
STATISTICS OF MULTIPLIERS FOR HYPERBOLIC RATIONAL MAPS

RICHARD SHARP AND ANASTASIOS STYLIANOU

Abstract. In this article, we consider a counting problem for orbits of hyperbolic rational maps on
the Riemann sphere, where constraints are placed on the multipliers of orbits. Using arguments from
work of Dolgopyat, we consider varying and potentially shrinking intervals, and obtain a result which
resembles a local central limit theorem for the logarithm of the absolute value of the multiplier and an
equidistribution theorem for the holonomies.

1. Introduction

A major theme in the theory of dynamical systems is the study of the distribution of periodic
orbits. This is particularly well-developed for hyperbolic systems, where one finds precise asymptotics
and equidistribution results. Here, equidistribution can refer to spatial results, where averages of
orbital measures converge to a prescribed limiting measure, or to equidistribution with respect to
some symmetry of the system. This paper can be seen in the context of the second setting. A major
advance in this theory came from the work of Dolgopyat [2], which introduced an approach to obtaining
more precise results.

Let us now be more precise about our setting. Let f : J → J be a hyperbolic rational map
restricted to its Julia set and 0 < δ < 2 to be the Hausdorff dimension of J . (See the next section for
formal definitions.) A periodic orbit τ =

{
z, f(z), . . . , fn−1(z)

}
(with fn(z) = z) is called primitive

if fm(z) 6= z for all 1 ≤ m < n. We denote the set of primitive periodic orbits by P. For each
τ = {z, f(z), . . . , fn−1(z)} ∈ P, we define its multiplier

λ(τ) := (fn)′(z)

and its holonomy

λ̂(τ) :=
λ(τ)

|λ(τ)|
∈ S1,

where S1 denotes the unit circle in C. A beautiful recent result of Oh and Winter [7] states that, apart
from a small set of completely classified exceptional cases, there exists ε > 0 such that

#{τ ∈ P : |λ(τ)| < t} = Li(tδ) +O(tδ−ε) (1.1)

and, for any ψ ∈ C4(S1), ∑
τ∈P:|λ(τ)|<t

ψ
(
λ̂(τ)

)
=

(∫ 1

0
ψ(e2πiθ) dθ

)
Li(tδ) +O(tδ−ε),

as t→∞. Here, Li denotes the logarithmic integral Li(x) =
∫ x
2 (log u)−1 du ∼ x/ log x, as x→∞ and

we write f(x) = O(g(x)) as x→∞ whenever there exists C > 0 and x0 ∈ R such that for all x ≥ x0
we have that |f(x)| ≤ Cg(x). We also write f(x) ∼ g(x) as x→∞ whenever limx→∞ f(x)/g(x) = 1.

In this paper, we take a slightly different viewpoint. Instead of counting τ = {z, f(z), . . . , fn−1(z)}
according to the modulus of its multiplier |λ(τ)|, we count by the period |τ | = n but impose constraints
on deviations of log |λ(τ)| from the period and on the holonomy. More precisely, for α ∈ R, an interval
I ⊂ R and an arc S ⊂ S1, and writing Pn = {τ ∈ P : |τ | = n}, we aim to study the behaviour of

π(n, α, I, S) := #{τ ∈ Pn : log |λ(τ)| − nα ∈ I and λ̂(τ) ∈ S},

1
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as n→∞. We need to impose a restriction on α and, to do this, define the closed interval

If :=

{∫
log |f ′| dµ : µ ∈Mf

}
,

where Mf is the set of f -invariant probability measures on J . We also asume that the Julia set of

f is not contained in a circle in Ĉ since otherwise all holonomies are real. We write ` for Lebesgue
measure on R and ν for the normalised Haar measure on S1.

Theorem 1.1. Let f : J → J be a hyperbolic rational map of degree d ≥ 2 restricted to its Julia set

such that J is not contained in a circle in Ĉ. Then, for α ∈ int(If ), there exists σα > 0 and ξα ∈ R
such that

π(n, α, I, S) ∼ ν(S)

σα
√

2π

∫
I
e−ξαx dx

eH(α)n

n3/2
, as n→∞,

where

H(α) = sup

{
hf (µ) : µ ∈Mf and

∫
log |f ′| dµ = α

}
.

In particular, if α =
∫

log |f ′| dµmax, where µmax is the measure of maximal entropy then

π(n, α, I, S) ∼ ν(S)`(I)

σα
√

2π

dn

n3/2
as n→∞.

We can also allow I and S to shrink at suitably slow rates as n increases. The corresponding
result will appear below as Theorem 2.1.

2. Hyperbolic rational maps

Let f : Ĉ→ Ĉ be a rational map of degree d ≥ 2. Recalling the definitions in the introduction, a
periodic orbit can be classified as repelling, attracting or indifferent depending on whether its multiplier
has modulus greater than, less than, or equal to one, respectively. Then, the Julia set of f is defined
as the closure of the union of repelling periodic orbits and denoted by J = J(f). It is a compact

f±1-invariant subset of Ĉ and the reader is referred to Milnor’s classical text [5] for an excellent and
systematic introduction to the dynamics of functions of one complex variable. In particular, we note
that such a map has topological entropy h(f) = log d and #{z ∈ C : fn(z) = z} = dn.

We say that a rational map f : Ĉ → Ĉ is hyperbolic if f is eventually expanding on J , that is
there exist constants c > 0 and γ > 1 such that

|(fn)′(z)| ≥ cγn (2.1)

for all z ∈ J and all n ≥ 1.

