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Abstract

We give a survey of large deviations results in dynamical systems. We discuss

abstract Level 1 and Level results and their application to hyperbolic systems. We also

discuss exponential and polynomial results for systems modelled by Young towers.

1 Introduction

1.1 The Ergodic Theorem

Let (X,B, µ) be a probability space and let T : X → X be an ergodic measure-preserving
transformation. In this setting, the Birkhoff Ergodic Theorem says that, for every observable
f ∈ L1(X, µ),

lim
n→∞

1

n

n−1
∑

j=0

f(T jx) =

∫

f dµ, (1)

for µ-a.e. x ∈ X. This is the starting point for examining other statistical properties (for
more restricted classes of observable). One direction is to ask whether one can normalise
the sums by a sequence growing more slowly than n and obtain a limit with non-trivial
distribution. Under appropriate conditions, this leads to the Central Limit Theorem (where
the normalisation is by

√
n) and ultimately the Almost Sure Invariance Principle (where the

sums
∑n−1

j=0 f(T
jx) are approximated by a Brownian motion), or other stable laws. Another

direction, which we shall pursue in this lecture, is to quantify deviations of the averages away
from their limit. For example, we may wish to estimate

µ

{

x ∈ X :

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

f(T jx)−
∫

f dµ

∣

∣

∣

∣

∣

> ǫ

}

,

for ǫ > 0, as n → ∞. The study of such problems is called Large Deviations and in the
classical setting one obtains exponential decay with description of the rate in terms of the
so-called thermodynamic formalism. We shall make this more precise shortly.

∗These notes are an extended version of lectures delivered during the workshop “Statistical Properties of

Nonequilibrium Dynamical Systems” at SUSTech, Shenzhen, China in July 2016. The author is grateful to

the organisers of the school for the opportunity to speak and to the Department of Mathematics at SUSTech

for its hospitality.
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1. INTRODUCTION

1.2 A little history

As is usual in the study of statistical properties in dynamical systems, large deviations were
first considered for averages of i.i.d. random variables. The initial results were obtained in
this setting by Harald Cramér in 1938. However, the probabilistic theory and its applications,
particularly in statistical mechanics, exploded in the 1970s after the work of Donsker and
Varadhan in the US and Wentzell in the Soviet Union. See [14] (available on the author’s
webpage) for a nice historical survey and references and the books [11] and [13] for more
comprehensive accounts.

Early work on the application of large deviations to dynamical systems appears inde-
pendently in the work of Denker [12], Lopes [18], Orey and Pelikan [22], Takahashi [29, 30],
Vaienti [31], and Young [40]. A more abstract and general approach was given by Kifer [17]
and it is essentially this approach that we shall follow.

More recent work has both extended that range of the classical theory where exponential
bounds hold [4], [7], [8], [9], [10], [15], [24], [27], and has investigated that weaker bounds
that hold for nonuniformly hyperbolic systems [19], [20], [26].

1.3 Level 1 and Level 2

When studying large deviations for dynamical systems we usually look at two levels of
results. We begin by discussing so called Level 1 large deviations, which corresponds to the
problem at the start. As before, suppose that T : X → X is an ergodic measure-preserving
transformation of the probability space (X,B, µ), where X is a compact metric space and T
is continuous, and let f ∈ C(X,R). We shall use the notation

fn(x) :=

n−1
∑

j=0

f(T jx).

Level 1 large deviations involves estimating

µ

{

x ∈ X :
fn(x)

n
∈ A

}

(2)

for subsets A ⊂ R, as n → ∞.
However, one can take a more abstract point of view. Let M(X) denote the set of Borel

probability measures on X, equipped with the weak∗ topology. For x ∈ X, let

νx,n :=
1

n
(δx + δTx + · · ·+ δTn−1x) ,

where δx denotes the Dirac measure at x. We call the νx,n (normalised) empirical measures.
Level 2 large deviations involves estimating

µ {x ∈ X : νx,n ∈ A} , (3)

for subsets A ⊂ M(X), as n → ∞.
In both cases, the classical theory, which holds in the presence of uniform hyperbolicity,

gives that when A does not contain
∫

f dµ or when A does not contain µ the quantities in
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2. BACKGROUND

(2) and (3) decay exponentially fast with an explicit rate function depending on A or A.
This rate function is related to the thermodynamic formalism associated to the dynamical
system.

