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Abstract

We study gradient models on the lattice Zd with non-convex interactions.
These Gibbs fields (lattice models with continuous spin) emerge in various branches
of physics and mathematics. In quantum field theory they appear as massless field
theories. Even though our motivation stems from considering vector valued fields
as displacements for atoms of crystal structures and the study of the Cauchy-Born
rule for these models, our attention here is mostly devoted to interfaces, with the
gradient field as an effective interface interaction. In this case we prove the strict
convexity of the surface tension (interface free energy) for low temperatures and
sufficiently small interface tilts using muli-scale (renormalisation group analysis)
techniques following the approach of Brydges and coworkers [Bry09]. This is a
complement to the study of the high temperature regime in [CDM09] and it is an
extension of Funaki and Spohn’s result [FS97] valid for strictly convex interactions.

2010 Mathematics Subject Classification. Primary 82B28; Secondary 82B41; 60K60; 60K35.
Key words and phrases. Renormalisation group; random field of gradients; surface tension;

multi-scale analysis; loss of regularity.
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CHAPTER 1

Introduction

This paper has two related goals.
First, we seek to identify uniform convexity properties for a class of lattice

gradient models with non-convex microscopic interactions.
Secondly, we extend the rigorous renormalisation group techniques developed

by Brydges and coworkes to models without a discrete rotational symmetry of the
interaction. In the presence of symmetry, the set of relevant terms is strongly
restricted by the symmetry.

Regarding the first goal, we consider gradient random fields {ϕ(x)}x∈L indexed
by a lattice L with values in Rm, ϕ(x) ∈ Rm. The term gradient is referring to the
assumption that the distribution depends only on gradients ∇eϕ(x) = ϕ(x + e) −
ϕ(x).

These type of fields are used as effective models of crystal deformation or phase
separation. In the former case, where m = 3 and L ⊂ Z3, the value ϕ(x) plays the
role of a displacement of an atom labelled by a site x of a crystal under deformation.
Even though the former case is our main motivation, we will restrict our attention
here, for simplicity, to the latter case with m = 1 and L = Zd. This is a model
describing a phase separation in Rd+1 with ϕ(x) ∈ R corresponding to the position
of the (microscopic) phase separation surface. The model is a reasonably effective
approximate description in spite of the fact that it ignores overhangs of separation
surface as well as any correlations inside and between the coexisting phases.

The distribution of the interface is given in terms of a Gibbs distribution with
nearest neighbour interactions of gradient type, that is, the interaction between
neighboring sites x, x + ei depends only on the gradient ∇iϕ(x) = ϕ(x + ei) −
ϕ(x), i = 1, . . . , d. More precisely, for any finite Λ ⊂ Zd we consider the Hamiltonian
of the form

HΛ(ϕ) =
∑
x∈Λ

d∑
i=1

W (∇iϕ(x)),

where W : R→ R is a perturbation of a quadratic functions, i.e.

W (η) =
1

2
η2 + V (η) with some perturbation V : R→ R.

For a given boundary condition ψ ∈ R∂Λ, where ∂Λ = {z ∈ Zd \ Λ: |z − x| =
1 for some x ∈ Λ}, we consider the Gibbs distribution at inverse temperature β > 0
given by

γψΛ,β(dϕ) =
1

ZΛ(β, ψ)
exp

(
− βHΛ(ϕ)

) ∏
x∈Λ

dϕ(x)
∏
x∈∂Λ

δψ(x)(dϕ(x)),

3



4 1. INTRODUCTION

where the normalisation constant ZΛ(β, ψ) is the integral of the density and is called
the partition function. One is particularly interested in tilted boundary conditions

ψu(x) = 〈x, u〉, for some tilt u ∈ Rd.

An object of basic relevance in this context is the surface tension or free energy
defined by the limit

(1.1) σβ(u) = − lim
Λ↑Zd

1

β|Λ|
logZΛ(β, ψu).

The surface tension σβ(u) can also be seen as the price to pay for tilting a macro-
scopically flat interface. The existence of the above limit follows from a standard
sub-additivity argument.

In the case of a strictly convex potential, Funaki and Spohn show in [FS97]
that σβ is convex as a function of the tilt. The simplest strictly convex potential
is the quadratic one with V = 0, which corresponds to a Gaussian model, also
called the gradient free field. The convexity of the surface tension plays a crucial
role in the derivation of the hydrodynamical limit of the Landau-Ginsburg model
in [FS97]. Strict convexity of the surface tension for strictly convex W with 0 <
c1 ≤W ′′ ≤ c2 <∞, was proved in [DGI00]. Under the assumption of the bounds
of the second derivative of W , a large deviations principle for the rescaled profile
with rate function given in terms of the integrated surface tension has been derived
in [DGI00]. Both papers [FS97] and [DGI00] use explicitly the conditions on the
second derivative of W in their proof. In particular they rely on the Brascamp-Lieb
inequality and on the random walk representation of Helffer and Sjöstrand, which
requires a strictly convex potential W .

In [CDM09] Deuschel et al showed the strict convexity of the surface tension
for non-convex potentials in the small β (high temperature) regime for potentials
of the form

W (t) = W0(t) + g(t),

where W0 is strictly convex as above and where g ∈ C2(R) has a negative bounded

second derivative such that
√
β‖g′′‖L1(R) is sufficiently small. These studies have

been applied in [CD12] to large deviations principle for the profile.
In the present paper, we show the strict convexity of the surface tension for

large enough β (low temperatures) and sufficiently small tilt, using multi-scale
techniques based on a finite range decomposition of the underlying background
Gaussian measure in [AKM13].