For such a map, it is known that at most 2d − 2 primitive periodic orbits are not repelling.
Therefore, to study asymptotic counting problems for periodic orbits of f we can focus, without any
loss of generality, to the study of the repelling periodic orbits. We write δ for the Hausdorff dimension
of J ; this satisfies 0 < δ < 2 [18]. We will impose an additional hypothesis on f : we suppose that J

is not contained in any circle in Ĉ. In particular, this implies that f is not conjugate by a Möbius
transformation to a monomial z 7→ z±d for any d ∈ N.

We will now give a more precise version of our results. As in the introduction, Mf is the set
of f -invariant probability measures on J , which is convex and compact with respect to the weak∗

topology. Hence, the image of Mf onto the reals under the continuous projection

µ 7→
∫
J

log |f ′| dµ
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is an interval, which we denote by If . Since we are assuming that f is not Möbius conjugate to
a monomial, If has non-empty interior. (If If is a single point then log |f ′| is cohomologous to a
constant, which is incompatible with (1.1).) We define

H(α) := sup

{
hf (µ) : µ ∈Mf with

∫
log |f ′| dµ = α

}
,

where hf (µ) denotes the measure-theoretic entropy. There is a unique µα ∈ Mf that realises this
supremum above and a unique ξα ∈ R such that

hf (µα) + ξα

∫
log |f ′| dµα = sup

{
hf (µ) + ξα

∫
log |f ′| dµ : µ ∈Mf

}
.

We also define the variance of log |f ′| − α by

σ2α := lim
n→∞

1

n

∫ (
log |(fn)′| − nα

)2
dµα.

Our hypothesis on f implies that σ2α > 0. These statements will be proved in the next section.

We want to consider the quantity π(n, α, I, S) defined in the introduction. However, we also wish
to consider a situation where I and S shrink as n → ∞. To do this, let K ⊂ R be a compact
set, let (In)∞n=1 be a sequence of intervals contained in K and let (Sn)∞n=1 be a sequence of arcs
in S1. We are mainly interested in the two special cases where the sequences (In)∞n=1 and (Sn)∞n=1

are constant, corresponding to the case of a fixed interval and a fixed arc as in the introduction,
and where the sequences (`(In))∞n=1 and (ν(Sn))∞n=1 tend to zero, hence realising shrinking intervals.
Similar asymptotic counting problems were considered in [12], [13] and [14].

We say that a sequence (sn)∞n=1 has sub-exponential growth if lim supn→∞ | log sn|/n = 0. We
have the following theorem.

Theorem 2.1. Let f : Ĉ→ Ĉ be a hyperbolic rational map of degree at least 2 such that its Julia set is

not contained in a circle in Ĉ. Let K ⊂ R be a compact set, let (In)∞n=1 be a sequence of intervals in K
and let (Sn)∞n=1 be a sequence of arcs in S1. Furthermore, suppose that (`(In)−1)∞n=1 and (ν(Sn)−1)∞n=1

have sub-exponential growth. Then, for each α ∈ int(If ), we have that

π(n, α, In, Sn) ∼ ν(Sn)

σα
√

2π

∫
In

e−ξαx dx
eH(α)n

n3/2
, as n→∞. (2.2)

In particular, if in addition we have that limn→∞ `(In) = 0 and pn ∈ In then

π(n, α, In, Sn) ∼ ν(Sn)`(In)e−ξαpn

σα
√

2π

eH(α)n

n3/2
, as n→∞. (2.3)

Corollary 2.2. If α =
∫

log |f ′| dµmax, where µmax is the measure of maximal entropy then

π(n, α, In, Sn) ∼ ν(Sn)`(In)

σα
√

2π

dn

n3/2
, as n→∞. (2.4)

3. Thermodynamic formalism for hyperbolic rational maps

The main purpose of this section is to describe how one can study the dynamics of a hyperbolic
rational map using transfer operators and to obtain some decay estimates for them. We begin by
recalling the essential features of this approach but for more details the reader is referred to [15]. We
fix a hyperbolic rational map f of degree d ≥ 2. Further, we assume that the Julia set of f is not

contained inside a circle in Ĉ.



4 RICHARD SHARP AND ANASTASIOS STYLIANOU

3.1. Markov Partitions. For any small ε > 0, we can find a Markov partition for J : compact subsets
P1, . . . , PN of J each of diameter at most ε, such that

(1) J =
⋃N
i=1 Pi,

(2) int(Pi) = Pi, i = 1, . . . , N ,

(3) int(Pi) ∩ int(Pj) = ∅, whenever i 6= j,

(4) for each i = 1, . . . , N , f(Pi) =
⋃
j∈Ni Pj , where Ni = {j ∈ {1, . . . , N} : f(Pi) ∩ int(Pj) 6= ∅}

(where closure and interior is taken relative to J).

Given a Markov partition P1, . . . , PN , we can find open neighbourhoods Uj ⊃ Pj such that:

(1) f is injective on the closure of each Uj and on the union Ui ∪ Uj , whenever Ui ∩ Uj 6= ∅,
(2) each Pi is not contained in

⋃
j 6=i Uj ,

(3) for each pair i, j with f(Pi) ⊃ Pj there is a local inverse gij : Uj → Ui for f .

We write U =
∐N
i=1 Ui for the disjoint union of the neighbourhoods Ui.

The structure of the partition allows us to define an N×N matrix M with zero-one entries, where

Mij =

{
1 if f(Pi) ⊃ Pj ,
0 otherwise.

3.2. Ruelle Transfer Operators and the Pressure Function. By the hyperbolicity assumption
the Julia set of f , and hence U , does not contain any critical points, that is points where the derivative
of f vanishes. We can therefore define the following real analytic functions related to f , which will
help us in the study of multipliers and holonomies of periodic orbits.

