
COUNTING IN HOMOLOGY: THIRTY YEARS AFTER

RICHARD SHARP

This is intended as a gloss on my paper Closed orbits in homology classes for
Anosov flows [10], published in 1993 (though written 1991-92), originally written
fir one of my PhD students. When I wrote [10], I thought it was well written
but now, 30 years later, it seems impenetrable1. Since this is not intended for
publication, the style of writing is somewhat informal.

Warwick, 16 March 2023

1. Anosov Flows

Let φt : M → M be a transitive Anosov flow generated by a vector field Xφ.
Assume M has first Betti number b ≥ 1, so H1(M,Z) is isomorphic to Zb ⊕ A,
where A is a finite abelian group (referred to as torsion). The group A is handled
by bolting on the analysis from [5] or Chapter 12 of [6] to the analysis described
below, so, for simplicity, we will assume that A is trivial.

Let Pφ denote the set of prime periodic φ-orbits. For γ ∈ Pφ, write l(γ) for its
period and [γ] ∈ H1(M,Z) for its homology class. Write Pφ(T ) = {γ ∈ Pφ : l(γ) ≤
T} and, for α ∈ H1(M,Z),

πφ(T, α) = #{γ ∈ Pφ(T ) : [γ] = α}.

Lemma 1.1 ([5]). Let φt : M → M be a transitive Anosov flow. Then {[γ] : γ ∈
Pφ} generates H1(M,Z) as a group.

Proof. Let H be the subgroup of H1(M,Z) generated by {[γ] : γ ∈ P(φ)}. Suppose
H 6= H1(M,Z). Then we can find a proper finite index subgroup H ′ of H1(M,Z)
which contains H. Let G = H1(M,Z)/H ′. By the Chebotarev theorem, the Frobe-
nius elements (conjugacy classes are single elements since G is abelian) of periodic
orbits are equidistributed in G. But the G-Frobenius element of γ is the image of
[γ] in G = H1(M,Z)/H ′, which is trivial since [γ] ∈ H. Contradiction. �

Remark 1.2. This can also be used in our situation of a 3-manifold with deleted
knots since Theorem 1.1 of [4] gives equidistribition of Frobenius classes for finite
groups.

We will make the following stronger assumption.

Assumption A1. φt is homologically full: the map [·] : Pφ → H1(M,Z) is a surjec-
tion.

Remark 1.3. If φ is homologically full then it is automatically topologically weak-
mixing (equivalent to topological mixing). This follows from a theorem of Plante
that a transitive Anosov flow only fails to be weak mixing if it is a constant time

1Though hopefully not as bad as the poetry of Robert Browning: “Mr. Browning himself,
‘in the philosophic afternoon of life,’ frankly confessed its difficulties, and referred to it with a

grim smile as ‘the entirely unintelligible Sordello.’ And to an anxious admirer who asked him to
explain its meaning he replied, ‘When I wrote it, only God and I knew; now God alone knows!’

”, The Church Quarterly Review, September 1890, following Browning’s death in 1889. There is

interesting information about the “God” quotation, which has been attributed to several people,
on the invaluable online resource Quote Investigator
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suspension of an Anosov diffeomorphism [7]. Such a suspension flow has no null-
homologous periodic orbits. One way of characterising φ being topologically weak-
mixing in that {l(γ) : γ ∈ Pφ} generates R as a topological group. (Since H1(M,Z)
is discrete, we could also formulate the conclusion of Lemma 1.1 as “{[γ] : γ ∈ Pφ}
generates H1(M,Z) as a topological group”.)

We also need to notion of winding cycles (a.k.a. asymptotic cycles). See [8] (a
great paper!) for the original definition. Let m be a φ-invariant probability measure.
We define the winding cycle Φm ∈ H1(M,R) as follows. Since H1(M,R) is the dual
of H1(M,R), it suffices to say how Φm pairs with cohomology classes. This pairing
is given by

〈[ω],Φm〉 =

∫
ω(Xφ) dm,

where ω is a closed 1-form and [ω] is its cohomology class.

Lemma 1.4. The following statements are equivalent.

(1) φt is homologically full.
(2) 0 lies in the interior of the convex hull of {[γ] : γ ∈ Pφ}.
(3) 0 lies in the interior of the convex hull of {[γ]/l(γ) : γ ∈ Pφ}.
(4) 0 lies in the interior of {Φm : m ∈Mφ}, whereMφ is the set of φ-invariant

probability measures on M .

