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Abstract. This paper concerns connections between dynamical systems,
knots and helicity of vector fields. For a divergence-free vector field on a
closed 3-manifold that generates an Anosov flow, we show that the helicity
of the vector field may be recovered as the limit of appropriately weighted
averages of linking numbers of periodic orbits, regarded as knots. This
complements a classical result of Arnold and Vogel that, when the manifold
is a real homology 3-sphere, the helicity may be obtained as the limit of
the normalised linking numbers of typical pairs of long trajectories. We
also obtain results on the asymptotic distribution of weighted averages of
null-homologous periodic orbits.

1. Introduction

This paper concerns connections between dynamical systems, knots and he-
licity of vector fields. More specifically, for a divergence-free vector field on a
closed 3-manifold that generates an Anosov flow, we show that the helicity of
the vector field may be recovered as the limit of appropriately weighted averages
of linking numbers of periodic orbits, regarded as knots. This complements a
classical result of Arnold (whose proof was completed by Vogel) that, when the
manifold is a real homology 3-sphere, the helicity may be obtained as the limit
of the normalised linking numbers of typical pairs of long trajectories.

We will now outline the setting more precisely. For good overviews, see the
book of Arnold and Khesin [3] (which restricts to vector fields in regions of
R3) and the beautiful 2006 ICM survey by Ghys [14]. Let M be a connected
and oriented smooth closed 3-manifold with a volume form Ω. (We recall that
closed here means compact and without boundary.) Let X be a divergence-
free vector field which generates a flow Xt : M → M . Then Xt preserves the
volume. Let iX denote the interior product associated to the vector field X.
If the 2-form iXΩ is exact then we say that X is null-homologous. Note that
this holds automatically if M is a real homology 3-sphere (which is equivalent
to requiring that H1(M,R) = {0}).

If X is null-homologous we can find a 1-form α with iXΩ = dα. Then the
helicity of X is defined by

H(X) =

∫
M
α ∧ dα
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and is independent of the choice of α (see Section 7.3). Helicity was introduced
by Woltjer [43], Moreau [24] and Moffat [23] and is an invariant (of volume-
preserving diffeomorphisms) which measures the amount of knottedness of flow
orbits.

Now suppose that M is a real homology 3-sphere. In this case, an alternative
characterisation of H(X) was given by Arnold [2], with some gaps in the proof
completed by Vogel [41]. To formulate this, one needs a set Σ of “short curves”
joining each pair of points in M . In particular, for x ∈M and t > 0, σt(x) ∈ Σ
will be a curve from Xt(x) to x. Let m be the volume measure associated to Ω
(normalised to be a probability measure). For x, y ∈M , define

A(x, y) := lim
s,t→∞

1

st
lk(X [0,s](x) ∪ σs(x), X [0,t](y) ∪ σt(y)),

where, for two knots γ, γ′ in M , lk(γ, γ′) ∈ Q denotes their linking number.
(Linking numbers will be defined in Section 7 below.) The limit exists for
(m×m)-almost every (x, y) ∈M ×M and we have

H(X) =

∫
A(x, y) d(m×m).

Furthermore, if Xt is ergodic with respect to m then we have

H(X) = A(x, y)

for (m×m)-almost every (x, y) ∈M ×M .
Now suppose that M is a Riemannian manifold and that Xt : M → M

is an Anosov flow (see Section 2 for the definition) which is null-homologous.
(Examples of null-homologous Anosov flows are geodesic flows over negatively
curved manifolds and, more generally, contact Anosov flows [11].) Anosov flows
are chaotic and have a complicated orbit structure. However, a well-known
feature is that one can recover global invariants by averaging periodic orbit
data. Our main result will be to show that the helicity H(X) may be recovered
as a limit of weighted averages of linking numbers of certain periodic orbits
(regarded as knots). This is very much inspired by results of Contreras [8]
about the linking of periodic orbits of hyperbolic flows on S3.

Let P denote the set of prime periodic orbits for Xt and let P(0) ⊂ P denote
those which are trivial in H1(M,R). For γ ∈ P, let `(γ) denote its least period.
For T > 0, let

PT = {γ ∈ P : T − 1 < `(γ) ≤ T}, PT (0) = {γ ∈ P(0) : T − 1 < `(γ) ≤ T}.

Since PT (0) and PT+1 are disjoint, and PT (0) consists of null-homologous orbits,
the linking number of a pair of periodic orbits from these two collections are
well-defined. (The choices of intervals in which the least period lies is somewhat
arbitrary but it is important that each pair consists of two distinct orbits; see
the discussion in Remark 8.1 in Section 8.)

Periodic orbits will be weighted by the function ϕu : M → R defined by

ϕu(x) = − lim
ε→0

1

ε
log | det(DXε|Eux)|,



HELICITY AND LINKING 3

where Eux is the fibre of the unstable bundle at x. Then, for γ ∈ P, the integral∫
γ
ϕu :=

∫ `(γ)

0
ϕu(Xt(x)) dt

measures the expansion around γ. (When M is a 3-manifold, the unstable
bundle in one-dimensional and it is not necessary to take a determinant in the
definition of ϕu. However, we have equidistribution results below which are
valid in arbitrary dimensions, so we give the general definition.)

We define ϕu-weighted average linking numbers over the sets of orbits PT (0)
and PT+1 by

Lϕu(T ) :=

∑
γ∈PT (0),γ′∈PT+1

lk(γ, γ′)

`(γ)`(γ′)
exp

(∫
γ
ϕu +

∫
γ′
ϕu
)

∑
γ∈PT (0),γ′∈PT+1

exp

(∫
γ
ϕu +

∫
γ′
ϕu
)

Our main result is the following.

Theorem 1.1. Let Xt : M → M be a null-homologous volume-preserving
Anosov flow on a closed oriented 3-manifold. Then

H(X) = lim
T→∞

Lϕu(T ).

This is restated and proved as Theorem 8.3 below. If M is a real homology
3-sphere then all periodic orbits are null-homologous and so we can replace the
limit in Theorem 1.1 with a limit of averages over all periodic orbits, as follows.

Corollary 1.2. Let M be a real homology 3-sphere and let Xt : M → M be a
volume-preserving Anosov flow. Then

H(X) = lim
T→∞

∑
γ∈PT ,γ′∈PT+1

lk(γ, γ′)

`(γ)`(γ′)
exp

(∫
γ
ϕu +

∫
γ′
ϕu
)

∑
γ∈PT ,γ′∈PT+1

exp

(∫
γ
ϕu +

∫
γ′
ϕu
) .

A particular case of a real homology 3-spheres is provided by the unit tangent
bundle of a genus zero hyperbolic orbifold, and the geodesic flow is Anosov. In
this case, ϕu is a constant, ϕu = −1, and so, by Corollary 1.2, we may obtain the
helicity in the limit by weighting each closed geodesic γ by e−`(γ). However, we
may obtain the following unweighted result, proved as Theorem 8.4 in Section
8.

Theorem 1.3. Let Xt : M →M be the geodesic flow over a genus zero hyper-
bolic orbifold. Then

H(X) = lim
T→∞

1

#PT #PT+1

∑
γ∈PT ,γ′∈PT+1

lk(γ, γ′)

`(γ)`(γ′)
.
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In order to prove these results, we need to understand the limiting behaviour
of the weighted orbital measures∑

γ∈PT

e
∫
γ ϕ

u

−1 ∑
γ∈PT

e
∫
γ ϕ

u

µγ

and  ∑
γ∈PT (0)

e
∫
γ ϕ

u

−1 ∑
γ∈PT (0)

e
∫
γ ϕ

u

µγ ,

as T →∞, where µγ is defined by∫
ψ dµγ :=

1

`(γ)

∫
γ
ψ.

By a result of Parry [27], the first family of measures converges to the volume
measure m. (This is discussed further in Section 4.) The situation for null-
homologous periodic orbits (or periodic orbits restricted to lie in any prescribed
homology class) is more delicate, and we believe of independent interest. The
unweighted version (where ϕu is replaced by zero) was studied by Katsuda and
Sunada [16] and Sharp [38]. Here we consider for the first time the weighted
version. The next theorem gives the result we need to prove Theorem 1.1, where
the weighting is by ϕu and the limiting measure is the volume.

Theorem 1.4. Let Xt : M → M be a null-homologous volume-preserving
Anosov flow on a closed oriented 3-manifold. Then the measures ∑

γ∈PT (0)

e
∫
γ ϕ

u

−1 ∑
γ∈PT (0)

e
∫
γ ϕ

u

µγ ,

converge to m in the weak∗ topology, as T →∞.

More generally, we can handle any Hölder continuous weighting ϕ : M → R
and Anosov flows in arbitrary dimensions. We have the following result, which
we restate more precisely later as Theorem 6.7.

Theorem 1.5. Let Xt : M →M be a homologically full transitive Anosov flow.
Let ϕ : M → R be Hölder continuous. Then the measures ∑

γ∈PT (0)

e
∫
γ ϕ

−1 ∑
γ∈PT (0)

e
∫
γ ϕµγ ,

converge in the weak∗ topology, as T →∞, and the limiting measure is charac-
terised by a variational principle.

We end the introduction by outlining the structure of the paper. In Section
2, we define Anosov flows and introduce winding cycles and homologically full
flows. In Section 3, we recall some notions from thermodynamic formalism: en-
tropy, pressure and the special invariant measures known as equilibrium states.
In Section 4, we discuss weighted equidistribution results for orbital measures
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(with no restriction to a homology class). In Section 5, we introduce a pressure
function on cohomology, which enables us to pick out a unique cohomology
class associated to the weighting function and hence a particular equilibrium
state which gives the limit in Theorem 1.5. In Section 6, we use the approach of
[4] to establish equidistribution of weighted null-homologous periodic orbits to
this equilibrium state. In the second part of the paper, starting with Section 7,
we apply our equidistribution results to prove Theorem 1.1 and related results.
In Section 7, we recall standard material about vector fields, forms, linking
numbers of knots, linking forms and helicity. In Section 8, we relate weighted
averages of linking numbers to integral involving a linking form and prove The-
orem 1.1 (restated as Theorem 8.3) subject to a more general result, Theorem
8.2. In Section 9, we obtain bounds on the linking form, which, combined with
the arguments of Contreras [8], enable us to prove Theorem 8.2.

2. Anosov flows and homology

Let M be a smooth closed Riemannian manifold (of arbitrary dimension)
and let Xt : M → M be an Anosov flow generated by the vector field X.
This means that the tangent bundle has a continuous DXt-invariant splitting
TM = E0 ⊕ Es ⊕ Eu, where E0 is the one-dimensional bundle spanned by X
and where there exist constants C, λ > 0 such that

(1) ‖DXtv‖ ≤ Ce−λt‖v‖, for all v ∈ Es and t > 0;
(2) ‖DX−tv‖ ≤ Ce−λt‖v‖, for all v ∈ Eu and t > 0.

This class of flows was introduced by Anosov [1]; for a good modern reference
see [10]. In addition, we assume that Xt : M → M is topologically transitive,
i.e. that there is a dense orbit.

We say that the flow is topologically weak mixing if the equation ψ ◦Xt =
eiatψ, for ψ : M → C continuous and a ∈ R, only has the trivial solution
where ψ is constant and a = 0. A classical result of Plante [31] is that a
transitive Anosov flows fails to be weak-mixing if and only if it is the constant
time suspension of an Anosov diffeomorphism. We also have that Xt fails to be
weak-mixing if and only if {`(γ) : γ ∈ P} is contained in a discrete subgroup of
R, where P is the set of prime periodic orbits defined in the introduction and
`(γ) is the least period of γ ∈ P.