Definition 3.1. We define the distortion function

r(z) = log |f ′(z)|
and the rotation function

θ(z) = arg(f ′(z)) ∈ R/2πZ,
which are both defined on U .

For a function w : U → R (or C) and n ≥ 1, we write

wn(z) =
n−1∑
j=0

w(f j(z)).

(The context should make clear that this is not an iterate.) Hence, when τ = {z, f(z), . . . , fn−1(z)} ∈
Pn, we have λ(τ) = (fn)′(z) = er

n(z)+iθn(z).

We proceed to define the Ruelle transfer operators as well as recalling some concepts from
thermodynamic formalism. Write C1(U) for functions in C1(U,C) with bounded derivatives. Then,
for F ∈ C1(U), we define the transfer operator LF : C1(U)→ C1(U) by

(LF w)(x) :=
∑

i :Mij=1

eF (gijx)w(gijx) when x ∈ Uj .

Furthermore, we define a family of modified C1 norms on C1(U) by

‖w‖(t) :=

{
‖w‖∞ +

‖w′‖∞
t if t ≥ 1,

‖w‖∞ + ‖w′‖∞ if 0 < t < 1.

The reason for this is that at the end of this section we will encounter a family of transfer operators
which is not uniformly bounded using the usual C1 norm. However, these modified norms ‖·‖(t) will

help us find sufficiently good bounds for large values of t.
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Definition 3.2. Given a continuous function g : J → R we define the topological pressure of g by

P (g) := sup

{
hf (µ) +

∫
g dµ : µ ∈Mf

}
.

Moreover, we call µ an equilibrium state of g if P (g) = hf (µ) +
∫
g dµ.

If g is a Hölder continuous function then it has a unique equilibrium state, which is fully supported
and ergodic; we denote this by mg. Given two functions g, h we have the inequality

|P (g)− P (h)| ≤ ‖g − h‖∞ (3.1)

Two continuous functions g and h are called cohomologous if there exists a continuous function u :
J → R such that g−h = u◦f−u. If g and h are Hölder continuous then mg = mh if and only if g−h is
cohomologous to a constant. If g and h are Hölder continuous then the function R→ R : t 7→ P (tg+h)
is real analytic and

dP (tg + h)

dt

∣∣∣∣
t=0

=

∫
g dmh, (3.2)

d2P (tg + h)

dt2

∣∣∣∣
t=0

= lim
n→∞

1

n

∫ (
gn(x)− n

∫
g dmh

)2

dmh, (3.3)

see [17, 8]. Furthermore, if g is not cohomologous to a constant then t 7→ P (tg + h) is strictly convex
and

d2P (tg + h)

dt2

∣∣∣∣
t=0

> 0. (3.4)

We will now prove some of the statements made in the previous section. We have the following
result.

Lemma 3.3. For each α ∈ int(If ), there is a unique ξ = ξ(α) ∈ R such that H(α) = hf (mξr) and∫
r dmξr = α.

Proof. Since the Julia set of f is not contained in a circle in Ĉ, then f is not conjugate to a monomial
and so the distortion function r is not cohomologous to a constant. Therefore, the function p : R→ R
defined by p(t) = P (tr) is strictly convex.

Now consider the set

D := {p′(ξ) : ξ ∈ R} =

{∫
r dmξr : ξ ∈ R

}
⊂ If .

Since p is strictly convex, D is an open interval. By the definition of pressure, for all µ ∈Mf ,

p(t) ≥ hf (µ) + t

∫
r dµ.

In particular, the graph of the convex function p lies above a line with slope
∫
r dµ (possibly touching

it tangentially) and so
∫
r dµ ∈ D. Thus, since µ is arbitrary, int(If ) ⊂ D, and so we have D = int(If ).

Thus, for α ∈ int(If ), there is a unique ξ = ξ(α) ∈ R with

α = p′(ξ) =

∫
r dmξr.

Since the map µ 7→ hf (µ) is upper semi-continuous [4], the supremum in

H(α) = sup

{
hf (µ) :

∫
r dµ = α

}
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is attained. Since mξr is the equilibrium state for ξr, we have, for any µ ∈Mf with µ 6= mξr,

hf (mξr) + ξ

∫
r dmξr > hf (µ) + ξ

∫
r dµ.

In particular, if
∫
r dµ = α then hf (mξr) > hf (µ). Therefore, mξr is the unique measure with the

desired properties. �

Remark 3.4. Above, we used that r is not cohomologous to a constant. In fact, Oh and Winter proved
a stronger statement ([7, Corollary 6.2]) that if J is not contained in a circle then r satisfies the
non-lattice property, i.e. that it is not cohomologous to any function of the form a+ bu, with a, b ∈ R
and u : J → Z.

Setting µα = mξαr, we have the measure whose existence is claimed in section 2. Furthermore,

σ2α = lim
n→∞

1

n

∫
(rn − nα)2 dµα = p′′(ξ) > 0,

where we have used that mξr = mξ(r−α).

For the rest of the paper, we will fix α ∈ int(If ) and set ξ = ξα as in Lemma 3.3. We will also
write R := r−α and Rn(x) := rn(x)−nα and note that, by Lemma 3.3, we have that H(α) = P (ξR).

We will need to consider the function s 7→ eP (sR), s ∈ R. This function is real analytic and has
an analytic extension in a neighborhood of the real line. The following lemma will prove useful in our
analysis.

Lemma 3.5. [8, Proposition 4.7] The function t 7→ eP ((ξ+it)R) is analytic and for some ε > 0 we can
write for each t ∈ [−ε, ε]

eP ((ξ+it)R) = eP (ξR)

(
1− σ2αt

2

2
+O(|t|3)

)
where the implied constant is uniform on [−ε, ε].

