On the Equation $F_n + 2 = y^p$

Vandita Patel (Warwick)

joint work with Michael Bennett (British Columbia) and Samir Siksek (Warwick)

November 25, 2014

・ロト ・日下 ・ モト

University of Warwick

Vandita Patel

Vandita Patel

University of Warwick

FIRST DEFINITIONS

DEFINITION

The Fibonacci Sequence is defined by the following recurrence relation:

$$F_{n+2} = F_{n+1} + F_n$$

with $F_0 = 0, F_1 = 1$.

The first few terms of the Fibonacci Sequence are:-

▲ロト ▲□ト ▲ヨト ▲ヨト 三ヨ - 釣んの

University of Warwick

Vandita Patel

FIRST DEFINITIONS

DEFINITION

The Fibonacci Sequence is defined by the following recurrence relation:

$$F_{n+2} = F_{n+1} + F_n$$

with $F_0 = 0, F_1 = 1$.

The first few terms of the Fibonacci Sequence are:-

F_{-5}	F_{-4}	F_{-3}	F_{-2}	F_{-1}	F_0	F_1	F_2	F_3	F_4	F_5	F_6
					0	1	1	2	3	5	8

University of Warwick

Vandita Patel

FIRST DEFINITIONS

DEFINITION

The Fibonacci Sequence is defined by the following recurrence relation:

$$F_{n+2} = F_{n+1} + F_n$$

with $F_0 = 0, F_1 = 1$.

The first few terms of the Fibonacci Sequence are:-

F_{-5}	F_{-4}	F_{-3}	F_{-2}	F_{-1}	F_0	F_1	F_2	F_3	F_4	F_5	F_6
5	-3	2	-1	1	0	1	1	2	3	5	8

<ロト <回ト < 回ト < 国

University of Warwick

Vandita Patel

PREVIOUS RESULTS ...

Theorem (Bugeaud, Mignotte and Siksek)

The only perfect powers of the Fibonacci sequence are, for $n \ge 0$,

$$F_0 = 0, F_1 = F_2 = 1, F_6 = 8 \text{ and } F_{12} = 144.$$

Here we find integer solutions (n, y, p) to the equation $F_n = y^p$.

イロト イヨト イヨト イ

University of Warwick

PREVIOUS RESULTS ...

THEOREM (BUGEAUD, MIGNOTTE AND SIKSEK)

The only non-negative integer solutions (n, y, p) to $F_n \pm 1 = y^p$ are

$$F_{0} + 1 = 0 + 1 = 1$$

$$F_{4} + 1 = 3 + 1 = 2^{2}$$

$$F_{6} + 1 = 8 + 1 = 3^{2}$$

$$F_{1} - 1 = 1 - 1 = 0$$

$$F_{2} - 1 = 1 - 1 = 0$$

$$F_{3} - 1 = 2 - 1 = 1$$

$$F_{5} - 1 = 5 - 1 = 2^{2}.$$

Vandita Patel

On the Equation $F_n + 2 = y^p$

University of Warwick

PREVIOUS RESULTS ...

We can use the factorisation:

$$F_{4k} + 1 = F_{2k-1}L_{2k+1} = y^{p}$$

$$F_{4k+1} + 1 = F_{2k+1}L_{2k} = y^{p}$$

$$F_{4k+2} + 1 = F_{2k+2}L_{2k} = y^{p}$$

$$F_{4k+3} + 1 = F_{2k+1}L_{2k+2} = y^{p}$$

For *n* odd, we do have a factorisation for $F_n + 2 = y^p$.

イロト イロト イヨト

Vandita Patel

 $F_n = y^p \dots$

Finding the solutions of $F_n = y^p$.

	Method and Steps	\mathbf{Result}
1.	Equation	$F_n = y^p$
2.	Associate an Elliptic Curve to it	$E_n := Y^2 = X^3 + L_n X^2 - X$
3.	NewForm Associated to it	NewForm Level 20 (1)
4.	Corresponding Elliptic Curve	$E := Y^2 = X^3 + X^2 - X$
5.	Congruences	Points on $E \mod m$
6.	Lower Bounds for solutions	if $n > 1$ then $n > 10^{9000}$
7.	Upper Bounds for solutions	$n < 10^{9000}$

$$a_m(E_n) \equiv a_m(E) \mod p$$

イロト イヨト イヨト イヨト

2

University of Warwick

Vandita Patel

 $F_n = y^p \dots$

Finding the solutions of $F_n = y^p$.