Note also that, due to the gradient interaction, the Hamiltonian has a contin-
uous symmetry. In particular this implies that no Gibbs measures on Zd exist for
dimensions d = 1, 2 where the field ’delocalises’, cf. [FP81]. If one considers the
corresponding random field of gradients (discrete gradient image of the height field
ϕ) it is clear that its distribution depends on the gradient of the boundary condi-
tion of the height field. One can also introduce gradient Gibbs measures in terms of
conditional distributions satisfying DLR equations, cf. [FS97]. For strictly convex
interaction W with bounds on the second derivative, Funaki and Spohn in [FS97]
proved the existence and uniqueness of an extremal, i.e. ergodic, gradient Gibbs
measure for each tilt u ∈ Rd. In the case of non-convex W , uniqueness of the
ergodic gradient component can be violated, for tilt u = 0 this has been proved in
[BK07]. However in this phase transition situation in [BK07], the surface tension
is not strictly convex at tilt u = 0.
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The second goal of the present paper is to show in detail how the rigorous
renormalisation approach of Brydges and coworkers (see [BY90] for early work,
[Bry09] for a survey and [BS15a, BS15b, BBS15a, BS15c, BS15d, BBS15b]
for recent developments which go well beyond the gradient models discussed in
this paper) can be extended to accommodate a class of models without a discrete
rotational symmetry of the interaction.

In accordance with the general renormalization group strategy, the resulting
partition function ZΛ(β, ψu) is obtained by a sequence of “partial integrations”
(labelled by an index k). The result of each of them is expressed in terms of two
functions: the “irrelevant” polymers Kk that are decreasing with each subsequent
integration, and the “relevant” ideal Hamiltonians Hk—homogeneous quadratic
functions of gradients ∇ϕ parametrized by a fixed finite number of parameters. To
fine-tune the procedure so that the final integration yields a result with a straight-
forward bound we need to assure the smoothness of the procedure with respect
to the parameters of a suitably chosen “seed Hamiltonian”. However, it turns out
that the derivatives with respect to those parameters lead to a loss of regularity of
functions Kk and Hk considered as elements in a scale of Banach spaces.

A more detailed summary of the strategy is presented in Chapter 3 where
the reader can get an overview of our methods and techniques of the proof. First,
however, we will summarize the main claims concerning the convexity of the surface
tension σβ(u) in Chapter 2. The detailed formulations and proofs are in Chapters 4–
8. Miscelaneous technical details are deferred to Appendices.

Various extensions and generalisations of our work are possible.
First, Buchholz has very recently developed a new finite range decomposition

for which no loss of regularity occurs in the problem we study [Buc16]. However,
in the present paper we decided to stick to the usual finite range decomposition
and to explain how the loss for regularity can be overcome by a suitable version of
the chain rule and the implicit function theorem since we believe that these tools
might be useful in other contexts, too.

Secondly, we restrict ourselves to dimensions d = 2 and d = 3 because in that
case there are only two types of linear relevant terms: linear combinations of the
first and second discrete derivatives of the field. Our approach can be extended to
higher dimensions by including linear terms in higher derivatives of the field. This
only requires an extension of the appropriate “homogenisation projection operator”
Π2 used in the definition of quadratic functions Hk (see Chapter 4.3) to relevant
polynomials and the corresponding discrete Poincaré type inequalities. In fact,
Brydges and Slade [BS15b] have recently developed a very general theory which
allows one to define the projection onto the relevant polynomials and to prove the
necessary estimates.

Thirdly, we focus on scalar valued field even though most our methods carry
directly over to the vector valued case which is relevant in elasticity. The discussion
of models relevant in elasticity requires, however, also a number of other changes,
e.g. the inclusion of non nearest neighbour interactions and the consideration of
symmetry under the left action of SO(m) (frame indifference). As a result it is
natural to replace our assumption that the microscopic interaction is convex close to
its minimum by a more complicated condition. We will thus address the application
of our ideas to vector valued fields and models relevant in elasticity in future work.
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Fourthly, in this work we focus on the behaviour of the partition function in the
large volume limit. As in the work of Bauerschmidt, Brydges and Slade [BBS15b]
it should be possible to study finer properties, e.g., correlation functions. As a first
step in that direction Hilger has recently shown that the scaling limit of the random
field becomes a free Gaussian field on the torus (with the renormalised covariance)
and that suitably averaged correlation functions converge in the infinite volume
limit [Hil16].



CHAPTER 2

Setting and Results

2.1. Setup

Let L > 0 be a fixed integer. For any integer N we consider the space

VN = {ϕ : Zd → R; ϕ(x+ k) = ϕ(x) ∀k ∈ (LNZ)d}

that can be identified with the set of functions on the torus TN =
(
Z/LNZ

)d
.

Using |x|∞ = maxi=1,...,d |xi| for any x ∈ Rd (reserving the notation |x| for the

Euclidean norm
√∑

x2
i ), the torus TN may be represented by the lattice cube

ΛN = {x ∈ Zd : |x|∞ ≤
1
2 (LN − 1)} of side LN , once it is equipped with the metric

ρ(x, y) = inf{|x− y+ k|∞ : k ∈ (LNZ)d}. We view VN as a Hilbert space with the
scalar product

(ϕ,ψ) =
∑
x∈TN

ϕ(x)ψ(x).

By XN we denote the subspace

(2.1) XN = {ϕ ∈ VN :
∑
x∈TN

ϕ(x) = 0},

of height fields whose sum over the torus is zero. We use λN to denote the (LNd−1)-
dimensional Hausdorf measure on XN . We equip the space XN with the σ-algebra
BXN induced by the Borel σ-algebra with respect to the product topology and
use M1(XN ) =M1(XN ,BXN ) to denote the set of probability measures on XN ,
referring to elements in M1(XN ) as to random gradient fields.