3.3. Decay Estimates. The approach in this subsection is motivated by Dolgopyat’s seminal work
on exponential mixing of Anosov flows in [2]. This was later used by Pollicott and Sharp to obtain
an analogue of the prime number theorem with an exponential error term for closed geodesics on a
compact negatively curved surface [11]. Naud adapted Dolgopyat’s analysis to prove a similar result
for convex co-compact surfaces [6] as well as Oh and Winter whose work was in the current setting of
expanding rational maps [7]. We use a similar approach to obtain bounds on the spectral radii of a
family of transfer operators in order to extract our asymptotic result in the final section.

Recall f : Ĉ→ Ĉ is a hyperbolic rational map of degree at least 2 and α, ξ are fixed constants as
in Lemma 3.3. We now consider the family of Ruelle transfer operators L(ξ+ib,k), for b ∈ R and k ∈ Z,
where L(s,k) := LsR+ikθ.

We recall the following theorem.

Theorem 3.6 (Ruelle–Perron–Frobenius Theorem, [15]). Let u ∈ C1(U) be real valued. Then

• the operator Lu has a simple maximal positive eigenvalue λ = eP (u) with an associated strictly
positive eigenfunction ψ ∈ C1(J),

• the rest of the spectrum is contained in a disk of radius strictly smaller than eP (u) and

• there is a unique probability measure µ on J such that L∗uµ = eP (u)µ and
∫
ψ dµ = 1.

If v ∈ C1(U) is real valued then the spectral radius of Lu+iv is bounded above by eP (u).

By Theorem 3.6, the spectral radius of L(ξ+ib,k) is bounded above by eP (ξR). The aim of this

subsection is to show that in fact, when the Julia set of f is not contained in a circle in Ĉ we can
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bound the spectral radius of L(ξ+ib,k) away from eP (ξR) when (b, k) 6= (0, 0). To achieve this we fix
arbitrary b ∈ R and k ∈ Z and consider the transfer operator L(ξ+ib,k).

As a first step we want to consider a normalised transfer operator and we thus add a coboundary
and a constant to ξR. Write v = bR+ kθ and

u = ξR+ logψ − logψ ◦ f − P (ξR)

with ψ the positive eigenfunction of L(ξ,0) with corresponding eigenvalue eP (ξR) guaranteed by Theorem
3.6. We then get that

Lu1 = 1 and L(ξ+ib,k) = eP (ξR)MLu+ivM−1 (3.5)

where M is the multiplication operator by ψ. Thus, to show that the spectral radius of L(ξ+ib,k) is

less than eP (ξR) it suffices to show that the spectral radius of Lu+iv is less than 1. Write Fb,k = u+ iv.
Below we show that the spectral radius of our operator, denoted by spr(LFb,k), is strictly less than 1.

Let µ be the unique probability measure on J satisfying L∗uµ = µ, as guaranteed by Theorem 3.6.
We regard µ as a measure on U by taking µ =

∑
µj where µj is the restriction of µ to the copy of

Pj sitting inside Uj . Since the boundary points of µj , that is points in Uj \ Pj , have zero mass, µ is a
probability measure on U .

Definition 3.7. We say that a probability measure m on J has the doubling property if there exists
a positive constant C such that for all x ∈ J and all ε > 0 we have that

m(B(x, 2ε)) ≤ C ·m(B(x, ε)).

We know that in fact µ is a doubling measure (see [9, Theorem 8]). Moreover, as in [7, Proposition
4.5], it follows that the restrictions µj satisfy the doubling property as probability measures on Pj .
We therefore have all the properties required to get the following theorem.

Theorem 3.8 (Theorem 2.7, [7]). Suppose that the Julia set of f is not contained in a circle in Ĉ.
Then there exist C > 0 and ρ ∈ (0, 1) such that for any w ∈ C1(U) with ‖w‖(|b|+|k|) ≤ 1 and any n ∈ N∥∥∥LnFb,kw∥∥∥L2(µ)

≤ Cρn,

whenever |b|+ |k| ≥ 1.

Using a standard argument (see [2, 6]) we can convert the bounds on the ‖·‖L2(ν) norm to bounds
for the modified ‖·‖(t) norm. Then noting that ‖·‖C1 ≤ (|b|+ |k|)‖·‖(|b|+|k|) for |b|+ |k| ≥ 1 we get the
following corollary.

Corollary 3.9. Suppose that the Julia set of f is not contained in a circle in Ĉ. Then, for any ε > 0,
there exist Cε > 0 and ρε ∈ (0, 1) such that for all b ∈ R and all k ∈ Z with |b|+ |k| > 1 we have that

‖LnFb,k‖C1 ≤ Cε(|b|+ |k|)1+ερnε ,

for all n ∈ N. In particular, spr(LFb,k) < ρε < 1.

Now that we have established the required bounds on the C1 norm of our transfer operators we
proceed to bound the sums

Zn(s, k) :=
∑
fnx=x

esR
n(x)+ikθn(x)

for s = ξ + ib. This next result follows essentially from Ruelle’s work in [16], except that we require
explicit dependence on b and k. A proof can be found in the appendix of [6] without the dependence
on k ∈ Z, which appeared as Proposition 6.1 in [7]. In the statement below, χj is the characteristic
function of Uj for each 1 ≤ j ≤ m. (Note that, since U is the disjoint union of the sets Uj , for each
such j we have that χj ∈ C1(U).)
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Proposition 3.10. Fix an arbitrary b0 > 0. There exists xj ∈ Pj, for 1 ≤ j ≤ m, such that for any
η > 0, there exists Cη > 0 such that for all n ≥ 2 and any k ∈ Z∣∣∣∣∣∣Zn(ξ + ib, k)−

N∑
j=1

Ln(ξ+ib,k)(χj)(xj)

∣∣∣∣∣∣ ≤ Cη(|b|+ |k|)
n∑
p=2

‖Ln−p(ξ+ib,k)‖C1

(
γ−1eη+P (ξR)

)p
for all |b|+ |k| > b0.

