THE HUNT FOR TOTALLY REAL NUMBER FIELDS

Vandita Patel University of Warwick

YRM 2015

August 17, 2015

THE PROBLEM ...

QUESTION

Given integers n and Δ , can we find all number fields of degree n and discriminant Δ ?

Restrictions:

- **1** Primitive number fields (K primitive if there does not exist L such that $\mathbb{Q} \subsetneq L \subsetneq K$).
- 2 Totally Real Number Fields.

THE PROBLEM ...

QUESTION

Given integers n and Δ , can we find all number fields of degree n and discriminant Δ ?

Restrictions:

- **1** Primitive number fields (K primitive if there does not exist L such that $\mathbb{Q} \subsetneq L \subsetneq K$).
- 2 Totally Real Number Fields.

THE PROBLEM ...

QUESTION

Given integers n and Δ , can we find all number fields of degree n and discriminant Δ ?

Restrictions:

- **1** Primitive number fields (K primitive if there does not exist L such that $\mathbb{Q} \subsetneq L \subsetneq K$).
- 2 Totally Real Number Fields.

Current Method ...

THEOREM (HUNTER'S THEOREM)

Let K be a primitive totally real number field of degree n and discriminant Δ . Then there exists $\alpha \in \mathcal{O}_K \setminus \mathbb{Z}$ such that:

1

$$0 \le Tr(\alpha) \le \frac{n}{2},$$

 2

$$0 \le \sum_{i=1}^{n} \sigma_i(\alpha^2) \le \frac{(Tr(\alpha))^2}{n} + \gamma_{n-1} \left(\frac{|\Delta|}{n}\right)^{\frac{1}{n-1}}.$$

Current Method ...

THEOREM (HUNTER'S THEOREM)

Let K be a primitive totally real number field of degree n and discriminant Δ . Then there exists $\alpha \in \mathcal{O}_K \setminus \mathbb{Z}$ such that:

1

$$0 \le Tr(\alpha) \le \frac{n}{2},$$

 2

$$0 \le \sum_{i=1}^{n} \sigma_i(\alpha^2) \le \frac{(Tr(\alpha))^2}{n} + \gamma_{n-1} \left(\frac{|\Delta|}{n}\right)^{\frac{1}{n-1}}.$$

Current Method ...

THEOREM (HUNTER'S THEOREM)

Let K be a primitive totally real number field of degree n and discriminant Δ . Then there exists $\alpha \in \mathcal{O}_K \setminus \mathbb{Z}$ such that:

1

$$0 \le Tr(\alpha) \le \frac{n}{2},$$

2

$$0 \le \sum_{i=1}^{n} \sigma_i(\alpha^2) \le \frac{(Tr(\alpha))^2}{n} + \gamma_{n-1} \left(\frac{|\Delta|}{n}\right)^{\frac{1}{n-1}}.$$

An Example ...

EXAMPLE

Let n=2 and $\Delta \leq 5$. Find all totally real number fields of degree 2 and discriminant less than or equal to 5. Hunter's Theorem gives us some bounds.

$$0 \le Tr(\alpha) \le \frac{n}{2} = 1,$$

$$0 \le \sum_{i=1}^{n} \sigma_i(\alpha^2) \le \frac{(Tr(\alpha))^2}{n} + \gamma_{n-1} \left(\frac{|\Delta|}{n}\right)^{\frac{1}{n-1}}$$
$$\le \frac{(Tr(\alpha))^2}{2} + \gamma_1 \left(\frac{5}{2}\right)$$

200

EXAMPLE

Let n=2 and $\Delta \leq 5$. Find all totally real number fields of degree 2 and discriminant less than or equal to 5. Hunter's Theorem gives us some bounds.

$$0 \le Tr(\alpha) \le \frac{n}{2} = 1,$$

$$0 \le \sum_{i=1}^{n} \sigma_i(\alpha^2) \le \frac{(Tr(\alpha))^2}{n} + \gamma_{n-1} \left(\frac{|\Delta|}{n}\right)^{\frac{1}{n-1}}$$
$$\le \frac{(Tr(\alpha))^2}{2} + \gamma_1 \left(\frac{5}{2}\right)$$

An Example ...