In this article we study a class of random gradient fields defined (as Gibbs
measures) in terms of a non-convex perturbation of a Gaussian gradient field. For
a precise definition, we first introduce the discrete derivatives

(2.2) ∇iϕ(x) = ϕ(x+ ei)− ϕ(x), ∇∗iϕ(x) = ϕ(x− ei)− ϕ(x)

on VN . Here, ei, i = 1, . . . , d, are unit coordinate vectors in Rd. Next, let EN (ϕ)
be the Dirichlet form

(2.3) EN (ϕ) =
1

2

∑
x∈TN

d∑
i=1

(
∇iϕ(x)

)2
.

Choosing a function V : R→ R (satisfying the conditions to be specified later), we
consider the Gibbs mesure on the torus corresponding to the Hamiltonian

(2.4) HN (ϕ) = EN (ϕ) +
∑
x∈TN

d∑
i=1

V (∇iϕ(x)).

To be able to discuss random fields with a tilt u = (u1 . . . , ud) ∈ Rd, we use the
method proposed by Funaki and Spohn [FS97] who enforce the tilt on a measure

7



8 2. SETTING AND RESULTS

defined on the torus space XN by replacing the gradient ∇iϕ(x) in all definitions
above by ∇iϕ(x)− ui, i = 1, . . . , d, x ∈ TN .

Namely, we define the Gibbs mesure on TN at inverse temperature β as

(2.5) γuN,β(dϕ) =
1

ZN,β(u)
exp
(
−βHu

N (ϕ)
)
λN (dϕ),

where

(2.6) Hu
N (ϕ) = EN (ϕ) +

1

2
LNd|u|2 +

∑
x∈TN

d∑
i=1

V (∇iϕ(x)− ui)

(in the last equation we used the fact that substituting ∇iϕ(x) 7→ ∇iϕ(x) − ui
in EN , the linear term

∑
x∈TN

∑d
i=1 ui∇iϕ(x) vanishes as

∑
x∈TN ∇iϕ(x) = 0 for

each ϕ ∈ VN and each i = 1, . . . , d). Again, ZN,β(u) is the normalizing partition
function

(2.7) ZN,β(u) =

∫
XN

exp
(
−βHu

N (ϕ)
)
λN (dϕ).

Even though the ultimate goal, in general, is to characterize all limiting gradient
Gibbs measures with a fixed mean tilt, and, in particular cases, to prove their
unicity, in this paper we will restrict our attention to the discussion of the strict
convexity, in u, of the surface tension

(2.8) σβ(u) := − lim
N→∞

1

βLdN
logZN,β(u).

2.2. Main result

To state our main result, we need a condition on smallness of the perturbation
V . We will state it in terms of the function KV,β,u : Rd → R associated with the
perturbation V : R → R determining the Hamiltonian Hu

N in (2.6) (and with the
(inverse) temperature β ≥ 0 and the tilt u ∈ Rd). Namely, we take

(2.9) KV,β,u(z) = exp
{
−β

d∑
i=1

U
( zi√

β
, ui
)}
− 1

with

(2.10) U(s, t) = V (s− t)− V (−t)− V ′(−t)s.

First, we rewrite the partition function in terms of the function KV,β,u. Consider
the Gaussian measure νβ on XN corresponding to the Dirichlet form βEN (ϕ):

(2.11) νβ(dϕ) =
1

Z
(0)
N,β

exp
(
−βEN (ϕ)

)
λN (dϕ),

with

(2.12) Z
(0)
N,β =

∫
XN

exp
(
−βEN (ϕ)

)
λN (dϕ).
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To avoid overloading of the notation, here and in future, we often skip the index
referring to N (as above in the case of measure νβ). Now, the partition function
(2.7) is

(2.13)

ZN,β(u) = Z
(0)
N,β exp

(
−β2L

Nd|u|2
) ∫

XN

exp
(
−β

∑
x∈TN

d∑
i=1

V
(
∇iϕ(x)− ui

))
νβ(dϕ) =

= Z
(0)
N exp

(
−βLNd( 1

2 |u|
2
+V (u))

) ∫
XN

exp
(
−β

∑
x∈TN

d∑
i=1

U
(

1√
β
∇iϕ(x), ui

))
ν(dϕ),

where, denoting ν(dϕ) = νβ=1(dϕ) and Z
(0)
N = Z

(0)
N,β=1, the last equality was ob-

tained by rescaling the field ϕ by 1√
β

, invoking the definition (2.10) and using that∑
x∈TN ∇iϕ(x) = 0. Expanding the integrand

(2.14)
∏
x∈TN

(
1 + exp

{
−β

d∑
i=1

U
(

1√
β
∇iϕ(x), ui

)}
− 1
)

above and introducing (with a slight abuse of notation), the function

(2.15) KV,β,u(X,ϕ) =
∏
x∈X
KV,β,u(∇ϕ(x))

for any subset X ⊂ TN , we get

(2.16) ZN,β(u) = Z
(0)
N,β exp

(
−βLNd( 1

2 |u|
2

+ V (u))
) ∫

XN

∑
X⊂TN

KV,β,u(X,ϕ)ν(dϕ).

It will be useful to generalize our formulation slightly and, instead of a particu-
lar KV,β,u above, to consider for each u a general function Ku : Rd → R and define

(2.17) ZN (u) =

∫
XN

∑
X

Ku(X,ϕ)ν(dϕ)

with

(2.18) Ku(X,ϕ) =
∏
x∈X
Ku(∇ϕ(x)).

