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Abstract. We consider a counting problem in the setting of hyperbolic dy-

namics. Let φt : Λ → Λ be a weak mixing hyperbolic flow. We count the
proportion of prime periodic orbits of φt, with length less than T , that satisfy

an averaging condition related to a Hölder continuous function f : Λ → R. We

show, assuming an approximability condition on φ, that as T → ∞, we obtain
a central limit theorem.

1. Introduction

Let φt : Λ → Λ be a hyperbolic flow. By a celebrated result of Ratner [16], a
central limit theorem holds for Hölder observables with respect to the equilibrium
state of a Hölder continuous function and, in particular, with respect to the measure
of maximal entropy µ. More precisely, let f : Λ→ R be a Hölder continuous function
and write

σ2
f := lim

T→∞

∫
Λ

(∫ T

0

f(φt(x))dt− T
∫
f dµ

)2

dµ(x);

Ratner showed that if σ2
f > 0 then

µ

({
x ∈ Λ :

∫ T
0
f(φtx) dt− T

∫
f dµ

√
T

≤ y

})
→ 1√

2πσ2
f

∫ y

−∞
e−u

2/2σ2
f du,

as T → ∞. Furthermore, she showed that σ2
f > 0 if and only if f is not cohomol-

ogous to a constant, where we say that two functions f and g are cohomologous if
f − g = u′, with u : Λ→ R is continuously differentiable along flow lines and

u′(x) := lim
t→0

u(φtx)− u(x)

t
.

In this paper we shall be interested in a periodic orbit version of the above
result. (We restrict to the case where the flow is weak-mixing. If the flow is not
weak-mixing then, after introducing a symbolic model for the dynamics, we may
reduce to the case of a constant suspension flow over a subshift of finite type, in
which case the desired periodic orbit result follows from section 6 of [3].) First let
us introduce some terminology. Let P denote the set of prime periodic φ-orbits.
For γ ∈ P, we shall write l(γ) for its least period. We then write

P(T ) = {γ ∈ P : l(γ) ≤ T}

and, for ∆ > 0,

P(T,∆) = {γ ∈ P : T < l(γ) ≤ T + ∆}.
We also write π(T ) = #P(T ) and π(T,∆) = #P(T,∆).

For a function f : Λ→ R, we write

lf (γ) =

∫ l(γ)

0

f(φt(x)) dt,

1
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where x is any point on γ, and call this the f -weight of γ. We say that f : Λ→ R
has integer periods if

{lf (γ) : γ ∈ P} ⊂ Z
and that f : Λ → R is flow independent if, for a, b ∈ R, a + bf has integer periods
only if a = b = 0.

The periodic orbits of φt are equidistributed with respect to the measure of
maximal entropy, in the sense that, for any ∆ > 0,

lim
T→∞

1

π(T,∆)

∑
γ∈P(T,∆)

lf (γ)

l(γ)
=

∫
f dµ

[2], [11], and one can formulate a periodic orbit version of the central limit theorem
to quantify deviations from this equidistribution. Such a result was first obtained by
Lalley [10] but it only holds under the assumption that f is flow independent, which
is strictly stronger than σ2

f > 0. (There is also a C∞ condition on f in Lalley’s work

but this is easy to remove.) Furthermore, Lalley obtained his central limit theorem
as a consequence of a local limit theorem, the proof of which requires considerable
analytic machinery. (See Remark 1.2 below.) It is therefore interesting to obtain a
short and direct proof which holds for all Hölder continuous f with σ2

f > 0. This
is the purpose of the current paper. Our proof applies whenever φt is a transitive
Anosov flow with stable and unstable foliations which are not jointly integrable or,
for general hyperbolic flows, whenever φt satisfies a mild Diophantine condition on
the periods of its periodic orbits. These conditions allow use to apply the work of
Dolgopyat [4] to give bounds on iterates of a family of so-called transfer operators
and hence extensions and bounds on the complex generating functions we need to
study.

Recall that a real number β is Diophantine if there exists c > 0 and α > 1 such
that |qβ − p| ≥ cq−α for all integers p, q with q > 0. We say that φt satisfies the
approximability condition if it has three closed orbits γ1, γ2 and γ3 such that

l(γ1)− l(γ2)

l(γ2)− l(γ3)

is Diophantine.