EXAMPLE

Let n=2 and $\Delta \leq 5$. Find all totally real number fields of degree 2 and discriminant less than or equal to 5. Hunter's Theorem gives us some bounds.

$$0 \le Tr(\alpha) \le \frac{n}{2} = 1,$$

$$0 \le \sum_{i=1}^{n} \sigma_i(\alpha^2) \le \frac{(Tr(\alpha))^2}{n} + \gamma_{n-1} \left(\frac{|\Delta|}{n}\right)^{\frac{1}{n-1}}$$
$$\le \frac{(Tr(\alpha))^2}{2} + \gamma_1 \left(\frac{5}{2}\right)$$

An Example ...

EXAMPLE

if
$$Tr(\alpha) = 0 \longrightarrow Tr(\alpha^2) \le \frac{5}{2}$$

if $Tr(\alpha) = 1 \longrightarrow Tr(\alpha^2) \le \frac{1}{2} + \frac{5}{2} = 3$.

EXAMPLE

$$f(x) = (x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta.$$

- $\mathbf{1} Tr(\alpha) = \alpha + \beta.$
- **2** $\alpha\beta = \frac{(\alpha+\beta)^2 \alpha^2 \beta^2}{2} = \frac{1}{2} \left(Tr(\alpha)^2 Tr(\alpha^2) \right).$
- If $Tr(\alpha) = 0$, then $Tr(\alpha^2) \le 2$ and $\alpha\beta \ge \frac{0-2}{2}$ and so $-1 \le \alpha\beta \le 0$.
- If $Tr(\alpha) = 1$, then $Tr(\alpha^2) \le 3$ and $\alpha\beta \ge \frac{1-3}{2}$ and so $-1 \le \alpha\beta \le 0$.

EXAMPLE

$$f(x) = (x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta.$$

- $Tr(\alpha) = \alpha + \beta.$
- $\alpha \beta = \frac{(\alpha+\beta)^2 \alpha^2 \beta^2}{2} = \frac{1}{2} \left(Tr(\alpha)^2 Tr(\alpha^2) \right).$
- If $Tr(\alpha) = 0$, then $Tr(\alpha^2) \le 2$ and $\alpha\beta \ge \frac{0-2}{2}$ and so $-1 \le \alpha\beta \le 0$.
- 4 If $Tr(\alpha) = 1$, then $Tr(\alpha^2) \le 3$ and $\alpha\beta \ge \frac{1-3}{2}$ and so $-1 \le \alpha\beta \le 0$.

EXAMPLE

$$f(x) = (x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta.$$

- $Tr(\alpha) = \alpha + \beta.$
- $2 \alpha\beta = \frac{(\alpha+\beta)^2 \alpha^2 \beta^2}{2} = \frac{1}{2} \left(Tr(\alpha)^2 Tr(\alpha^2) \right).$
- If $Tr(\alpha) = 0$, then $Tr(\alpha^2) \le 2$ and $\alpha\beta \ge \frac{0-2}{2}$ and so $-1 \le \alpha\beta \le 0$.
- 4 If $Tr(\alpha) = 1$, then $Tr(\alpha^2) \le 3$ and $\alpha\beta \ge \frac{1-3}{2}$ and so $-1 \le \alpha\beta \le 0$.

EXAMPLE

$$f(x) = (x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta.$$

- $Tr(\alpha) = \alpha + \beta.$
- If $Tr(\alpha) = 0$, then $Tr(\alpha^2) \le 2$ and $\alpha\beta \ge \frac{0-2}{2}$ and so $-1 \le \alpha\beta \le 0$.
- If $Tr(\alpha) = 1$, then $Tr(\alpha^2) \le 3$ and $\alpha\beta \ge \frac{1-3}{2}$ and so $-1 \le \alpha\beta \le 0$.