	Method and Steps	Result
1.	Equation	$F_n = y^p$
2.	Associate an Elliptic Curve to it	$E_n := Y^2 = X^3 + L_n X^2 - X$
3.	NewForm Associated to it	NewForm Level 20 (1)
4.	Corresponding Elliptic Curve	$E := Y^2 = X^3 + X^2 - X$
5.	Congruences	Points on $E \mod m$
6.	Lower Bounds for solutions	if $n > 1$ then $n > 10^{9000}$
7.	Upper Bounds for solutions	$n < 10^{9000}$

$$a_m(E_n) \equiv a_m(E) \mod p$$

(日)、

2

University of Warwick

Vandita Patel

 $F_n = y^p \dots$

Finding the solutions of $F_n = y^p$.

	Method and Steps	Result
1.	Equation	$F_n = y^p$
2.	Associate an Elliptic Curve to it	$E_n := Y^2 = X^3 + L_n X^2 - X$
3.	NewForm Associated to it	NewForm Level 20 (1)
4.	Corresponding Elliptic Curve	$E := Y^2 = X^3 + X^2 - X$
5.	Congruences	Points on $E \mod m$
6.	Lower Bounds for solutions	if $n > 1$ then $n > 10^{9000}$
7.	Upper Bounds for solutions	$n < 10^{9000}$

 $a_m(E_n) \equiv a_m(E) \mod p$

(日)、

3

University of Warwick

Vandita Patel

AN OVERVIEW ...

Finding the solutions of $F_n + 2 = y^p$.

	Method and Steps	Result
1.	Equation	$F_n + 2 = y^p$
2.	Associate an Elliptic Curve to it	$E_n := Y^2 = X^3 + 2\mu X^2 + 6X$
3.	NewForm Associated to it	Hilbert Newform
4.	Corresponding Elliptic Curve(s)	?
5.	Congruences	?
6.	Lower Bounds for solutions	?
7.	Upper Bounds for solutions	?

イロト イヨト イヨト イヨト

University of Warwick

Vandita Patel

PRELIMINARIES

Let
$$\epsilon = \frac{1+\sqrt{5}}{2}$$
 and $\bar{\epsilon} = \frac{1-\sqrt{5}}{2}$. By Binet's formula,
 $F_n = \frac{\epsilon^n - \bar{\epsilon}^n}{\sqrt{5}}.$

$$F_n + 2 = y^p$$
$$\frac{\epsilon^n - \overline{\epsilon}^n}{\sqrt{5}} + 2 = y^p$$
$$\epsilon^{2n} - (\epsilon\overline{\epsilon})^n + 2\epsilon^n\sqrt{5} = \epsilon^n\sqrt{5}y^p$$
$$(\epsilon^n - \sqrt{5})^2 - 1 - 5 = \epsilon^n\sqrt{5}y^p$$
$$\mu^2 - 6 = \epsilon^n\sqrt{5}y^p$$

University of Warwick

2

(日) (四) (日) (日) (日)

Vandita Patel

AN OVERVIEW ...

Finding the solutions of $F_n + 2 = y^p$.

	Method and Steps	\mathbf{Result}
1.	Equation	$F_n + 2 = y^p$
2.	Associate an Elliptic Curve to it	$E_n := Y^2 = X^3 + 2\mu X^2 + 6X$
3.	NewForm Associated to it	Hilbert Newform
4.	Corresponding Elliptic Curve(s)	?
5.	Congruences	?
6.	Lower Bounds for solutions	?
7.	Upper Bounds for solutions	?

(日) (日) (日) (日) (日)

University of Warwick

Vandita Patel

Elliptic Curves ...

How do we find an elliptic curve? What is an elliptic curve?

 $Y^2 = X^3 + aX + b$

where the curve is non-singular (smooth) and $a, b \in \mathbb{R}$.

<ロト <四ト < 三</td>

University of Warwick

Vandita Patel

Elliptic Curves ...