Remark 1.1. It is worthwhile emphasising that this exponential decay is not related to a
spectral gap. It is a fundamentally different type of phenomenon to exponential decay of
correlations.

2 Background

2.1 Thermodynamic formalism

Let T : X → X be a continuous mapping of a compact metric space. (What follows will also
hold mutatis mutandis for flows.) Let M(X) denote the set of Borel probability measures
on X, equipped with the weak∗ topology, and let MT (X) denote the subset of T -invariant
probabilities. We assume the reader is familiar with the definitions of the topological entropy
h(T ) in terms of spanning or separating sets and, for m ∈ MT (X), the measure-theoretic
entropy hm(T ). We call the function m 7→ hm(T ) the entropy map. We also assume famil-
iarity with the pressure function P : C(X,R) → R, again defined in terms of spanning or
separating sets. See [33] for all these definitions.

An important result is the so-called Variational Principle for pressure (and, by setting
f = 0, for entropy). This is due to Walters [32] and also appears as Theorem 9.10 of [33].

Theorem 2.1 (Walters). For all f ∈ C(X,R), we have

P (f) = sup

{

hm(T ) +

∫

f dm : m ∈ MT (X)

}

.

Given f ∈ C(X,R), a measure for which the supremum in the Variational Principle is
attained is called an equilibrium state for f . Equilibrium states do not always exist but their
existence for all f ∈ C(X,R) is guaranteed if the entropy map is upper semi-continuous.
Even if equilibrium states exist they are not necessarily unique but they are unique in certain
nice settings (for example if T is a hyperbolic diffeomorphism or expanding map and f is
Hölder continuous). If an equilibrium state is unique it is automatically ergodic.

2.2 Convex analysis and duality

We need to know a small amount about abstract convex analysis. Let X be a locally convex
topological vector space over R and let X ∗ be its dual space (i.e. the space of continuous
linear functional from X to R). Let 〈·, ·〉 : X ∗ ×X → R denote the duality pairing.

The Fenchel-Legendre transform of a function Φ : X ∗ → R ∪ {±∞} is the function
Φ∗ : X → R ∪ {±∞} defined by

Φ∗(x) = sup
ω∈X ∗

(〈ω, x〉 − Φ(ω)) .
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3. AN ABSTRACT LARGE DEVIATION THEOREM

Theorem 2.2 (Duality Theorem [11], Lemma 4.5.8). Let Ψ : X → R ∪ {+∞} be a convex
and lower semi-continuous function and define

Φ(ω) = sup
x∈X

(〈ω, x〉 −Ψ(x)) .

Then Ψ is the Fenchel-Legendre transform of Φ.

We will apply this with X = C(X,R). Functions on the dual will only be defined on
M(X) but can be extended to the whole of C(X,R)∗ by setting them to be equal to +∞
elsewhere.

3 An abstract large deviation theorem

3.1 Rate functions and large deviations

Let X be a compact metric space and let T : X → X be a continuous map such that
h(T ) < ∞. Suppose that the entropy map m 7→ hm(T ) is upper semi-continuous. (A
suitably amended version of what follows also works for flows.) Let g ∈ C(X,R) be a fixed
potential such that g has a unique equilibrium state µ.

Rather than restricting to results about µ, we shall allow the flexibility of considering a
sequence of probability measures µn ∈ M(X) (which we do not assume to be T -invariant).

Assumption A. For each f ∈ C(X,R), we have

lim sup
n→∞

1

n
log

∫

ef
n(x) dµn ≤ P (f + g)− P (g).

Assumption B. There exists a ‖ · ‖∞-dense subspace V of C(X,R), such that, for every
f ∈ V , f + g has a unique equilibrium state and we have

lim
n→∞

1

n
log

∫

ef
n(x) dµn = P (f + g)− P (g).

The decay rate in the large deviations results will be obtained from the following function.

Definition 3.1. Define a rate function I : M(X) → R ∪ {+∞} by

I(m) = sup

{
∫

f dm− P (f + g) + P (g) : f ∈ C(X,R)

}

.

