Young Women in Algebraic Geometry

Graphing Congruences of Newforms

Vandita Patel joint work with Dr. Samuele Anni

Advisor : Professor Samir Siksek

Newforms

Definition 1 Let N be a positive integer. The modular group $\Gamma_0(N)$ is the group:

 $\Gamma_0(N) = \left\{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) \middle| \gamma \equiv \left(\begin{array}{cc} * & * \\ 0 & * \end{array} \right) \pmod{N} \right\}.$

Definition 2 Let \mathbb{H} denote the complex upper half plane. The modular group acts on the complex upper half plane via linear fractional transforms i.e. for $\gamma \in \Gamma_0(N)$ and for $z \in \mathbb{H}$,

$$\gamma \cdot z = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \begin{cases} \frac{az+b}{cz+d} & \text{if } z \neq \infty \\ \frac{a}{c} & \text{if } z = \infty \end{cases}$$

If c = 0 or cz + d = 0, then $\gamma \cdot z = \infty$

• The cusps of $\Gamma_0(N)$ is the set of $\Gamma_0(N)$ -orbits in $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{\infty\}.$

Definition 3 A modular form of weight k and level N for the group $\Gamma_0(N)$ is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ which is holomorphic at all cusps. For all $z \in \mathbb{H}$ and $\gamma \in \Gamma_0(N)$, f satisfies:

$$f(\gamma z) = f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z).$$

A modular form can be expressed as a power series (called q-expansion),

$$\mathbf{f}(\mathbf{z}) := \sum_{\mathbf{n}=\mathbf{0}}^{\infty} \mathbf{a}_{\mathbf{n}}(\mathbf{f}) \cdot \mathbf{q}^{\mathbf{n}}, \quad \text{ where } \mathbf{q} = \mathbf{e}^{\mathbf{2}\pi \mathbf{i}\mathbf{z}}, \quad \mathbf{a}_{\mathbf{n}}(\mathbf{f}) \in \mathbb{C}.$$

If f vanishes at all of the cusps then we call f a **cuspform**. The vector space of all weight k cuspforms for $\Gamma_0(N)$ is denoted by $S_k(N)$.

- Let M be a proper divisor of N. There are canonical maps $S_k(M) \to S_k(N)$. Let $S_k^{\text{old}}(N)$ be the subspace spanned by the images of these maps for all proper divisors M of N.
- The new subspace $S_k^{\text{new}}(N)$ is the orthogonal complement to

Congruences of Newforms

Definition 4 Let $f \in S_{k_1}^{\text{new}}(N_1)$, and let $g \in S_{k_2}^{\text{new}}(N_2)$. We say that fand g are congruent modulo p, if there exists an ideal \mathfrak{p} above p in the compositum of the Hecke eigenvalue fields such that $a_n(f) \equiv a_n(g)$ mod \mathfrak{p} for all n.

• Given level N and weight k, the **Sturm Bound** is:

$$\mathbf{SB}(\mathbf{N},\mathbf{k}):=\frac{\mathbf{k}}{\mathbf{12}}\cdot\mathbf{N}\prod_{\mathbf{p}|\mathbf{N}}\left(\mathbf{1}+\frac{\mathbf{1}}{\mathbf{p}}\right).$$

Theorem 1 (Sturm, 1987) Let $f, g \in S_k^{\text{new}}(N)$. Then $f \equiv g \mod p$ if and only if there exist an ideal \mathfrak{p} above p such that $a_n(f) \equiv a_n(g)$ mod \mathfrak{p} for all $n \leq SB(N, k)$.

Theorem 2 (Kohnen, 2004) Let $f \in S_{k_1}^{\text{new}}(N_1)$ and $g \in S_{k_2}^{\text{new}}(N_2)$. Then $f \equiv g \mod p$ if and only if there exist an ideal $\mathfrak{p} \mid p$ such that:

 $\mathbf{a_n(f)} \equiv \mathbf{a_n(g)} \mod \mathfrak{p} \ \textit{for all } \mathbf{n} \leq \mathbf{SB} \left(\operatorname{lcm} \{ \mathbf{N_1}, \mathbf{N_2} \}, \max \{ \mathbf{k_1}, \mathbf{k_2} \} \right).$

A Missing Mod 2 Congruence ...? a = generatorof $\mathbb{Q}(\sqrt{57})$ Hecke Eigenvalue Field = \mathbb{Q} Modulo (a + 1) = (a - 1)⁴ Hecke Hecke Hecke Hecke

Setup

Let $\mathcal{G}_{N,W}$ be the graph with the following sets of vertices and edges:

- Vertices newforms which have levels dividing N and have weights belonging to a finite set W.
- Edges are drawn if there is a congruence relation between two newforms see Theorem 2.

Vertex Labeling: we label vertices by $M_{k,N',r}$ where k is the weight of the newform, $N' \mid N$ is the level of the newform, and r is the index that SageMath gives to the newform.

Edge Labeling: we label the edge connecting f and g by [p] if there is an ideal $\mathfrak{p} \mid p$ such that $f \equiv g \pmod{\mathfrak{p}}$.

Motivation

- The **Modularity theorem** due to Wiles, Breuil, Conrad, Diamond and Taylor states that every elliptic curve over \mathbb{Q} corresponds to a weight 2 newform with Hecke eigenvalue field \mathbb{Q} .
- Weight 2 newforms are now known, thanks to the proof of **Ser-re's modularity conjecture** by Khare and Wintenberger, to correspond to isogeny classes of abelian varieties of GL₂-type.
- Congruences between the newforms describe relations between the torsion subgroups of these abelian varieties. These relations are exploited in the **modularity switching** steps in the proofs of the Modularity theorem and Serre's modularity conjecture.
- We expect that the graphs will lead to a better understanding of modularity switching.

- The space $S_k^{\text{new}}(N)$ is endowed with an action of commuting Hecke operators T_p and the **newforms** are a simultaneous eigenbasis for these Hecke operators.
- The Hecke eigenvalues of a newform f are the coefficients of its q-expansion, $a_n(f)$, and its **Hecke eigenvalue field** is the number field $\mathbb{Q}(a_1(f), a_2(f), \ldots)$.

References

- Kohnen, W. (2004). On Fourier coefficients of modular forms of different weights. Acta Arithmetica, 113, 57-67.
- Sage Mathematics Software (Version 6.6), The Sage Developers, 2015, http://www.sagemath.org.
- Sturm, J. (1987). On the congruence of modular forms. In Number theory (pp. 275-280). Springer Berlin Heidelberg.

We now take $W' = \{2, 4, 6\}$. Notice that $\mathcal{G}_{30,W'}$ is connected, illustrating our conjecture.

2015 Mathematics Institute, University of Warwick, Coventry, UK E-mail: vandita.patel@warwick.ac.uk