On the Equation $F_{n}+2=y^{p}$

Vandita Patel (Warwick)

joint work with

Michael Bennett (British Columbia) and Samir Siksek (Warwick)

November 25, 2014

On the Equation $F_{n}+2=y^{p}$

Vandita Patel

First Definitions ...

Definition

The Fibonacci Sequence is defined by the following recurrence relation:

$$
F_{n+2}=F_{n+1}+F_{n}
$$

with $F_{0}=0, F_{1}=1$.

The first few terms of the Fibonacci Sequence are:-

F_{-5}	F_{-4}	F_{-3}	F_{-2}	F_{-1}	F_{0}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}
					0	1	1	2	3	5	8

On the Equation $F_{n}+2=y^{p}$

First Definitions ...

DEFINITION

The Fibonacci Sequence is defined by the following recurrence relation:

$$
F_{n+2}=F_{n+1}+F_{n}
$$

with $F_{0}=0, F_{1}=1$.

The first few terms of the Fibonacci Sequence are:-

F_{-5}	F_{-4}	F_{-3}	F_{-2}	F_{-1}	F_{0}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}
					0	1	1	2	3	5	8

First Definitions ...

DEFINITION

The Fibonacci Sequence is defined by the following recurrence relation:

$$
F_{n+2}=F_{n+1}+F_{n}
$$

with $F_{0}=0, F_{1}=1$.

The first few terms of the Fibonacci Sequence are:-

F_{-5}	F_{-4}	F_{-3}	F_{-2}	F_{-1}	F_{0}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}
5	-3	2	-1	1	0	1	1	2	3	5	8

Previous Results ...

Theorem (Bugeaud, Mignotte and Siksek)

The only perfect powers of the Fibonacci sequence are, for $n \geq 0$,

$$
F_{0}=0, F_{1}=F_{2}=1, F_{6}=8 \text { and } F_{12}=144 .
$$

Here we find integer solutions (n, y, p) to the equation $F_{n}=y^{p}$.

Previous Results ...

Theorem (Bugeaud, Mignotte and Siksek)

The only non-negative integer solutions (n, y, p) to
$F_{n} \pm 1=y^{p}$ are

$$
\begin{aligned}
& F_{0}+1=0+1=1 \\
& F_{4}+1=3+1=2^{2} \\
& F_{6}+1=8+1=3^{2} \\
& F_{1}-1=1-1=0 \\
& F_{2}-1=1-1=0 \\
& F_{3}-1=2-1=1 \\
& F_{5}-1=5-1=2^{2} .
\end{aligned}
$$

Previous Results ...

We can use the factorisation:

$$
\begin{aligned}
& F_{4 k}+1=F_{2 k-1} L_{2 k+1}=y^{p} \\
& F_{4 k+1}+1=\quad F_{2 k+1} L_{2 k}=y^{p} \\
& F_{4 k+2}+1=\quad F_{2 k+2} L_{2 k}=y^{p} \\
& F_{4 k+3}+1=F_{2 k+1} L_{2 k+2}=y^{p}
\end{aligned}
$$

For n odd,
we do have a factorisation for $F_{n}+2=y^{p}$.

On the Equation $F_{n}+2=y^{p}$

$$
F_{n}=y^{p}
$$

Finding the solutions of $F_{n}=y^{p}$.

Method and Steps Result

1. Equation $F_{n}=y^{p}$
2. Associate an Elliptic Curve to it $E_{n}:=Y^{2}=X^{3}+L_{n} X^{2}-X$
3. NewForm Associated to it

NewForm Level 20 (1)
4. Corresponding Elliptic Curve $\quad E:=Y^{2}=X^{3}+X^{2}-X$
5. Congruences
6. Lower Bounds for solutions
7. Upper Bounds for solutions

$$
a_{m}\left(E_{n}\right) \equiv a_{m}(E) \quad \bmod p
$$

On the Equation $F_{n}+2=y^{p}$
$F_{n}=y^{p}$

Finding the solutions of $F_{n}=y^{p}$.