In fact, there is a more explicit formula for I(m), given in the next lemma.

Lemma 3.2.

I(m) =

{

P (g)−
∫

g dm− hm(T ) if m ∈ MT (X)

+∞ if m ∈ M(X) \MT (X).
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3. AN ABSTRACT LARGE DEVIATION THEOREM

Proof. Write

Θg(m) =

{

−hm(T )−
∫

g dm if m ∈ MT (X)

+∞ if m ∈ M(X) \MT (X).

Since the entropy map is affine and upper semi-continuous, Θg : M(X) → R ∪ {+∞} is
convex and lower semi-continuous. We have

P (f + g) = sup
m∈MT (X)

(

hm(T ) +

∫

(f + g) dm

)

= sup
m∈M(X)

(
∫

f dm−Θg(m)

)

.

By the Duality Theorem, we have that

Θg(m) = sup
f∈C(X,R)

(
∫

f dm− P (f + g)

)

= −P (g) + sup
f∈C(X,R)

(
∫

f dm− P (f + g) + P (g)

)

.

Rearranging given
I(m) = Θg(m) + P (g),

which gives the required formula.

Corollary 3.3. I is lower semi-continuous.

It is now easy to get a large deviations upper bound with rate function I.

Theorem 3.4 (Kifer [17]). Suppose Assumption A holds. Then

lim sup
n→∞

1

n
log µn {x ∈ X : νx,n ∈ K} ≤ − inf{I(m) : m ∈ K}, (4)

for every closed K ⊂ M(X).

Proof. For A ⊂ M(X), write ρ(A) := inf{I(m) : m ∈ A}. Let K ⊂ M(X) be closed and
hence compact. The Left Hand Side of inequality (4) is at most zero, so if ρ(K) ≤ 0 there is
nothing to prove. So suppose ρ(K) > 0. For ǫ > 0 and f ∈ C(X,R), define

U(f, ǫ) :=
{

m ∈ M(X) :

∫

f dm− P (f + g) + P (g) > ρ(K)− ǫ

}

;

these are open sets. From the definition of I, it is clear that

K ⊂ {m ∈ M(X) : I(m) > ρ(K)− ǫ} =
⋃

f∈C(X,R)

U(f, ǫ),

so {U(f, ǫ)}f∈C(X,R) is an open cover of K. Since K is compact, we can find f1, . . . , fk ∈
C(X,R) such that

K ⊂
k
⋃

i=1

U(fi, ǫ).
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3. AN ABSTRACT LARGE DEVIATION THEOREM

Writing
Ai,n = {x ∈ X : fn

i (x)− n(P (fi + g)− P (g) + ρ(K)− ǫ) > 0},
we then have

µn {x ∈ X : νx,n ∈ K} ≤
k

∑

i=1

µn{x ∈ X : νx,n ∈ U(fi, ǫ)}

=

k
∑

i=1

µn

{

x ∈ X :

∫

fi dνx,n > P (fi + g)− P (g) + ρ(K)− ǫ

}

=
k

∑

i=1

∫

χAi,n
dµn

≤
k

∑

i=1

e−n(P (fi+g)−P (g)+ρ(K)−ǫ)

∫

ef
n
i
(x)χAi,n

dµn

≤
k

∑

i=1

e−n(P (fi+g)−P (g)+ρ(K)−ǫ)

∫

ef
n
i
(x) dµn,

since ef
n
i
(x)−n(P (fi+g)−P (g)+ρ(K)−ǫ) > 1 on Ai,x and is positive everywhere. Taking logs, dividing

by n and taking the lim sup, we get

lim sup
n→∞

1

n
logµn{x ∈ X : νx,n ∈ K} ≤ −ρ(K) + ǫ.

Since ǫ > 0 is arbitrary, the inequality (4) follows.
Finally, suppose that ρ(K) is infinite. For N > 0 and f ∈ C(X,R), write

V(f,N) :=

{

m ∈ M(X) :

∫

f dm− P (f + g) + P (g) > N

}

.