Remark 1.5. In [1], (4) is made the definition of homologically full.

Partial proof. We will prove some of the implications at this point. Clearly, (1)
implies (2) and (3), and (2) and (3) are equivalent. The set {Φm : m ∈ Mφ} is
compact and convex and it contains {[γ]/l(γ) : γ ∈ Pφ} as a dense subset (since
periodic orbit measures are weak∗ dense in Mφ). Therefore, the convex hull of
{[γ]/l(γ) : γ ∈ Pφ} is equal to {Φm : m ∈ Mφ}. Thus, (3) and (4) are equivalent.
We will defer consideration of the fact that any of (2)-(4) imply (1) until later. (In
fact, the logic will be that (1) implies (4), (4) implies Theorem 1.6 below, and the
theorem trivially implies (1).) �

Theorem 1.6 (Sharp [10]). If φ is homologically full then, for all α ∈ Zb, we have

π(T, α) ∼ Ce−〈ξ,α〉 e
h∗T

T 1+b/2
, as T →∞,

where

h∗ = sup{hφ(m) : m ∈Mφ and Φm = 0}

(and satisfies 0 < h∗ ≤ h, where h is the topological entropy of φ), ξ ∈ H1(M,R)
minimizes the (well-defined) function β : H1(M,R)→ R : [ω]→ P (ω(Xφ)), and C
is a positive constant (independent of α).

Remark 1.7. I tend to (informally) call ξ the magic cohomology class. In [1], it is
called “Sharp’s minimizer”.

For the purposes of exposition, we will start by thinking about the proof of the
following special case. Let m0 be the measure of maximal entropy for φ. (Note
that, by Lemma 1.4, Φm0 = 0 implies homologically full.)

Theorem 1.8 (Katsuda and Sunada [2]). If Φm0
= 0 then, for all α ∈ Zb, we have

π(T, α) ∼ C ehT

T 1+b/2
, as T →∞,

where C is a positive constant (independent of α).
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2. Suspension Flows

We’ll now use symbolic dynamics to work at the symbolic level. We have the
following objects:

• a mixing subshift of finite type σ : Σ→ Σ;
• a strictly positive Hölder continuous function r : Σ → R giving a mixing

suspension flow σtr : Σr → Σr;
• a Hölder continuous function F : Σr → Rb such that, for every σt-periodic

orbit γ,

[γ] =

∫
γ

F ∈ Zb.

Notational conventions. We’ll use upper case letters for functions on Σr and lower
case letters for functions on Σ. Also, we’ll use m (with subscripts) for measures of
Σr and µ (with subscripts) for measures on Σ.

We can define f : Σ→ Rb by

f(x) =

∫ r(x)

0

F (σtr(x, 0)) dt =

∫ r(x)

0

F (x, t) dt.

By adding a coboundary, we may assume that f : Σ→ Zb. If σnx = x corresponds
to the φ-periodic orbit γ then

fn(x) = [γ] and rn(x) = l(γ).

The assumption that φ is homologically fully can be expressed translated into
one of the following equivalent statements:

• 0 lies in the interior of {
∫
F dm : m ∈ Mσr},where Mσr is the set of σr-

invariant probability measures on Σr.
• 0 lies in the interior of {

∫
f dµ : µ ∈Mσ},whereMσ is the set of σ-invariant

probability measures on Σ.

The stronger assumption that Φm0
= 0 can be translated as∫
F dm0 = 0,

where (abusing notation) m0 is the measure of maximal entropy for σr. This is
equivalent to ∫

f dµ−hr = 0,

where µ−hr is the equilibrium state for −hr.

Spoiler 2.1. In fact, φ homologically full and Φm0
= 0 contain more information

than the respective statements above.

3. L-functions

To prove Theorem 1.8, we introduce the dynamical L-functions (generalizing
dynamical zeta functions)

L(s, t) =
∏
γ∈P

(
1− e−sl(γ)+2πi〈t,[γ]〉

)−1
,

where s ∈ C and t ∈ Rb/Zb, defined wherever the product converges. (〈·, ·〉 is the
standard inner product on Rb.) We also have the following formulae:

L(s, t) = exp
∑
γ∈P

∞∑
m=1

1

m
e−sml(γ)+2πim〈t,[γ]〉 = exp

∞∑
n=1

1

n

∑
σnx=x

e−sr
n(x)+2πi〈t,fn(x)〉.