We are now ready to prove the decay estimates that will give us the proof of Theorem 2.1 in the
next section. Fixing ε > 0 then by Corollary 3.9 and Proposition 3.10, we get that for all |b|+ |k| > 1,

|Zn(ξ + ib, k)| ≤

∣∣∣∣∣∣Zn(ξ + ib, k)−
N∑
j=1

Ln(ξ+ib,k)(χj)(xj)

∣∣∣∣∣∣+N Cε(|b|+ |k|)1+ε
(
ρεe

P (ξ)
)n

≤ CηCε(|b|+ |k|)2+ε
(
ρεe

P (ξ)
)n n∑

p=2

(
eη

γρε

)p
+N Cε(|b|+ |k|)1+ε

(
ρεe

P (ξ)
)n

We note that it is possible to choose 1 > ρε > 1/γ (recall that γ is the expansion rate given in (2.1)).
Provided η is small enough such that eη/γρε < 1 we get that for some C > 0

|Zn(ξ + ib, k)| ≤ C (|b|+ |k|)2+ε
(
ρεe

P (ξR)
)n
. (3.6)

Finally, we will also need a more elementary result to bound the sums Zn(ξ+ib, 0) for small b ∈ R.
These estimates can be derived as in the symbolic case in [8].

Lemma 3.11. Let K ⊂ R be a compact set. There exists ε > 0 such that for each n ∈ N and some
β ∈ (0, 1) we have that

(1) for b ∈ K \ (−ε, ε) we can bound Zn(ξ + ib, 0) = O(βneH(α)n) and

(2) for b ∈ (−ε, ε) we have

Zn(ξ + ib, 0) = enP ((ξ+ib)R) +O(βneH(α)n).

Proof. For part (1), we use the fact that, since R is non-lattice (see Remark 3.4) we have that

spr(L(ξ+ib,0)) < eP (ξR) for b 6= 0, with a uniform bound on K \ (−ε, ε), and Proposition 3.10. Part
(2) follows from the spectral gap in the Ruelle–Perron–Frobenius theorem, which is uniform over an
interval (−ε, ε). �

4. Proof of Theorem 2.1

Throughout this section we fix a hyperbolic rational map f : Ĉ → Ĉ of degree at least 2. We

suppose that its Julia set is not contained inside a circle in Ĉ and we fix α a constant in the interior of
If . We set ξ = ξ(α) to be the unique real number given by Lemma 3.3. Let K ⊂ R be a compact set,
let (In)∞n=1 be a sequence of intervals in K and let (Sn)∞n=1 be a sequence of arcs in S1. For convenience
we parametirise R/Z as

[
−1

2 ,
1
2

]
and assume that the sequence of arcs (Sn)∞n=1 is contained inside a

fixed reference arc S =
[
−κ

2 ,
κ
2

]
of length κ < 1.

For each n ∈ N we denote by pn the midpoint of the interval In and by ϑn the midpoint of the
arc Sn. Denote also their lengths by `n = `(In) and κn = ν(Sn). Furthermore, suppose that (`−1n )∞n=1
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and (κ−1n )∞n=1 have sub-exponential growth. Then we can write

π(n, α, In, Sn) =
∑
τ∈Pn

1In (log |λ(τ)| − nα)1Sn

(
λ̂(τ)

)
=
∑
τ∈Pn

1[− 1
2
, 1
2 ]
(
`−1n (log |λ(τ)| − nα− pn)

)
1[−κ2 ,

κ
2 ]

(
κ

κn

(
λ̂(τ)− ϑn

))
4.1. Some auxiliary estimates. We fix φ ∈ C4(R,R≥0) compactly supported and ψ ∈ C4(S1,R≥0)
and consider the auxiliary counting number:

πφ,ψ(n) :=
∑
τ∈Pn

φ
(
`−1n (log |λ(τ)| − nα− pn)

)
ψ

(
κ

κn

(
λ̂(τ)− ϑn

))
.

We study the asymptotic behaviour of πφ,ψ to infer our result using an approximation argument
in the next subsection.

We begin by changing the summation over Pn, that is primitive periodic orbits of length n, to a
sum over the set of fixed points of the iterated map fn. Clearly, a primitive periodic orbit corresponds
to n distinct points in this set. However this set also contains points belonging in primitive periodic
orbits of shorter lengths. In the following lemma we bound the error from these shorter primitive
orbits.

Lemma 4.1. For all η > 0 we have that

πφ,ψ(n) =
1

n

∑
fnx=x

φ
(
`−1n (Rn(x)− pn)

)
ψ

(
κ

κn
(θn(x)− ϑn)

)
+O

(
e(H(α)+η)n/2

)
Proof. Call a fixed point x of the iterated map fn non-primitive when there exists d, a proper divisor
of n, such that fdx = x. We can then get the following bound,

1

n

∑
fnx=x

φ
(
`−1n (Rn(x)− pn)

)
ψ

(
κ

κn
(θn(x)− ϑn)

)
− πφ,ψ(n)

=
1

n

∑
fnx=x

non-primitive

φ
(
`−1n (Rn(x)− pn)

)
ψ

(
κ

κn
(θn(x)− ϑn)

)

= O

(
‖ψ‖∞
n

∑
d|n

d≤n/2

∑
fdx=x

φ
(
`−1n (Rn(x)− pn)