Arguing as above, with V(f,N) replacing U(f, ǫ), we obtain

lim sup
n→∞

1

n
logµn{x ∈ X : νx,n ∈ K} ≤ −N.

Since N can be taken arbitrarily large, (4) follows in this case also.

Theorem 3.5. Suppose Assumption A and Assumption B hold. Then

lim inf
n→∞

1

n
log µn {x ∈ X : νx,n ∈ U} ≥ − inf{I(m) : m ∈ U},

for every open U ⊂ M(X).

Proof. Omitted. The theorem is essentially Theorem C from [9]. This improves on the
statement in [17] (where it is the second part of Theorem 2.1) in that there is no requirement
that V be spanned by a countable collection of elements. See the remarks after Theorem C
and Appendix B of [9] for an illuminating discussion.
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3. AN ABSTRACT LARGE DEVIATION THEOREM

A Level 1 large deviations result immediately follows from Theorem 3.4 and 3.5.

Corollary 3.6. Let f ∈ C(X,R). For α ∈ R, set

J(α) = inf

{

I(m) : m ∈ MT (X) such that

∫

f dm = α

}

.

Under the hypothesis of Theorem 3.4, we have

lim sup
n→∞

logµn

{

x ∈ X :
fn(x)

n
∈ K

}

≤ − inf{J(α) : α ∈ K},

for every compact K ⊂ R. Under the additional hypothesis of Theorem 3.5, we have

lim inf
n→∞

logµn

{

x ∈ X :
fn(x)

n
∈ U

}

≥ − inf{J(α) : α ∈ U},

for every open U ⊂ R.

Proof. Let

K =

{

m ∈ M(X) :

∫

f dm ∈ K

}

.

Then K is closed and νx,n ∈ K if and only if fn(x)/n ∈ K and so the first result follows from
Theorem 3.4. The second result follows from Theorem 3.5 by a similar argument once we
set U =

{

m ∈ M(X) :
∫

f dm ∈ U
}

.

As mentioned in the introduction, we note that for sets in M(X) which do not include
µ we have exponential decay:

Lemma 3.7. Suppose that µ is the unique equilibrium state for g. If K ⊂ M(X) is compact
and µ /∈ K then inf{I(m) : m ∈ K} > 0.

Proof. It follows from Lemma 3.2 and the Variational Principle that I(m) > 0 whenever
m 6= µ. Since I is lower semi-continuous, the result follows.

3.2 Applications

We formulated the results is the preceding section in terms of a sequence of (not necessarily
invariant) probability measures µn. In applications, the three main examples of sequences
µn we have in mind are the following:

1. µn = µ for all n;

2. µn is a weighted average of periodic point measures,

µn = µ(per)
n =

∑

Tnx=x e
gn(x)νx,n

∑

Tnx=x e
gn(x)

;
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3. AN ABSTRACT LARGE DEVIATION THEOREM

3. (if T is non-invertible) µn is a weighted average of measures supported on pre-images,

µn = µ(pre)
n =

∑

Tnx=x0
eg

n(x)δx
∑

Tnx=x0
egn(x)

,

for some x0 ∈ X.

We then have the following results.

Theorem 3.8. Let T : X → X be a uniformly hyperbolic diffeomorphism and let g : X → R

be Hölder continuous. Let µ be the unique equilibrium state for g. Then the conclusions of
Theorems 3.4 and 3.5 hold for the sequences µn = µ and µn = µ

(per)
n .

Theorem 3.9. Let T : X → X be a uniformly expanding map and let g : X → R be Hölder
continuous. Let µ be the unique equilibrium state for g. Then the conclusions of Theorems
3.4 and 3.5 hold for the sequences µn = µ, µn = µ

(per)
n and µn = µ

(pre)
n .

Assumptions A and B are standard for µ, µ
(per)
n and, for expanding maps, µ

(pre)
n in these

settings, where V can be taken to be the space of Hölder continuous functions.
Theorem 3.9 covers the case where T : X → X is a hyperbolic rational map of the

Riemann sphere restricted to its Julia set (see also [8]). A version of Theorem 3.4 for pre-
images was proved for general rational maps in [25], subject to Urbanski’s condition that
P (g) > supx∈X g(x). Both upper and lower bounds were obtained for all Hölder g for rational
maps satisfying the Topological Collet-Eckmann condition (TCE). An easy way of stating
this is to say that T satisfies TCE if there exists λ > 1 and r > 0 such that for every x ∈ X,
every n ≥ 1, and every connected component W of T−n(B(x, r), we have

diam(W ) ≤ λ−n.