Method and Steps Result

1.	Equation	$F_{n}=y^{p}$
2.	Associate an Elliptic Curve to it	$E_{n}:=Y^{2}=X^{3}+L_{n} X^{2}-X$
3.	NewForm Associated to it	NewForm Level 20 (1)
4.	Corresponding Elliptic Curve	$E:=Y^{2}=X^{3}+X^{2}-X$
5.	Congruences	Points on $E \bmod m$
6.	Lower Bounds for solutions	if $n>1$ then $n>10^{9000}$
7.	Upper Bounds for solutions	$n<10^{9000}$

$$
a_{m}\left(E_{n}\right) \equiv a_{m}(E) \quad \bmod p
$$

On the Equation $F_{n}+2=y^{p}$

Finding the solutions of $F_{n}=y^{p}$.

Method and Steps Result

1.	Equation	$F_{n}=y^{p}$
2.	Associate an Elliptic Curve to it	$E_{n}:=Y^{2}=X^{3}+L_{n} X^{2}-X$
3.	NewForm Associated to it	NewForm Level 20 (1)
4.	Corresponding Elliptic Curve	$E:=Y^{2}=X^{3}+X^{2}-X$
5.	Congruences	Points on E mod m
6.	Lower Bounds for solutions	if $n>1$ then $n>10^{9000}$
7.	Upper Bounds for solutions	$n<10^{9000}$

$$
a_{m}\left(E_{n}\right) \equiv a_{m}(E) \quad \bmod p
$$

On the Equation $F_{n}+2=y^{p}$

An Overview ...

Finding the solutions of $F_{n}+2=y^{p}$.

	Method and Steps	Result
1.	Equation	$F_{n}+2=y^{p}$
2.	Associate an Elliptic Curve to it	$E_{n}:=Y^{2}=X^{3}+2 \mu X^{2}+6 X$
3.	NewForm Associated to it	Hilbert Newform
4.	Corresponding Elliptic Curve(s)	$?$
5.	Congruences	$?$
6.	Lower Bounds for solutions	$?$
7.	Upper Bounds for solutions	$?$

PRELIMINARIES

Let $\epsilon=\frac{1+\sqrt{5}}{2}$ and $\bar{\epsilon}=\frac{1-\sqrt{5}}{2}$. By Binet's formula,

$$
\begin{aligned}
& F_{n}=\frac{\epsilon^{n}-\bar{\epsilon}^{n}}{\sqrt{5}} \\
& F_{n}+2=y^{p} \\
& \frac{\epsilon^{n}-\bar{\epsilon}^{n}}{\sqrt{5}}+2=y^{p} \\
& \epsilon^{2 n}-(\epsilon \bar{\epsilon})^{n}+2 \epsilon^{n} \sqrt{5}=\epsilon^{n} \sqrt{5} y^{p} \\
&\left(\epsilon^{n}-\sqrt{5}\right)^{2}-1-5=\epsilon^{n} \sqrt{5} y^{p} \\
& \mu^{2}-6=\epsilon^{n} \sqrt{5} y^{p}
\end{aligned}
$$

On the Equation $F_{n}+2=y^{p}$

An Overview ...

Finding the solutions of $F_{n}+2=y^{p}$.

Method and Steps Result

1.	Equation	$F_{n}+2=y^{p}$
2.	Associate an Elliptic Curve to it	$E_{n}:=Y^{2}=X^{3}+2 \mu X^{2}+6 X$
3.	NewForm Associated to it	Hilbert Newform
4.	Corresponding Elliptic Curve(s)	$?$
5.	Congruences	$?$
6.	Lower Bounds for solutions	$?$
7.	Upper Bounds for solutions	$?$

Elliptic Curves ...

How do we find an elliptic curve?
What is an elliptic curve?

$$
Y^{2}=X^{3}+a X+b
$$

where the curve is
non-singular (smooth) and $a, b \in \mathbb{R}$.

On the Equation $F_{n}+2=y^{p}$

Elliptic Curves ...