EXAMPLE

$$f(x) = (x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta.$$

- $Tr(\alpha) = \alpha + \beta.$
- **2** $\alpha\beta = \frac{(\alpha+\beta)^2 \alpha^2 \beta^2}{2} = \frac{1}{2} (Tr(\alpha)^2 Tr(\alpha^2)).$
- If $Tr(\alpha) = 0$, then $Tr(\alpha^2) \le 2$ and $\alpha\beta \ge \frac{0-2}{2}$ and so $-1 \le \alpha\beta \le 0$.
- If $Tr(\alpha) = 1$, then $Tr(\alpha^2) \le 3$ and $\alpha\beta \ge \frac{1-3}{2}$ and so $-1 \le \alpha\beta \le 0$.

EXAMPLE

$$x^2 - 0x + 0 \longrightarrow \text{reducible}$$

$$x^2 - 0x - 1 \longrightarrow \text{reducible}$$

$$x^2 - x \longrightarrow \text{reducible}$$

$$||x||^2 - x - 1\sqrt{|x|^2}$$

$$Tr(\alpha^2) = \sum_{i=1}^{d} \sigma_i(\alpha^2) \le \frac{(Tr(\alpha))^2}{n} + \gamma_{n-1} \left(\frac{|\Delta|}{n}\right)^{\frac{1}{n-1}}$$

EXAMPLE

$$x^2 - 0x + 0 \longrightarrow \text{reducible}$$

$$x^2 - 0x - 1 \longrightarrow \text{reducible}$$

$$x^2 - x \longrightarrow \text{reducible}$$

$$||x||^2 - x - 1\sqrt{|x|^2}$$

$$Tr(\alpha^2) = \sum_{i=1}^{d} \sigma_i(\alpha^2) \le \frac{(Tr(\alpha))^2}{n} + \gamma_{n-1} \left(\frac{|\Delta|}{n}\right)^{\frac{1}{n-1}}$$

EXAMPLE

$$x^2 - 0x + 0 \longrightarrow \text{reducible}$$

$$x^2 - 0x - 1 \longrightarrow \text{reducible}$$

$$x^2 - x \longrightarrow \text{reducible}$$

$$|x^2 - x - 1|$$

$$Tr(\alpha^2) = \sum_{i=1}^d \sigma_i(\alpha^2) \le \frac{(Tr(\alpha))^2}{n} + \gamma_{n-1} \left(\frac{|\Delta|}{n}\right)^{\frac{1}{n-1}}$$

EXAMPLE

$$x^2 - 0x + 0 \longrightarrow \text{reducible}$$

$$x^2 - 0x - 1 \longrightarrow \text{reducible}$$

$$x^2 - x \longrightarrow \text{reducible}$$

4
$$x^2 - x - 1$$

$$Tr(\alpha^2) = \sum_{i=1}^d \sigma_i(\alpha^2) \le \frac{(Tr(\alpha))^2}{n} + \gamma_{n-1} \left(\frac{|\Delta|}{n}\right)^{\frac{1}{n-1}}$$

EXAMPLE

$$x^2 - 0x + 0 \longrightarrow \text{reducible}$$

$$x^2 - 0x - 1 \longrightarrow \text{reducible}$$

$$x^2 - x \longrightarrow \text{reducible}$$

4
$$x^2 - x - 1$$

$$Tr(\alpha^2) = \sum_{i=1}^{d} \sigma_i(\alpha^2) \le \frac{(Tr(\alpha))^2}{n} + \gamma_{n-1} \left(\frac{|\Delta|}{n}\right)^{\frac{1}{n-1}}$$

MOTIVATION ...