Rational maps satisfying TCE have a good thermodynamic formalism and Assumptions A
and B hold with again V equal to the Hölder continuous functions.

Theorem 3.10 (Comman and Rivera-Letelier [9]). Let T : X → X be a rational map,
restricted to its Julia set, satisfying TCE and let g : X → R be Hölder continuous. Let µ be
the unique equilibrium state for g. Then the conclusions of Theorems 3.4 and 3.5 hold for
µn = µ, µn = µ

(per)
n and µn = µ

(pre)
n .

3.3 Weak∗ convergence of µn

Suppose that we are in the setting of section 1.6 and that the sequence µn satisfies Assump-
tions A and B. It is not necessarily the case that µn converges to µ in the weak∗ topology.
However, if the measures µn are (eventually) T -invariant, then we do have weak∗ conver-
gence. We prove this in the next lemma and then give a counterexample to the general
statement.

Lemma 3.11. Suppose that the measures µn are T -invariant. Suppose Assumption (A)
holds. Then µn converges to µ weak∗, as n → ∞.
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3. AN ABSTRACT LARGE DEVIATION THEOREM

Proof. Let f ∈ C(X,R) and let ǫ > 0. Write

E(ǫ, n) =

{

x ∈ X :

∣

∣

∣

∣

fn(x)

n
−

∫

f dµ

∣

∣

∣

∣

≥ ǫ

}

.

Then, using the T -invariance of µn for the first equality,

∫

f dµn =
1

n

∫

fn dµn =
1

n

∫

E(ǫ,n)

fn dµn +
1

n

∫

X\E(ǫ,n)

fn dµn.

Now
∣

∣

∣

∣

1

n

∫

E(ǫ,n)

fn dµn

∣

∣

∣

∣

≤ ‖f‖∞µn(E(ǫ, n)),

which converges to zero by Lemma 3.7. On the other hand,

µ(X \ E(ǫ, n))

(
∫

f dµ− ǫ

)

≤ 1

n

∫

X\E(ǫ,n)

fn dµn ≤ µ(X \ E(ǫ, n))

(
∫

f dµ+ ǫ

)

.

Since ǫ > 0 is arbitrary, we conclude that

lim
n→∞

∫

f dµn =

∫

f dµ.

Now let T : X → X be a mixing one-sided subshift of finite type and let g : X → R be
Hölder continuous. Consider the sequence µ

(pre)
n defined in section 1.6. Associated to g is

the transfer operator Lg : C(X,C) → C(X,C) defined by

(Lgw)(x0) =
∑

Tx=x0

eg(x)w(x).

By the well-known Ruelle–Perron–Frobenius Theorem [23], Lg has eP (g) as an eigenvalue and
the dual operator has an associated eigenprobability m, i.e.

∫

Lgw dm = eP (g)

∫

w dm,

for all w ∈ C(X,C). The measure m is equal to µ if and only if the constant functions are
eigenfunctions for the eigenvalue eP (g). In general, this is not the case and then m is not
T -invariant. However, in all cases, the measures µ

(pre)
n converge weak∗ to m.

Remark 3.12. A more abstract view is taken in [9]. Define a measure a sequence of measures
Υn on M(X) by

Υn(A) =

∑

Tnx=x0

νx,n∈A
eg

n(x)

∑

Tnx=x0
egn(x)

.

Then Υn converges weak∗ to the Dirac measure at µ.
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4. NON-UNIFORMLY HYPERBOLIC SYSTEMS AND LOCAL RESULTS

4 Non-uniformly hyperbolic systems and local results

There are many classes of dynamical system which exhibit hyperbolic behaviour but for
which the full Large Deviation Principle discussed about fails to hold. Nevertheless, one can
obtain Level 1 results valid for deviations in a neighbourhood of the mean. These results hold
for certain non-uniformly hyperbolic systems, specifically those modelled by Young towers
with exponential return times.