<ロト < 回 > < 目 > < 目 > 目 の Q C University of Warwick

Vandita Patel

$$\mu^2 - 6 = \epsilon^n \sqrt{5} y^p, \quad \mu = \epsilon^n - \sqrt{5}, \quad \epsilon = (1 + \sqrt{5})/2$$

Model	Example
$E: Y^2 = X^3 + AX^2 + BX$	$E_n := Y^2 = X^3 + 2\mu X^2 + 6X$
$\Delta_E = -16 \cdot B^2 (A^2 - 4B)$	$\Delta_{E_n} = 2^8 \cdot 3^2 \cdot \epsilon^n \cdot \sqrt{5} \cdot y^p$
\mathcal{N}_E - Tate's Algorithm	$\mathcal{N}_{E_n} = (2)^7 \cdot (3) \cdot (\sqrt{5}) \cdot \prod_{\mathfrak{q} y, \mathfrak{q} \neq (\sqrt{5})} \mathfrak{q}.$

(日)、

2

University of Warwick

Vandita Patel

$$\mu^2 - 6 = \epsilon^n \sqrt{5} y^p, \quad \mu = \epsilon^n - \sqrt{5}, \quad \epsilon = (1 + \sqrt{5})/2$$

Model	Example
$E: Y^2 = X^3 + AX^2 + BX$	$E_n := Y^2 = X^3 + 2\mu X^2 + 6X$
$\Delta_E = -16 \cdot B^2 (A^2 - 4B)$	$\Delta_{E_n} = 2^8 \cdot 3^2 \cdot \epsilon^n \cdot \sqrt{5} \cdot y^p$
\mathcal{N}_E - Tate's Algorithm	$\mathcal{N}_{E_n} = (2)^7 \cdot (3) \cdot (\sqrt{5}) \cdot \prod_{\mathfrak{q} y,\mathfrak{q}\neq(\sqrt{5})} \mathfrak{q}.$

University of Warwick

2

(日)、

Vandita Patel

AN OVERVIEW ...

Finding the solutions of $F_n + 2 = y^p$.

	Method and Steps	\mathbf{Result}
1.	Equation	$F_n + 2 = y^p$
2.	Associate an Elliptic Curve to it	$E_n := Y^2 = X^3 + 2\mu X^2 + 6X$
3.	NewForm Associated to it	Hilbert Newform
4.	Corresponding Elliptic Curve(s)	?
5.	Congruences	?
6.	Lower Bounds for solutions	?
7.	Upper Bounds for solutions	?

イロト イヨト イヨト イヨト

Vandita Patel

NEWFORMS ...

DEFINITION

A NewForm lives in a finite dimensional space, namely $S_k(N)$.

$$f(z) = q + \sum_{n \ge 2} a_n q^n, \quad a_n \in \mathbb{C}, \ q = e^{2\pi i z}$$

DEFINITION

A Hilbert NewForm is a generalisation of newforms to functions of 2 or more variables.

<四> <問> <問> < 因> < 因 > < 因

University of Warwick

Vandita Patel

$$E_n := Y^2 = X^3 + 2\mu X^2 + 6X$$
$$\mathcal{N}_{E_n} = (2)^7 \cdot (3) \cdot (\sqrt{5}) \cdot \prod_{\mathfrak{q} \mid y, \mathfrak{q} \neq (\sqrt{5})} \mathfrak{q}$$

Hilbert Newform that is new with level

$$\mathcal{N} = (2)^7 \cdot (3) \cdot (\sqrt{5}).$$

(日) (四) (王) (王)

University of Warwick

There are 6144 newforms!!!!

Vandita Patel

Further Work ...

Finding the solutions of $F_n + 2 = y^p$.

	Method and Steps	Result
1.	Equation	$F_n + 2 = y^p$
2.	Associate an Elliptic Curve to it	$E_n := Y^2 = X^3 + 2\mu X^2 + 6X$
3.	NewForm Associated to it	Hilbert Newform (6144)
4.	Corresponding Elliptic Curve(s)	? E_{α}
5.	Congruences	? Points mod m on E_{α}
6.	Lower Bounds for solutions	?
7.	Upper Bounds for solutions	?

$$a_m(E_n) \equiv a_m(E_\alpha) \mod p$$

University of Warwick

Vandita Patel

THANK YOU FOR LISTENING...

Vandita Patel

University of Warwick