We wish to consider the real homology group H1(M,R) ∼= Rb, where b ≥ 0 is
the first Betti number of M . For γ ∈ P, we write [γ] for the corresponding real
homology class in H1(M,R). (Note that [γ] may be identified with the torsion
free part of the integral homology class of γ in H1(M,Z) ∼= Zb⊕Tor, where Tor
is a finite abelian group.)

We will need the following result.

Proposition 2.1 (Parry and Pollicott [29]). Let Xt : M → M be a transi-
tive Anosov flow. Then the set of integral homology classes of periodic orbits
generates H1(M,Z).

Let M(X) denote the space of Xt-invariant Borel probability measures on
M (with the weak∗ topology). For each ν ∈ M(X), there is an associated
homology class Φν ∈ H1(M,R), called the winding cycle (or asymptotic cycle)



6 SOLLY COLES AND RICHARD SHARP

for the measure. These cycles were introduced by Schwartzman [36]. We define
Φν using the duality H1(M,R) = H1(M,R)∗ and the formula

〈Φν , [ω]〉 =

∫
ω(X) dν,

where ω is a closed 1-form on M , [ω] ∈ H1(M,R) is its cohomology class, and

〈·, ·〉 : H1(M,R)×H1(M,R)→ R
is the duality pairing. This is well defined since if [ω′] = [ω] then ω and ω′ differ
by an exact form dθ, say, and we have∫

dθ(X) dν =

∫
LXθ dν = 0,

where LX is the Lie derivative,

LXθ(x) = lim
t→0

1

t
(θ(Xtx)− θ(x)).

(That the final integral vanishes follows from the invariance of ν and the dom-
inated convergence theorem.)

We say thatX is homologically full if every integral homology class inH1(M,Z)
is represented by a periodic orbit. The following proposition is a consequence
of the results in [38].

Proposition 2.2. The following are equivalent:

(i) X is homologically full;
(ii) the map [ · ] : P → H1(M,Z)/Tor is a surjection;
(iii) 0 ∈ int({Φν : ν ∈M(X)}).

If Xt is the suspension of a diffeomorphism then it cannot be homologically
full [13]. In particular, if a transitive Anosov flow is homologically full then it
is automatically weak-mixing.

For each α ∈ H1(M,Z)/Tor, write

P(α) = {γ ∈ P : [γ] = α}.
Our equidistribution results apply to Anosov flows in any dimension but

when we consider linking of periodic orbits and helicity, we need to restrict to
flows on 3-manifolds. In this case, we say that M is a real homology 3-sphere
if it has the same real homology as S3. This amounts to M being a connected
manifold (so that H0(M,R) ∼= R) with H1(M,R) = {0}, since Poincaré duality
gives the homology in the remaining dimensions. If Xt : M →M is a transitive
Anosov flow on a real homology 3-sphere then it is automatically homologically
full (and hence weak-mixing) and P(0) = P.

Example 2.3. There are a wealth of examples of transitive Anosov flows on
real homology 3-spheres. The simplest are provided by the following. Let
S = H2/Γ be a hyperbolic 2-orbifold of genus zero. By Theorem 13.3.6 in [39],
this means that Γ is a Fuchsian group acting freely and properly discontinuously
on the hyperbolic plane H2, such that the number of cone points p of S satisfies
p ≥ 5, or p = 4 and the orders are not all 2, or p = 3 and the orders satisfy
that the sum of their reciprocals is smaller than 1. We can think of M =
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(T 1H2)/Γ ∼= PSL2(R)/Γ as the unit tangent bundle of S. Now, M is a compact
real homology 3-sphere (see Lemma 2.1 in [9]), and the flow Xt : M → M ,
given by the quotient of the geodesic flow on H2, is Anosov. In this case, one
should see the calculation of helicity in Example 2.2.1 of [40].

Surgery techniques give rise to more examples. For example, consider the
suspension flow of the Anosov diffeomorphism on T2 induced by the matrix
( 2 1
1 1 ). The complement of the flow orbit of the fixed point of the diffeomor-

phism at 0 is homeomorphic to the complement of the figure eight knot in S3.
Goodman [15] showed how to use Dehn surgeries on this knot complement to
produce new examples of Anosov flows on real homology 3-spheres (see also the
more recent work of Foulon and Hasselblatt [11]).

3. Pressure and equilibrium states

Let Xt : M → M be a transitive Anosov flow and let ν ∈ M(X). We let
h(ν) denote the measure-theoretic entropy of the time-1 map X1 : M → M
with respect to ν. Then the topological entropy h(X) satisfies the variational
principle

h(X) = sup{h(ν) : ν ∈M(X)}.
More generally, for a continuous function ϕ : M → R, we can define the pressure
P (ϕ) of ϕ by

(3.1) P (ϕ) = sup

{
h(ν) +

∫
ϕdν : ν ∈M(X)

}
.

If ϕ is Hölder continuous then the supremum is attained at a unique measure
µϕ, which we call the equilibrium state for ϕ [30]. It is immediate from the
definition of pressure that if ϕ ≤ ψ then P (ϕ) ≤ P (ψ). The equilibrium state
of a Hölder continuous function is ergodic and fully supported.

We will be particularly interested in the case where ϕ = ϕu, defined in the
introduction. Then µϕu is the Sinai–Ruelle–Bowen (SRB) measure for X, i.e.,
the uniqueXt-invariant probability measure which is absolutely continuous with
respect to the volume on M [7]. In particular, if Xt preserves the Riemannian
volume m then m = µϕu .

We now give an alternative, topological, definition of pressure, which we will
use later. For further details of this definition, see Chapter 4 of [10]. Given
T, δ > 0, we call the set

B(x, δ, T ) := {y ∈M : d(Xtx,Xty) < δ for all 0 ≤ t < T}.

a Bowen ball around x ∈ M . Then, for δ > 0, a set E ⊂ M is (T, δ)-spanning
if

M =
⋃
x∈E

B(x, δ, T ).

On the other hand, E is (T, δ)-separated if whenever x, y ∈ E with x 6= y, we
have

max
0≤t<T

d(Xtx,Xty) ≥ δ.
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We can then define pressure in the following way.

P (ϕ) = lim
δ→0

lim sup
T→∞

1

T
log inf

{∑
x∈E

e
∫ T
0 ϕ(Xtx) dt : E (T, δ)-spanning

}
= lim

δ→0
lim sup
T→∞

1

T
log sup

{∑
x∈E

e
∫ T
0 ϕ(Xtx) dt : E (T, δ)-separated

}
.

This definition is used in Section 9.
The characterisation of homologically full transitive Anosov flows in part

(iii) of Proposition 2.2 may be modified to give a statement in terms of the
equilibrium states of Hölder continuous functions, as follows.

Proposition 3.1 (Sharp [38]). X is homologically full if and only if there exists
a Hölder continuous function ϕ : M → R with Φµϕ = 0.

We will use the following lemma when we discuss large deviations in Section
6.

Lemma 3.2. The map M(X)→ R : ν 7→ h(ν) is upper semi-continuous and

h(ν) = inf

{
P (ϕ)−

∫
ϕdν : ϕ ∈ C(M,R)

}
.

The first statement in Lemma 3.2 follows from the fact that the flow is
expansive (see Remark 4.3.18 and Corollary A.3.14 of [10]). Once we have
established upper semi-continuity, rearranging the variational principle above
into this form follows the same argument as the proof of Theorem 9.12 of [42].

We will need to use the notion of functions being cohomologous with respect
to X. We say that continuous functions ϕ,ψ : M → R are X-cohomologous if
there is a continuous function u : M → R that is differentiable along flow lines
satisfying

ϕ− ψ = LXu.

Two X-cohomologous functions have the same integral with respect to every
measure in M(X). For a constant c ∈ R, we have

P (ϕ+ LXu+ c) = P (ϕ) + c.

For γ ∈ P, let ∫
γ
ϕ :=

∫ `(γ)

0
ϕ(Xtxγ) dt

with xγ ∈ γ. If ϕ and ψ are X-cohomologous then it is clear that, for every
γ ∈ P,

∫
γ ϕ =

∫
γ ψ. However, we also have the following converse.

Lemma 3.3 (Livsic [21]). Suppose that ϕ,ψ : M → R are Hölder continuous.
If ∫

γ
ϕ =

∫
γ
ψ ∀γ ∈ P

then ϕ and ψ are X-cohomologous.

We will use the following result later.
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Lemma 3.4. Suppose that ϕ : M → R is Hölder continuous. Then there exists
ε > 0 and a Hölder continuous function v : M → R such that, for all x ∈ M
and T ≥ 0, we have∫ T

0
ϕ(Xtx) dt ≤ (P (ϕ)− ε)T + v(XTx)− v(x).

Proof. Since P (ϕ − P (ϕ)) = P (ϕ) − P (ϕ) = 0, without loss of generality, we
may assume that P (ϕ) = 0. We use the standard result that Xt : M →M may
be modelled by a suspended flow over a mixing subshift of finite type σ : Σ→ Σ,
with a strictly positive Hölder continuous roof function r : Σ → R [6]. More
precisely, let

Σr = {(x, τ) ∈ Σ× R : 0 ≤ τ ≤ r(x)}/ ∼,
where we have the identifications (x, r(x)) ∼ (σx, 0), and let σt : Σr → Σr be
the flow σt(x, τ) = (x, τ + t) modulo ∼. Then there is a Hölder continuous
surjection π : Σr →M that semi-conjugates σt and Xt and is sufficiently close
to being a bijection that the pressure of a function with respect to Xt and of
its pull-back by π are equal. The pressure of a function q : Σ→ R with respect
to σ may be defined to be

Pσ(q) = sup

{
hσ(m) +

∫
q dm : m ∈M(σ)

}
,

where M(σ) is the set of σ-invariant probability measures on Σ and hσ(m) is
the measure-theoretic entropy. If we define a function qϕ : Σ→ R by

qϕ(x) =

∫ r(x)

0
ϕ(π(x, τ)) dτ

then the relationship between pressure with respect to σ and with respect to
the suspended flow gives that

Pσ(qϕ) = Pσ(−P (ϕ)r + qϕ) = 0.

It then follows that qϕ is σ-cohomologous to a strictly negative function, i.e.
that there exists a continuous function u : Σ → R such that qϕ + u ◦ σ − u is
strictly negative and, in fact, bounded above by −ε‖r‖∞, for some ε > 0 (see
Chapter 7 of [30]). We then have that∫

γ
(ϕ+ ε) ≤ 0,

for all γ ∈ P. It then follows from Theorem 1 of [33] that there exists a Hölder
continuous function v : M → R such that, for all x ∈M and T ≥ 0,∫ T

0
ϕ(Xtx) dt+ εT ≤ v(XTx)− v(x).

�

We also need to consider functions of the form

Rb → Rb : (t1, . . . , tb) 7→ P (ϕ+ t1ψ1 + · · · tbψb),
for b ≥ 1 and Hölder continuous functions ϕ,ψ1, . . . , ψb : M → R. For subshifts
of finite type results on differentiaing such functions are standard (see, for
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example, [30]). The calculations for hyperbolic flows are carried out in [20] and
[37].