The idea underpinning the theory of Young towers was introduced by Young in her study
of quadratic interval maps [41]. She subsequently extended this to a more general theory,
covering a wealth of examples, in her very influential paper [42]. (The objects we call Young
towers are called Markov towers in [42].) To explain the idea, suppose that T : X → X is a
C1+α map and that Y ⊂ X is a subset on which T is uniformly hyperbolic. We also suppose
that T has an invariant measure µ that is absolutely continuous with respect to the ambient
volume measure. Then there is a return time function R : Y → N ∪ {∞} defined by

R(x) = inf{n ∈ N : T nx ∈ Y }

and, by the Poincaré Recurrence Theorem, R is finite µ-almost everywhere. The Young
tower is the set

∆ = {(x, k) : x ∈ Y, 0 ≤ k ≤ R(x)− 1},
along with the dynamics F : ∆ → ∆ given by

F (x, k) =

{

(x, k + 1) if 0 ≤ k < R(x)− 1

TR(x)x if k = R(x)− 1.

The dynamics of T and F are related by the map π : ∆ → X defined by π(x, k) = T kx;
clearly, T ◦ π = π ◦ F . To simplify matters considerably, one hopes that the map F is more
amenable to analysis than T but that results for F can be pushed down to obtain results for
T . Conditions that permit this are given as (P1)–(P5) in [42]. A key characteristic of the
tower is the sequence

τ∆(n) = µ{x ∈ Y : R(x) > n}.
If τ∆(n) = O(e−γn), for some γ > 0, then we say that F has exponential return times. For
the rest of the section, we assume that this us the case. (We consider the situation of return
times exhibiting polynomial decay in the next section.)

The following are examples of systems modelled by Young towers with exponential return
times.

1. Planar periodic Lorentz gas. Let Ω be a disjoint union of strictly convex regions in
R2/Z2 with C3 boundaries. There is a natural billiard flow on (R2/Z2 \Ω)×S1, which
induces a billiard map T : X → X, where X = ∂Ω× [−π/2, π/2]. This is modelled by
a Young tower with exponential return times in both the cases of finite horizon (Young
[42]) and infinite horizon (Chernov [5]).

2. Piecewise hyperbolic attractors For example, Lotenz, Lozi and Belykh attractors, or
higher dimensional systems obtained by coupling. (Chernov [6], Young [42].)
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4. NON-UNIFORMLY HYPERBOLIC SYSTEMS AND LOCAL RESULTS

3. Hénon maps and other rank-one attractors. (Wang and Young [34], [35], [36], [38],
Young [42].)

4. Non-uniformly expanding maps in one dimension. (Wang and Young [37], Young [42].)

We now state a large deviations result in this setting. Let f : X → R be a Hölder
continuous function. We assume that

∫

f dµ = 0 and then the variance σ2(f) is defined by

σ2(f) = lim
n→∞

1

n

∫

(fn(x))2 dµ(x).

Theorem 4.1 ([20], [27]). Let T : X → X be a system with an absolutely continuous
invariant probability measure µ, modelled by a Young tower with exponential return times.
Let f : X → R be a Hölder continuous function with

∫

f dµ = 0 and σ2(f) > 0. Then there
exist constants a(f) < 0 and b(f) > 0 such that, for any compact interval K ⊂ [a(f), b(f)],
we have

lim
n→∞

1

n
logµ

{

x ∈ X :
fn(x)

n
∈ K

}

= − inf{Jf(α) : α ∈ K},

where Jf : [a(f), b(f)] → R is a strictly convex rate function, vanishing at
∫

f dµ. Moreover,
Jf is the Fenchel-Legendre transform of

e(t) = lim
n→∞

1

n
log

∫

etf
n(x) dµ(x).

We will not give the complete proof of this theorem but we will identify the rate function
Jf and explain why it is only defined on a neighbourhood of

∫

f dµ. We begin by considering
the transfer operator P : L1(∆, µ∆) (where µ∆ is the measure on ∆ induced by µ) defined
by

∫

v (w ◦ F ) dµ̃ =

∫

(Pv)w dµ∆,

for v ∈ L1(∆, µ∆) and w ∈ L∞(∆, µ∆). (Here we are glossing over some arguments that
reduce to the case of a mixing Young tower map.) This operator does not have good spectral
properties but Young showed that it is better behaved when restricted to a a Banach space
B of weighted Lipschitz functions [42]. In particular, P : B → B is quasi-compact.