Our main result is the following. By replacing f with f −
∫
f dµ, it is natural to

assume that
∫
f dµ = 0.

Theorem 1.1. Suppose that φt : Λ → Λ is either a transitive Anosov flow with
stable and unstable foliations which are not jointly integrable or a hyperbolic flow
satisfying the approximability condition. Let f : Λ → R be a Hölder continuous
function satisfying

∫
f dµ = 0 that is not a coboundary. Then, for each fixed ∆ > 0,

1

π(T,∆)
#

{
γ ∈ P(T,∆) :

lf (γ)√
T
≤ y
}
→ 1√

2πσf

∫ y

−∞
e−t

2/2σ2
f dt,

for each y ∈ R, as T →∞.

Remarks 1.2. (i) The requirement that the flow has non-jointly integrable stable
and unstable foliations and the approximability condition each imply that the flow
is weak-mixing.

(ii) It is interesting to note that Lalley’s periodic orbit version of the local limit
theorem for hyperbolic flows predates the measure version. In fact, Waddington
states a measure local limit theorem for hyperbolic flows in [21], based on the ideas
in [10] and [17], although his proof contains some technical gaps. (In particular, the
passage to functions defined on a one-sided shift on page 459 of [21] needs further
justification.) For semiflows satisfying some abstract conditions (which hold, for
example, for a suspension semiflow over the map x 7→ kx mod 1 on the circle
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R/Z, for an integer k ≥ 2), a local limit limit theorem was obtained by Iwata [9].
Dolgopyat and Nándori recently gave a proof of the local limit theorem using a
different approach [5].

(iii) The approximability condition is not robust under perturbation of the flow.
However, Field, Melbourne and Török [7] have given conditions which hold for an
open dense set of flows. More precisely, if for r ≥ 2, Ar(M) denotes the set of Cr

Axiom A flows on a compact manifold M then Ar(M) contains a C2-open, Cr-dense
subset which satisfies the conditions for every non-trivial basic set.

(iv) The same result holds if, instead of restricting our counting to prime orbits
γ ∈ P(T,∆), we count over all periodic orbits γ that have length T < l(γ) ≤ T +∆.
This follows since the number of non-prime periodic orbits grows at a slower rate
than the number of prime orbits. More precisely, the exponential growth rate of
the prime periodic orbits is given by the topological entropy, but the exponential
growth rates for non-prime periodic orbits is half this.

In the next section, we define hyperbolic and Anosov flows and discuss some
of their basic properties, including the information we will need about entropy
and pressure. In section 3, we mention how our central limit theorem will follow
from the pointwise convergence of a family of Fourier transforms and introduce a
dynamical L-function whose analytic properties will be key for our analysis. The
work of Dolgopyat [4] is crucial here. In section 4, we carry out some calculations
using contour integration to obtain an asymptotic formula for a summatory function
related to one we require but containing extra terms. In section 5, we remove these
extra terms and complete the proof of Theorem 1.1.

The authors are grateful to Ian Melbourne, Vesselin Petkov and Luchezar Stoy-
anov for helpful comments.

2. Hyperbolic flows and their periodic orbits

We begin with the definition of a hyperbolic flow. Let φt : M →M be a C1 flow
on a smooth manifold M and let Λ ⊂ M be a compact flow invariant subset. We
say that φt : Λ→ Λ is a hyperbolic flow if the following conditions are satisfied.

(1) There is a splitting of the tangent bundle TΛM = E0 ⊕Es ⊕Eu such that
(a) there exist C, λ > 0 with ‖Dφt|Es‖, ‖Dφ−t|Eu‖ ≤ Ce−λt, for t ≥ 0,
(b) E0 is one-dimensional and tangent to the flow.

(2) The periodic orbits of Λ are dense and Λ is not a single orbit.
(3) Λ contains a dense orbit.
(4) There exists an open set U ⊃ Λ such that Λ =

⋂∞
t=−∞ φt(U).

If (1) holds with Λ = M then we say that φt : M → M is an Anosov flow. In
this case (2) is automatically satisfied (this is the Anosov closing lemma [1]) and
(4) is trivially satisfied. If, in addition, (3) holds then we say that φt is a transitive
Anosov flow.