))
= O

(
1

n

∑
d≤n/2

∑
fdx=x

φ
(
`−1n (Rn(x)− pn

)
eξRd(x)

eξR
d(x)

)

We are only interested in periodic points which satisfy `−1n (Rn(x)− pn) ∈ suppφ that is Rn(x) ∈
pn + `n suppφ. Recalling that the intervals In were chosen inside a compact set K we conclude that
for such a periodic point the absolute value of Rn(x) is bounded. Therefore for a non-primitive periodic

point x, satisfying fdx = x for d as above, we get that Rd(x) = d
nR

n(x) and thus eξR
d(x) is bounded

from below. From this we conclude using Lemma 3.11 that for any η > 0,

1

n

∑
d≤n/2

∑
fdx=x

φ
(
`−1n (Rn(x)− pn

)
eξRd(x)

eξR
d(x) = O

(
‖φ‖∞
n

∑
d≤n/2

∑
fdx=x

eξR
d(x)

)
= O

(
‖φ‖∞
n

∑
d≤n/2

Zd(ξ, 0)

)

=O

(
1

n

∑
d≤n/2

e

(
P (ξR)+η

)
d

)
= O

(
e

(
H(α)+η

)
n/2

)
.

�
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Consequently, we define

π̃φ,ψ(n) =
1

n

∑
fnx=x

φ
(
`−1n (Rn(x)− pn)

)
ψ

(
κ

κn
(θn(x)− ϑn)

)
. (4.1)

Setting

φn(x) := φ(`−1n (x− pn))e−ξ(x−pn)

we note that φn ∈ C4(R,R≥0) and is also compactly supported. Similarly, set

ψn(x) := ψ

(
κ

κn
(x− ϑn)

)
.

In this notation we have that

π̃φ,ψ =
1

n

∑
fnx=x

φn (Rn(x))ψn (θn(x)) eξ(R
n(x)−pn).

Proposition 4.2.

π̃φ,ψ ∼ e−ξpn
∫
φn
∫
ψn

σα
√

2π

eH(α)n

n3/2
as n→∞.

To prove this proposition we consider

A(n) :=

∣∣∣∣∣eξpnσα
√

2πn3

eH(α)n
π̃φ,ψ −

∫
R
φn

∫
S1
ψn

∣∣∣∣∣
and show that A(n) → 0 as n → ∞. The following proposition provides us with an initial bound.
Using Fourier inversion and Fourier expansion we get,

φn(x)eξ(x−pn) = e−ξpn
∫ ∞
−∞

φ̂n(t)e(ξ+2πit)x dt and (4.2)

ψn(x) =
∑
k∈Z

cn,k e
2πikx. (4.3)

Proposition 4.3.

A(n) ≤ 1√
2π

∫ ∞
−∞

∣∣∣∣∣∑
k∈Z

cn,k

eH(α)n
φ̂n

(
t

2πσα
√
n

)
Zn

(
ξ +

it

σα
√
n
, k

)
− e−

t2

2

∫
R
φn

∫
S1
ψn

∣∣∣∣∣ dt.
Proof. Using (4.2) and (4.3) we can get

eξpnσα
√

2πn3

eH(α)n
π̃φ,ψ(n) =

σα
√

2πn

eH(α)n

∑
fnx=x

∫ ∞
−∞

φ̂n(t)e(ξ+2πit)Rn(x) dt
∑
k∈Z

cn,k e
2πikθn(x)

=
1√
2π

∫ ∞
−∞

∑
k∈Z

cn,k

eH(α)n
φ̂n

(
t

2πσα
√
n

) ∑
fnx=x

e

(
ξ+ it

σα
√
n

)
Rn(x)+2πikθn(x)

dt

=
1√
2π

∫ ∞
−∞

∑
k∈Z

cn,k

eH(α)n
φ̂n

(
t

2πσα
√
n

)
Zn

(
ξ +

it

σα
√
n
, k

)
dt.
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In addition, recalling that
∫∞
−∞ e

−t2/2 dt =
√

2π we get,

√
2πA(n) =

∣∣∣∣∣
∫ ∞
−∞

∑
k∈Z

cn,k

eH(α)n
φ̂n

(
t

2πσα
√
n

)
Zn

(
ξ +

it

σα
√
n
, k

)
− e−

t2

2

∫
R
φn

∫
S1
ψn dt

∣∣∣∣∣
≤
∫ ∞
−∞

∣∣∣∣∣∑
k∈Z

cn,k

eH(α)n
φ̂n

(
t

2πσα
√
n

)
Zn

(
ξ +

it

σα
√
n
, k

)
− e−

t2

2

∫
R
φn

∫
S1
ψn

∣∣∣∣∣ dt.
�

Consider now the following

A1(n) :=

∫ εσα
√
n

−εσα
√
n

∣∣∣∣∣∑
k∈Z

cn,k

eH(α)n
φ̂n

(
t

2πσα
√
n

)
Zn

(
ξ +

it

σα
√
n
, k

)
− e−

t2

2

∫
R
φn

∫
S1
ψn

∣∣∣∣∣ dt,
A2(n) :=

∫
|t|≥εσα

√
n

∣∣∣∣∣∑
k∈Z

cn,k

eH(α)n
φ̂n

(
t

2πσα
√
n

)
Zn

(
ξ +

it

σα
√
n
, k

)∣∣∣∣∣ dt,
A3(n) :=

∫
|t|≥εσα

√
n

∣∣∣∣e− t22 ∫
R
φn

∫
S1
ψn

∣∣∣∣ dt,
with ε > 0 small enough as in Lemmas 3.5 and 3.11. It then follows from Proposition 4.3 that

A(n) ≤ 1√
2π

[
A1(n) +A2(n) +A3(n)

]
.