Following [20], one can introduce a weighted version on P. For z ∈ C, define Pz : B → B
by Pz(v) = P(ezfv). Then each Pz is bounded and z 7→ Pz is analytic on C. Theorem 4.1
then follows from a result of Hennion and Hervé which appears as Theorem E∗ on page 84
of [16]. This abstract result has a number of hypothesis and these were checked in [20]. A
more self-contained account appears in [27].

A notable feature of this result is that the rate function is only defined locally, in a
neighbourhood of zero. This is related to the domain of analyticity of the function complex
function

e(z) = lim
n→∞

1

n
log

∫

ezf
n(x) dµ(x).

Indeed, we have the following result of Ray-Bellet and Young [27] (which can also be extracted
from [16]).

11



5. POLYNOMIAL ESTIMATES

Lemma 4.2. There exist θ > 0 and ω > 0 such that e(z) is well-defined and analytic on

{z ∈ C : |Re(z)| < θ, |Im(z)| < ω}.

Proof. Lemma 4.2 is obtained by relating e(z) to Pz via the formula

e(z) = lim
n→∞

1

n
log

∫

Pzh dν, (5)

where h and ν are, respectively, an eigenfunction and an eigenmeasure for P (normalised so
that

∫

h dν = 1), and then using the spectral properties of the operator.
If z is real then, for |z| sufficiently small, Pz has a spectral gap and a simple maximal

eigenvalue λ(z). (This can fail for large |z| due to the contribution of the higher levels of
the tower. More formally, one requires that the so-called tail pressure of zf is strictly small
than P (zf), the pressure of zf . See Theorem 3.1 of [27].) Hence there is a decomposition

Pn
z v = λ(z)nhz

∫

v dνz +Rn
z v, (6)

where hz and νz are eigenfunctions/eigenmeasures for Pz and Rz has spectral radius strictly
smaller than |λ(z)|.

By standard perturbation theory, the simple maximal eigenvalue λ(z) and the above
decomposition persists for z ∈ C with Im(z) sufficiently small. (Unlike the bound on the
real part of z, the bound on the imaginary part is not particularly related to the tower
construction.) Furthermore, since z 7→ P − z is analytic, we also have that, for these values
of z, z 7→ λ(z) is analytic. The proof is then completed by applying (5) to (6).

We can then take
[a(f), b(f)] = [e′(−θ), e′(θ)]

in Theorem 4.1, with Jf defined by

Jf (α) = sup
t∈[−θ,θ]

(tα− e(t)) .

5 Polynomial Estimates

The exponential estimates in the preceding section fail when the tower has polynomial tails
but polynomial bounds still hold in this setting. The optimal result (which subsumes es-
timates in [20], [26]) is in [19]. In what follows, C will denote an arbitrary positive con-
stant depending on the quantities indicated (although the dependence on the whole systems
T : X → X has been suppressed).

Theorem 5.1 (Melbourne [19]). Let β > 0. Suppose that f ∈ L∞(X, µ) and that

∣

∣

∣

∣

∫

f (h ◦ T n) dµ−
∫

f dµ

∫

h dµ

∣

∣

∣

∣

≤ C(f)‖h‖∞n−β ,

12
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for all h ∈ L∞(X, µ) and all n ≥ 1. Then

µ

{

x ∈ X :

∣

∣

∣

∣

fn(x)

n
−

∫

f dµ

∣

∣

∣

∣

> ǫ

}

≤ C(f, ǫ)n−β,

for all n ≥ 1.

The proof relies on the following technical lemma and a general version of Markov’s
inequality: for φ : R+ → R+ increasing,

µ{x ∈ X : |f(x)| ≥ ǫ} ≤ 1

φ(ǫ)

∫

φ(|f |) dµ.