Lemma 3.1 ([6]). L(s, t) converges for Re(s) > h and all t ∈ Rb/Zb.
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Remark 3.2. There is also the issue that the symbolic dynamics does not induce
a bijection between P and Pφ. This can be dealt with using the Bowen–Manning
trick, although this becomes more involved in the general homologically full case.
However, on 3-manifolds the discrepancy only involves a finite number of periodic
orbits, so we’ll ignore it here.

We should also recall the orthogonality relation∫
Rb/Zb

e2πi〈t,y〉 =

{
1 if y = 0

0 if y ∈ Zb \ {0}
.

As in the proof of the Prime Orbit Theorem in [6], we might be tempted to
proceed by studying the logarithmic derivative L′/L = (logL)′ (where the prime is
∂/∂s), noting that∫

Rb/Zb
e−2πiα

L′(s, t)

L(s, t)
dt = −

∞∑
m=1

∑
γ∈P:
m[γ]=α

l(γ) e−sml(γ).

Assuming we can drop the terms with m ≥ 2, we might hope to know enough about
the LHS (as a function of s) be able to apply some Tauberian theorem to get an
asymptotic for ∑

γ∈P:
[γ]=α

l(γ)

and thence for π(T, α). This nearly works except that it is technically more conve-
nient to consider the functions

η(s, t) =
∂ν+1

∂sν+1
logL(s, t),

where ν = [b/2]. (Other choices are possible but this choice of ν gives the simplest
singularities, boiling down to the two cases b even and b odd.)

To carry out this programme, we need to look at L(s, t) is a bit more detail. We
want

• L(s, t) is non-zero and analytic in ({s : Re(s) ≥ h} × Rb/Zb) \ (h, 0);
• L(s, t) has a form we can analyse for (s, t) close to (h, 0).

Let us state the first point as a lemma and then try to prove it.

Lemma 3.3. L(s, t) is non-zero and analytic in a neighbourhood of (h+iτ, t) unless
(τ, t) = (0, 0) ∈ R× Rb/Zb.

From [6], L(s, t) is non-zero and analytic in a neighbourhood of (h+ iτ, t) except
when −τr + 2π〈t, f〉 is cohomologous to a function ψ ∈ C(Σ, 2πZ):

−τr + 2π〈t, f〉 = ψ + u− u ◦ σ. (∗)

By Livsic’s theorem, the latter statement is equivalent to

−τrn(x) + 2π〈t, fn(x)〉 = ψn(x) (∗∗)

whenever σnx = x. This implies

e−iτr
n(x)+2πi〈t,fn(x)〉 = 1 (†)

whenever σnx = x. Or, in terms of φ,

exp

(
−τ l(γ) + 2π

∫
γ

ω(Xφ)

)
= 1 ∀γ ∈ Pφ, (‡)

where ω(Xφ) : M → R pulls back to 〈t, F 〉 by the symbolic coding. We want to show
that one of these implies (τ, t) = (0, 0). It is here that the conditions

∫
F dm0 = 0
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or
∫
f dµ−hr = 0 are not by themselves sufficient. For example, integrating (∗) with

respect to µ−hr gives

−τ
∫
r dµ−hr =

∫
ψ dµ−hr.

If we knew the RHS were zero then we could conclude that (since r > 0) τ = 0
and substitute back into (†) to get e2πi〈t,f

n(x)〉 = 1 whenever σnx = x. Since (by
Lemma 1.1) {fn(x) : σnx = x} generates Zb, we have e2πi〈t,y〉 = 1 for all y ∈ Zb
and so t = 0 ∈ Rb/Zb. But we know nothing about

∫
ψ dµ−hr. Let us see how

homological fullness helps us.

Proof of Lemma 3.3. This is the argument from [10]. A function U : M → C is
called continuously differentiable in the flow direction if

U ′(x) := lim
t→0

U(φtx)− U(x)

t

exists everywhere and is continuous. By a multiplicative version of Livsic’s theorem
for flows, (‡) implies that there is a function U : M → {z ∈ C : |z| = 1} which is
continuously differentiable in the flow direction such that

−τ + ω(Xφ) =
1

2πi

U ′

U
.