Our main claim is that, under appropriate conditions on the function u 7→ Ku, the
perturbative component of the surface tension,

(2.19) ς(u) := − lim
N→∞

1

LdN
logZN (u)

is sufficiently smooth for small u.
Before formulating it in detail, we observe that whenever the claim applies to

the case Ku = KV,β,u, the uniform smoothness of ς(u) implies that, for sufficiently
large β and small |u|, the surface tension σ(u) is strictly convex, since, in view of
(2.16), we get

(2.20) σβ(u) = 1
2 |u|

2
+ V (u) +

ς(u)

β
− lim
N→∞

1

βLdN
logZ

(0)
N,β

The last term is a constant that does not depend on u.
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Given any ζ > 0, consider the Banach space E of functions K : Rd → R with
the norm

(2.21) ‖K‖ζ = sup
z∈Rd

∑
|α|≤r0

ζ |α|
∣∣∂αz K(z)

∣∣e−ζ−2|z|2 .

Here, the sum is over nonnegative integer multiindices α = (α1, . . . , αd), αi ∈
N, i = 1, . . . , d with |α| =

∑d
i=1 αi ≤ r0 ∈ N, and ∂α =

∏d
i=1 ∂

αi
i . We also use

Bδ(0) ⊂ Rd to denote the ball Bδ(0) = {u | |u| < δ}.

Theorem 2.1 (Strict convexity of the surface tension). Let r0 ≥ 9. There
exist constants δ0 > 0, ρ0 > 0, M0 > 0, and ζ0 > 0 such that if the map Rd ⊃
Bδ(0) 3 u 7→ Ku ∈ E is C3, satisfies the bounds

(2.22) ‖Ku‖ζ ≤ ρ,

and

(2.23)

d∑
i=1

∥∥∥ ∂

∂ui
Ku
∥∥∥
ζ

+

d∑
i,j=1

∥∥∥ ∂2

∂ui∂uj
Ku
∥∥∥
ζ

+

d∑
i,j,k=1

∥∥∥ ∂3

∂ui∂uj∂uj
Ku
∥∥∥
ζ
≤M

with ζ ≥ ζ0, ρ ≤ ρ0, δ ≤ δ0, M < M0, and u ∈ Bδ(0), then the surface tension
ς(u) exists with bounds on ς(u), Dς(u), D2ς(u), and D3ς(u) depending only on ρ
and M uniformly in u ∈ Bδ(0).

The proof employs a multi-scale analysis based on ideas going back to the work
[BY90]. Even though we follow quite closely the approach outlined by Brydges
in [Bry09], a fair amount of various deviations and generalisations is needed. We
believe that this fact and the demands on clarity warrant an independent treatment
and the presentation of the proof in full detail.

The reader familiar with [Bry09] may, however, find various shortcuts. To
facilitate a selective reading, we devote the next Chapter 3 to a presentation of
the strategy of the proof, formulating then accurately all main steps of the proof
and spelling out all needed extensions of [Bry09] in Chapter 4. The proof is then
executed in full detail in the remaining chapters.

Before passing to the outline of the proof, we discuss two particular classes of
perturbative potentials for which the above theorem applies.

First we verify the assumptions of Theorem 2.1 for a class of perturbations of
the form (2.9). This yields a very simple example of a possibly non-convex potential
at low temperatures.

Proposition 2.2. Let r0 ∈ N, ζ ∈ (0,∞), M0 ≥ 1, and suppose that

(2.24) V ∈ Cr0+5(R),

(2.25) V (0) = V ′(0) = V ′′(0) = 0,

(2.26) ‖DkV ‖∞ ≤M0 for 2 ≤ k ≤ r0 + 5,

and

(2.27) V (s) ≥ − 1
8ζ
−2s2 for each s ∈ R.
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Then, for any ρ ∈ (0, 1/2), there exists β0 = β0(ζ, ρ,M0, r0), δ = δ(ζ, ρ,M0, r0),
and M(ζ,M0, r0) such that, for any β ≥ β0, the map Rd ⊃ Bδ(0) 3 u 7→ KV,β,u ∈ E
is C3 and, for any u ∈ Bδ(0),

(2.28) ‖KV,β,u‖ζ ≤ ρ
and

(2.29)

d∑
i=1

∥∥∥∂KV,β,u
∂ui

∥∥∥
ζ

+

d∑
i,j=1

∥∥∥∂2KV,β,u
∂ui∂uj

∥∥∥
ζ

+

d∑
i,j,k=1

∥∥∥ ∂3KV,β,u
∂ui∂uj∂uj

∥∥∥
ζ
≤M.

Moreover, if r0 ≥ 9, there exists β̄(M0) and δ̄(M0) such that for all β ≥ β̄0, the
function σβ : Bδ̄(0)→ R given in (2.20) is C3 and uniformly strictly convex.

The proof will be given in Section 2.3.

Remark 2.3. (i) Notice that there is no loss of generality in the assumption
(2.25). Indeed, the absolute term is just a shift by a constant, the linear term
vanishes in view of the condition

∑
x∈TN ∇iϕ(x) = 0, and the quadratic term may

be absorbed into the a priori quadratic part (2.3).
(ii) The only smallness assumption on V is (2.27). In terms of the full macroscopic

potential W (s) = 1
2 |s|

2
+ V (s) it reads

(2.30) W (s) ≥
(

1
2W

′′(0)− 1
8ζ
−2
)
s2.

Of course, the factor 1
8 can be replaced by any θ < 1. If we could (almost) achieve

the optimal value for ζ, ζ−2 = 1
2 , the condition (2.30) would simply say that W is

bounded from below by a nondegenerate quadratic function. Due to a number of
technical points, however, we need to choose ζ−2 rather small to assure the validity
of Theorem 2.1. �

Another example is the non-convex potential considered in [BK07]. The im-
portance of this case lies in the fact that it is a non-convex potential for which the
non-uniqueness of a Gibbs state for a particular temperature and with a particu-
lar tilt is actually proven. For the sake of simplicity, the potential considered in
[BK07] was chosen in a particular form that corresponds to the replacement of
exp
{
−βHN (ϕ)

}
by

(2.31)
∏
x∈TN

d∏
i=1

[
p exp

{
−1

2

(
∇iϕ(x)

)2}
+ (1− p) exp

{
−κ

2

(
∇iϕ(x)

)2}]
(for parameters κO and κD from [BK07] we choose κO = 1 and κD = κ). This

amounts to replacing KV,β,u(z) = exp
{
−β
∑d
i=1 V

(
zi√
β
− ui

)}
− 1 by

(2.32) Kκ,p,u(z) =

d∏
i=1

[
p + (1− p) exp

{1

2
(1− κ)

(
zi − ui)2

}]
− 1.