Primitive degree 8 Number Fields.

$$x^8 - 28x^6 - 28x^5 + 196x^4 + 308x^3 - 224x^2 - 528x - 182$$

$$x^8 - 42x^6 - 56x^5 + 420x^4 + 1092x^3 + 406x^2 - 852x - 609$$

3
$$x^8 - 4x^7 - 28x^6 + 60x^5 + 102x^4 - 20x^3 - 36x^2 - 4x + 1$$

$$4 x^8 - 2x^7 - 34x^6 + 28x^5 + 280x^4 - 210x^3 - 686x^2 + 588x + 49$$

	Δ	НВ	$\min(\operatorname{Tr}(\alpha^2))$	$\operatorname{Dim}(M_4(N))$	$Dim(M_{7/2}(N))$
1.	$2^{18}7^{10}$	130	56	184	152
2.	$2^8 3^{10} 7^8$	133	84	536	864
3.	$2^{16}7^411^6$	157	72	150	124
4.	$2^{12}7^{6}11^{6}$	184	72	150	124

THEOREM (HECKE, SCHOENBERG)

- **1** Let K be a primitive, totally real number field with degree n and discriminant Δ . Let \mathcal{O}_K be its ring of integers, with basis $\{b_1, \ldots, b_n\}$.
- **2** Pick any $\alpha \in \mathcal{O}_K$ i.e. $\alpha = x_1b_1 + \cdots + x_nb_n$.
- 3 Let $Q(\underline{x}) = \sum_{i=1}^{n} \sigma_i(\alpha^2)$.

$$f = \sum_{m=0}^{\infty} R_Q(m) q^m \in M_{n/2}(N, \chi).$$

THEOREM (HECKE, SCHOENBERG)

- **1** Let K be a primitive, totally real number field with degree n and discriminant Δ . Let \mathcal{O}_K be its ring of integers, with basis $\{b_1, \ldots, b_n\}$.
- **2** Pick any $\alpha \in \mathcal{O}_K$ i.e. $\alpha = x_1b_1 + \cdots + x_nb_n$.
- 3 Let $Q(\underline{x}) = \sum_{i=1}^{n} \sigma_i(\alpha^2)$.

$$f = \sum_{m=0}^{\infty} R_Q(m) q^m \in M_{n/2}(N, \chi).$$

THEOREM (HECKE, SCHOENBERG)

- **1** Let K be a primitive, totally real number field with degree n and discriminant Δ . Let \mathcal{O}_K be its ring of integers, with basis $\{b_1, \ldots, b_n\}$.
- **2** Pick any $\alpha \in \mathcal{O}_K$ i.e. $\alpha = x_1b_1 + \cdots + x_nb_n$.
- 3 Let $Q(\underline{x}) = \sum_{i=1}^{n} \sigma_i(\alpha^2)$.

$$f = \sum_{m=0}^{\infty} R_Q(m) q^m \in M_{n/2}(N, \chi).$$

THEOREM (HECKE, SCHOENBERG)

- **1** Let K be a primitive, totally real number field with degree n and discriminant Δ . Let \mathcal{O}_K be its ring of integers, with basis $\{b_1, \ldots, b_n\}$.
- **2** Pick any $\alpha \in \mathcal{O}_K$ i.e. $\alpha = x_1b_1 + \cdots + x_nb_n$.
- 3 Let $Q(\underline{x}) = \sum_{i=1}^{n} \sigma_i(\alpha^2)$.

$$f = \sum_{m=0}^{\infty} R_Q(m)q^m \in M_{n/2}(N,\chi).$$

THEOREM (HECKE, SCHOENBERG)

- **1** Let K be a primitive, totally real number field with degree n and discriminant Δ . Let \mathcal{O}_K be its ring of integers, with basis $\{b_1, \ldots, b_n\}$.
- **2** Pick any $\alpha \in \mathcal{O}_K$ i.e. $\alpha = x_1b_1 + \cdots + x_nb_n$.
- 3 Let $Q(\underline{x}) = \sum_{i=1}^{n} \sigma_i(\alpha^2)$.