Lemma 3.5 ([20],[37]). Let ϕ,ψ : M → R be Hölder continuous functions.
Then the function

R→ R : (t1, . . . , tb) 7→ P (ϕ+ t1ψ1 + · · · tbψb).
is convex and real-analytic with

∂P (ϕ+ t1ψ1 + · · ·+ tbψb)

∂ti

∣∣∣∣
(t1,...,tb)=0

=

∫
ψi dµϕ.

Furthermore, unless a1ψ1 + · · · abψb is X-cohomologous to a constant for some
(a1, . . . , ab) 6= 0, t 7→ P (ϕ+ tψ) is strictly convex and

det∇2P (ϕ+ t1ψ1 + · · ·+ tbψb)|(t1,...,tb)=0 > 0.

4. Equidistribution of periodic orbits

In this section, we discuss weighted equidistribution results for periodic orbits
(with no restriction on the homology class). For a continuous function ϕ : M →
R and a < b, write

πϕ(T,1[a,b]) =
∑
γ∈P

1[a,b](`(γ)− T )e
∫
γ ϕ.

For γ ∈ P, let µγ be the probability measure defined by∫
ψ dµγ =

1

`(γ)

∫
γ
ψ.

We will discuss the proof of the following equidistribution result.

Theorem 4.1. Let Xt : M →M be a weak-mixing Anosov flow. Let ϕ : M →
R be Hölder continuous. Then, for a < b, the measures

1

πϕ(T,1[a,b])

∑
γ∈P

1[a,b](`(γ)− T )e
∫
γ ϕµγ

converge weak∗ to µϕ, as T → ∞, and the same holds if we replace [a, b] by
(a, b), (a, b] or [a, b).

The case where ϕ = 0 is a classical theorem of Bowen [5] and was reproved
using zeta function techniques by Parry [26]. For ϕ = ϕu, the result was proved
by Parry [27] and the same arguments cover the cases where P (ϕ) ≥ 0 (see
[28], [30]). Roughly speaking, if P (ϕ) > 0 then the analytic properties of a
dynamical zeta function can be used to show that, for a strictly positive Hölder
continuous function ψ : M → R, we have

(4.1)
∑

`(γ)≤T

(∫
γ
ψ

)
e
∫
γ ϕ ∼

(∫
ψ dµϕ

)
eP (ϕ)T

P (ϕ)
,

and then the required result is obtained via elementary arguments. This can be
extended to P (ψ) = 0 by approximation. However, if P (ϕ) < 0 then a different
argument is needed. This is based on the large deviations results of Kifer [18]
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and an estimate on the growth of πϕ(T,1[a,b]). A sufficient estimate is claimed
as Proposition 3 of [32], where it is is attributed to Parry [28], but the quoted
result was only stated and proved by Parry when P (ϕ) > 0. To fill this gap,
we show the following.

Lemma 4.2. For any continuous function ϕ : M → R and a < b, we have

lim
T→∞

1

T
log πϕ(T,1[a,b]) = P (ϕ).

Proof. We start by assuming that ϕ is Hölder continuous and that P (ϕ) > 0.
The zeta function

ζ(s, ϕ) =
∏
γ∈P

(
1− e−s`(γ)+

∫
γ ϕ
)−1

,

which converges for Re(s) > P (ϕ), has a non-zero analytic extension to Re(s) ≥
P (ϕ), apart from a simple pole at s = P (ϕ) [30]. The same is true for the
function ∑

γ∈P
e−s`(γ)+

∫
γ ϕ

(the proof is an application of Lemma 6.4 below). We can then deduce that∑
`(γ)≤T

e
∫
γ ϕ ∼ eP (ϕ)T

P (ϕ)T
,

as T →∞, and hence that

lim
T→∞

1

T
log πϕ(T,1[a,b]]) = P (ϕ).

For an arbitrary Hölder continuous ϕ, choose c > 0 such that P (ϕ) + c > 0 and
note that

e−c(T+b)πϕ+c(T,1[a,b]) ≤ πϕ(T,1[a,b]) ≤ e−c(T+a)πϕ+c(T,1[a,b]).
This gives us

lim
T→∞

1

T
log πϕ(T,1[a,b]]) = −c+ P (ϕ+ c) = P (ϕ).

Finally, if ϕ is only continuous, given ε > 0, we can find a Hölder continuous
function ϕ′ with ‖ϕ− ϕ′‖∞ < ε, so that

P (ϕ)− 2ε ≤ P (ϕ′)− ε ≤ lim inf
T→∞

1

T
log πϕ(T,1[a,b]])

≤ lim sup
T→∞

1

T
log πϕ(T,1[a,b]]) ≤ P (ϕ′) + ε ≤ P (ϕ) + 2ε,

which gives the required limit. �

Remark 4.3. One can improve the growth rate estimate to

πϕ(T,1[a,b]) ∼
(∫ b

a
eP (ϕ)x dx

)
eP (ϕ)T

T
,

as T →∞, using a simplified version of the proof of Theorem 6.1 below.
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For a compact set K ⊂M(X), write

Ξϕ(T,1[a,b],K) =
∑
γ∈P
µγ∈K

1[a,b](`(γ)− T ) exp

(∫
γ
ϕ

)
.

The growth rate result in Lemma 4.2 implies the following large deviations
estimate from [32], where it appears as Theorem 1.

Theorem 4.4 (Pollicott [32]). Let Xt : M →M be a weak-mixing Anosov flow
and let ϕ : M → R be a Hölder continuous function. Then, for every compact
set K ⊂M(X) such that µϕ /∈ K and a > b, we have

lim sup
T→∞

1

T
log

(
Ξϕ(T,1[a,b],K)

πϕ(T,1[a,b])

)
< 0.

Theorem 4.1 then follows from this. We omit the proof as it is almost identical
to the proof that Theorem 6.6 implies Theorem 6.7 below.

Remark 4.5. Theorem 4.1 also holds more generally for hyperbolic flows (with
the same proof). If Xt is not weak-mixing then the periods `(γ) are all integer
multiples of some c > 0 and the result holds in this case provided b− a ≥ c.

5. Pressure and cohomology

Let Xt : M →M be a homologically full transitive Anosov flow on a manifold
M whose first Betti number b = dimH1(M,R) is at least 1. Let ϕ : M → R be
a Hölder continuous function. In this section, we define a pressure function on
the cohomology group H1(M,R) that will allow us to identify the growth rate
of periodic orbits in a fixed homology class weighted by ϕ. (This generalises
results in [38] which were restricted to the case ϕ = 0.)

For a closed 1-form ω on M , let fω : M → R denote the function fω = ω(X),
i.e. for x ∈ M , fω(x) = ω(X(x)). If ω′ is in the same cohomology class then,
as above, ω − ω′ = dθ and, for any periodic orbit γ,∫

γ
fω −

∫
γ
fω′ =

∫
γ
dθ(X) =

∫
γ
LXθ = 0,

so, by Lemma 3.3, fω and fω′ are X-cohomologous. Thus, we can define f[ω],
where [ω] is the cohomology class of ω, as a function on M up to X-cohomology.
In particular, this is sufficient for us to use f[ω] to define a pressure function.

Define βϕ : H1(M,R)→ R by

βϕ([ω]) = P (ϕ+ f[ω]).

The next result identifies the growth rate we require and the minimum of βϕ.

Proposition 5.1. Let ϕ : M → R be Hölder continuous. Then βϕ is strictly
convex and there exists a unique ξ(ϕ) ∈ H1(M,R) such that

βϕ(ξ(ϕ)) = inf
[ω]∈H1(M,R)

βϕ([ω]).

Furthermore, µϕ+fξ(ϕ) is the unique probability measure satisfying

h(µϕ+fξ(ϕ)) +

∫
ϕdµϕ+fξ(ϕ) = sup

{
h(ν) +

∫
ϕdν : ν ∈M(X), Φν = 0

}
.
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Proof. Fix a basis c1, . . . , cb for the free Z-module H1(M,Z)/Tor (regarded as
a lattice in H1(M,R)) and take the dual basis w1, . . . , wb for H1(M,R), i.e.

〈ci, wj〉 = δij ,

where δij is the Kronecker symbol.

Write fi = fwi , i = 1, . . . , b. Then we can regard βϕ as a function βϕ : Rb → R
given by

βϕ(t) = P (ϕ+ t1f1 + · · ·+ tbfb).

By Lemma 3.5, this function is strictly convex unless there is a non-zero a =
(a1, . . . , ab) ∈ Rb such that a1f1 + · · · abfb is X-cohomologous to a constant.
Suppose there is such a non-zero vector a. Since the flow is homologically
full, we can find µ ∈ M(X) with Φµ = 0, which is equivalent to

∫
fi dµ = 0,

i = 1, . . . , b, and therefore a1f1 + · · · + abfb is X-cohomologous to zero. In
particular, for a prime periodic orbit γ,

a1

∫
γ
f1 + · · ·+ ab

∫
γ
fb = 0.

Also, by definition of fi, the real homology class of γ is given by(∫
γ
f1, . . . ,

∫
γ
fb

)
.

Thus the homology of each periodic orbit is constrained to lie in the hyperplane
a1x1 + · · ·+ abxb = 0 in H1(M,R) ∼= Rb. This contradicts Proposition 2.1, that
the homology classes of periodic orbits generate H1(M,Z) as a group. So βϕ is
strictly convex.

We now show that βϕ has a finite minimum. Since βϕ is strictly convex, this
minimum will automatically be unique. Since the flow is homologically full, it
follows from [38] that β0 is strictly convex and has a finite minimum. Noting
that

|βϕ(t)− β0(t)| ≤ ‖ϕ‖∞,

we see that βϕ also has a finite minimum. We call the point where the minimum
occurs ξ(ϕ). Clearly, ∇βϕ(ξ(ϕ)) = 0.

Writing f = (f1, . . . , fb), we have

∇βϕ(t) =

∫
f dµϕ+t1f1+···+tbfb ,

so ∫
f dµϕ+fξ(ϕ) = ∇βϕ(ξ(ϕ)) = 0.

In terms of the winding cycle, this gives Φµϕ+fξ(ϕ)
= 0. Suppose ν is an arbitrary

measure in M(X) with Φν = 0. Then
∫
fξ(ϕ) dν = 0 and, using the definition
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of equilibrium state,

h(ν) +

∫
ϕdν = h(ν) +

∫
(ϕ+ fξ(ϕ)) dν

≤ h(µϕ+fξ(ϕ)) +

∫
(ϕ+ fξ(ϕ)) dµϕ+fξ(ϕ)

= h(µϕ+fξ(ϕ)) +

∫
ϕdµϕ+fξ(ϕ) .

Thus,

h(µϕ+fξ(ϕ)) +

∫
ϕdµϕ+fξ(ϕ) = sup

{
h(ν) +

∫
ϕdν : ν ∈M(X), Φν = 0

}
,

as required. �

Finally, we note that it is part of the standard theory of the pressure function
for hyperbolic flows that the exponential of the function t 7→ βϕ(t) has an
analytic extension

D → C : s 7→ expβϕ(s),

where D is a neighbourhood of Rb in Cb (see, for example, the discussions in
Section 1 of [16] or Section 2 of [37]).

6. Equidistribution of null-homologous orbits

6.1. Weighted asymptotics for orbits in a fixed homology class. Let
ϕ : M → R be Hölder continuous and let βϕ and ξ(ϕ) be defined as in Section
5. To lighten the notation, we shall write

ξ = ξ(ϕ) and β = βϕ(ξ(ϕ)).