Indeed, it is enough to observe that (2.31) can be rewritten as

(2.33) exp
{
−EN (ϕ)

} ∏
x∈TN

d∏
i=1

[
p + (1− p) exp

{
−1

2
(1− κ)

(
∇iϕ(x)

)2}]
.

Notice that temperature β is in (2.31) and (2.32) is replaced by the parameter p.
The phase transition (non-unicity of Gibbs state with the tilt u = 0) mentioned
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above happens, for κ sufficiently small, for a particular value p = pt(κ). However,
this does not prevent the corresponding surface tension to be convex in u (at least
for small |u|) once p is sufficiently close to 1 (and thus bigger than pt). This
corresponds to the condition of sufficiently large β in the previous Proposition.

Observing that the map Rd 3 u 7→ Kκ,p,u ∈ E is clearly analytic for all p, what
only needs to be proven to apply Theorem 2.1 is the following claim.

Proposition 2.4. Let κ ∈ (0, 1) be given. There exist δ > 0, ζ = ζ(δ) and M
so that so that for any |u| ≤ δ one has

(2.34) ‖Kκ,p,u‖ζ ≤ ρ

and
(2.35)

d∑
i=1

∥∥∥ ∂

∂ui
Kκ,p,u

∥∥∥
ζ

+

d∑
i,j=1

∥∥∥ ∂2

∂ui∂uj
Kκ,p,u

∥∥∥
ζ

+

d∑
i,j,k=1

∥∥∥ ∂3

∂ui∂uj∂uk
Kκ,p,u

∥∥∥
ζ
≤M

for any 1− p sufficiently small (in dependence on ρ and ζ).

The proof is given below in Section 2.3

2.3. Proofs of the given examples

We collect the outstanding proofs for our two examples above.

Proof of Proposition 2.2.

Step 1. Estimate for ‖KV,β,u‖ζ .
This is the key estimate. The main idea is that for zi small (and also ui small)

we can use the Taylor expansion of U( zi√
β
, ui) in zi, while for large zi we rely on

the weight e−ζ
−2|zi|2 combined with the quadratic lower bound (2.27) on V .

First, let us show that

(2.36) −βU(
zi√
β
, ui) ≤

1

2
ζ−2z2

i for any zi ∈ R and any |u| < δ,

whenever δ ≤ 1
4M0

ζ−2.
Indeed, the Taylor expansion yields

(2.37) β
∣∣∣U(

zi√
β
, ui)

∣∣∣ ≤ 1
2

∣∣V ′′(s)∣∣z2
i

with |s| ≤ |ui| +
∣∣ zi√

β

∣∣. Since V ′′(0) = 0 implies that
∣∣V ′′(s)∣∣ ≤ M0|s|, the right

hand side is bounded by 1
2M0

(
δ +

∣∣ zi√
β

∣∣)z2
i yielding the claim for

∣∣ zi√
β

∣∣ ≤ 3δ.

On the other hand, for
∣∣ zi√

β

∣∣ ≥ 3δ we use (2.27) and the observation that

|a| ≥ 3|b| implies that (a− b)2 ≤ 2a2 to get

(2.38) −βV (
zi√
β
− ui) ≤ 1

4ζ
−2z2

i .

Moreover, expanding V ′(−ui) around V ′(0) = 0 up to the order u2
i , for | zi√

β
| ≥ 3δ

we get

(2.39) β
∣∣∣V ′(−ui) zi√

β

∣∣∣ ≤ βM0

2
δ2
∣∣∣ zi√
β

∣∣∣ ≤ M0

6
δz2
i
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and, similarly,

(2.40) β|V (−ui)| ≤ β
M0

6
δ3 ≤ M0

54
δz2
i ,

yielding the claim since M0( 1
6 + 1

54 ) 1
4M0

< 1
4 .

As a result of (2.36), we are done once |z|2 =
∑d
i=1 z

2
i ≥ 2ζ2 log 2

ρ . Indeed,

under this assumption, we have
(2.41)∣∣e−βU(

zi√
β
,ui) − 1

∣∣e−ζ−2|z|2 ≤ max
(
e
−βU(

zi√
β
,ui), 1

)
e−ζ

−2|z|2 ≤ e−
1
2 ζ
−2|z|2 ≤ ρ

2
.

Hence, we now focus on the case

(2.42) |z|2 ≤ 2ζ2 log
2

ρ
.

For sufficiently small ρ, set

(2.43) δ1 =
ζ−2

4M0
min

(
1,

ρ

4 log 2
ρ

)
≤ 1

and

(2.44) β1 =
2ζ2 log 2

ρ

δ2
1

≥ 1.

Then, for β ≥ β1, the relation (2.42) implies that |z|/
√
β ≤ |z|/

√
β1 ≤ δ1 and (2.37)

thus for δ ≤ δ1 yields

(2.45) β

d∑
i=1

∣∣∣U(
zi√
β
, ui)

∣∣∣ ≤M0δ1|z|2 ≤
ρ

4
.

Since |et − 1| ≤ 2|t| for t ≤ 1, we get

(2.46)
∣∣e−β∑d

i=1 U(
zi√
β
,ui) − 1

∣∣ ≤ ρ

2
.