We hence bound these three quantities separately to show that limn→∞A(n) = 0. To obtain these
bounds we first recall a standard result from Fourier Analysis.

Lemma 4.4. If ψ ∈ C4(S1,R) has Fourier coefficients (ck)k∈Z then c0 =
∫
S1 ψ and uniformly for

ψ ∈ C4(S1,R)

ck = O(‖ψ‖C4 |k|−4).

If φ ∈ C4(R,R) is compactly supported and φ̂ is its Fourier transform then φ̂(0) =
∫
R φ and uniformly

for φ ∈ C4(R,R) we have that

φ̂(u) = O(‖φ‖C4 |u|−4).

These bounds follow by repeated applications of integration by parts. Now since

ψ(q)
n (x) =

(
κ

κn

)q
ψ(q)

(
κ

κn
(x− ϑn)

)
there exists a constant C > 0 such that for all n, |k| ≥ 1

|cn,k| ≤ Cκ−4n |k|−4‖ψ‖C4 . (4.4)

Similarly, there exists C > 0 such that for n ∈ N and u ∈ R

|φ̂n(u)| ≤ C`−4n |u|−4‖φ‖C4 . (4.5)

Proposition 4.5. limn→∞A1(n) = 0.
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Proof. We can use inequality (3.6) to bound Zn

(
ξ + it

σα
√
n
, k
)

for k 6= 0. Therefore fixing η > 0 and

recalling the bounds for the Fourier coefficients from (4.4) we get∫ εσα
√
n

−εσα
√
n

∣∣∣∣∣∣
∑
k 6=0

cn,k

eH(α)n
φ̂n

(
t

2πσα
√
n

)
Zn

(
ξ +

it

σα
√
n
, k

)∣∣∣∣∣∣ dt
=O

∫ εσα
√
n

−εσα
√
n

∑
k 6=0

κ−4n |k|−4‖φ̂n‖∞
(
|t|

σα
√
n

+ |k|
)2+η

ρnη dt

 = O
(
κ−4n ‖φ̂n‖∞ ρnη

)
for some ρη ∈ (0, 1). Since φ is compactly supported and pn ∈ K we can uniformly bound φ̂n for all
n ∈ N. Further, recalling that the sequence (κn)∞n=1 is of sub-exponential growth we get that this error
tends to zero as n→∞. Therefore, we are now left to bound∫ εσα

√
n

−εσα
√
n

∣∣∣∣ cn,0

eH(α)n
φ̂n

(
t

2πσα
√
n

)
Zn

(
ξ +

it

σα
√
n
, 0

)
− e−

t2

2

∫
R
φn

∫
S1
ψn

∣∣∣∣ dt.
Using part (2) from Lemma 3.11 we get that for some β ∈ (0, 1)∫

S1
ψn

∫ εσα
√
n

−εσα
√
n

∣∣∣∣φ̂n( t

2πσα
√
n

)
e
n
(
P
((
ξ+ it

σα
√
n

)
R
)
−H(α)

)
− e−

t2

2

∫
R
φn

∣∣∣∣ dt+O (βn) ,

On the domain of integration, we see that as n→∞

(1) e
n
(
P
((
ξ+ it

σα
√
n

)
R
)
−H(α)

)
→ e−t

2/2 by Lemma 3.5,

(2) φ̂n

(
t

2πσα
√
n

)
→ φ̂n(0) =

∫
R φn by continuity.

Furthermore, for large n we have the bound e
n
(
P
((
ξ+ it

σα
√
n

)
R
)
−H(α)

)
≤ e−t2/4 and so∣∣∣∣en(P((

ξ+ it
σα

√
n

)
R
)
−H(α)

)
− e−t2/2

∣∣∣∣ ≤ 2e−t
2/4.

Finally, since φ̂n is uniformly bounded, we can apply the Dominated Convergence Theorem to get that
limn→∞A1(n) = 0.

�

Proposition 4.6. limn→∞A2(n) = 0.

Proof.

A2(n) ≤
∑
k∈Z

|cn,k|
eH(α)n

∫
|t|≥εσα

√
n

∣∣∣∣φ̂n( t

2πσα
√
n

)
Zn

(
ξ +

it

σα
√
n
, k

)∣∣∣∣ dt.
Firstly, we use the bounds from (4.4) and (4.5). In addition, for k 6= 0 we use inequality (3.6) to get
that a fixed η ∈ (0, 1) there exists ρη ∈ (0, 1) such that∑

k 6=0

|cn,k|
eH(α)n

∫
|t|≥εσα

√
n

∣∣∣∣φ̂n( t

2πσα
√
n

)
Zn

(
ξ +

it

σα
√
n
, k

)∣∣∣∣ dt
=O

∑
k 6=0

κ−4n |k|−4
∫
|t|≥εσα

√
n

∣∣∣∣∣`−4n
(

t

2πσα
√
n

)−4(∣∣∣∣ t

σα
√
n

∣∣∣∣+ |k|
)2+η

ρnη

∣∣∣∣∣ dt


=O

n2ρnη
κ4n`

4
n

∑
k 6=0

∫
|t|≥εσα

√
n

(
|t/σα

√
n|+ |k|

)2+η
t4k4

dt

 = O

(
n2

κ4n`
4
n

ρnη

)
.
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On the other hand, for k = 0 we get using part (2) of Lemma 3.11 that for some β ∈ (0, 1),

|cn,0|
eH(α)n

∫ |t|≤σα√n
|t|≥εσα

√
n

∣∣∣∣φ̂n( t

2πσα
√
n

)
Zn

(
ξ +

it

σα
√
n
, 0

)∣∣∣∣ dt = O
(
|cn,0|‖φ̂n‖∞βn

)
= O(|cn,0|βn),

since φ̂n is uniformly bounded across all n ∈ N. We can also uniformly bound |cn,0| since

cn,0 =

∫
S1
ψn ≤ ‖ψ‖∞.

