perfect Powers that are Sums of Consecutive k-th Powers

University of Warwick

$$B_k(x) = g(x)h(x)$$

where g(x) has degree $k - 2^s$. Label the roots $\{\alpha_1, \ldots, \alpha_{k-2^s}\}$, and h(x) has degree 2^s . Label the roots $\{\beta_1, \ldots, \beta_{2^s}\}$.

University of Warwick

LEMMA

 μ acts freely on the α_i .

- **1** Suppose not. Let α be a root that is fixed by μ .
- **2** $\nu_2(\alpha) = 0$ so let $\bar{\alpha} = \alpha \pmod{\mathfrak{P}}, \ \bar{\alpha} \in \mathbb{F}_{\mathfrak{P}}.$
- **3** α fixed by μ hence $\bar{\alpha}$ fixed by $\langle \pi(\mu) \rangle = C$.
- 4 Hence $\bar{\alpha} \in \mathbb{F}_2$. $f(x) = 2B_k(x) \in \mathbb{Z}_2[x]$.
- 5 $f(\bar{1}) = f(\bar{0}) = \bar{1}$. A contradiction!

Vandita Patel

$$B_k(x) = g(x)h(x)$$

where g(x) has degree $k - 2^s$. Label the roots $\{\alpha_1, \ldots, \alpha_{k-2^s}\}$, and h(x) has degree 2^s . Label the roots $\{\beta_1, \ldots, \beta_{2^s}\}$.

University of Warwick

Lemma

 μ acts freely on the α_i .

1 Suppose not. Let α be a root that is fixed by μ .

2
$$\nu_2(\alpha) = 0$$
 so let $\bar{\alpha} = \alpha \pmod{\mathfrak{P}}, \ \bar{\alpha} \in \mathbb{F}_{\mathfrak{P}}.$

- **3** α fixed by μ hence $\bar{\alpha}$ fixed by $\langle \pi(\mu) \rangle = C$.
- 4 Hence $\bar{\alpha} \in \mathbb{F}_2$. $f(x) = 2B_k(x) \in \mathbb{Z}_2[x]$.
- 5 $f(\overline{1}) = f(\overline{0}) = \overline{1}$. A contradiction!

Vandita Patel

$$B_k(x) = g(x)h(x)$$

where g(x) has degree $k - 2^s$. Label the roots $\{\alpha_1, \ldots, \alpha_{k-2^s}\}$, and h(x) has degree 2^s . Label the roots $\{\beta_1, \ldots, \beta_{2^s}\}$.

University of Warwick

Lemma

 μ acts freely on the α_i .

1 Suppose not. Let α be a root that is fixed by μ .

2
$$\nu_2(\alpha) = 0$$
 so let $\bar{\alpha} = \alpha \pmod{\mathfrak{P}}, \ \bar{\alpha} \in \mathbb{F}_{\mathfrak{P}}.$

- **3** α fixed by μ hence $\bar{\alpha}$ fixed by $\langle \pi(\mu) \rangle = C$.
- 4 Hence $\bar{\alpha} \in \mathbb{F}_2$. $f(x) = 2B_k(x) \in \mathbb{Z}_2[x]$.
- 5 $f(\bar{1}) = f(\bar{0}) = \bar{1}$. A contradiction!

Vandita Patel

 $_{\rm O}^{\rm The \ Result}$

An Example 000000

Proof of Theorem

Proof of Proposition

THANK YOU FOR LISTENING!

Vandita Patel

University of Warwick
A Brief History The Result An Example October October

Solving the equations for k = 2

$$d\left(\left(x + \frac{d+1}{2}\right)^2 + \frac{(d-1)(d+1)}{12}\right) = y^p.$$
$$X^2 + C \cdot 1^p = (1/d)y^p$$