Integrating by m0 we get

−τ + 〈[ω],Φm0
〉 =

∫
1

2πi

U ′

U
dm0 =

〈[
1

2πi

U ′

U

]
,Φm0

〉
,

where the last expression in square brackets in the Bruschlinsky cohomology class
represented by U . (See [8] for an explanation of Bruschlinsky cohomology.) Since
Φm0

= 0, we see that τ = 0 and then argue as above to get t = 0 ∈ Rb/Zb. �

This might be a sticky point for our envisaged result, where we can’t use homolog-
ical fullness. If we have the set-up from the start of the section: σr weak-mixing and
{fn(x) : σnx = x} generates Zb, then we need to make the following assumptions.

Assumption B1. 0 lies in the interior of {
∫
f dµ : µ ∈ Mσ} (or an equivalent

formulation as discussed above).

Assumption B2. {(l(γ), [γ]) : γ ∈ P} (or {(rn(x), fn(x)) : σnx = x, n ≥ 1})
generates R× Zb as a topological group.

In line with, for the moment, restricting to the special case Φm0
= 0, we can

strengthen B1 to the following.

Assumption B1∗.
∫
f dµ−hr = 0.

Proof of Lemma 3.3 subject to Assumptions B1∗ and B2. Think of

χ(u, v) = e−iτu+2πi〈t,v〉

as a character on R × Zb. (†) says that the character is trivial on a generating set
and so it is trivial everywhere. Thus (τ, t) = (0, 0) ∈ R× Rb/Zb. �

After all that, we should start a new section . . .

4. The Singularity

Recall that we need to understand L(s, t) for (s, t) close to (h, 0). From [6], for
(s, t) in a neighbourhood U of (h, 0) we have

L(s, t) =
A1(s, t)

1− eP (−sr+2πi〈t,f〉) ,

with A1(s, t) non-zero and analytic. Using the implicit function theorem, we can
define an analytic function s : U → C by P (−s(t)r + 2πi〈t, f〉) = 0. (We can think
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of s(t) as P (2πi〈t, F 〉), an extension of the pressure function for σr to complex
functions.) We get

L(s, t) =
A2(s, t)

s− s(t)
,

with A2(s, t) non-zero and analytic.
The function s(t) has the following properties.

Lemma 4.1 ([2],[9]).

(1) Re(s(t)) is and even function and Im(s(t)) is an odd function;
(2) ∇Re(s(0)) = 0;
(3) ∇Im(s(0)) = 2π

∫
F dm0 = 0

(4) ∇2Re(s(0)) is negative definite;
(5) ∇2Im(s(0)) = 0.

Note that we have used Assumption B1∗ to get ∇Im(s(0)) = 0. The only difficult
point is that ∇2Re(s(0)) is negative definite. The justification for this will appear
in the proof of Lemma 6.3 below.

Recall the function

η(s, t) =
∂ν+1

∂sν+1
logL(s, t)

=
∑
γ∈P

∞∑
m=1

mν(−l(γ))ν+1e−sml(γ)+2πi〈t,m[γ]〉

where ν = [b/2]. In view if the analysis above, we have

η(s, t) =
(−1)ν+1ν!

(s− s(t))ν+1
+A3(s, t),

with A3(s, t) analytic.
Now, for α ∈ Zb, we introduce a function

ηα(s) =

∫
Rb/Zb

e−2πi〈t,α〉η(s, t) dt.

By Lemma 3.3, ηα(s) is analytic in a neighbourhood of {s ∈ C : Re(s) ≥ h} \ {h}.
We need to know what happens close to h. Again by Lemma 3.3, we have

ηα(s) =

∫
U
e−2πi〈t,α〉η(s, t) dt+A4(s),

with A4(s) analytic. Now the key idea is that, since Re(s(t)) has a non-degenerate
critical point at 0, we can apply the Morse lemma to change co-ordinates on U , to
give new co-ordinates θ with Re(s(t(θ))) = h−‖θ‖2. The long calculation is carried
out in [2]; the following lemma is a bowdlerized version.

Lemma 4.2.

(1) If b is even then ηα(s) has a singularity of the form 1/(s− h) near s = h.
(2) If b is odd then ηα(s) has a singularity of the form 1/

√
s− h near s = h.