Finally, as above we can use inequality (3.6) to bound the rest by the following,

|cn,0|
eH(α)n

∫
|t|≥σα

√
n

∣∣∣∣φ̂n( t

2πσα
√
n

)
Zn

(
ξ +

it

σα
√
n
, 0

)∣∣∣∣ dt
=O

(∫
|t|≥σα

√
n
`−4n

(
t

2πσα
√
n

)−4 ∣∣∣∣ t

σα
√
n

∣∣∣∣2+η ρnη dt
)

=O

(
n2ρnη
`4n

∫
|t|≥σα

√
n
|t|η−2 dt

)
= O

(
n2

`4n
ρnη

)
.

Combining the three bounds obtained above and recalling that the sequences (`n)∞n=1 and (κn)∞n=1 are
of sub-exponential growth we obtain that limn→∞A2(n) = 0.

�

Finally, it is clear that limn→∞A3(n) = 0. This completes the proof of Proposition 4.2.

4.2. Approximation argument. Here we show how the previous auxiliary estimates provide us with
the proof of Theorem 2.1 through an approximation argument. By Proposition 4.2 and Lemma 4.1
we have that for all compactly supported φ ∈ C4(R,R) and all ψ ∈ C4(S1,R)

πφ,ψ(n) ∼ e−ξpn
∫
φn
∫
ψn

σα
√

2π

eH(α)n

n3/2
(4.6)

as n→∞.
Fixing η > 0 we wish to construct compactly supported φ ∈ C4(R,R) and ψ ∈ C4(S1,R) satisfying

the following:

1[− 1
2
, 1
2 ] ≤ φ ≤ 1 + η, supp(φ) ⊂

[
−1 + η

2
,
1 + η

2

]
and

∫
R
φ ≤ 1 + η,

1[−κ2 ,
κ
2 ] ≤ ψ ≤ 1 + η, supp(ψ) ⊂

[
−κ+ η

2
,
κ+ η

2

]
and

∫
S1
ψ ≤ κ+ η.

A smooth function Φ : R→ R≥0 is called a positive mollifier, if it satisfies the following properties:

(1) it is compactly supported,

(2)
∫
R Φ = 1,

(3) limε→0 Φε(x) = limε→0 ε
−1Φ(x/ε) = δ(x) where δ(x) is the Dirac delta function.

Let γ1, ..., γ4 > 0 and set G = (1 + γ1)1[− 1
2
−γ2, 12+γ2]

and H = (1 + γ3)1[−κ2−γ4,
κ
2
+γ4]. Then for

sufficiently small ε, γ1, ..., γ4 > 0 the functions

φ = G ∗ Φε and ψ = H ∗ Φe

satisfy all the required properties. Note that since κ < 1 and the constants ε, γ4 were chosen sufficiently
small it is harmless to assume that ψ is defined on R rather than S1. Using (4.6) and the properties
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above we can deduce that

lim sup
n→∞

σα
√

2πn3

eH(α)n
π(n, α, In, Sn)

= lim sup
n→∞

σα
√

2πn3

eH(α)n

∑
τ∈Pn

1[− 1
2
, 1
2 ]
(
`−1n (log |λ(τ)| − nα− pn)

)
1[−κ2 ,

κ
2 ]

(
κ

κn
(λ̂(τ)− ϑn)

)

≤ lim sup
n→∞

σα
√

2πn3

eH(α)n

∑
τ∈Pn

φ
(
`−1n (log |λ(τ)| − nα− pn)

)
ψ

(
κ

κn
(λ̂(τ)− ϑn)

)
= lim sup

n→∞
e−ξpn

∫
R
φn

∫
S1
ψn.

We have∫
R
ψn =

∫
R
ψ

(
κ

κn
(y − ϑn)

)
dy =

∫
R
ψ

(
κ

κn
y

)
dy =

κn
κ

∫
R
ψ ≤ κn +

η

κ
= ν(Sn) +O(η).

Similarly, ∫
R
φn =

∫
R
φ(`−1n (x− pn))e−ξ(x−pn) dx = `n

∫
R
φ(u)e−ξ`nu du

= `n

∫
[− 1+η

2
, 1+η

2
]
φ(u)e−ξ`nu du ≤ `n

∫
[− 1

2
, 1
2
]
φ(u)e−ξ`nu du+ η(1 + η)e2(1+|ξ|)|K||K|

`n

∫
[− 1

2
, 1
2
]
φ(u)e−ξ`nu du ≤ `n

∫
[− 1

2
, 1
2
]
(1 + η)e−ξ`nu du ≤ eξpn

∫
In

e−ξu du+ ηe(1+|ξ|)|K||K|

Therefore,

e−ξpn
∫
R
φn

∫
S1
ψn ≤ ν(Sn)

∫
In

e−ξu du+O(η).

Similarly, one can show that

lim inf
n→∞

σα
√

2πn3

eH(α)n
π(n, α, In, Sn) ≥ lim inf

n→∞

(
ν(Sn)

∫
In

e−ξx dx

)
+O(η).

Since the choice of η > 0 was arbitrary we get the result.

Assuming limn→∞ `n = 0 the derivation of the asymptotic formula (2.3) from (2.2) is straightforward.
The asymptotic formula (2.4) corresponding to choosing the measure of maximal entropy follows in
a similar manner. By the definition of the pressure function µmax is the equilibrium state of ξR for
ξ = 0. Then, the proof follows in the same way as above.
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