We say that φt is topologically weak-mixing if it does not admit a non-trivial
eigenfrequency corresponding to a continuous function, i.e if the only G ∈ C(Λ,C)
and a ∈ R such that G ◦ φt = eiatG for all t ∈ R are the constant functions and
a = 0. It is known that φt is topologically weak-mixing if and only if {l(γ) : γ ∈ P}
does not lie in a discrete subgroup of R.

Proposition 2.1 ([14]). Under the hypotheses of Theorem 1.1, there exists η > 0
such that

(i)

π(T ) =
ehT

hT

(
1 +O

(
1

T η

))
,
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(ii) ∑
l(γ)≤T

l(γ) =
ehT

h

(
1 +O

(
1

T η

))
.

We now recall some of the thermodynamic formalism associated to the flow φt.
This is standard material which may be found in, for example, [18]. Let M(φ)
denote the set of φt-invariant Borel probability measures on M . We define the
pressure of a Hölder continuous function f : M → R to be

P (f) = sup
m∈M(φ)

{
hm(φ) +

∫
f dm

}
,

where hm(φ) denotes the entropy of φt with respect to m. The supremum is attained
for a unique measure mf ∈ M(φ), which we call the equilibrium state of f . When
f = 0, we call m0 the measure of maximal entropy for φt and write µ = m0. We
have P (0) = h, the topological entropy of φ. For s ∈ R, the function s 7→ P (sf) is
real analytic, furthermore

dP (sf)

ds

∣∣∣∣∣
t=0

=

∫
f dµ

and

d2P (sf)

ds2

∣∣∣∣∣
t=0

= σ2
f .

Recall that σ2
f > 0 unless f is cohomologous to a constant. We may also extend

P (sf) to an analytic function for complex values of s in a sufficiently small neigh-
bourhood of the real line. In particular, s(t) := P (itf) is defined and real analytic
for |t| < δ, for some δ > 0.

The following lemma is a consequence the above discussion.

Lemma 2.2. If
∫
f dµ = 0 and f is not a coboundary then, for |t| < δ,

s(t) = h−
σ2
f t

2

2
+O(t3),

with σ2
f > 0.

A simple calculation then gives

lim
T→∞

e(h−s(t/
√
T ))T = e−σ

2
f t

2/2. (2.1)

3. Fourier Transforms and L-functions

Let f : Λ→ R be a Hölder continuous function satisfying
∫
f dµ = 0. By Lévy’s

Continuity Theorem [6], to prove Theorem 1.1 it is enough to to show that the
Fourier transforms of the distributions

1

π(T,∆)
#

{
γ ∈ P(T,∆) :

lf (γ)√
T
≤ y
}

converge pointwise to the Fourier transform of the normal distribution N(0, σ2
f ). In

other words, we need to show that, for all t ∈ R,

1

π(T,∆)

∑
γ∈P(T,∆)

eitlf (γ)/
√
T → e−σ

2
f t

2/2,

as T → ∞. To do this, we will use the periodic orbit data l(γ) and lf (γ) to build
a family of dynamical L-functions L(s, t). Here s is a complex variable (associated
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to the lengths l(γ)) and t is a real variable (associated to the f -weights lf (γ)). We
define

L(s, t) =
∏
γ∈P

(
1− e−sl(γ)+itlf (γ)

)−1

= exp

∑
γ∈P

∞∑
m=1

1

m
e−sml(γ)+itlf (γ)

 .

Then L(s, t) is non-zero and analytic in the region Re(s) > h and for all t ∈ R [12].
In order to prove Theorem 1.1, we will need to extend L(s, t) to a neighbourhood
of Re(s) = h.

In fact, it will be convenient to work with the logarithmic derivative (with respect
to s) L′(s, t)/L(s, t). Write Q for a set of all (not necessarily prime) periodic orbits
of φt and, for γ′ ∈ Q, if γ′ = γn, n ≥ 1, with γ ∈ P, write Λ(γ′) = l(γ). Then we
have

L′(s, t)

L(s, t)
= −

∑
γ′∈Q

Λ(γ′)e−sl(γ
′)+itlf (γ′),

whenever the series converges.
Our proof relies heavily on the following proposition.