Together with (2.41) this shows that

(2.47) sup
z∈Rd
|e−β

∑d
i=1 U(

zi√
β
,ui) − 1|e−ζ

−2|z|2 ≤ ρ

2

as long as |u| ≤ δ ≤ δ1 and β ≥ β1 with δ1 and β1 given by (2.43) and (2.44),
respectively.

Step 2. z-derivatives of KV,β,u.
We will employ Faà di Bruno’s chain rule for higher order derivatives [Har] of

a function in the form ef ,

(2.48) e−f∂αef =
∑

τ1,τ2,...,m1,m2,...∑
j mjτ j=α

α!

(τ 1!)m1(τ 2!)m2 · · ·m1!m2! · · ·
∏
j

(∂τ jf)mj .

Here, the sum is over distinct partitions τ 1, τ 2, . . . of the multiindex α with mul-
tiplicities m1,m2, . . . (i.e., such that

∑
jmjτ j = α) and τ ! = τ1! . . . τd! for any

multiindex τ = (τ1, . . . , τd).

In our case, we have f(z) = −β
∑d
i=1 U( zi√

β
, ui) with

(2.49) ∂zjf(z) = −
√
β
(
V ′(

zj√
β
− uj)− V ′(−uj)

)
.
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As for the higher derivatives, only the “diagonal” ones, ∂kzjf(z), are non-vanishing,

(2.50) ∂kzjf(z) = − 1

β(k−2)/2
V (k)(

zj√
β
− uj).

For |ui| ≤ δ, we get

(2.51) |∂2
zjf(z)| =

∣∣V ′′( zj√
β
− uj)

∣∣ ≤M0 min
(
1, δ +

∣∣ zj√
β

∣∣)
and thus, using that ∂zjf(0) = 0, also

(2.52) |∂zjf(z)| ≤M0 min
(
1, δ +

∣∣ zj√
β

∣∣)|zj |.
Moreover, in view of (2.50), we have

(2.53) sup|∂kzjf(z)| ≤ 1

β(k−2)/2
M0

for k ≥ 2. Combining (2.48) with (2.53) and with the particular implication of
(2.52),

(2.54) |∂zjf(z)| ≤M0|z|,

observing that |z|r ≤ 1 + |z|r0 whenever r ≤ r0, and using that M0 ≥ 1 and β ≥ 1,
we get

(2.55)
∣∣∣∂αe

−β
∑d
i=1 U(

zi√
β
,ui)
∣∣∣ ≤ C(r0)e

−β
∑d
i=1 U(

zi√
β
,ui)Mr0

0 (1 + |z|r0)

with a suitable constant C(r0). Using, further, (2.36) and (2.55), we get (note that
ζ ≥ 1)

(2.56) ζ |α|
∣∣∣∂αe

−β
∑d
i=1 U(

zi√
β
,ui)
∣∣∣e−ζ−2|z|2 ≤ ξ e−

1
4 ζ
−2|z|2

with

(2.57) ξ = ξ(r0, h,M0) = 2C(r0)ζ2r0Mr0
0

(
r0
2

)r0/2
.

Here, the factor ξ is a bound on the term C(r0)ζr0Mr0
0 e−

1
4 ζ
−2|z|2(1+ |z|r0) obtained

with help of the identity maxt>0 e−at
2

ts = sse−sa−s with t = |z|2. As a result, the

right hand side of (2.56) is bounded by ρ/2 whenever |z|2 ≥ 4ζ2 log 2ξ
ρ .

For

(2.58) |z|2 ≤ 4ζ2 log
2ξ

ρ

we take

(2.59) δ2 = min
(
δ1,

ζ−2

4M0 log 2ξ
ρ

)
and

(2.60) β2 = max
{
β1,

4ζ2 log 2ξ
ρ

δ2
2

}
.

Then, for β ≥ β2 and |u| ≤ δ ≤ δ2, the bound (2.58) implies that |zi|√
β
≤ δ2, yielding,

in view of (2.52), the estimate

(2.61) |∂zjf(z)| ≤ 2M0δ2|zj |
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and thus

(2.62) |f(z)| ≤
d∑
j=1

2M0δ2|zj |2 ≤ 2,

again in view of (2.58) and the definition of δ2. Hence, similarly as in (2.56), we
get

(2.63)
∣∣∣ζ |α|∂αe−f(z)

∣∣∣e−ζ−2|z|2 ≤ 2C(r0)ζr0e2(2M0)r0 |z|r0e−ζ
−2|z|2 max

(
δ2,

1√
β

)
≤

≤ C(r0,M0, h) max
(
δ2,

1√
β

)
with C(r0,M0, h) = 2C(r0)ζ2r0e2(2M0)r0

(
r0
2

) r0
2 . The factor max

(
δ2,

1√
β

)
stems

from the fact that each first and second derivative of f contributes a factor bounded
by 2M0δ2 (cf. (2.52) and (2.51)), while each higher derivative the factor bounded
by M0√

β
(cf. (2.53)). Taking now

(2.64) δ0 = min
(
δ2,

ρ

C(r0,M0,h)

)
and

(2.65) β0 = max
(
β2,
(C(r0,M0,h)

ρ

)2)
,

we get the sought claim

(2.66) ‖KV,β,u‖ζ ≤ ρ

whenever |u| ≤ δ ≤ δ0 and β ≥ β0.

Step 3. u-derivatives of KV,β,u.
The estimates for the u-derivatives of KV,β,u are similar. Indeed,

(2.67) ∂uiKV,β,u = ef(z)∂if(z),

(2.68) ∂uj∂uiKV,β,u = ef(z)
(
fj(z)fi(z)− fi,j(z)

)
,

etc., where

(2.69) fi(z) = −β
d∑
i=1

U (1)(
zi√
β
, ui),

(2.70) fi,i(z) = −β
d∑
i=1

U (2)(
zi√
β
, ui), and fi,j(z) = 0 if i 6= j.