Vandita Patel

University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers

A Brief History

The Result \circ

An Example 000000

Proof of Theorem

Proof of Proposition

Solving the equations for k = 2

d	Equation	Level	Dimension
6	$2y^p - 5 \times 7 = 3(2x+7)^2$	$2^7 \times 3^2 \times 5 \times 7$	480
11	$11^{p-1}y^p - 2 \times 5 = (x+6)^2$	$2^7 \times 5 \times 11$	160
13	$13^{p-1}y^p - 2 \times 7 = (x+7)^2$	$2^7 \times 7 \times 13$	288
22	$2 \times 11^{p-1}y^p - 7 \times 23 = (2x+23)^2$	$2^7 \times 7 \times 11 \times 23$	5,280
23	$23^{p-1}y^p - 2^2 \times 11 = (x+12)^2$	$2^3 \times 11 \times 23$	54
26	$2 \times 13^{p-1}y^p - 3^2 \times 5^2 = (2x+27)^2$	$2^7 \times 3 \times 5 \times 13$	384
33	$11^{p-1}y^p - 2^4 \times 17 = 3(x+17)^2$	$2^3 \times 3^2 \times 11 \times 17$	200
37	$37^{p-1}y^p - 2 \times 3 \times 19 = (x+19)^2$	$2^7 \times 3 \times 19 \times 37$	5,184
39	$13^{p-1}y^p - 2^2 \times 5 \times 19 = 3(x+20)^2$	$2^3 \times 3^2 \times 5 \times 13 \times 19$	1,080
46	$2 \times 23^{p-1}y^p - 3^2 \times 5 \times 47 = (2x+47)^2$	$2^7 \times 3 \times 5 \times 23 \times 47$	32,384
47	$47^{p-1}y^p - 2^3 \times 23 = (x+24)^2$	$2^5 \times 23 \times 47$	1,012
59	$59^{p-1}y^p - 2 \times 5 \times 29 = (x+30)^2$	$2^7 \times 5 \times 29 \times 59$	25,984

Vandita Patel

University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers

A Brief History

 $_{\rm O}^{\rm The \ Result}$

An Example 000000

Proof of Theorem

Proof of Proposition

Solving the equations for k = 4

d	Equation	Level	Dimension
5	$y^p + 2 \times 73 = 5(X)^2$	$2^7 \times 5^2 \times 73$	5,472
6	$y^p + 7 \times 53 = 6(X)^2$	$2^8 \times 3^2 \times 7 \times 53$	12,480
7	$7^{p-1}y^p + 2^2 \times 29 = (X)^2$	$2^3 \times 7 \times 29$	42
10	$y^p + 3 \times 11 \times 149 = 10(X)^2$	$2^8 \times 5^2 \times 3 \times 11 \times 149$	449,920
13	$13^{p-1}y^p + 2 \times 7 \times 101 = (X)^2$	$2^7 \times 7 \times 13 \times 101$	28,800
14	$7^{p-1}y^p + 13 \times 293 = 2(X)^2$	$2^8 \times 7 \times 13 \times 293$	168,192
15	$y^p + 2^3 \times 7 \times 673 = 15(X)^2$	$2^5 \times 3^2 \times 5^2 \times 7 \times 673$	383,040
17	$17^{p-1}y^p + 2^3 \times 3 \times 173 = (X)^2$	$2^5 \times 3 \times 17 \times 173$	5,504
19	$19^{p-1}y^p + 2 \times 3 \times 23 \times 47 = (X)^2$	$2^7 \times 3 \times 19 \times 23 \times 47$	145,728
21	$7^{p-1}y^p + 2 \times 11 \times 1321 = 3(X)^2$	$2^7 \times 3^2 \times 7 \times 11 \times 1321$	1,584,000
26	$13^{p-1}y^p + 3^2 \times 5 \times 1013 = 2(X)^2$	$2^8 \times 3 \times 5 \times 13 \times 1013$	777,216
29	$29^{p-1}y^p + 2 \times 7 \times 2521 = (X)^2$	$2^7 \times 7 \times 29 \times 2521$	1,693,440
30	$y^{p} + 19 \times 29 \times 31 \times 71 = 30(X)^{2}$	$2^8 \times 3^2 \times 5^2 \times 19 \times 29 \times 31 \times 71$	804,384,000

Where X is a quadratic in the original variable x.

Vandita Patel

University of Warwick

Perfect Powers that are Sums of Consecutive k-th Powers