$$f = \sum_{m=0}^{\infty} R_Q(m) q^m \in M_{n/2}(N, \chi).$$

Let

$$K = \mathbb{Q}(\sqrt{5}).$$

$$\alpha = a + b \left(\frac{1 + \sqrt{5}}{2} \right) \in \mathcal{O}_K, a, b, \in \mathbb{Z}.$$

$$Q = \sigma_1(\alpha^2) + \sigma_2(\alpha^2) = 2a^2 + 2ab + 3b^2.$$

Then

$$f = 1 + 2q^2 + 4q^3 + 4q^7 + 2q^8 + \dots \in M_1(\Gamma_1(20), \chi)$$

$$\chi(11) = \chi(17) = -1$$
, character modulo 20, conductor 20.

Let

$$K = \mathbb{Q}(\sqrt{5}).$$

$$\alpha = a + b \left(\frac{1 + \sqrt{5}}{2} \right) \in \mathcal{O}_K, a, b, \in \mathbb{Z}.$$

$$Q = \sigma_1(\alpha^2) + \sigma_2(\alpha^2) = 2a^2 + 2ab + 3b^2.$$

Then

$$f = 1 + 2q^2 + 4q^3 + 4q^7 + 2q^8 + \dots \in M_1(\Gamma_1(20), \chi)$$

$$\chi(11) = \chi(17) = -1$$
, character modulo 20, conductor 20.

Let

$$K = \mathbb{Q}(\sqrt{5}).$$

$$\alpha = a + b \left(\frac{1 + \sqrt{5}}{2} \right) \in \mathcal{O}_K, a, b, \in \mathbb{Z}.$$

$$Q = \sigma_1(\alpha^2) + \sigma_2(\alpha^2) = 2a^2 + 2ab + 3b^2.$$

Then

$$f = 1 + 2q^2 + 4q^3 + 4q^7 + 2q^8 + \dots \in M_1(\Gamma_1(20), \chi)$$

$$\chi(11) = \chi(17) = -1$$
, character modulo 20, conductor 20.

Let

$$K=\mathbb{Q}(\sqrt{5}).$$

$$\alpha = a + b \left(\frac{1 + \sqrt{5}}{2} \right) \in \mathcal{O}_K, a, b, \in \mathbb{Z}.$$

$$Q = \sigma_1(\alpha^2) + \sigma_2(\alpha^2) = 2a^2 + 2ab + 3b^2.$$

Then

$$f = 1 + 2q^2 + 4q^3 + 4q^7 + 2q^8 + \dots \in M_1(\Gamma_1(20), \chi)$$

$$\chi(11) = \chi(17) = -1$$
, character modulo 20, conductor 20.

An Example ...

Let

$$K = \mathbb{Q}(\sqrt{5}).$$

$$\alpha = a + b \left(\frac{1 + \sqrt{5}}{2} \right) \in \mathcal{O}_K, a, b, \in \mathbb{Z}.$$

$$Q = \sigma_1(\alpha^2) + \sigma_2(\alpha^2) = 2a^2 + 2ab + 3b^2.$$

Then

$$f = 1 + 2q^2 + 4q^3 + 4q^7 + 2q^8 + \dots \in M_1(\Gamma_1(20), \chi)$$

$$\chi(11) = \chi(17) = -1$$
, character modulo 20, conductor 20.

BACKWARDS COMPATIBILITY ...

QUESTION

Given $M_k(N,\chi)$, can we find all number fields of degree 2k and discriminant Δ where $N \mid \Delta \mid N^{2k}$?

An Example ...

 $M_1(20, \chi)$ has dimension 2, where $\chi(11) = \chi(17) = -1$, character modulo 20, conductor 20.

QUESTION

Is $f := x_1 f_1 + x_2 f_2$ a modular form coming from a number field?

$$f_1 := 1 + 2q^2 + 4q^3 + 4q^7 + 2q^8 + \cdots$$

$$f_2 := q - q^2 - 2q^3 + q^4 + q^5 + 2q^6 - 2q^7 - q^8 + \cdots$$

 $x_1 = 1.$

Equate coefficients:

$$q: x_2 \ge 0$$

 $q^2: 2 - x_2 \ge 0 \longrightarrow x_2 \le 2$
and $2 - x_2 \ge 2 \longrightarrow x_2 \le 0$.

