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Abstract. We look at some potential links between totally real
number fields and some theta expansions (these being modular
forms). The literature related to modular forms is rich, and any
links made to totally real number fields could help us to understand
the number field better.
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1. Introduction

The four squares problem, first posed in the Arithmetica of Diophan-
tus, states that any positive integer n can be represented as the sum
of four integer squares. In mathematical notation, we write that there
exists integers w, x, y and z such that n = w2 + x2 + y2 + z2. In 1770,
Lagrange gave a concrete proof for this conjecture. In 1834, Carl Gus-
tav Jacobi looked further into the four squares problem and found an
exact formula for the total number of ways a positive integer n can be
represented as the sum of four squares. His formula can be seen below:

r4(n) = 8
∑

m|n,4-m

m.

Naturally we are then led to asking the question: given positive
integers n and k, in how many ways can n be written as a sum of k
integer squares? In other words we are asked to find,

rk(n) = #{(x1, . . . , xk) ∈ Zk : x21 + · · ·+ x2k = n},
where we call the rk(n) the representation number of n. Lagrange did
not have access to the theory of modular forms during his breakthrough,
and his proof arose through the use of classical methods. However, with
the use of modular forms, one can find some very nice formulae for the
representation numbers, rk(n).

The Jacobi Theta Function (named after Carl Gustav Jacobi since he
was primarily the one investigating them), is defined as the following,

Θ(z) =
∑
n∈Z

qn
2

where q = e2πiz. We can extend this definition to associate a theta
function to more generalised representation numbers, namely by the
following construction,

Θk(z) =
∞∑
n=0

rk(n)qn

and it turns out that these constructions are indeed modular forms.
The next natural question to ask is whether we can generalise this

further to any number field F , where we look at the representation
numbers, RF (n) as the set of integral solutions to some positive definite
quadratic form, which is constructed with respect to the number field
F . In mathematical notation, we can write,

RF (n) = #{(x1, . . . , xk) ∈ Zk : Q(x1, . . . , xk) = n}



FIRST YEAR PHD REPORT 3

where n and k are positive integers, and k is defined to be the degree
of the number field. We also have Q as a positive definite quadratic
form in k variables, with integral coefficients.

Analogous to the constructions of Jacobi, we can construct further
theta series by the following,

ΘF (z) =
∞∑
n=0

RF (n)qn

where once again, we have q = e2πiz.
The main question posed now is: given a number field, F = Q(θ) for

some algebraic integer θ, can we find a unique modular form associated
to it? Moreover given a modular form, can we then find the unique
number field associated to it?

The motivation behind such a question is that in forming such links,
should they have a one-to-one correspondence, we can make use of the
extensive literature and theory related to modular forms to then per-
haps hope to understand generalised number fields a bit better. How-
ever, should one not be able to establish such links, then the question
would then be whether any links between generalised number fields
and modular forms can tell us anything at all about initial number
field i.e. can we perhaps group certain number fields together, as if
almost ‘classifying’ them in some sense.

In this report, we shall be looking primarily at three main topics in
number theory. We cover some algebraic number theory, some theory
about integral solutions to quadratic forms, and some theory about
modular forms.

We primarily use [Stewart and Tall(1987)] as our main source to re-
call definitions and notation related to algebraic number theory.

We shall also be needing some theory related to modular forms.
[Diamond and Shurman(2005)] is an excellent text for a beginner to
the course, and [Hanke(2013)] provides us with some useful results to
relate quadratic forms and modular forms. We shall summarise some of
the main results from both of these sources in Section 4 - Background
Material.
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2. Construction of a generalised Theta expansion

We let K be a totally real number field of degree n. Then K = Q(θ)
for some algebraic integer θ. We denote the ring of integers of the field
K by OK . Now let σ1, . . . , σn be the n distinct monomorphisms of K
such that σi : K ↪→ R for i = 1, . . . , n.

We can construct a positive definite quadratic form which we denote
as Q as stated below using an element α ∈ OK :

Q = [σ1(α)]2 + [σ2(α)]2 + · · ·+ [σn(α)]2.