The Frey Curve ...

$$
\mu^{2}-6=\epsilon^{n} \sqrt{5} y^{p}, \quad \mu=\epsilon^{n}-\sqrt{5}, \quad \epsilon=(1+\sqrt{5}) / 2
$$

Model	Example
$E: Y^{2}=X^{3}+A X^{2}+B X$	$E_{n}:=Y^{2}=X^{3}+2 \mu X^{2}+6 X$
$\Delta_{E}=-16 \cdot B^{2}\left(A^{2}-4 B\right)$	$\Delta_{E_{n}}=2^{8} \cdot 3^{2} \cdot \epsilon^{n} \cdot \sqrt{5} \cdot y^{p}$
\mathcal{N}_{E} - Tate's Algorithm	$\mathcal{N}_{E_{n}}=(2)^{7} \cdot(3) \cdot(\sqrt{5}) \cdot \prod_{q \mid y, q \neq(\sqrt{5})} q$

On the Equation $F_{n}+2=y^{p}$

The Frey Curve ...

$$
\mu^{2}-6=\epsilon^{n} \sqrt{5} y^{p}, \quad \mu=\epsilon^{n}-\sqrt{5}, \quad \epsilon=(1+\sqrt{5}) / 2
$$

Model	Example
$E: Y^{2}=X^{3}+A X^{2}+B X$	$E_{n}:=Y^{2}=X^{3}+2 \mu X^{2}+6 X$
$\Delta_{E}=-16 \cdot B^{2}\left(A^{2}-4 B\right)$	$\Delta_{E_{n}}=2^{8} \cdot 3^{2} \cdot \epsilon^{n} \cdot \sqrt{5} \cdot y^{p}$
$\mathcal{N}_{E}-$ Tate's Algorithm	$\mathcal{N}_{E_{n}}=(2)^{7} \cdot(3) \cdot(\sqrt{5}) \cdot \prod_{\mathfrak{q} \mid y, \mathfrak{q} \neq(\sqrt{5})} \mathfrak{q}$.

An Overview ...

Finding the solutions of $F_{n}+2=y^{p}$.

Method and Steps Result

1.	Equation	$F_{n}+2=y^{p}$
2.	Associate an Elliptic Curve to it	$E_{n}:=Y^{2}=X^{3}+2 \mu X^{2}+6 X$
3.	NewForm Associated to it	Hilbert Newform
4. Corresponding Elliptic Curve(s)	$?$	
5.	Congruences	$?$
6.	Lower Bounds for solutions	$?$
7.	Upper Bounds for solutions	$?$

On the Equation $F_{n}+2=y^{p}$

NewForms ...

Definition

A NewForm lives in a finite dimensional space, namely $S_{k}(N)$.

$$
f(z)=q+\sum_{n \geq 2} a_{n} q^{n}, \quad a_{n} \in \mathbb{C}, \quad q=e^{2 \pi i z}
$$

Definition

A Hilbert NewForm is a generalisation of newforms to functions of 2 or more variables.

On the Equation $F_{n}+2=y^{p}$

Ribet's Level Lowering ...

$$
\begin{gathered}
E_{n}:=Y^{2}=X^{3}+2 \mu X^{2}+6 X \\
\mathcal{N}_{E_{n}}=(2)^{7} \cdot(3) \cdot(\sqrt{5}) \cdot \prod_{\mathfrak{q} \mid y, \mathfrak{q} \neq(\sqrt{5})} \mathfrak{q}
\end{gathered}
$$

Hilbert Newform that is new with level

$$
\mathcal{N}=(2)^{7} \cdot(3) \cdot(\sqrt{5})
$$

There are 6144 newforms!!!!

On the Equation $F_{n}+2=y^{p}$

Further Work ...

Finding the solutions of $F_{n}+2=y^{p}$.

	Method and Steps	Result
1.	Equation	$F_{n}+2=y^{p}$
2.	Associate an Elliptic Curve to it	$E_{n}:=Y^{2}=X^{3}+2 \mu X^{2}+6 X$
3.	NewForm Associated to it	Hilbert Newform (6144)
4.	Corresponding Elliptic Curve(s)	$? E_{\alpha}$
5.	Congruences	$?$ Points mod m on E_{α}
6.	Lower Bounds for solutions	$?$
7.	Upper Bounds for solutions	$?$

$$
a_{m}\left(E_{n}\right) \equiv a_{m}\left(E_{\alpha}\right) \quad \bmod p
$$

On the Equation $F_{n}+2=y^{p}$

Thank you for Listening...

Any questions?

Vandita Patel
University of Warwick
On the Equation $F_{n}+2=y^{p}$