For α ∈ H1(M,Z)/Tor, a compactly supported function g : R → R and
T > 0, write

πϕ(T, α, g) =
∑

γ∈P(α)

g(`(γ)− T ) exp

(∫
γ
ϕ

)
.

We have the following asymptotic formula.

Theorem 6.1. Let Xt : M →M be a homologically full transitive Anosov flow
and let ϕ : M → R be a Hölder continuous function. Then, for every compactly
supported continuous function g : R→ R, we have

πϕ(T, α, g) ∼ 1

(2π)b/2
√

det∇2βϕ(ξ)

(∫ ∞
−∞

eβxg(x) dx

)
e−〈α,ξ〉

eβT

T 1+b/2
,

as T →∞. In particular,

lim
T→∞

1

T
log πϕ(T, α, g) = β.

Applying a simple approximation argument, we immediately obtain the fol-
lowing corollary. We shall see later in the section that this implies the equidis-
tribution result we seek.
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Corollary 6.2.

lim
T→∞

1

T
log πϕ(T, α,1[a,b]) = β

and the same holds if we replace [a, b] by (a, b), (a, b] or [a, b).

We proceed with the proof of Theorem 6.1, following the analysis of [4]. For
p ∈ R, δp denotes the Dirac measure giving mass 1 to p. For ς ∈ R, define
measures MT,α,ϕ,ς on R by

MT,α,ϕ,ς =
∑

γ∈P(α)

e−ς`(γ)+
∫
γ ϕ+〈α,ξ〉δ`(γ)−T .

Write gς(x) = e−ςxg(x). We then have the following.

Lemma 6.3. For all ς ∈ R, we have

πϕ(T, α, gς) = eςT−〈α,ξ〉
∫
g dMT,α,ϕ,ς .

Proof. The result follows from the direct calculation∫
g dMT,α,ϕ,ς =

∑
γ∈P(α)

g(`(γ)− T )e−ς`(γ)+
∫
γ ϕ+〈α,ξ〉

= e−ςT
∑

γ∈P(α)

g(`(γ)− T )e−ς(`(γ)−T )+
∫
γ ϕ+〈α,ξ〉

= e−ςT gς(`(γ)− T )e
∫
γ ϕ+〈α,ξ〉

= e−ςT+〈α,ξ〉πϕ(T, α, gς).

�

Now we introduce a complex function

Z(s, w, z) =
∑
γ∈P

e−s`(γ)+w
∫
γ ϕ+〈[γ],z)〉,

defined, where the series converges, for (s, w, z) ∈ C×C×Cb/2πiZb. In fact, the
w only appears for book-keeping reasons and, ultimately, we shall set w = 1.
Furthermore, we are only interested in z of the form z = ξ + iv, with v ∈
Rb/2πZb. We will relate Z(s, w, z) to the logarithm of the zeta function

ζ(s, w, z) =
∏
γ∈P

(
1− e−s`(γ)+w

∫
γ ϕ+〈[γ],z)〉

)−1
.

We see that we have

log ζ(s, w, z) =
∞∑
n=1

1

n
Z(ns, nw, nz).

The standard theory of dynamical zeta functions [30] tells us that ζ(s, 1, ξ +
iv) converges absolutely for Re(s) > β and its analytic extension is well un-
derstood. We need to show that Z(s, 1, ξ + iv) behaves like log ζ(s, 1, ξ + iv)
and we do this by showing that their difference converges absolutely in a larger
half-plane.
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Lemma 6.4. There exists ε > 0 such that Z(s, 1, ξ + iv) − log ζ(s, 1, ξ + iv)
converges absolutely for Re(s) > β − ε.

Proof. As in the proof of Lemma 3.4 (to which we refer for notation), we use
the fact that there is a suspended flow σt : Σr → Σr over a mixing subshift of
finite type σ : Σ → Σ, with a strictly positive Hölder continuous roof function
r : Σ → R. [6], and a Hölder continuous surjection π : Σr → M that semi-
conjugates σt and Xt and is sufficiently close to being a bijection that the
pressure of a function with respect to Xt of of its pull-back by π are equal. If
we define a function qϕ+fξ : Σ→ R by

qϕ+fξ(x) =

∫ r(x)

0
(ϕ+ fξ)(π(x, τ)) dτ

then the relationship between pressure with respect to σ and with respect to
the suspended flow gives that

Pσ(−βr + qϕ+fξ) = 0.

It then follows that −βr + qϕ+fξ is σ-cohomologous to a strictly negative
function, i.e. that there exists a continuous function u : Σ → R such that
−βr + qϕ+fξ + u ◦ σ − u is strictly negative and, in fact, bounded above by
−3ε‖r‖∞, for some ε > 0 (see Chapter 7 of [30]). We then have that

−β`(γ) +

∫
γ
ϕ+ 〈[γ], ξ〉 ≤ −3ε`(γ),

for all γ ∈ P.
For ς > β − ε, we have

−ς`(γ) +

∫
γ
ϕ+ 〈[γ], ξ〉 ≤ −2ε`(γ) < 0

and hence

| log ζ(ς, 1, ξ)− Z(ς, 1, ξ)| =
∞∑
n=2

1

n
Z(nς, n, nξ)

≤
∞∑
n=2

Z(nς, n, nξ) =

∞∑
n=2

∑
γ∈P

en(−ς`(γ)+
∫
γ ϕ+〈[γ],ξ〉)

=
∑
γ∈P

e2(−ς`(γ)+
∫
γ ϕ+〈[γ],ξ〉)

1− e−ς`(γ)+
∫
γ ϕ+〈[γ],ξ)〉

≤ C
∑
γ∈P

e−ς`(γ)+
∫
γ ϕ+〈[γ],ξ〉e−2ε`(γ)

= C
∑
γ∈P

e−(ς+2ε)`(γ)+
∫
γ ϕ+〈[γ],ξ〉 = C

∑
γ∈P

e−(β+ε)`(γ)+
∫
γ ϕ+〈[γ],ξ〉

= CZ(β + ε, 1, ξ) <∞,
where C is some positive constant (depending on ε). �

For k ∈ N, let Ck(R × Rb/(2πZ)b,R) denote the set of Ck functions from
R×Rb/(2πZ)b to R, equipped with the topology of uniform convergence of the
jth derivatives, for 0 ≤ j ≤ k, on compact sets. The following result is, apart
from the weighting by ϕ, a simplified version of Proposition 2.1 in [4].
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Proposition 6.5. For each k ∈ N, there exists

(i) an open neighbourhood U = U1 × U2 of (0, 0) ∈ R× Rb/2πZb;
(ii) a function ρ ∈ Ck(R × Rb/2πZb,R) which satisfies ρ(0, 0) = 1 and

vanishes outside of U ;
(iii) a function A ∈ Ck(R× Rb/2πZb,R) such that

lim
ς↓βϕ(ξ(ϕ))

Z(ς + it, 1, ξ + iv) = −ρ(t, v) log(β + it− βϕ(ξ + iv)) +A(t, v),

where βϕ(u + iv) is an analytic extension of βϕ(u) to {u ∈ Rb : ‖u −
ξ(ϕ)‖ < δ} × U2, for some small δ > 0.

In particular, the function

Υ(t, v) := lim
ς↓βϕ(ξ(ϕ))

Z(ς + it, 1, ξ + iv)

is locally integrable on R × Rb/2πZb. Furthermore, for any compact K ⊂ R ×
Rb/2πZb, there exist constants C1, C2 > 0 such that, for any ς > β, we have

|Z(ς + it, ξ + iv)| ≤

{
−C1 log |β + it− βϕ(ξ(ϕ) + iv)| if (t, v) ∈ U,
C2 if (t, v) ∈ K \ U.

One can then proceed as in section 2 of [4] to show that, if we define

mT := (2π)b/2
√

det∇2βϕ(ξ(ϕ))T 1+b/2e〈α,ξ〉MT,α,ϕ,β,

then

lim
T→∞

∫
R
g dmT =

∫
R
g dLeb,

for all continuous compactly supported g : R→ R. Finally, taking a continuous
compactly supported g : R → R and applying this to gβ, we can use Lemma
6.3 to obtain Theorem 6.1.

6.2. Large deviations and weighted equidistribution. For δ > 0, write

Ξϕ(T, α,1[a,b],K) =
∑

γ∈P(α)
µγ∈K

1[a,b](`(γ)− T ) exp

(∫
γ
ϕ

)
.

The growth rate result in Corollary 6.2 implies the following large deviations
estimate.

Theorem 6.6. Let Xt : M →M be a homologically full transitive Anosov flow
and let ϕ : M → R be a Hölder continuous function. Then, for every compact
set K ⊂M(X) such that µϕ+fξ /∈ K and a < b, we have

lim sup
T→∞

1

T
log

(
Ξϕ(T, α,1[a,b],K)

πϕ(T, α,1[a,b])

)
< 0.

The same holds if we replace [a, b] by (a, b), (a, b] or [a, b).
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Proof. This is a standard type of argument which originates from the work of
Kifer (for example [17]). Define a function Q : C(M,R)→ R by

Q(ψ) = P (ϕ+ fξ + ψ).

From Corollary 6.2, we have

(6.1) lim
T→∞

1

T
log πϕ(T, α,1[a,b]) = β = P (ϕ+ fξ) = Q(0).

Also, for every ψ ∈ C(M,R), we have∑
γ∈P(α)

1[a,b](`(γ)− T )e
∫
γ(ϕ+ψ) = e−〈α,ξ〉

∑
γ∈P(α)

1[a,b](`(γ)− T )e
∫
γ(ϕ+fξ+ψ)

≤ e−〈α,ξ〉
∑
γ∈P

1[a,b](`(γ)− T )e
∫
γ(ϕ+fξ+ψ),

giving

(6.2) lim sup
T→∞

1

T
log

∑
γ∈P(α)

1[a,b](`(γ)− T )e
∫
γ(ϕ+ψ) ≤ Q(ψ).

Now define

ρ := inf
ν∈K

sup
ψ∈C(M,R)

(∫
ψ dν −Q(ψ)

)
.

Given ε > 0, it follows from the definition of ρ that for every ν ∈ K, there exists
ψ ∈ C(M,R) such that ∫

ψ dν −Q(ψ) > ρ− ε.

Hence

K ⊂
⋃

ψ∈C(M,R)

{
ν ∈M(X) :

∫
ψ dν > ρ− ε

}
.

Since K is compact, we can find a finite set of functions ψ1, . . . , ψk ∈ C(M,R)
such that

K ⊂
k⋃
i=1

{
ν ∈M(X) :

∫
ψi dν > ρ− ε

}
.

We then have

Ξϕ(T, α,1[a,b],K) ≤
k∑
i=1

∑
γ∈P(α)∫

ψi dµγ−Q(ψi)>ρ−ε

1[a,b](`(γ)− T )e
∫
γ ϕ

≤
k∑
i=1

∑
γ∈P

e−`(γ)(Q(ψi)+ρ−ε)+
∫
γ ψi .

Recalling the bound (6.2), we have

lim sup
T→∞

1

T
log Ξϕ(T, α,1[a,b],K) ≤ −ρ+ ε.
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Since ε > 0 is arbitrary, we can combine this with (6.1) to obtain

lim sup
T→∞

1

T
log

(
Ξϕ(T, α,1[a,b],K)

πϕ(T, α,1[a,b])

)
≤ −ρ−Q(0).