Proposition 3.1. There exists C > 0 and ε > 0 such that, for any fixed t ∈ (−δ, δ),
L′(s, t)

L(s, t)
+

1

s− s(t)
is analytic in Re(s) > h − C min{1, |Im(s)|−ε}. Furthermore, there exists β > 0,
independent of t ∈ (−δ, δ), such that for Re(s) > h− C min{1, |Im(s)|−ε},∣∣∣∣L′(s, t)L(s, t)

∣∣∣∣ = O
(
max{|Im(s)|β , 1}

)
.

Proof. It is a standard part of the theory of dynamical zeta functions that L(s, t)
has a simple pole at s = s(t) and, apart from this pole, is analytic and non-zero for
s close to s(t) [12]. Hence, L′(s, t)/L(s, t) has a simple pole at s = s(t) with residue
−1.

The extension to a larger domain and the bound rely on the work of Dolgopyat on
bounds for iterates of transfer operators [4]. In the case where t = 0, the extension
and bound were established [14]. For t non-zero but small, one may modify the
approach in [4] to get the required results. (See for example [13] where similar
calculations are carried out. The recent paper [20], as well as containing important
new results, gives a detailed account of the history of this problem.) �

4. Contour Integration

The rest of the proof follows similar lines to the method used in section 2 of
[15]. We need the following standard identity (see [8], page 31), which holds for any
d > 0, k ≥ 1,

1

2πi

∫ d+i∞

d−i∞

xs

s(s+ 1) · · · (s+ k)
ds =

{
0 0 < x < 1
1
k! (1− 1/x)k x ≥ 1.

(4.1)

Applying (4.1) term-by-term to −L′(s, t)/L(s, t) gives∑
el(γ′)≤x

Λ(γ′)eitlf (γ′)(x− el(γ
′))k =

k!

2πi

∫ d+i∞

d−i∞

(
−L
′(s, t)

L(s, t)

)
xs+k

s(s+ 1) · · · (s+ k)
ds,

where γ′ runs over the elements of Q.

Lemma 4.1. For any fixed t ∈ (−δ, δ), there is k ≥ 1 and α > 0 such that∑
el(γ′)≤x

Λ(γ′)eitlf (γ′)(x−el(γ
′))k =

k!

s(t)(s(t) + 1) · · · (s(t) + k)
xs(t)+k+O

(
xh+k

(log x)α

)
.



6 STEPHEN CANTRELL AND RICHARD SHARP

The implied constant in the above error term is independent of t.

Proof. We first note that for s = ς + iτ , with ς > h, we have the trivial estimate∣∣∣∣L′(s, t)L(s, t)

∣∣∣∣ ≤ ∣∣∣∣L′(ς, 0)

L(ς, 0)

∣∣∣∣ = O

(
1

ς − h

)
. (4.2)

We will prove the result using contour integration. Choose numbers r1, r2 > 0
such that, for |t| < δ, s(t) lies in the interior of the rectangle with vertices at r1+ir2,
h+ir2, h−ir2 and r1−ir2. where r1, r2 > 0. Furthermore, decreasing δ if necessary,
we may assume that this rectangle lies within the region of analyticity described in
Proposition 3.1. Set c = h − CR−ε/2, d = h + (log x)−1 and R = (log x)κ where
0 < κ < 1/ε. Take k > β, where β is the same as in Proposition 3.1. By the Residue
Theorem we may write∑

el(γ′)≤x

Λ(γ′)eitlf (γ′)(x− el(γ
′))k =

k!

s(t)(s(t) + 1) · · · (s(t) + k)
xs(t)+k+

k!

2πi

∫
Γ

(
L′(s, t)

L(s, t)

)
xs+k

s(s+ 1) · · · (s+ k)
ds,

where Γ is the contour consisting of the straight lines connecting the points d+ i∞,
d+ iR, c+ iR, c+ ir2, r1 + ir2, r1 − ir2, c− ir2, c− iR, d− iR and d− i∞.

Using (4.2), we have∣∣∣∣∣
∫ d±i∞

d±iR

L′(s, t)

L(s, t)

xs+k

s(s+ 1) · · · (s+ k)
ds

∣∣∣∣∣ = O

(
xd+k

∫ ∞
R

1

uk+1
du

)
= O

(
xh+k

Rk

)
.