An Example ...

 $M_1(20, \chi)$ has dimension 2, where $\chi(11) = \chi(17) = -1$, character modulo 20, conductor 20.

QUESTION

Is $f := x_1 f_1 + x_2 f_2$ a modular form coming from a number field?

$$f_1 := 1 + 2q^2 + 4q^3 + 4q^7 + 2q^8 + \cdots$$

$$f_2 := q - q^2 - 2q^3 + q^4 + q^5 + 2q^6 - 2q^7 - q^8 + \cdots$$

 $v_1 = 1.$

Equate coefficients:

$$q: x_2 \ge 0$$

 $q^2: 2 - x_2 \ge 0 \longrightarrow x_2 \le 2$
and $2 - x_2 \ge 2 \longrightarrow x_2 \le 0$.

 $M_1(20, \chi)$ has dimension 2, where $\chi(11) = \chi(17) = -1$, character modulo 20, conductor 20.

QUESTION

Is $f := x_1 f_1 + x_2 f_2$ a modular form coming from a number field?

$$f_1 := 1 + 2q^2 + 4q^3 + 4q^7 + 2q^8 + \cdots$$

$$f_2 := q - q^2 - 2q^3 + q^4 + q^5 + 2q^6 - 2q^7 - q^8 + \cdots$$

 $v_1 = 1.$

Equate coefficients:

$$q: x_2 \ge 0$$

 $q^2: 2 - x_2 \ge 0 \longrightarrow x_2 \le 2$
and $2 - x_2 \ge 2 \longrightarrow x_2 \le 0$.

AN EXAMPLE ...

 $M_1(20, \chi)$ has dimension 2, where $\chi(11) = \chi(17) = -1$, character modulo 20, conductor 20.

QUESTION

Is $f := x_1 f_1 + x_2 f_2$ a modular form coming from a number field?

$$f_1 := 1 + 2q^2 + 4q^3 + 4q^7 + 2q^8 + \cdots$$
$$f_2 := q - q^2 - 2q^3 + q^4 + q^5 + 2q^6 - 2q^7 - q^8 + \cdots$$

 $x_1 = 1$.

$$q: x_2 \ge 0$$

 $q^2: 2 - x_2 \ge 0 \longrightarrow x_2 \le 2$
and $2 - x_2 \ge 2 \longrightarrow x_2 \le 0$.

An Example ...

 $M_1(20, \chi)$ has dimension 2, where $\chi(11) = \chi(17) = -1$, character modulo 20, conductor 20.

QUESTION

Is $f := x_1 f_1 + x_2 f_2$ a modular form coming from a number field?

$$f_1 := 1 + 2q^2 + 4q^3 + 4q^7 + 2q^8 + \cdots$$

$$f_2 := q - q^2 - 2q^3 + q^4 + q^5 + 2q^6 - 2q^7 - q^8 + \cdots$$

 $x_1 = 1.$

$$q: x_2 \ge 0$$

 $q^2: 2 - x_2 \ge 0 \longrightarrow x_2 \le 2$
and $2 - x_2 \ge 2 \longrightarrow x_2 \le 0$.

AN EXAMPLE ...

 $M_1(20, \chi)$ has dimension 2, where $\chi(11) = \chi(17) = -1$, character modulo 20, conductor 20.

QUESTION

Is $f := x_1 f_1 + x_2 f_2$ a modular form coming from a number field?

$$f_1 := 1 + 2q^2 + 4q^3 + 4q^7 + 2q^8 + \cdots$$
$$f_2 := q - q^2 - 2q^3 + q^4 + q^5 + 2q^6 - 2q^7 - q^8 + \cdots$$

 $x_1 = 1$.

$$q: x_2 \geq 0$$

$$q^2: 2-x_2 \ge 0 \longrightarrow x_2 \le 2$$

and
$$2 - x_2 > 2 \longrightarrow x_2 < 0$$
.