To complete the proof, we show that ρ + Q(0) > 0. For any measure ν ∈
M(X), we have

sup
ψ∈C(M,R)

(∫
ψ dν −Q(ψ) +Q(0)

)
= sup

ψ∈C(M,R)

(∫
ψ dν − P (ϕ+ fξ + ψ) + P (ϕ+ fξ)

)
= sup

ψ∈C(M,R)

(∫
(ψ − ϕ− fξ) dν − P (ψ) + P (ϕ+ fξ)

)
= sup

ψ∈C(M,R)

(∫
ψ dν − P (ψ)

)
+ P (ϕ+ fξ)−

∫
(ϕ+ fξ) dν

= − inf
ψ∈C(M,R)

(
P (ψ)−

∫
ψ dν

)
+ P (ϕ+ fξ)−

∫
(ϕ+ fξ) dν

= −h(ν) + P (ϕ+ fξ)−
∫

(ϕ+ fξ) dν,

where the last equality comes from Lemma 3.2. If ν ∈ K then ν 6= µϕ+fξ and
the uniqueness of equilibrium states gives that

−h(ν) + P (ϕ+ fξ)−
∫

(ϕ+ fξ) dν > 0.

Since, by Lemma 3.2, the map

ν 7→ −h(ν) + P (ϕ+ fξ)−
∫

(ϕ+ fξ) dν

is lower semi-continuous onM(X) and K is compact, we see that ρ+Q(0) > 0,
as required. �

We can now obtain the weighted equidistribution theorem for periodic orbits
in a homology class.

Theorem 6.7. Let Xt : M →M be a homologically full transitive Anosov flow.
Let ϕ : M → R be Hölder continuous. Then the measures

1

πϕ(T, α,1[a,b])

∑
γ∈P(α)

1[a,b](`(γ)− T )e
∫
γ ϕµγ

converge weak∗ to µϕ+fξ , as T →∞, and the same holds if we replace [a, b] by
(a, b), (a, b] or [a, b).

Proof. Let ψ ∈ C(M,R). Given ε > 0, let K ⊂M(X) be the compact set

K =

{
ν ∈M(X) :

∣∣∣∣∫ ψ dµ−
∫
ψ dµϕ+fξ

∣∣∣∣ ≥ ε} .
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Using Theorem 6.6, we have

1

πϕ(T, α,1[a,b])

∑
γ∈P(α)

1[a,b](`(γ)− T )e
∫
γ ϕ
∫
ψ dµγ

=
1

πϕ(T, α,1[a,b])

∑
γ∈P(α)
µγ /∈K

1[a,b](`(γ)− T )e
∫
γ ϕ
∫
ψ dµγ +O(e−ηT ),

for some η > 0. Since

1

πϕ(T, α,1[a,b])

∑
γ∈P(α)
µγ /∈K

1[a,b](`(γ)− T )e
∫
γ ϕ
∫
ψ dµγ = (1−O(e−ηT ))

∫
ψ dµϕ+fξ

+
1

πϕ(T, α,1[a,b])

∑
γ∈P(α)
µγ /∈K

1[a,b](`(γ)− T )e
∫
γ ϕ

(∫
ψ dµγ −

∫
ψ dµϕ+fξ

)
,

we see that∫
ψ dµϕ+fξ − ε ≤ lim inf

T→∞

1

πϕ(T, α,1[a,b])

∑
γ∈P(α)

1[a,b](`(γ)− T )e
∫
γ ϕ
∫
ψ dµγ

≤ lim sup
T→∞

1

πϕ(T, α,1[a,b])

∑
γ∈P(α)

1[a,b](`(γ)− T )e
∫
γ ϕ
∫
ψ dµγ

≤
∫
ψ dµϕ+fξ + ε.

Since ε > 0 is arbitrary, this completes the proof. �

7. Linking numbers of knots and helicity

In this section and for the remainder of the paper, M will be a smooth closed
connected oriented 3-manifold.

7.1. Vector fields and forms. We briefly recall some background on vector
fields and forms. Let M have a volume form Ω and let X be a vector field on
M generating a flow Xt : M →M . The divergence of X is defined by

LXΩ = (divX)Ω,

where LX is the Lie derivative. We say that X is divergence-free if divX is
identically zero; this is equivalent to the flow Xt being volume-preserving. For
the remainder of the section, we will assume that this holds.

For 0 ≤ p ≤ 3, let X p(M) denote the space of (smooth) p-forms on M .
We use the notation d : X p(M) → X p+1(M) for the exterior derivative, and
iX : X p(M)→ X p−1(M) for the interior product. Since Ω is a 3-form, we have
that

(7.1) iXω ∧ Ω = ω ∧ iXΩ
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for any ω ∈ X 1(M). The Lie derivative, exterior derivative and interior product
are related by Cartan’s magic formula

(7.2) LXω = iXdω + d(iXω).

The volume form Ω gives rise to a volume measure m (normalised to be a
probability measure). We have the following key result.

Lemma 7.1. iXΩ is exact if and only if Φm = 0.

Proof. Since X is divergence-free, we have LXΩ = 0. Since dΩ = 0, Cartan’s
magic formula (7.2) gives d(iXΩ) = 0, i.e., iXΩ is closed. Let [iXΩ] ∈ H2(M,R)
be its cohomology class; we claim that [iXΩ] and Φm are Poincaré duals. To
see this, let ω be a closed 1-form, then, by (7.1),

iXω ∧ Ω = ω ∧ iXΩ.

Thus,

〈[iXΩ], [ω]〉 =

∫
M
ω ∧ iXΩ =

∫
M
iXω ∧ Ω(7.3)

=

∫
M
ω(X) Ω =

∫
ω(X) dm = 〈Φm, [ω]〉(7.4)

where the first term is the pairing of H2(M,R) and H1(M,R). Therefore,
[iXΩ] = 0 if and only if Φm = 0. �

If iXΩ is exact then we say that X is null-homologous. Since m is equal to
the equilibrium state for ϕu, Lemma 7.1 and Proposition 3.1 tell us that if X is
a null-homologous Anosov flow then it is homologically full. (Note that volume-
preserving flows are automatically transitive.) Recall the function f : M → Rb
from the proof of Proposition 5.1. With respect to a given basis w1, . . . , wb for
H1(M,R), the component fi of f = (f1, . . . , fb) is given by ωi(X), where ωi is
a closed 1-form in the cohomology class wi. We have that

∇βϕu(0) =

∫
f dµϕu =

∫
f dm = 0,

so ξ(ϕu) = 0. Thus, for null-homologous flows, a special case of Theorem 6.7 is
the following.

Theorem 7.2. Let M be a closed Xt : M →M be a null-homologous volume-
preserving Anosov flow on a closed oriented 3-manifold. Then the measures

1

πϕu(T, α,1[a,b])

∑
γ∈P(α)

1[a,b](`(γ)− T )e
∫
γ ϕ

u

µγ

converge weak∗ to m, as T → ∞, and the same holds if we replace [a, b] by
(a, b), (a, b] or [a, b).

This implies Theorem 1.4 in the introduction.

Now suppose that M is equipped with a Riemannian metric ρ (consistent
with the volume form Ω). This induces an inner product 〈·, ·〉x on each fibre
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T ∗xM (and its exterior powers) and hence an inner product

〈〈ω, η〉〉 =

∫
M
〈ωx, ηx〉x Ω

on X p(M), 0 ≤ p ≤ 3. The Hodge star ∗ : X p(M)→ X 3−p(M) is defined by∫
M
ω ∧ ∗η = 〈〈ω, η〉〉

and the Laplacian ∆ : X p(M) → X b(M) is defined by ∆ = d∗d + dd∗, where
d∗ is the codifferential – the adjoint of d with respect to 〈〈·, ·〉〉. Then a p-form
ω is harmonic if ∆ω = 0 and we let X pharm(M) denote the space of harmonic
p-forms. Harmonic forms are closed and, by the Hodge theorem, the map
X pharm(M) → Hp(M,R) : ω 7→ [ω] is an isomorphism. Finally, X pharm(M) is
a closed subspace of X p(M) and we let H : X p(M) → X pharm(M) denote the
orthogonal projection with respect to 〈〈·, ·〉〉. (Strictly speaking, one should
complete X p(M) with respect to the inner product to get a Hilbert space, in
which case d and ∆ become densely defined.)

7.2. Linking numbers and linking forms. Let M be a closed oriented 3-
manifold. A knot is an embedding of S1 in M . In the classical situation,
where M = S3, we may define the linking number of any two disjoint knots, γ
and γ′, as follows. (The symbols γ, γ′ will refer to the embeddings themselves,
but also the images of these embeddings.) Let S be an oriented surface in M
whose boundary is γ. Then we define the linking number lk(γ, γ′) ∈ Z to be
the algebraic intersection number of γ′ with this S. In this setting (with S3

thought of as the compactification of R3), the linking number is also given by
the Gauss linking integral,

lk(γ, γ′) =
3

4π

∫
S1

∫
S1

γ̇(s)× γ̇′(t)
‖γ(s)− γ′(t)‖3

· (γ(s)− γ′(t)) ds dt.

For details on these definitions, see Chapter 5, part D of [35].
We wish to work with more general closed oriented 3-manifolds M . In this

case, we can define the linking number of disjoint knots γ and γ′ provided at
least one of them is null-homologous in H1(M,R), which is equivalent to null-
homologous in H1(M,Q). Suppose that γ is integrally null-homologous; then
there exists an oriented surface S whose boundary is γ and lkS(γ, γ′) ∈ Z is
defined, as above, to be the algebraic intersection number of γ′ and S. (If γ is
rationally null-homologous; then there exists k ≥ 1 such that γk is integrally
null-homologous and we obtain a rational linking number for γ by division by
k.) If γ′ is also null-homologous, the result is independent of the choice of S and
we denote it by lk(γ, γ′). In particular, if M is a real homology 3-sphere then
each pair of disjoint knots has a well-defined rational linking number. More
generally, if γ′ is not null-homologous and S′ is another choice of surface for γ
then

lkS′(γ, γ
′)− lkS(γ, γ′) = 〈[γ′], cS′−S〉,

where cS′−S is the Poincaré dual of the the class in H2(M,Z) defined by S′−S.
However, one can avoid these choices by defining linking numbers via a linking
form (determined by the Riemannian metric).
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First, we define a double form on M (see Section 7 of [34]). This is essen-
tially a differential form whose coefficients are other differential forms, rather
than smooth functions. Let x1, x2, x3 be local co-ordinates in U ⊂ M , and
y1, y2, y3 in U ′ ⊂ M. A differential form α of degree p, with coefficients which
are differential forms of degree q, is represented for x ∈ U by

α(x) =
∑

i1<...<ip

αi1...ip(x) dxi1 ∧ · · · ∧ dxip ,

where each αi1...ip is represented for y ∈ U ′ by

αi1,...ip(x, y) =
∑

j1<...<jq

ai1...ipj1...jq(x, y) dyj1 ∧ · · · ∧ dyjq ,

where the ai1...ipj1...jq are smooth functions U × U ′ → R. When defined in this
way, we call α a double form, and write

α(x, y) =
∑

i1<...<ip
j1<...<jq

ai1...ipj1...jq(x, y)(dxi1 ∧ · · · ∧ dxip)(dyj1 ∧ · · · ∧ dyjq).