Note here that we write the element α in terms of a Z-basis, i.e.
we let {ζ1, ζ2, . . . , ζn} be a set of generators of OK and so we have
α = a1ζ1 + a2ζ2 + · · ·+ anζn where ai ∈ Z for all i = 1, . . . , n. Thus the
quadratic form Q has variables a1, . . . , an and the coefficients of Q are
in Z.

We can count the number of integer solutions to the quadratic form
Q = m where m ∈ N. We denote the number of integral solutions as
RQ(m), i.e.

RQ(m) = #{a ∈ Zm|Q(a) = m}.

We now look at a series expansion where we let RQ(m) be the coeffi-
cients.

Θ(z) =
∞∑
m=0

RQ(m) · qm

where q = e2πiz. This is in fact a modular form, and we shall call it a
theta expansion from here on.
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3. A Worked Example - Quadratic Fields

In this section, we shall explicitly look at K = Q(
√
d) where d is

squarefree and a strict positive integer. Here, K is a totally real num-
ber field of degree 2. To do so, we follow the steps outlined in the
introduction to attempt to arrive at the theta series for the totally real
number field K.

We shall need a very useful theorem, as stated and proved in
[Stewart and Tall(1987)], page 67.

Theorem 3.1. Let d be a squarefree rational integer (i.e. d ∈ Z).

Then the integers of K = Q(
√
d), which we denote as OK, are:

(a) Z[
√
d] if d 6≡ 1 (mod 4)

(b) Z
[
1
2

+ 1
2

√
d
]

if d ≡ 1 (mod 4).

We should remark at this stage that we shall call an element of Z a
rational integer, and an element of OK an integer.

3.1. Case d 6≡ 1 (mod 4). First, we shall consider the totally real

number field K = Q(
√
d) in the case where d 6≡ 1 (mod 4). In this

case, we have OK = 〈1,
√
d〉 and so any element α ∈ OK can be written

as

α = a1 + a2
√
d

with a1, a2 ∈ Z.
Recall that the distinct monomorphisms of K are:

• σ1 : K 7−→ R
σ1(a+ b

√
d) = a+ b

√
d

• σ2 : K 7−→ R
σ1(a+ b

√
d) = a− b

√
d

where a, b ∈ Q and the embeddings map to R since we are looking at
a totally real number field.

Now we can construct a generalised quadratic form Q as follows:

Q(a1, a2) = [σ1(α)]2 + [σ2(α)]2

= [a1 + a2
√
d]2 + [a1 − a2

√
d]2

= 2a21 + 2da22

= [Tr(α)]2 − 2Nm(α). (3.1)

where we define the Trace (Tr) and Norm (Nm) as follows:
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Definition 3.1. Let α ∈ K where K is a number field of degree n. Let
σi for i = 1, . . . , n be the n distinct monomorphisms of K. Then we
define the Norm and Trace as follows:

Tr(α) =
∑
i

σi(α)

Nm(α) =
∏
i

σi(α).

In this specific case, we can calculate the norm and trace of an ar-
bitrary element α ∈ OK to deduce that the identity given in Equa-
tion (3.1) is true.

Tr(α) =
2∑
i=1

σi(α)

= a1 + a2
√
d+ a1 − a2

√
d

= 2a1.

Nm(α) =
2∏
i=1

σi(α)

= (a1 + a2
√
d)(a1 − a2

√
d)

= 2a21 − 2da22.

Next, we are to calculate the number of integer solutions toQ(a1, a2) =
m for all rational integers m, i.e. we need to calculate the RQ(m).

Let us look at a specific example now. Let us choose d = 3, then
we are looking for the number of integer solutions to the equation:

2a21 + 6a22 = m

which we can rewrite as:

a21 + 3a22 = µ.