Here, the functions U (`) have the same structure as U , but with V replaced by
(−1)`∂`V , e.g.,

(2.71) U (1)(s, t) = V ′(s− t)− V ′(−t)− V ′′(−t)s.

Thus, as in (2.53) and (2.54), we get

(2.72) β sup|∂kzjU
(`)(

zi√
β
, ui)| ≤ sup|∂k+`V | ≤M0

and

(2.73) β|∂zjU (`)(
zi√
β
, ui)| ≤ sup|∂2+`V ||zi| ≤M0|zi|.
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In addition, we have a new estimate

(2.74) β|U (`)(
zi√
β
, ui)| ≤ sup|∂2+`V ||zi|2 ≤M0|zi|2.

Thus, for |β| ∈ {1, 2, 3}, |α| ∈ {0, . . . , r0},

(2.75) β
∣∣∂αz ∂βu e

−β
∑d
i=1 U(

zi√
β
,ui)
∣∣ ≤ C(r0)ef(z)M

|α|+|β|
0 (1 + |z|2)|α|+|β|.

Estimate (2.36) yields |f(z)| ≤ 1
2ζ
−2|z|2 if |u| ≤ 1

4M0
ζ−2 (in particular if |u| < δ0

defined in (2.64)). Then we easily conclude that

(2.76)
∥∥∥∂βKV,β,u∥∥∥

ζ
≤M(r0, h,M0) for any |β| ∈ {1, 2, 3}, |u| ≤ δ0, and β ≥ β0,

with a suitable M(r0, h,M0).

Step 4. Uniform convexity of σ(u).
To obtain uniform convexity of σ(u), we first fix ρ so small and r0 and ζ so

large that Theorem 2.1 applies. Then for β ≥ β0 and |u| < δ0 we find that ς(u) is
a C3 function and its first three derivatives in Bδ0(0) are controlled in terms of ρ
and M = M(r0, h,M0). In particular,

(2.77) |D2ς(u)| ≤M ′(ζ,M0, ρ) if u ∈ Bδ0(0).

Note that for |s| ≤ 1
4M0

, we have V ′′(s) ≥ − 1
4 . Let

(2.78) δ̄(M0) = min
(
δ0(ζ,M0, ρ, r0),

1

4M0

)
and

(2.79) β̄(M0) = max
(
β0(ζ,M0, ρ, r0),

1

4M ′(ζ,M0, r0)

)
.

Then

(2.80) D2σ(u) ≥ Id− 1
4 Id− 1

4 Id ≥ 1
2 Id

for u ∈ Bδ̄(0) and β ≥ β̄.
�

Proof of Proposition 2.4. The proof is similar as the proof of Proposition 2.2.
We will only indicate the main steps. Again, skipping the indices in Kκ,p,u and

rewriting

(2.81) K(z) =

d∏
i=1

[
1 + (1− p)

[
exp
{1

2
(1− κ)

(
zi − ui)2

}
− 1
]]
− 1,

we have

(2.82) 0 ≤ K(z) ≤ 2d(1− p) exp
{1

2

d∑
i=1

(
zi − ui)2

}
,

and, with suitable polynomials Pα(z − u), also

(2.83) |∇αK(z)| ≤ (1− p)Pα(z − u) exp
{1

2

d∑
i=1

(
zi − ui)2

}
.

Taking now sufficiently small u and, then, sufficiently large ζ we have
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‖K‖ζ ≤ C(1− p)
with the constant C depending on ζ. Similar bounds are valid for the remaining
terms in (2.35). �





CHAPTER 3

The Strategy of the Proof

Here we present, in rather broad brush, the main ideas of the proof. Accurate
definitions of the needed notions then follow in the succeeding chapter.

As mentioned above, to verify the claim of the theorem, we need to prove that
the finite volume perturbative component of the surface tension

(3.1) ςN (u) := − 1

LdN
logZN (u)

has bounded derivatives uniformly in N ∈ N.
Here, the partition function ZN (u) can be expressed, with a flavour of cluster

expansions, in terms of the functions K(X,ϕ) = Ku(X,ϕ) as shown in (2.17).
However, here comes a difficulty: even though the function K(X,ϕ) depends only
on ϕ(x) with x in the set X and its close neighbourhood and even if for a disjoint
union X = X1 ∪X2 one has K(X,ϕ) = K(X1, ϕ)K(X2, ϕ), the Gaussian measure
ν(dϕ) with its slowly decaying correlations does not allow to separate the integral
of K(X,ϕ) into a product of integrals with the integrands K(X1, ϕ) and K(X2, ϕ).
This is a non-locality that has to be overcome.

The strategy is to perform the integration in steps corresponding to increasing
scales. Before showing what we mean by that, let us make one simple modification.
Its importance will be in providing a parameter that will allow us to fine-tune the
procedure in such a way that the final integration will eventually yield a result with
a straightforward bound.

The parameter in question will be chosen as a symmetric d×d-matrix q ∈ Rd×dsym .
Multiplying and dividing the integrand in (2.17) by

(3.2) exp
{
− 1

2

∑
x∈TN

d∑
i,j=1

qi,j∇iϕ(x)∇jϕ(x)
}

= exp
{
− 1

2

∑
x∈TN

〈q∇ϕ(x),∇ϕ(x)〉
}

and using the definition of the measure ν (by (2.11) with β = 1), we get

(3.3) ZN (u) =
Z

(q)
N

Z
(0)
N

∫
XN

exp
{
− 1

2

∑
x∈TN

〈q∇ϕ(x),∇ϕ(x)〉
}∑

X

K(X,ϕ)µ(q)(dϕ).