We integrate double forms by integrating as single forms in x and then in
y. By this we mean that given chains c1, c2 in M ,

∫
x∈c1 α(x, y) is a single form

which can again be integrated as usual. The integral of α over c1 × c2 is then
defined by ∫

c1×c2
α =

∫
y∈c2

∫
x∈c1

α(x, y).

We will be working with forms where p = q = 1. In this case, α is called a
(1, 1)-form, and is written

α(x, y) =
∑
ij

aij(x, y) dxi dyj .

By the above definition, we have that∫
c1×c2

α =

∫
S1

∫
S1

α(c1(s), c2(t))(ċ1(s), ċ2(t)) ds dt,

for any two closed curves c1, c2.
With these preliminaries in place, we define a linking form to be any (1, 1)-

form L on M which satisfies that whenever γ, γ′ are disjoint null-homologous
knots, ∫

γ×γ′
L = lk(γ, γ′).

Such forms exist for M , and one class of examples is given in [19] (generalising
[41] for rational homology 3-spheres).

To outline this construction, we must give a brief description of the Green
operator on M , and an associated (1, 1)-form, known as the Green kernel. The
Green operator G is a differential operator which acts as a partial inverse to
the Laplacian ∆ : X 1(M) → X 1(M). Recall that H denotes the orthogonal
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projection onto the space of harmonic 1-forms, X 1
harm(M) = ker(∆). Then

G : X 1(M)→ (X 1
harm(M))⊥ is the unique operator satisfying

G ◦∆ = ∆ ◦G = Id−H and G ◦H = 0.

The existence of G is shown on page 134 of [34].
There is a (1, 1)-form g(x, y) which is the kernel (in the sense of [34], Section

17) of G, i.e.

G(ω)(x) =

∫
x∈M

ω(y) ∧ ∗yg(x, y),

where ∗y denotes the Hodge star in the y co-ordinate. The linking form, which
we shall henceforth refer to as the Kotschick–Vogel linking form, is the (1, 1)-
form

L(x, y) := ∗ydyg(x, y),

where dy denotes the exterior derivative in the y co-ordinate.
The following appears as Proposition 1 in [19].

Proposition 7.3 (Kotschick and Vogel, [19]). The double form L(x, y) is a
linking form. Furthermore, for every 1-form α, there exists a function h : M →
R such that ∫

y∈M
L(x, y) ∧ dα(y) = α(x)−H(α)(x) + dh(x).

For the rest of the paper, we will write

lk(γ, γ′) =

∫
γ×γ′

L

for arbitrary disjoint knots γ, γ′.

7.3. Helicity. We recall the definition of helicity. Let M be a closed oriented
3-manifold with (normalised) volume form Ω. Let X be a divergence-free vector
field on M with associated volume-preserving flow Xt : M → M . We assume
that X is null-homologous, i.e. that iXΩ is exact. Hence, there exists a 1-form
α, called the form potential of X, such that iXΩ = dα. The helicity H(X) of
X is then defined by

H(X) =

∫
M
α ∧ iXΩ.

The form potential is defined up to the addition of a closed 1-form but, by
Lemma 7.1, ∫

M
ω ∧ iXΩ =

∫
M
ω(X) Ω = 0,

so the helicity is independent of this choice.
A convenient way of evaluating helicity is given by the musical isomorphisms

in Riemannian geometry. Given a point x ∈ M , each u ∈ TxM has a corre-
sponding covector u[ ∈ T ∗xM determined uniquely by u[(w) = ρ(u,w) for all
w ∈ TxM . Letting ρ̂x = (ρij(x))ij , the matrix of metric components at x, we

have that u[ = (ρ̂xu)T . As ρ̂x is invertible, with inverse ρ̂−1x = (ρij(x))ij , we

have u = ρ̂−1x (u[)T , and we say u = (u[)]. We will use raised indices for the
components of a tangent vector and lowered indices for the components of its



HELICITY AND LINKING 25

corresponding covector, meaning ui is the ith component of u, and ui is (ρ̂xu)i.
With this, we can define the curl of a vector field Z to be the unique vector
field with Z[ as a form potential. That is,

icurlZΩ = d(Z[).

Thus the components of the curl are given by

(curlZ(y))l = (−1)l+1

(
∂Zj(l)

∂yk(l)
(y)−

∂Zk(l)

∂yj(l)
(y)

)
,

where k(l) < j(l) and {k(l), j(l)} = {1, 2, 3} \ {l}.
When α is a form potential for X, curl(α]) = X, and we call α] a vector

potential for X. We see that

H(X) =

∫
M
α ∧ dα =

∫
M
α(curl(α])) Ω =

∫
M
ρ(X,α]) Ω.

Thus the helicity can be thought of as a scalar product 〈X, curl−1X〉 of X and
its potential field. Here the curl is not invertible, but we abuse notation due to
independence of the preimage choice.

8. Periodic orbits and helicity

We restrict now to the case where Xt : M → M is a homologically full
transitive Anosov flow on a closed oriented 3-manifold and consider its periodic
orbits as knots. It is interesting to ask how they link with other periodic orbits
as the period increases. As discussed above, to define a linking number, at least
one of the knots needs to be null-homologous in H1(M,R). We now consider the
sets of periodic orbits PT (0) and PT+1 defined in the introduction. Since PT (0)
and PT+1 are disjoint, and PT (0) consists of null-homologous orbits, the linking
number of a pair of periodic orbits from these two collections are well-defined.

Remark 8.1. The choice of intervals (T − 1, T ] and (T, T + 1] is somewhat
arbitrary. The results below will still hold if we replace them with [T +a, T + b]
and [T + a′, T + b′], for any a < b and a′ < b′, provided [a, b] and [a′, b′] are
disjoint, and we can replace any [ with ( and any ] with ). Alternatively, we
could use the same interval for each pair and discard pairs which match an orbit
with itself. The latter formulation requires a slightly more involved analysis in
Section 9 but the approach used there carries through.

We define average linking numbers over the sets of orbits PT (0) and PT+1,
weighted by a Hölder continuous function ϕ : M → R, by

Lϕ(T ) :=

∑
γ∈PT (0),γ′∈PT+1

lk(γ, γ′)

`(γ)`(γ′)
exp

(∫
γ
ϕ+

∫
γ′
ϕ

)
∑

γ∈PT (0),γ′∈PT+1

exp

(∫
γ
ϕ+

∫
γ′
ϕ

)
(It will become clear from our results that dividing by the periods of the orbits
gives the correct normalisation.)
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By Proposition 7.3, the linking number of two periodic orbits γ, γ′ as above
is given by

lk(γ, γ′)

`(γ)`(γ′)
=

∫
L(x, y)(X(x), X(y)) d(µγ × µγ′)(x, y).

So that we can consider integrals of functions, rather than forms, we define
Λ : (M ×M) \∆(M)→ R by

Λ(x, y) := L(x, y)(X(x), X(y)),

where

∆(M) = {(x, x) ∈M ×M : x ∈M}
is the diagonal in M ×M .

We recall that if b = dimH1(M,R) ≥ 1 then ξ(ϕ) ∈ H1(M,R) and the
function fξ(ϕ) are defined in Section 5. If b = 0, we set ξ(ϕ) = 0 and fξ(ϕ) = 0.
Our main result is the following.

Theorem 8.2. Let Xt : M →M be a homologically full transitive Anosov flow
on a closed oriented 3-manifold and let ϕ : M → R be a Hölder continuous
function. Then

lim
T→∞

Lϕ(T ) =

∫
Λ d(µϕ+fξ(ϕ) × µϕ).

As a consequence, for null-homologous volume-preserving flows, we can ob-
tain the helicity H(X) as the limit of appropriately weighted averages of linking
numbers.

Theorem 8.3. Let Xt : M → M be a null-homologous volume-preserving
Anosov flow on a closed oriented 3-manifold. Then

H(X) = lim
T→∞

Lϕu(T ).

We will prove Theorem 8.3 assuming we have proved Theorem 8.2. The proof
of Theorem 8.2 appears in the next section.

Proof of Theorem 8.3. Since Xt is volume-preserving, µϕu = m and, since X is
null-homologous, Φm = 0. We then have,

∇βϕ(0) =

∫
f dµϕu =

∫
f dm = 0,

where, again, f : M → Rb is the function defined in the proof of Proposition
5.1, so ξ(ϕu) = 0. Hence we can apply Theorem 8.2 to conclude that Lϕu(T )
converges to

∫
Λ d(m ×m). To complete the proof, we need to show that this

integral is equal to the helicity H(X).
Let α be a 1-form such that dα = iXΩ. Then, using Proposition 7.3,

H(X) =

∫
M
α ∧ iXΩ

=

∫
x∈M

((∫
y∈M

L(x, y) ∧ iXΩ(y)

)
+H(α)(x)− dh(x)

)
∧ iXΩ(x).
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Now, since Φm = 0, we have both∫
M
H(α) ∧ iXΩ =

∫
H(α)(X(x)) dm(x) = 0,

and ∫
M
dh ∧ iXΩ =

∫
dh(X(x)) dm(x) = 0.

Therefore

H(X) =

∫
x∈M

(∫
y∈M

L(x, y) ∧ iXΩ(y)

)
∧ iXΩ

=

∫
(x,y)∈M×M

L(x, y)(X(x), X(y)) ∧ Ω(x) ∧ Ω(y)

=

∫
(x,y)∈M×M

L(x, y)(X(x), X(y)) d(m×m)

=

∫
Λ d(m×m),

as required. �

Another consequence of Theorem 8.2 is the following result for the geodesic
flows discussed in Example 2.3, stated as Theorem 1.3 in the introduction.

Theorem 8.4. Let Xt : M →M be the geodesic flow over a genus zero hyper-
bolic orbifold. Then

H(X) = lim
T→∞

1

#PT #PT+1

∑
γ∈PT ,γ′∈PT+1

lk(γ, γ′)

`(γ)`(γ′)
.

Proof of Theorem 8.4. Applying Theorem 8.2 with ϕ = 0, we get that the limit
converges to

∫
Λ d(µ0 × µ0). However, for the geodesic flows considered here,

the measure of maximal entropy is equal to the volume m. Hence the limit is∫
Λ d(m×m) = H(X), as shown in the proof of Theorem 8.3. �

Remark 8.5. For comparison we state a result of Contreras [8] which motivated
this work. Contreras studied the asymptotic linking of periodic orbits (without
weightings) for hyperbolic flows on basic sets of Axiom A flows on S3. (We
note that S3 does not support Anosov flows.) The result of Contreras is that
the average linking number of periodic orbits for Xt restricted to a non-trivial
basic set satisfies

lim
T→∞

L0(T ) =

∫
Λ d(µ0 × µ0).

In this setting, there is an explicit formula for Λ(x, y),

Λ(x, y) =
3

4π

X(x)×X(y)

‖x− y‖3
· (x− y),

which resembles the integrand of Gauss’ linking integral. The above result is
proved by comparing this integrand to the distance ‖x − y‖, and using this
comparison to show it is integrable with respect to the orbital measures. The
equidistribution of these orbits can then be exploited to complete the proof.
We will follow a similar approach to prove Theorem 8.2.
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9. Proof of Theorem 8.2

9.1. Bounds on the Kotschick–Vogel linking form. For the background
to this subsection, see Sections 27 and 28 of [34]. Denote the Riemannian
distance on M by r(x, y). We will be interested in estimates on L(x, y) as this
distance tends to zero. A (1, 1)-form is said to be O(rk) if its coefficients are.
Since the Green kernel g(x, y) (and thus L(x, y)) is smooth away from ∆(M),
we will mainly be concerned with the behaviour of the linking form near ∆(M).