Given the more precise version of this lemma proved in [2], we can apply appro-
priate Tauberian theorems to conclude that∑

γ∈P

∞∑
m=1

ml(γ)≤T
m[γ]=α

l(γ)1+b/2 ∼ CehT .

From there, it is straightforward to deduce Theorem 1.8.
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5. The Homologically Full Case: Heuristics

Now suppose that φ : M →M is homologically full. Let’s try the same approach
as before and consider the L-function

L(s, t) =
∏
γ∈P

(
1− e−sl(γ)+2πi〈t,[γ]〉

)−1
= exp

∑
γ∈P

∞∑
m=1

1

m
e−sml(γ)+2πim〈t,[γ]〉

= exp

∞∑
n=1

1

n

∑
σnx=x

e−sr
n(x)+2πi〈t,fn(x)〉.

Lemma 5.1. L(s, t) is non-zero and analytic on {s ∈ C : Re(s) > h} × Rb/Zb.
Furthermore, L(s, t) is non-zero and analytic in a neighbourhood of (h+iτ, t) unless
(τ, t) = (0, 0) ∈ R× Rb/Zb.

The first statement is standard from [6]. The second statement is proved in the
same way as Lemma 3.3, except Φm0

= 0 is replaced by ΦmG = 0, where mG is the
equilibrium state for some Hölder continuous function G : M → R (the existence of
such a measure mG being guaranteed by φ being homologically full).

The problem lies in the singularity near (h, 0). From Lemma 4.1, we have that

∇Im(s(0)) = 2π

∫
F dm0.

We are no longer assuming
∫
F dm0 = 0 and if it is non-zero then s(t) does not

have critical point at 0. This leads the calculations leading to Lemma 4.2 to break
down. So we need another idea.

The following is by nature of a thought experiment. Recall that we want to get
asymptotics for

S(T, α) :=
∑
γ∈P

∞∑
m=1

ml(γ)≤T
m[γ]=α

l(γ)1+b/2

(which is just a hop and a step away from having asymptotics for π(T, α)). Observe
that if we take w ∈ H1(N,R) (which we can also abuse notation by thinking of as
w ∈ Rb) then

Sw(T, α) :=
∑
γ∈P

∞∑
m=1

ml(γ)≤T
m[γ]=α

l(γ)1+b/2e〈w,m[γ]〉

is an equally good object to look at, since

Sw(T, α) =
∑
γ∈P

∞∑
m=1

ml(γ)≤T
m[γ]=α

l(γ)1+b/2e〈w,α〉 = e〈w,α〉S(T, α).

The “right” L-function to study Sw(T, α) is

Lw(s, t) : =
∏
γ∈P

(
1− e−sl(γ)+〈w,[γ]〉+2πi〈t,[γ]〉

)−1
= exp

∞∑
n=1

1

n

∑
σnx=x

e−sr
n(x)+〈w,fn(x)〉+2πi〈t,fn(x)〉.

Applying the results of [6] again, this converges to an analytic function (for all
t ∈ Rb/Zb) provided

P (−Re(s)r + 〈w, f〉) < 0.

Recalling that P (−P (〈w,F 〉)r + 〈w, f〉) = 0, this maybe rephrased as

Re(s) > P (〈w,F 〉) = P (ω(Xφ)) = β(w),
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as defined in Theorem 1.6, where ω is a closed 1-form with [ω] = w.
So, is there a value of w for which everything works? As we saw above, the issue

is the nature of the singularity of Lw. Let us look at this more closely. From [6],
for (s, t) in a neighbourhood Uw of (β(w), 0) we have

Lw(s, t) =
A1(s, t)

1− eP (−sr+〈w,f〉+2πi〈t,f〉) ,

with A1(s, t) non-zero and analytic. Using the implicit function theorem, we can
define an analytic function sw : Uw → C by P (−s(t)r+ 〈w, f〉+ 2πi〈t, f〉) = 0. (We
can think of sw(t) as P (〈w+ 2πit, F 〉), an extension of the pressure function for σr
to complex functions.) We get

Lw(s, t) =
A2(s, t)

s− sw(t)
,

with A2(s, t) non-zero and analytic.
We see that

∇sw(0) = 2πi∇β(w).

