Young Women in Algebraic Geometry

Graphing Congruences of Newforms

Vandita Patel
joint work with Dr. Samuele Anni

Advisor : Professor Samir Siksek

Newforms

Definition 1 Let N be a positive integer. The modular group $\Gamma_{0}(N)$ is the group:

$$
\Gamma_{0}(N)=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\, \gamma \equiv\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right) \quad(\bmod N)\right.\right\}
$$

Definition 2 Let \mathbb{H} denote the complex upper half plane. The modular group acts on the complex upper half plane via linear fractional transforms i.e. for $\gamma \in \Gamma_{0}(N)$ and for $z \in \mathbb{H}$,

$$
\cdot z=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z= \begin{cases}\frac{a z+b}{c z+d} & \text { if } z \neq \infty \\
\frac{a}{c} & \text { if } z=\infty\end{cases}
$$

If $c=0$ or $c z+d=0$, then $\gamma \cdot z=\infty$

- The cusps of $\Gamma_{0}(N)$ is the set of $\Gamma_{0}(N)$-orbits in $\mathbb{P}^{1}(\mathbb{Q})=$ $\mathbb{Q} \cup\{\infty\}$.

Definition $3 A$ modular form of weight k and level N for the group $\Gamma_{0}(N)$ is a holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ which is holomorphic at all cusps. For all $z \in \mathbb{H}$ and $\gamma \in \Gamma_{0}(N)$, f satisfies:

$$
f(\gamma z)=f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)
$$

A modular form can be expressed as a power series (called q-expansion),
\square
If f vanishes at all of the cusps then we call f a cuspform. The vector space of all weight k cuspforms for $\Gamma_{0}(N)$ is denoted by $S_{k}(N)$.

- Let M be a proper divisor of N. There are canonical maps $S_{k}(M) \rightarrow S_{k}(N)$. Let $S_{k}^{\text {old }}(N)$ be the subspace spanned by the images of these maps for all proper divisors M of N
- The new subspace $S_{k}^{\text {new }}(N)$ is the orthogonal complement to $S_{k}^{\text {old }}(N)$ with respect to the Peterson inner-product
- The space $S_{k}^{\text {new }}(N)$ is endowed with an action of commuting Hecke operators T_{p} and the newforms are a simultaneous eigenbasis for these Hecke operators.

The Hecke eigenvalues of a newform f are the coefficients of its q expansion, $a_{n}(f)$, and its Hecke eigenvalue field is the number field $\mathbb{Q}\left(a_{1}(f), a_{2}(f)\right.$

Congruences of Newforms

Definition 4 Let $f \in S_{k_{1}}^{\mathrm{new}}\left(N_{1}\right)$, and let $g \in S_{k_{2}}^{\mathrm{new}}\left(N_{2}\right)$. We say that f and g are congruent modulo p, if there exists an ideal \mathfrak{p} above p in the compositum of the Hecke eigenvalue fields such that $a_{n}(f) \equiv a_{n}(g)$ $\bmod \mathfrak{p}$ for all n

- Given level N and weight k, the Sturm Bound is:

$$
\operatorname{SB}(\mathbb{N}, \mathrm{k}):=\frac{\mathrm{k}}{12} \cdot \mathrm{~N}_{\mathrm{DN}}\left(1+\frac{1}{\mathrm{p}}\right) .
$$

Theorem 1 (Sturm, 1987) Let $f, g \in S_{k}^{\text {new }}(N)$. Then $f \equiv g \bmod p$ if and only if there exist an ideal \mathfrak{p} above p such that $a_{n}(f) \equiv a_{n}(g)$ $\bmod \mathfrak{p}$ for all $n \leq S B(N, k)$

Theorem 2 (Kohnen, 2004) Let $f \in S_{k_{1}}^{\mathrm{new}}\left(N_{1}\right)$ and $g \in S_{k_{2}}^{\mathrm{new}}\left(N_{2}\right)$. Then $f \equiv g \bmod p$ if and only if there exist an ideal $\mathfrak{p} \mid p$ such that:

A Missing Mod 2 Congruence ...?

Setup

Let $\mathcal{G}_{N, W}$ be the graph with the following sets of vertices and edges:

- Vertices - newforms which have levels dividing N and have weights belonging to a finite set W
- Edges - are drawn if there is a congruence relation between two newforms see Theorem 2

Vertex Labeling: we label vertices by $M_{k, N^{\prime}, r}$ where k is the weight of the newform, $N^{\prime} \mid N$ is the level of the newform, and r is the index that SageMath gives to the newform.
Edge Labeling: we label the edge connecting f and g by $[p]$ if there is an ideal $\mathfrak{p} \mid p$ such that $f \equiv g(\bmod \mathfrak{p})$

Motivation

- The Modularity theorem due to Wiles, Breuil, Conrad, Diamond and Taylor states that every elliptic curve over \mathbb{Q} corresponds to a weight 2 newform with Hecke eigenvalue field \mathbb{Q}.
- Weight 2 newforms are now known, thanks to the proof of Serre's modularity conjecture by Khare and Wintenberger, to correspond to isogeny classes of abelian varieties of GL_{2}-type
- Congruences between the newforms describe relations between the torsion subgroups of these abelian varieties. These relations are exploited in the modularity switching steps in the proofs of the Modularity theorem and Serre's modularity conjecture.
- We expect that the graphs will lead to a better understanding of modularity switching.

Conjecture 1 (Anni and Patel) Given N and W, there exists finite $W^{\prime} \supseteq W$ such that the graph $\mathcal{G}_{N, W}$ is connected.

References

- Kohnen, W. (2004). On Fourier coefficients of modular forms of different weights. Acta Arithmetica 113, 57-67
- Sage Mathematics Software (Version 6.6), The Sage Developers, 2015, http://www.sagemath.org.
- Sturm, J. (1987). On the congruence of modular forms. In Number theory (pp. 275-280). Springer Berlin Heidelberg.

A Connected Example

We now take $W^{\prime}=\{2,4,6\}$. Notice that $\mathcal{G}_{30, W^{\prime}}$ is connected, illustrating our conjecture.
2015 Mathematics Institute, University of Warwick, Coventry, UK
E-mail: vandita.patel@warwick.ac.uk