From [34] (page 133),

(9.1) g(x, y) = ω(x, y) +O(r),

where ω(x, y) is the parametrix, which after setting A(x, y) = −1
2r(x, y)2, is

defined by

ω(x, y) =
1

s3

∑
ij

1

r

∂2A

∂xi∂yj
dxidyj ,

where s3 is the volume of the 3-dimensional unit sphere. Note that in the above
we have omitted evaluating functions at (x, y). We will continue in this way to
avoid cumbersome notation where possible.

We now state some properties of the geodesic distance that are useful when
working with the parametrix. Let ξ ∈ TxM denote the tangent at x to the
geodesic from x to y, such that expx(ξ) = y. Let −η ∈ TyM be the tangent at y
satisfying expy(−η) = x. The functions ξ(x, y), η(x, y), A(x, y), as well as the

local co-ordinate functions xi, yi, and their relations are studied in [34] (page
115). We summarise the results in the following lemma.

Lemma 9.1. The functions above satisfy the following, for all pairs i, j ∈
{1, 2, 3}.

(i) ξi = O(r), ηi = O(r)
(ii) yi − xi = O(r), yi − xi − ξi = O(r2), and xi − yi − ηi = O(r2).

(iii)
∂ξi

∂xj
= −δij +O(r), and

∂ξi

∂yj
= δij +O(r),

(iv)
∂A

∂xi
= ξi, and

∂A

∂yi
= ηi.

Here δij is the Kronecker delta symbol.

The remainder of this subsection is dedicated to proving the following.

Lemma 9.2. There exists K > 0 such that for all x, y ∈M ,

|Λ(x, y)| < K

r(x, y)
.

By (9.1) it suffices to show that ∗ydyω(x, y)(X(x), X(y)) = O(1/r). To un-
derstand the coefficients of the (1,1)-form ∗ydyω(x, y), we will use the following
geometric identity. Given a vector field Z on M ,

(9.2) ∗d(Z[) = (curlZ)[.

With this identity in mind, we are ready to consider bounding ∗ydyω(x, y).
First, taking x, y close enough, we can assume they are in the same co-ordinate
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chart, meaning that they also have the same metric components. From now on,
we will write ρij instead of ρij(x) = ρij(y), and ρ̂ instead of ρ̂x, for notational
ease. All sums in what follows are taken over indices ranging from 1 to 3, unless
otherwise specified.

We wish to apply (9.2) to the y-part of the (1,1)-form ω(x, y). Given x ∈M ,
let

αi,xj (y) =
1

r(x, y)

∂ξi
∂yj

(y), and αi,x(y) =
∑
j

αi,xj (y) dyj .

Then ω(x, y) = 1
s3

∑
i α

i,x(y) dxi, and

s3 ∗y dyω(x, y) =
∑
i

(∗dαi,x)(y)dxi =
∑
i

(curl(αi,x)])[dxi

=
∑
i

(∑
l

(−1)l+1

(
∂αi,xj
∂yk

−
∂αi,xk
∂yj

)
∂

∂yl

)[
dxi

=
∑
i

(∑
l

(−1)l+1

(
∂ξi
∂yj

∂r−1

∂yk
− ∂ξi
∂yj

∂r−1

∂yj

)
∂

∂yl

)[
dxi

=
∑
ilλ

ρlλ(−1)l+1

(
∂ξi
∂yj

∂r−1

∂yk
− ∂ξi
∂yj

∂r−1

∂yj

)
dxidyλ

=
∑
ilλ

ρlλ(∇yr−1 ×∇yξi)ldxidyλ,

where k = k(l) < j(l) = j are such that {k(l), j(l)} = {1, 2, 3} \ {l}. Using the
component formulae for the musical isomorphism [ and standard rules for the
cross and dot product in R3, we obtain

s3 ∗y dyω(x, y)(X(x), X(y)) =
∑
ilλ

ρlλ(∇yr−1 ×∇yξi)lX(x)iX(y)λ

=
∑
il

X(y)l(∇yr−1 ×∇yξi)lX(x)i

=
∑
ilp

X(y)lρip(∇yr−1 ×∇yξp)lX(x)i

=
∑
lp

X(y)l(∇yr−1 ×X(x)p∇yξp)l

= (X(y)[)T ·

(
∇yr−1 ×

∑
p

X(x)p∇yξp
)

= −∇yr−1 ·

(
ρ̂X(y)×

∑
p

X(x)p∇yξp
)
.



30 SOLLY COLES AND RICHARD SHARP

Applying Lemma 9.1, we have

∇yr−1 = − 1

r2
∇yr = − 1

r3
r∇yr = − 1

2r3
∇yr2

=
1

r3
∇yA =

1

r3
(η[)T =

1

r3
ρ̂η.

Recalling that ∂ξp

∂yj
= δpj +O(r), we have∑

p

X(x)p∇yξp = (X(x)[)T +O(r) = ρ̂X(x) +O(r).

By Taylor’s theorem applied to X, for x and y sufficiently close, this gives∑
p

X(x)p∇yξp = ρ̂X(y) +O(r).

Collecting terms from above, we obtain

∗ydyω(x, y)(X(x), X(y)) = − 1

r3
ρ̂η · (ρ̂X(y)×O(r)).

Since η = O(r) and ρ̂ and X are bounded, Lemma 9.2 is proved.

9.2. Proof of the main result. We are now ready to prove Theorem 8.2. We
will follow the method in [8], aided by Lemma 9.2, Theorem 4.1 and Theorem
6.7.

We define measures

µϕ,T =

∑
γ∈PT

e
∫
γ ϕµγ∑

γ∈PT

e
∫
γ ϕ

, µ0ϕ,T =

∑
γ∈PT (0)

e
∫
γ ϕµγ∑

γ∈PT (0)

e
∫
γ ϕ

.

By Theorem 4.1, µϕ,T+1 converges to the equilibrium state µϕ. If M is a
real homology 3-sphere then µ0ϕ,T also converges to µϕ. On the other hand, if

H1(M,R) has dimension at least one then, by Theorem 6.7, µ0ϕ,T converges to
the equilibrium state µϕ+fξ(ϕ) . To simplify notation, we shall write

ϕ∗ =

{
ϕ if dimH1(M,R) = 0

ϕ+ fξ(ϕ) if dimH1(M,R) ≥ 1,

so that the limit of µ0ϕ,T is denoted µϕ∗ in all cases. By definition

Lϕ(T ) =

∫
Λ d(µ0ϕ,T × µϕ,T+1).

Therefore, if either of the following limits exist, then we have the equality

(9.3) lim
T→∞

Lϕ(T ) = lim
T→∞

∫
Λ d(µ0ϕ,T × µϕ,T+1).

We have that µ0ϕ,T converges to µϕ∗ and µϕ,T+1 converges to µϕ. We will

use this to prove that integral in (9.3) converges to the integral over µϕ∗ × µϕ.
First we must prove

∫
Λ d(µϕ∗ × µϕ) exists.

We will use the following lemma from [8].
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Lemma 9.3 ([8], Lemma 2.4). Let (Y, d) be a separable metric space with Borel
probability measures µ and ν.

(i) If x ∈ Y is such that lim infρ→0
log µ(B(x,ρ))

log ρ > 1, then
∫

1
r(x,a) dµ(a)

exists.
(ii) If this limit is uniformly greater than 1 ν-a.e, then

∫
1

r(x,a) d(µ(x)×ν(a))

exists.

By Lemmas 9.2 and 9.3, to prove
∫

Λ d(µϕ∗ × µϕ) exists we need only show

lim inf
ρ→0

logµϕ∗(B(x, ρ))

log ρ
> 1

uniformly µϕ-almost everywhere. To do this, we will use a bound on the measure
µϕ∗ which resembles a Gibbs property. We will need the following definition.

A function ψ : M → R satisfies the Bowen property if there exist C, δ > 0
such that for all L > 0, whenever y ∈ B(x, δ, L),∣∣∣∣ ∫ L

0
ψ(Xt(x)) dt−

∫ L

0
ψ(Xt(y)) dt

∣∣∣∣ < C.

This holds for Hölder continuous functions.

Lemma 9.4 (Franco [12]). Suppose ψ satisfies the Bowen property, and δ > 0
is small. Then, there exists Cδ > 0 such that for any L > 0, x ∈M ,

µψ(B(x, δ, L)) ≤ Cδ exp

(∫ L

0
ψ(Xt(x)) dt− P (ϕ)L

)
.

Proof. The method we follow is based on that of Franco ([12], Proposition 2.11).
We first consider bounding the orbital measures µψ,T (B(x, δ, L)), for T > L.
To obtain bounds involving pressure, we first construct a large separated set of
periodic points contained in B(x, δ, L).

Let |PT | denote the set of points on the orbits in PT . By expansivity, there

exists a constant q > 0 such that for y, y′ ∈ |PT |, y′ 6∈ X [−q,q]y implies y and
y′ are (T, 2δ)-separated. Let δ′ = min{q, δ} and choose an integer S > 2q/δ′.
Consider an orbit γ ∈ PT . We can divide γ into consecutive closed segments
I1, . . . , Im, such that each segment has the same orbit length l, for some l ∈
(δ′/2, δ′). By the definition of q, if |i− j| > S (mod m), we have Ii∩X [−q,q]Ij =
∅. We will now distribute the segments into collections E1, . . . , E2(S+1) such
that if Ii, Ij ∈ Ek are distinct, then |i − j| > S (mod m). We do this with the
following process:

(1) Put I1 ∈ E1, then add the b m
S+1c−1 other segments IS+2, I2S+3, I3S+4, . . .

(2) Put I2 ∈ E2, and the b m
S+1c − 1 other segments IS+3, I2S+4, I3S+5, . . .

(3) Repeat this process until collections E1, . . . , ES+1 are full, at which
point at most S + 1 segments remain.

(4) Put each of the remaining segments (if any) into a collection on its own,
and leave the remaining collections (if any) empty.
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Now, we have that

µψ,T (B(x, δ, L) ∩ γ) =

2(S+1)∑
k=1

µψ,T

B(x, δ, L) ∩
⋃

Ii∈Ek

Ii

 ,

so there exists k∗ such that Ek∗ satisfies

µψ,T

B(x, δ, L) ∩
⋃

Ii∈Ek∗
Ii

 ≥ 1

2(S + 1)
µψ,T (B(x, δ, L) ∩ γ).

Form a set Aγ by picking one point (wherever possible) from B(x, δ, L)∩ Ii, for
each Ii ∈ Ek∗ . For y ∈ Aγ ∩ Ii, set

Ry = {t ∈ (−`(γ), `(γ)) : Xty ∈ B(x, δ, L) ∩ Ii} ⊂ [−δ, δ].
If we let A = ∪γ∈PT+1

Aγ , then A is (T, 2δ)-separated and we have

µψ,T (B(x, δ, L)) ≤ 2(S + 1)µψ,T

⋃
y∈A

XRyy

 = 2(S + 1)

∑
y∈A λ(Ry)e

∫
γy
ψ∑

γ∈PT+1
e
∫
γ ψ

,

where λ is Lebesgue measure on the real line, and γy refers to the periodic orbit
containing y. Now, since A ⊂ B(x, δ, L), XLA is (T − L, 2δ)-separated and by
the Bowen property there is C > 0 such that for each y ∈ A,∣∣∣∣ ∫ L

0
ψ(Xt(x)) dt−

∫ L

0
ψ(Xt(y)) dt

∣∣∣∣ < C.