We show the first few terms for RQ(µ) in the table below.
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Table 1. The first few terms for RQ(µ)
Q(a1, a2) = µ RQ(µ)

a21 + 3a22 = 0 1
a21 + 3a22 = 1 2
a21 + 3a22 = 2 0
a21 + 3a22 = 3 2
a21 + 3a22 = 4 6
a21 + 3a22 = 5 0
a21 + 3a22 = 6 0
a21 + 3a22 = 7 4
a21 + 3a22 = 8 0
a21 + 3a22 = 9 2
a21 + 3a22 = 10 0

Notice that we have the relation RQ(2µ) = RQ(m), and of course
RQ(m) = 0 when m is odd.

We can construct the function:

ΘQ(z) :=
∞∑
m=0

RQ(m)qm =
∞∑
µ=0

RQ(2µ)q2µ

≈ 1 + 2q2 + 0q4 + 2q6 + 6q8 + 0q10 + 0q12 + 4q14 + 0q16 + 2q18 + 0q20 + · · ·

This is indeed a modular form, of weight k = 1 and Level N . We
shall see a rigorous argument as to why this is in Section 4 - Background
Material.

3.2. Case d ≡ 1 (mod 4). We now move on to consider the totally

real number field K = Q(
√
d) in the case where d ≡ 1 (mod 4). In

this case, we have OK = 〈1, 1
2

+ 1
2

√
d〉 and so any element α ∈ OK can

be written as

α = a1 + a2

(
1

2
+

1

2

√
d

)
with a1, a2 ∈ Z.

The distinct monomorphisms of K remain the same as the case where
d 6≡ 1 (mod 4) and we shall still call them σ1 and σ2.
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Now we can construct a generalised quadratic form Q as follows:

Q(a1, a2) = [σ1(α)]2 + [σ2(α)]2

=

[
a1 + a2

(
1

2
+

1

2

√
d

)]2
+

[
a1 + a2

(
1

2
− 1

2

√
d

)]2
= 2a21 + 2a1a2 +

(1 + d)

2
a22

= [Tr]2 − 2Nm. (3.2)

where we note that Q(a1, a2) is a quadratic form with integer coeffi-
cients. Since d ≡ 1 (mod 4), this implies that (1 + d)/2 ∈ Z.

Again, we can calculate the norm and trace of an arbitrary element
α ∈ OK to deduce that the identity given in Equation (3.2) is true.

Tr(α) =
2∑
i=1

σi(α)

= a1 + a2

(
1 +
√
d

2

)
+ a1 + a2

(
1−
√
d

2

)
= 2a1 + a2.

Nm(α) =
2∏
i=1

σi(α)

=

(
a1 + a2

(
1 +
√
d

2

))(
a1 + a2

(
1−
√
d

2

))

= a21 + a1a2 +
(1− d)

4
a22.

To summarise, we have the following: Let K be a totally real num-
ber field, with K = Q(

√
d) with d > 0 being a squarefree rational

integer. Then the quadratic form associated to K is

Q(a1, a2) = [Tr]2 − 2Nm.

Next, we are to calculate the number of integer solutions to Q(a1, a2) =
m for all rational integers m, i.e. we need to calculate the RQ(m).
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Let us look at a specific example now. Let us choose d = 5, then
we are looking for the number of integer solutions to the equation:

2a21 + 2a1a2 + 3a22 = m.

We show the first few terms for RQ(m) in the table below.

Table 2. The first few terms for RQ(m)
Q(a1, a2) = m RQ(m)

2a21 + 2a1a2 + 3a22 = 0 1
2a21 + 2a1a2 + 3a22 = 1 0
2a21 + 2a1a2 + 3a22 = 2 2
2a21 + 2a1a2 + 3a22 = 3 4
2a21 + 2a1a2 + 3a22 = 4 0
2a21 + 2a1a2 + 3a22 = 5 0
2a21 + 2a1a2 + 3a22 = 6 0
2a21 + 2a1a2 + 3a22 = 7 4
2a21 + 2a1a2 + 3a22 = 8 2
2a21 + 2a1a2 + 3a22 = 9 0
2a21 + 2a1a2 + 3a22 = 10 2

We can construct the function:

ΘQ(z) :=
∞∑
m=0

RQ(m)qm

≈ 1 + 0q + 2q2 + 4q3 + 0q4 + 0q5 + 0q6 + 4q7 + 2q8 + 0q9 + 2q10 + · · ·
Again, we see that this is a modular form of weight k = 1 and level

N . We shall see a rigorous argument as to why this is in Section 4 -
Background Material.