An Example ...

 $M_1(20, \chi)$ has dimension 2, where $\chi(11) = \chi(17) = -1$, character modulo 20, conductor 20.

QUESTION

Is $f := x_1 f_1 + x_2 f_2$ a modular form coming from a number field?

$$f_1 := 1 + 2q^2 + \boxed{4q^3} + 4q^7 + 2q^8 + \cdots$$

$$f_2 := q - q^2 - 2q^3 + q^4 + q^5 + 2q^6 - 2q^7 - q^8 + \cdots$$

 $x_1 = 1$.

$$q: x_2 \ge 0$$

$$q^2: 2 - x_2 \ge 0 \longrightarrow x_2 \le 2$$

and
$$2 - x_2 \ge 2 \longrightarrow x_2 \le 0$$

and
$$2 - x_2 > 2 \longrightarrow x_2 < 0$$
.

FURTHER WORK ...

- **1** This method gives us a very high dimensional linear programming problem.
- 2 As the dimension increases, our solution space looks like an unbounded cone.
- 3 A bound from above!

FURTHER WORK ...

- **1** This method gives us a very high dimensional linear programming problem.
- 2 As the dimension increases, our solution space looks like an unbounded cone.
- 3 A bound from above!

FURTHER WORK ...

- 1 This method gives us a very high dimensional linear programming problem.
- 2 As the dimension increases, our solution space looks like an unbounded cone.
- 3 A bound from above!

- 1 Let $n \geq 2$ be a natural number.
- 2 Let $Q(\underline{x}) = \sum_{i,j=1}^{n} a_{ij} x_i x_j$ be a positive definite quadratic form with symmetric matrix.
- 3 Let A(X) be the number of lattice points in the region $Q(\underline{x}) \leq X$
- 4 Then, A(X) = V(X) + P(X).
- 5 Application: The sum of the coefficients of the modular form must be less than or equal to A(X).

- 1 Let $n \geq 2$ be a natural number.
- **2** Let $Q(\underline{x}) = \sum_{i,j=1}^{n} a_{ij} x_i x_j$ be a positive definite quadratic form with symmetric matrix.
- 3 Let A(X) be the number of lattice points in the region $Q(\underline{x}) \leq X$
- 4 Then, A(X) = V(X) + P(X).
- **5** Application: The sum of the coefficients of the modular form must be less than or equal to A(X).

- 1 Let $n \geq 2$ be a natural number.
- **2** Let $Q(\underline{x}) = \sum_{i,j=1}^{n} a_{ij} x_i x_j$ be a positive definite quadratic form with symmetric matrix.
- 1 Let A(X) be the number of lattice points in the region $Q(\underline{x}) \leq X$
- 4 Then, A(X) = V(X) + P(X).
- **5** Application: The sum of the coefficients of the modular form must be less than or equal to A(X).

- 1 Let $n \geq 2$ be a natural number.
- **2** Let $Q(\underline{x}) = \sum_{i,j=1}^{n} a_{ij} x_i x_j$ be a positive definite quadratic form with symmetric matrix.
- Let A(X) be the number of lattice points in the region $Q(\underline{x}) \leq X$
- 4 Then, A(X) = V(X) + P(X).
- 5 Application: The sum of the coefficients of the modular form must be less than or equal to A(X).

- 1 Let $n \geq 2$ be a natural number.
- **2** Let $Q(\underline{x}) = \sum_{i,j=1}^{n} a_{ij} x_i x_j$ be a positive definite quadratic form with symmetric matrix.
- Let A(X) be the number of lattice points in the region $Q(\underline{x}) \leq X$
- 4 Then, A(X) = V(X) + P(X).
- **5** Application: The sum of the coefficients of the modular form must be less than or equal to A(X).

THANK YOU FOR LISTENING ...