Using the bound from Proposition 3.1, we have∣∣∣∣∣
∫ d±iR

c±iR

L′(s, t)

L(s, t)

xs+k

s(s+ 1) · · · (s+ k)
ds

∣∣∣∣∣ = O
(
Rβ−k−1xd+k

)
,∣∣∣∣∣

∫ c±iR

c±ir2

L′(s, t)

L(s, t)

xs+k

s(s+ 1) · · · (s+ k)
ds

∣∣∣∣∣ = O
(
xc+k

)
,∣∣∣∣∫ r1±ir2

c±ir2

L′(s, t)

L(s, t)

xs+k

s(s+ 1) · · · (s+ k)
ds

∣∣∣∣ = O
(
xc+k

)
,∣∣∣∣∫ r1−ir2

r1+ir2

L′(s, t)

L(s, t)

xs+k

s(s+ 1) · · · (s+ k)
ds

∣∣∣∣ = O
(
xr1+k

)
.

From our choice of c, d, κ, R and k, we see that O(xh+k/Rk) and O(Rβ−k−1xd+k)
are O(xh+k/(log x)α), for some α > 0, while O(xc+k) is O(xh+ka(x)), where a(x)
tends to zero faster than (log x)−η, for any η > 0. The final term has a power saving
compared to xh+k. Thus the result follows. �

We claim that the previous lemma holds if we alter the sum so that it is taken
over prime orbits. We define

Sk(x) =
∑

el(γ)≤x

Λ(γ)eitlf (γ)(x− el(γ))k,

where the summation is over γ ∈ P.

Corollary 4.2. For any fixed t ∈ (−δ, δ), there is k ≥ 1 and α > 0 such that

Sk(x) =
k!

s(t)(s(t) + 1) · · · (s(t) + k)
xs(t)+k +O

(
xh+k

(log x)α

)
.

The implied constant in the above error term is independent of t.
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Proof. Let l0 be the shortest length of any periodic orbit for φ. We write∑
el(γ′)≤x

Λ(γ′)eitlF (γ′)(x− el(γ
′))k = Sk(x) +

∞∑
n=2

∑
enl(γ)≤x

l(γ)eitnlf (γ)(x− enl(γ))k.

Note that in the last sum over n in the above expression, the terms are non-zero
only for n ≤ (log x)/l0. Hence,

∞∑
n=2

∑
enl(γ)≤x

l(γ)eitnlf (γ)(x−enl(γ))k = O(log x ·xh/2 · log x ·xk) = O(xk+h/2(log x)2).

This implies the claim. �

5. Auxiliary Calculations

We now wish to remove the terms (x − el(γ))k from Sk(x). We will first show
that the estimate for Sk(x) in Corollary 4.2 implies a similar estimate for Sk−1(x),
though with the exponent of log x in the error term reduced.

Decreasing α if necessary, we suppose that 0 < α < 2η, where η is as in Propo-
sition 2.1. Set ε = (log x)−α/2. We will estimate the difference

D(x, ε) := Sk(x(1 + ε))− Sk(x)

in two ways. Applying Corollary 4.2, we have

D(x, ε) =
k!

s(t)(s(t) + 1) · · · (s(t) + k − 1)
xs(t)+kε+O

(
xs(t)+kε2

)
+O

(
xh+k

(log x)α

)
=

k!

s(t)(s(t) + 1) · · · (s(t) + k − 1)
xs(t)+kε+O

(
xh+k

(log x)α

)
. (5.1)

On the other hand, we have

D(x, ε) =
∑

x≤el(γ)≤x(1+ε)

l(γ)eitlf (γ)(x− el(γ))k + kxε
∑

el(γ)≤x(1+ε)

l(γ)eitlf (γ)(x− el(γ))k−1

+

k∑
j=2

(xε)j
(
k

j

) ∑
el(γ)≤x(1+ε)

l(γ)eitlf (γ)(x− el(γ))k−j . (5.2)

Rewriting part (ii) of Proposition 2.1, we have∑
el(γ)≤x

l(γ) ∼ xh

h

and, since α/2 < η, ∑
x≤el(γ)≤x(1+ε)

l(γ) ∼ εxh.