Thus ∑
y∈A λ(Ry)e

∫
γy
ψ∑

γ∈PT+1
e
∫
γ ψ

≤ 2δeC+
∫ L
0 ψ(Xtx) dt

∑
y∈XLA e

∫ T−L
0 ψ(Xty) dt∑

γ∈PT+1
e
∫
γ ψ

.

Combining the above with Lemmas 2.6 and 2.8 in [12], we have Cδ > 0 such
that

µψ,T (B(x, δ, L)) ≤ Cδ exp

(∫ L

0
ψ(Xt(x)) dt− P (ϕ)L

)
.

By Theorem 4.1,

µψ(B(x, δ, L)) ≤ lim inf
T→∞

µψ,T (B(x, δ, L)),

which completes the proof. �

Remark 9.5. The results from [12] that are used in the proof above are only
proved for periodic orbits whose least period lies within a small range (T −
ε, T + ε), as opposed to our range of (T, T + 1]. Strictly speaking, one should
obtain the result of Theorem 8.2 for these smaller ranges and then apply an
additive argument to the limit in order to obtain it for the larger range.

Lemma 9.6. Suppose ψ satisfies the Bowen property. Then

lim inf
ρ→0

logµψ(B(x, ρ))

log ρ
> 1

uniformly in x.
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Proof. We follow the proof of Lemma 2.6 in [8]. By Lemma 3.4, there exists
ε > 0 and a Hölder continuous function v : M → R such that∫ L

0
ψ(Xtx) dt− P (ψ)L ≤ −εL+ v(XLx)− v(x),

for all x ∈M and L ≥ 0. Thus, the proof of Lemma 9.4 tells us that for δ > 0
sufficiently small,

µψ,T (B(x, δ, L)) ≤ C ′δe−εL,

where C ′δ = Cδe
2‖v‖∞ .

By compactness of M , there exist constants λ, k1, k2 > 0 such that ‖DxX
t‖ ≤

λt for t ≥ 0, and k1 < ‖X‖ < k2. So whenever ρλL ≤ δ/2, B(x, ρ) ⊂
B(x, δ/2, L), and, for any a > 0,

X [−a,a]B(x, ρ) ⊂ B(x, δ/2 + ak2, L).

Now, any orbit intersecting X [−a,a]B(x, ρ) does so for time at least 2a and any
orbit intersecting B(x, ρ) does so for time at most 2ρ/k1. Setting a = δ/2k2,

µψ,T (B(x, ρ)) ≤ 2ρ

2ak1
µψ,T (X [−a,a]B(x, ρ)) ≤ ρ

ak1
µψ,T (B(x, δ, L)).

Since B(x, ρ) is open and µψ,T → µψ, we have

µψ(B(x, ρ)) ≤ lim inf
T→∞

µψ,T (B(x, ρ))

≤ ρ

ak1
lim inf
T→∞

µψ,T (B(x, δ, L)) ≤
C ′δρ

ak1
e−εL.

Now, if we set ρ > 0 sufficiently small and consider L = L(ρ) := log δ/2−log ρ
log λ ,

then ρ ≤ δ/2λL, and so

logµψ(B(x, ρ))

log ρ
≥ 1 +

ε

log λ
+O

(
1

log(1/ρ)

)
.

Thus we have that

lim inf
ρ→0

logµψ(B(x, ρ))

log ρ
≥ 1 +

ε

log λ
> 1,

uniformly in x. �

Having shown that our integral exists, we are left to show it is the value of
the limit on the right-hand side of (9.3). We again examine the behaviour of Λ
near the diagonal. First we show that the diagonal in M ×M has zero measure
with respect to the product of two equilibriums states of Hölder continuous
functions.

Lemma 9.7. Let ψ′ : M → R, ψ : M → R be Hölder continuous. Then

(µψ′ × µψ)(∆(M)) = 0.
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Proof. We can cover ∆(M) by products B(x, δ, T ) × B(x, δ, T ), where x runs
over a (T, δ)-spanning set Eδ,T . Applying Lemma 9.4 followed by Lemma 3.4,
we have some ε, kδ, k

′
δ > 0 such that

(µψ′ × µψ)(∆(M)) ≤
∑

x∈Eδ,T

µψ′(B(x, δ, T ))µψ(B(x, δ, T ))

≤ kδ
∑

x∈Eδ,T

exp

(∫ T

0
ψ′(Xtx) dt− P (ψ′)T +

∫ T

0
ψ(Xtx) dt− P (ψ)T

)

≤ k′δ
∑

x∈Eδ,T

exp

(∫ T

0
ψ′(Xtx) dt− P (ψ′)T − εT

)
,

Since Eδ,T was an arbitrary (T, δ)-spanning set,

(µψ′×µψ)(∆(M)) ≤ k′δe−(P (ψ′)+ε)T inf

{∑
x∈E

e
∫ T
0 ψ′(Xtx) dt : E is (T, δ)-spanning

}
.

Provided δ > 0 is chosen sufficiently small, we can take T → ∞ and use the
topological definition of pressure to conclude that (µψ′ × µψ)(∆(M)) = 0. �

Lemma 9.8. If there exists a nested collection {BR}0<R≤R0 of open neighbour-
hoods of ∆(M) with

⋂
0<R≤R0

BR = ∆(M), such that

lim
R→0

lim
T→∞

∫
BR

Λ d(µ0ϕ,T × µϕ,T+1) = 0,

then the following limit exists, and equality holds:

lim
T→∞

∫
Λ d(µ0ϕ,T × µϕ,T+1) =

∫
Λ d(µϕ∗ × µϕ).

Proof. Suppose the hypothesis is satisfied. We have that µ0ϕ,T × µϕ,T+1 →
µϕ∗ × µϕ in the weak∗ topology. Let AR = (M × M) \ BR, then as Λ is
continuous away from the diagonal,

lim
T→∞

∫
AR

Λ d(µ0ϕ,T × µϕ,T+1) =

∫
AR

Λ d(µϕ∗ × µϕ).

Now, as Λ is (µϕ∗×µϕ)–integrable and, by Lemma 9.7, (µϕ∗×µϕ)(∆(M)) = 0,
we have

lim
R→0

∫
BR

Λ d(µϕ∗ × µϕ) = 0.

These facts, along with the hypothesis and the triangle inequality, yield that,
for δ > 0, there exist T0 > 0 such that T > T0 implies∣∣∣∣ ∫ Λ d(µ0ϕ,T × µϕ,T+1)−

∫
Λ d(µϕ∗ × µϕ)

∣∣∣∣ < δ.

�

Now we must exhibit the sets BR and show they satisfy the required property.
To do this we will consider bounds for the integral of Λ with respect to µϕ,T+1.
Recall the notation of Lemma 9.6.
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Lemma 9.9. There exists δ,R, α,Q > 0, independent of T , such that for all
x ∈M and δ/2λT ≤ R,∫

B(x,R)\B(x,δ/2λT )
|Λ(x, y)| dµϕ,T+1(y) ≤ QRα.

Proof. Choose δ as in the proof of Lemma 9.6 to be smaller than the expansivity
constant for X. Our calculations there also show that there exists R > 0 such
that whenever 0 < ρ < R

µϕ,T+1(B(x, ρ)) ≤ ρ

ak1
µϕ,T+1(B(x, δ, L(ρ))).

Now, by the proof of Lemma 9.4, there exists some Cδ > 0 such that for
T > L(ρ),

(9.4) µϕ,T+1(B(x, δ, L(ρ))) ≤ Cδ exp

(∫ L(ρ)

0
ϕ(Xt(x))dt− P (ϕ)L(ρ))

)
.

By Lemma 3.4 we have ε,Kδ,K
′
δ > 0 such that

µϕ,T+1(B(x, ρ)) ≤ Kδρ

2ak1
e−εL(ρ) = K ′δρ

1+
ε

log λ .

Set α = ε/ log λ, and define NT = min{n ∈ N : R/2n ≤ δ/2λT }. Let

An(x) = B(x,R/2n−1) \B(x,R/2n); for x ∈M and 1 ≤ n ≤ NT − 1,

ANT (x) = B(x,R/2NT−1) \B(x, δ/2λT ).

Now, splitting our integral over these annuli, and using Lemma 9.2, we have∫
B(x,R)\B(x,δ/2λT )

|Λ(x, y)| dµϕ,T+1(y) =

NT∑
n=1

∫
An(x)

|Λ(x, y)| dµϕ,T+1(y)

≤
NT∑
n=1

2nK

R
µϕ,T+1(B(x,R/2n−1))

≤ 2KK ′δR
α
NT−1∑
n=0

1

2αn
≤

2KK ′δ
1− 2−α

Rα.

Setting Q = 2KK ′δ/(1− 2−α), we are done. �

Now, let

BR =
⋃
x∈M

({x} ×B(x,R)) and D =
⋃
x∈M

({x} ×B(x, δ/2λT )).

It is clear that the BR limit to the diagonal in the required way, so we are done
if we show the integral limit property in Lemma 9.8. By Fubini’s Theorem,∫

BR\D
|Λ| d(µ0ϕ,T × µϕ,T+1) ≤ QRα.
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It remains to describe the integral on D. As our measures are supported on
periodic orbits, we have∫
D
|Λ| d(µ0ϕ,T×µϕ,T+1) =

∫
x∈|PT (0)|

∫
y∈B(x,δ/2λT )∩|P ′T |

|Λ(x, y)| dµ0ϕ,T (x)dµϕ,T+1(y),

where |PT (0)|, |P ′T | denote the set of points on orbits in PT (0),P ′T respectively.
Now, as we chose δ smaller than the expansivity constant, we ensure that for
any x ∈ |PT (0)|,

B(x, δ/2λT ) ∩ |P ′T | = ∅.
If this were not the case then there would be a distinct periodic orbit from that
of x which intersects this ball, whilst also having comparable period to x. This
violates expansivity.

So the above integral is zero, and we can conclude

lim
T→∞

∣∣∣∣ ∫
BR

Λ d(µ0ϕ,T × µϕ,T+1)

∣∣∣∣ ≤ QRα.
Thus

lim
R→0

lim
T→∞

∣∣∣∣ ∫
BR

Λ d(µ0ϕ,T × µϕ,T+1)

∣∣∣∣ = 0

as required.

Remark 9.10. It is interesting to ask whether one can obtain versions of
Theorem 8.2 and Theorem 8.3 with PT+1 replaced by PT+1(0). One suspects
this is the case; however, we were unable to prove the estimate (9.4) for the
orbital measures corresponding to the null-homologous orbits PT+1(0).

Remark 9.11. As we remarked in the introduction, the helicity is an invariant
of volume-preserving diffeomorphisms. Arnold [2] conjectured that it is invari-
ant under volume-preserving homeomorphisms. Unfortunately, our results do
not shed any light on this conjecture since a homeomorphism need not preserve
the quantities

∫
γ ϕ

u. Indeed, if they are preserved then the flows are already

smoothly conjugate [22]. For further discussion of this problem, see [25].
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