Some further questions which arise through this worked example are:

• A proof which shows that using the representation numbers as
the coefficients of some type of Fourier expansion is indeed a
modular form.
• Generalisation to other totally real number fields?
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4. Background Material

To make further progress with the problem we shall be needing some
theory related to modular forms. We primarily use [Diamond and Shurman(2005)]
for basic definitions, and [Hanke(2013)] for details on the relationship
between quadratic forms and modular forms.

4.1. Some Basic Definitions and Notation. We begin by outlining
some basic definitions, notation and theorems to form a foundation for
us to then understand and define a modular form.

Definition 4.1. Let H = {z ∈ C | =(z) > 0} denote the complex upper
half plane.

Definition 4.2. Let γ ∈ SL2(R) where γ =

(
a b
c d

)
. We define the

map

SL2(R)×H 7→ H

(γ, z) 7→ γ · z =
az + b

cz + d

which is the group action of SL2(R) on H.

Definition 4.3. Let f be a meromorphic function on H, and let k ∈ Z.
We say that f is weakly modular of weight k if:

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all z ∈ H and

(
a b
c d

)
∈ SL2(Z).

Some notation: We have the slash action,

(f |kγ)(z) = (cz + d)−k · f
(
az + b

cz + d

)
.

Definition 4.4. A modular form of weight k is a holomorphic function
f : H → C which is weakly modular of weight k and holomorphic at
infinity.

A modular form can be expressed as a convergent power series (Lau-
rent Series) which is usually called the q-expansion of f ,

f(z) :=
∞∑
n=0

anq
n

where q = e2πiz.
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Definition 4.5. Let N be a positive integer. The principal congruence
subgroup of level N is the group:

Γ(N) =

{
γ ∈ SL2(Z)

∣∣∣∣γ ≡ ( 1 0
0 1

)
(mod N)

}
.

A congruence subgroup of SL2(Z) is a subgroup Γ ⊆ SL2(Z) such that
Γ(N) ⊆ Γ for some N ≥ 1. The least such N is called the LEVEL of
Γ.

Definition 4.6. Let Γ be a congruence subgroup. The set of CUSPS
of Γ is the set Cusps(Γ) := Γ \ P1(Q) of Γ-orbits in P1(Q). Some
notation: P1(Q) = Q ∪ {∞} is called the projective line over Q.

Definition 4.7. Let f be a meromorphic function on H, let Γ be a
congruence subgroup and let k be an integer. We say that f is weakly
modular of weight k for the group Γ (of level Γ or level N) if f satisfies
f |kγ = f for all γ ∈ Γ.

A modular form of weight k for the group Γ is a holomorphic func-
tion, f : H→ C, weakly modular of weight k for Γ and holomorphic at
all cusps of Γ. If f vanishes at all cusps of Γ then it is called a CUSP
FORM (of weight k for Γ).

4.2. Relating Quadratic Forms and Modular Forms. Recall that
Q is a positive definite quadratic form by construction. Then we know
thatRQ(m) <∞, which we shall need to construct meaningful modular
forms.

Then, we can define the Theta Expansion of Q as a series expansion:

ΘQ(z) :=
∞∑
m=0

RQ(m)e2πizm =
∞∑
m=0

RQ(m)qm.

Firstly, we shall need to show that this series has some properties
with respect to convergence, and the following Lemma helps us to es-
tablish this.

Lemma 4.1. The Fourier Series f(z) :=
∑∞

m=0 amq
m converges abso-

lutely and uniformly on compact subsets of H to a holomorphic function
f : H → C if all of the coefficients, am ∈ C satisfy |am| ≤ Cmr for
some constant C > 0 and some r > 0.

For the proof, one can use [Hanke(2013)] which in turn references
[Miyake and Maeda(1989)] - Lemma 4.3.3 page 117.