Hence, the first term on the Right Hand Side of (5.2) is O(xh+kεk) and the jth term
in the final summation is O(xh+kεj). Dividing by kxε and comparing with (5.1)
gives

Sk−1(x) =
(k − 1)!

s(t)(s(t) + 1) · · · (s(t) + k − 1)
xs(t)+k−1 +O

(
xh+k−1

ε(log x)α
, εxh+k−1

)
=

(k − 1)!

s(t)(s(t) + 1) · · · (s(t) + k − 1)
xs(t)+k−1 +O

(
xh+k−1

(log x)α/2

)
.

Proceeding inductively, we obtain the following (where the new value of α is the
original α divided by 2k.)
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Lemma 5.1. For some α > 0, we have∑
el(γ)≤x

l(γ)eitlF (γ) =
xs(t)

s(t)
+O

(
xh

(log x)α

)
.

We note that the constant associated to the above error term is independent of
t ∈ (−δ, δ).

6. Proof of Theorem 1.1

We will now complete the proof of Theorem 1.1. A simple calculation using
Lemma 5.1 and the limit (2.1) gives the following.

Lemma 6.1. For any t ∈ R,∑
l(γ)≤T

l(γ)eitlf (γ)/
√
T ∼ es(t/

√
T )T

s(t/
√
T )

.

This lemma, together with part (ii) of Proposition 2.1 and (2.1) again, implies
that

lim
T→∞

∑
l(γ)≤T l(γ)eitlf (γ)/

√
T∑

l(γ)≤T l(γ)
→ e−σ

2
f t

2/2,

provided we now assume that σ2
f > 0, i.e. that f is not a coboundary.

We now need to remove the terms l(γ). From Proposition 2.1, we have that∑
l(γ)≤T

l(γ) ∼ Tπ(T ), (6.1)

as T →∞. We also have the following.

Lemma 6.2. For any t ∈ R,∑
l(γ)≤T

eitlf (γ)/
√
l(γ) ∼ 1

T

∑
l(γ)≤T

l(γ)eitlf (γ)/
√
T .

Proof. Let ϕ(T ) =
∑
l(γ)≤T l(γ)eitlf (γ)/

√
T . Using the Stiltjes integral, we have that

∑
l(γ)≤T

eitlf (γ)/
√
l(γ) =

∫ T

1

1

u
dϕ(u) +O(1)

=

[
ϕ(u)

u

]T
1

+

∫ T

1

ϕ(u)

u2
du+O(1)

=
ϕ(T )

T
+O(1) +O

(∫ T

1

ehu

u2
du

)
.

Integration by parts yields the estimate∫ T

1

ehu

u2
du =

[
ehu

hu2

]T
1

+ 2

∫ T

1

ehu

u3
du = O

(
ehT

T 2

)
and the result follows. �

Combining Lemma 6.2 and (6.1) gives us the following.

Proposition 6.3.

lim
T→∞

1

#π(T )

∑
l(γ)≤T

eitlf (γ)/
√
l(γ) = lim

T→∞

∑
l(γ)≤T l(γ)eitlf (γ)/

√
T∑

l(γ)≤T l(γ)
= e−σ

2
f t

2/2.

We now complete the proof of Theorem 1.1.
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Proof of Theorem 1.1. First note that it follows from the previous calculations (and
π(T,∆) = π(T + ∆)− π(T )) that

lim
T→∞

1

π(T,∆)

∑
T<l(γ)≤T+∆

eitlf (γ)/
√
l(γ) = e−σ

2
f t

2/2.

Then note that, for a fixed t,∑
T<l(γ)≤T+∆

∣∣∣eitlf (γ)/
√
l(γ) − eitlf (γ)/

√
T
∣∣∣ = O

(
π(T,∆)√

T

)
.

This gives use the required convergence,

lim
T→∞

1

π(T,∆)

∑
T<l(γ)≤T+∆

eitlf (γ)/
√
T = e−σ

2
f t

2/2.

�

Remark 6.4. In view of Proposition 6.3, Theorem 1.1 may be reformulated as

1

π(T )
#

{
γ ∈ P(T ) :

lf (γ)√
l(γ)

≤ y

}
→ 1√

2πσf

∫ y

−∞
e−t

2/2σ2
f dt,

for each y ∈ R, as T →∞.
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