(Note that the derivative of sw is with respect to t while the derivative of β is with
respect to w + 2πit). So sw has a critical point at 0 if and only if β has a critical
point at w. Now β (which is a pressure function) is convex and we might hope it
to be strictly convex (this needs proof). Let us suppose that it is strictly convex.
Then β has a critical point if and only if it has a finite minimum and, if it exists,
this finite minimum is unique. A reasonable strategy therefore seems to be

• show that φ homologically full implies that β is strictly convex and has a
finite minimum, which we’ll call ξ;

• use the L-function Lξ to attack the counting problem.

6. The Function β

As before, define β : H1(M,R) by β(w) = P (ω(Xφ)), with [ω] = w. We can
identify H1(M,R) with Rb be choosing a basis [ω1], . . . , [ωb] for H1(M,R), with w =
(w1, . . . , wb) ∈ Rn identified with w = w1[ω1] + · · · + wb[ωb] ∈ H1(M,R). We will
first to choose a free generating set α1, . . . , αb for the Z-module H1(M,Z)/(torsion)
(which also provides a basis for H1(M,R)) and then choose the [ωi] according to
〈[ωi], αj〉 = δij .) With this identification,

β(w) = P (〈w,F 〉) = P (w1F1 + · · ·+ wbFb).

The following result is just standard differentiation of pressure. We will use it
shortly.

Lemma 6.1. We have

∇β(w) =

(∫
F1 dm〈w,F 〉, . . . ,

∫
Fb dm〈w,F 〉

)
=

∫
F dm〈w,F 〉,

where m〈w,F 〉 is the equilibrium state for 〈w,F 〉.

Let us now see what homological fullness tells us. As a warm-up, it is easy to
show that if φ is homologically full then β is bounded below by zero.

Lemma 6.2. If φ is homologically full then β is bounded below by zero.

Proof. By (4) in Lemma 1.4, we have that, in particular, Φm = 0 for some m ∈Mφ.
Then

β(w) = sup
ν∈Mφ

hφ(ν) + 〈w,Φν〉

≥ hφ(m) + 〈w,Φm〉 = hφ(m) ≥ 0.

�
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However, this is weaker than β having a finite minimum, which we still have to
prove. As it stands, β could have an asymptote. (For example e−x is strictly
convex, bounded below, but has no finite minimum.)

Lemma 6.3. If φ is homologically full then β is strictly convex.

Proof. For β to be strictly convex, it is sufficient that ∇2β be positive definite ev-
erywhere. The latter holds unless there is a w 6= 0 such that 〈w,F 〉 is cohomologous
to a constant, c say. Since φ is homologically full, there is an m ∈ Mφ for which∫
F dm = 0, we have c = 0. Then 〈w, [γ]〉 =

∫
γ
〈w,F 〉 = 0 for all γ ∈ P(φ). By

Lemma 1.1, this gives 〈w,α〉 = 0 for all α ∈ Zb and so w = 0. (The end of the proof
could be slightly shortened by using homological fullness again but the argument I
wrote shows that this is not necessary.) �

Lemma 6.4. If φ is homologically full then β has a finite minimum.

Proof. For x =
∑b
i=1 xiαi ∈ H1(M,R), we set x∗ =

∑b
i=1 xi[ωi] ∈ H1(M,R).

We can then define norms on H1(M,R) and H1(M,R) by ‖x‖ = ‖x∗‖ = 〈x∗, x〉.
(Since 〈[ωi], αj〉 = δij , these are just the Euclidean norms with respect to the bases
α1, . . . , αb and [ω1], . . . , [ωb], respectively.)

Write C for the convex hull of {[γ]/l(γ) : γ ∈ P(φ)}. If φ is homologically full
then 0 ∈ int(C) (statement (3) in Lemma 1.4). Then we can choose ε > 0 such that

{x ∈ H1(M,R) : ‖x‖ < 2ε} ⊂ C.