Theorem 4.1. The Theta series, ΘQ(z) of a positive definite integer-
valued quadratic form Q converges absolutely and uniformly to a holo-
morphic function f : H→ C.
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Proof. Since Q is a positive definite quadratic form, we know that the
number of integer solutions to Q are bounded. The solutions corre-
spond to the number of lattice points in a smooth bounded region of
Rn and so we have

∑M
i=0RQ(i) < CMn for some constant C. Therefore,

we have RQ(m) < C1M
n−1 for some constant C1, and by Lemma 4.1,

we have ΘQ(z) converges absolutely and uniformly to a holomorphic
function when z ∈ H. �

Clearly, by the definition of ΘQ(z), we have ΘQ(z) = ΘQ(z + 1).
In the special case whereQ = x2, we have ΘQ(−1/4z) =

√
−2izΘQ(z)

and ΘQ(z) = ΘQ(z + 1). (Θ in this case is famously known as Ja-
cobi’s Theta Series). A proof of this can be found on page 25 of
[Bruinier et al.(2008)Bruinier, van der Geer, Harder, and Zagier].

Theorem 4.2. For all

(
a b
c d

)
∈ SL2(Z) such that 4 | c, we have

ΘQ

(
az + b

cz + d

)
= ε−1d

(
c

d

)√
cz + dΘQ(z)

where Q = x2, −π/2 < arg(
√
z) ≤ π/2,

εd =

{
1 if d ≡ 1 (mod 4);
i if d ≡ 3 (mod 4).

and

(
c

d

)
=


(
c

d

)
if c > 0 or d > 0;

−
(
c

d

)
if both c < 0, d < 0.

We can now generalise for a generic quadratic form Q.

Theorem 4.3. Suppose that Q is a non-degenerate positive definite
quadratic form over Z in n variables, with level N . Then for all(
a b
c d

)
∈ SL2(Z) such that N | c, we have

ΘQ

(
az + b

cz + d

)
=

(
det(Q)

d

)[
ε−1d

(
c

d

)√
cz + d

]n
ΘQ(z)

where
√

(z), εd,

(
c

d

)
are defined as in the previous theorem.

Corollary 4.1. ΘQ(z) is a modular form of weight n/2 where n is
the degree of the number field we began with (and hence also the num-
ber of variables in the constructed quadratic form). ΘQ(z) has level N
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and character χ(·) =
(

(−1)bn/2c det(Q)
·

)
, with respect to the trivial multi-

plier system ε(γ, k) := 1 when n is even, and with respect to the theta

multiplier system ε(γ, k) := ε−1d

(
c

d

)
when n is odd.

We make a final remark here to say that the level N of the modular
form is the same as the level of the quadratic form Q.
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5. Part [B] - description of academic activities

The aim of this section is to outline and describe my academic ac-
tivities for the 2013-2014 academic year.

First we shall list all of the courses and seminars/study groups at-
tended, marking out those which were examined.

• TCC - Local Fields (University of Bristol), examined
• MA4H9 - Modular Forms, examined
• MA426 - Elliptic Curves, examined
• Algebraic Geometry for Number Theory (Study Group)
• TCC - Modular Curves
• Mumford Curves (Study Group)
• Galois Cohomology (Study Group)
• attendance at Number Theory Seminar, every Monday during

term time
• attendance at Number Theory group meetings - held weekly

during term time

Below is a list of books and papers read during the first year of the
PhD.

• Algebraic Number Theory - Ian Stewart
• Galois Theory - Ian Stewart
• The Collision of Quadratic Fields, Binary Quadratic Forms, and

Modular Forms - Karen Smith - can be found at the following
page: http://www.math.oregonstate.edu/ swisherh/KarenSmith.pdf
• A First Course in Modular Forms - Diamond and Shurman (first

couple of chapters)
• Quadratic Forms and Automorphic Forms, Arizona Winter School

notes, Jonathan Hanke - can be found at the follwing page:
http://swc.math.arizona.edu/aws/2009/09HankeNotes.pdf