Lemma 5.2 (Melbourne [19], Lemma 2.1). Let β > 0 and q ≥ 1. Let f ∈ L∞(X, µ) with
∫

f dµ = 0. Suppose that
∣

∣

∣

∣

∫

f (h ◦ T n) dµ

∣

∣

∣

∣

≤ C(f)‖h‖∞n−β,

for all h ∈ L∞(X, µ) and n ≥ 1. Then, for all sufficiently large n, we have

∫

|fn|2q dµ ≤ C(β, q)C(f)q‖f‖2q−1
∞

{

n2q−β if q > β,

nq(logn)q if q = β.

Proof. See [19]. The idea is to formulate the problem in terms of martingale differences and
apply estimates from probability theory [21], [28].

Proof of Theorem 5.1. Without loss of generality, suppose that
∫

f dµ = 0. By Markov’s
inequality with φ(t) = t2q,

µ

{

x ∈ X :
|fn(x)|

n
> ǫ

}

≤ ǫ−2qn−2q

∫

|fn|2q dµ.

Now apply Lemma 5.2 with q > max{1, β} to get the result.

Corollary 5.3. Let T : X → X with ergodic invariant probability measure µ be a nonuni-
formly expanding or nonuniformly hyperbolic system modelled by a Young tower with poly-
nomial tail. Then, for some β > 0,

µ

{

x ∈ X :

∣

∣

∣

∣

fn(x)

n
−
∫

f dµ

∣

∣

∣

∣

> ǫ

}

= O(n−β).

The above theorem also yields a Level 2 result.

Theorem 5.4 (Melbourne [19], using an argument from [26]). Suppose that Theorem 5.1
holds for all Hölder continuous functions f with exponent some fixed exponent α > 0. Then
if K ⊂ M(X) is compact and µ /∈ K then we have

µ {x ∈ X : νx,n ∈ K} ≤ C(K)n−β,

for all n ≥ 1.

13
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Proof. Let Cα(X,R) denote the space of α-Hölder continuous functions in X. Suppose
m ∈ K. Since µ /∈ K and Cα(X,R) is ‖ · ‖∞-dense in C(X,R), there exists ǫ > 0 and
f ∈ Cα(X,R) such that |

∫

f dm−
∫

f dµ| > ǫ. Hence

K ⊂
⋃

f∈Cα(X,R)

⋃

ǫ>0

{

m ∈ M :

∣

∣

∣

∣

∫

f dm−
∫

f dµ

∣

∣

∣

∣

> ǫ

}

.

Since K is compact, we can cover it by finitely many of these sets:

K ⊂
k
⋃

i=1

{

m ∈ M :

∣

∣

∣

∣

∫

fi dm−
∫

fi dµ

∣

∣

∣

∣

> ǫi

}

,

for some ǫi > 0 and fi ∈ Cα(X,R), i = 1, . . . , k. Therefore, we have

µ {x ∈ X : νx,n ∈ K} ≤
k

∑

i=1

µ

{

x ∈ X :

∣

∣

∣

∣

fn
i (x)

n
−

∫

fi dµ

∣

∣

∣

∣

> ǫi

}

= O(n−β).

The polynomial decay in the above results is genuine and is not simply a result of limita-
tions of the techniques. Indeed, there exist examples of systems, modelled by Young towers
with polynomial tails, with polynomial lower bounds for large deviations [19], [20], [26].

Example 5.5. As an example of this type of setting, we consider Manneville-Pomeau maps.
Define T : [0, 1] → [0, 1] by

Tx =

{

x(1 + 2αxα) 0 ≤ x < 1/2,

2x− 1 1/2 ≤ x ≤ 1,

for 0 < α < 1. This has a unique ergodic invariant probability measure µ equivalent to
Lebesgue measure. For this system, the conclusions of Theorem 5.1 hold with β = α−1 − 1.
Furthermore, there is an open set of Hölder observables f for which

lim
n→∞

1

log n
µ

{

x ∈ [0, 1] :

∣

∣

∣

∣

fn(x)

n
−
∫

f dµ

∣

∣

∣

∣

> ǫ

}

= −β

and if the limit is relaxed to a lim sup, it holds for an open dense set of f [19] (see also [20],
[26]).
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