It follows that εx/‖x‖ ∈ C for all x 6= 0, so

ε‖x∗‖ = ε‖x‖ = ε
〈x∗, x〉
‖x‖

≤ max
y∈C
〈x∗, y〉 (†)

(the inequality holding trivially for x = 0). A general element y ∈ C has the form∑
γ∈P(φ)

aγ
[γ]

l(γ)
,

with 0 ≤ aγ ≤ 1 and
∑
γ∈P(φ) aγ = 1. Let mγ ∈ Mφ be the normalized Lebesgue

measure around γ. Then, for any x∗ ∈ H1(M,R),

β(x∗) = sup
ν∈Mφ

hν(φ) +

∫
〈x∗, F 〉 dν

≥ hφ

 ∑
γ∈P(φ)

aγmγ

+
∑

γ∈P(φ)

aγ

∫
〈x∗, F 〉 dmγ

= hφ

 ∑
γ∈P(φ)

aγmγ

+
∑

γ∈P(φ)

aγ
〈x∗, [γ]〉
l(γ)

= hφ

 ∑
γ∈P(φ)

aγmγ

+ 〈x∗, y〉 ≥ 〈x∗, y〉,

so

β(x∗) ≥ max
y∈C
〈x∗, y〉. (‡)

Combining (†) and (‡) gives

β(x∗) ≥ ε‖x∗‖.
Now choose r ∈ R in the image of β. For any w ∈ H1(M,R) with ‖w‖ > r/ε,

we have β(w) ≥ ε‖w‖ > r. It follows that β has a unique finite minimum at some
ξ (satisfying ‖ξ‖ ≤ r/ε). �
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This argument was shamelessly stolen from [3]2. To end the section, we tie a few
other things together.

Lemma 6.5. Let ξ be as above. We have

β(ξ) = hφ(m〈ξ,F 〉) = sup{hφ(m) : m ∈Mφ and Φm = 0} > 0

and

∇β(ξ) =

∫
F dm〈ξ,F 〉 = 0.

Proof. First we note that ∇β(ξ) = 0 since ξ is a global minimum and the formula
∇β(ξ) =

∫
F dm〈ξ,F 〉 is from Lemma 6.1. Now,

β(ξ) = hφ(m〈ξ,F 〉) +

∫
〈ξ, F 〉 dm〈ξ,F 〉

= hφ(m〈ξ,F 〉) +

〈
ξ,

∫
F dm〈ξ,F 〉

〉
= hφ(m〈ξ,F 〉) > 0,

where the last term is positive because equilibrium states for Hölder continuous
functions have positive entropy. Finally, if m 6= m〈ξ,F 〉 satisfies Φm = 0 (equiva-

lently,
∫
F dm = 0), then

β(ξ) > hφ(m) +

∫
〈ξ, F 〉 dm = hφ(m) +

〈
ξ,

∫
F dm

〉
= hφ(m),

so the characterisation of β(ξ) as a supremum also holds. �

7. Completing the Proof

As Nike’s slogan says, Just Do It. Work with the function Lξ(s, t), which con-
verges for Re(s) > h∗ := β(ξ). We have:

Lemma 7.1. Lξ(s, t) is non-zero and analytic in a neighbourhood of (h∗ + iτ, t)
unless (τ, t) = (0, 0) ∈ R× Rb/Zb.

Proof. The proof is the same as the proof of Lemma 3.3 except that Φm〈ξ,F〉 = 0 is
used instead of Φm0

= 0. �

We it comes to the singularity, we have set things up so that close to (h∗, 0),

Lξ(s, t) =
A(s, t)

s− sξ(t)
,

where A(s, t) is analytic and sξ satisfied the following.

Lemma 7.2 ([2],[9]).

(1) Re(sξ(t)) is and even function and Im(sξ(t)) is an odd function;
(2) ∇Re(sξ(0)) = 0;
(3) ∇Im(sξ(0)) = −2π

∫
F dm〈ξ,F 〉 = 0

(4) ∇2Re(sξ(0)) = −∇2β(ξ) is negative definite;
(5) ∇2Im(sξ(0)) = 0.

Writing

ηξ(s, t) =
∂ν+1

∂sν+1
logLξ(s, t)

and

ηα,ξ(s) =

∫
Rb/Zb

e−2πi〈t,α〉ηξ(s, t) dt,

we continue as in section 4 to get:

2Bad artists copy, great artists steal. Variants of this saying have been attributed to T. S.
Eliot, Picasso and Stravinsky, among others. See Quote Investigator again.
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Lemma 7.3.

(1) If b is even then ηα,ξ(s) has a singularity of the form 1/(s−h∗) near s = h∗.

(2) If b is odd then ηα,ξ(s) has a singularity of the form 1/
√
s− h∗ near s = h∗.

From the precise version of this lemma, it is plain sailing to complete the proof
of Theorem 1.6.
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