Here, µ(q) is the Gaussian measure on XN with the Green function C(q), the inverse

of the operator A(q) =
∑d
i,j=1

(
δi,j − qi,j

)
∇∗i∇j ,

(3.4) µ(q)(dϕ) =
exp
{
−Eq(ϕ)

}
λN (dϕ)

Z
(q)
N

,

with

(3.5) Eq(ϕ) = 1
2 (A(q)ϕ,ϕ) = 1

2

∑
x∈TN

d∑
i,j=1

(
δi,j − qi,j

)
∇iϕ(x)∇jϕ(x),

19
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and

(3.6) Z
(q)
N =

∫
XN

exp
{
−Eq(ϕ)

}
λN (dϕ).

Under a suitable assumption about the smallness of q (so that, in particu-
lar, the matrix 1 − q is positive definite), we will show that the Gaussian mea-

sure µ(q) can be decomposed into a convolution µ(q)(dϕ) = µ
(q)
1 ∗ · · · ∗ µ(q)

N+1(dϕ)

where µ
(q)
1 , . . . , µ

(q)
N+1 are Gaussian measures with a particular finite range property.

Namely, the covariances C(q)
k (x) of the measures µ

(q)
k , k = 1, . . . , N + 1, vanish for

|x| ≥ 1
2L

k with a fixed parameter L with an additional bound on their derivatives

with respect to q of the order L−(k−1)(d−1). (See next Chapter for careful definitions
and exact formulations; here we concentrate just on the main ideas.)

Now, let us write the integral in (3.3) symbolically as

(3.7)

∫
XN

(e−H
(q)

◦ K(q))(ϕ)µ(q)(dϕ).

Here

(3.8) H(q)(X,ϕ) = 1
2

∑
x∈X

d∑
i,j=1

qi,j∇iϕ(x)∇jϕ(x) = 1
2

∑
x∈X
〈q∇ϕ(x),∇ϕ(x)〉,

the function K(q) is defined as

(3.9) K(q)(X,ϕ) = exp
{
− 1

2

∑
x∈X
〈q∇ϕ(x),∇ϕ(x)〉

}
K(X,ϕ),

and ◦ is the circle product notation for the convolutive sum over subsets X ⊂ TN ,

(3.10) (e−H
(q)

◦ K(q))(ϕ) =
∑
X⊂TN

e−H
(q)(TN\X,ϕ) K(q)(X,ϕ),

where we set H(q)(∅, ϕ) = K(q)(∅, ϕ) = 1.

Replacing µ(q) in (3.7) by the convolution µ
(q)
1 ∗· · ·∗µ

(q)
N+1(dϕ), we will proceed

by integrating first over µ
(q)
1 . It turns out that the form of the integral is conserved.

Namely, starting from H
(q)
0 = H(q) and K

(q)
0 = K(q), we can define H

(q)
1 and K

(q)
1

so that

(3.11)

∫
XN

(e−H
(q)
0 ◦K(q)

0 )(ϕ+ ξ)µ
(q)
1 (dξ) = (e−H

(q)
1 ◦K(q)

1 )(ϕ).

Here, the function K
(q)
1 (X,ϕ) is defined (nonvanishing) only for sets X consisting of

Ld-blocks and H
(q)
1 is again a quadratic form like H

(q)
0 but with modified coefficients

qi,j and additional linear and constant terms. Recursively, one can define a sequence

of pairs (H
(q)
1 ,K

(q)
1 ), (H

(q)
2 ,K

(q)
2 ), . . . , (H

(q)
N ,K

(q)
N ) with each H

(q)
k a quadratic form

in ∇ϕ (plus linear and constant terms) and K
(q)
k (X,ϕ) defined for sets X consisting

of Lkd-blocks so that

(3.12)

∫
XN

(e−H
(q)
k ◦K(q)

k )(ϕ+ ξ)µ
(q)
k+1(dξ) = (e−H

(q)
k+1 ◦K(q)

k+1)(ϕ).

Of course, the difficulty lies in producing correct definitions of consecutive pairs

of functions H
(q)
k ,K

(q)
k so that not only (3.12) is valid, but also that the form of

the quadratic function Hk is conserved, the coarse-grained dependence of K
(q)
k on
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blocks Ldk is maintained, and, most importantly, the size of the perturbation K
(q)
k

in a conveniently chosen norm decreases (the variable K
(q)
k is irrelevant in the lan-

guage of the renormalisation group theory). See Propositions 4.3-4.6 for an explicit

form and properties of the renormalisation transformation T
(q)
k : (H

(q)
k ,K

(q)
k ) 7→

(H
(q)
k+1,K

(q)
k+1).

Using now sequentially the formula (3.12), we eventually get

(3.13)

∫
XN

(e−H
(q)
0 ◦K(q)

0 )(ϕ)µ(q)(dϕ) =

∫
XN

(e−H
(q)
N ◦K(q)

N )(ϕ)µ
(q)
N+1(dϕ)

and thus

(3.14) ZN (u) =
Z

(q)
N

Z
(0)
N

∫
XN

(e−H
(q)
N ◦K(q)

N )(ϕ)µ
(q)
N+1(dϕ).

At this moment we will invoke an additional feature. Namely, the finite range
decomposition can be constructed in such a way that the measures µ(q)

1 , . . . , µ(q)

N+1

depend smoothly on q ([AKM13]). As a result it turns out that, in dependence on
the original perturbation Ku (or on V , β, and u in the explicit choice of Ku as in
(2.9)), one can choose the initial value q = q(Ku) by an implicit function theorem

in such a way that H
(q)
N = 0.

However, here we encounter a difficulty stemming from the fact that the action
of T (q)

k , considered on a scale of function spaces, depends on q with certain loss of
regularity, see Chapter 6. This leads to a need for employing a suitable version of
implicit function theorem as well as a theorem about chain rule for composed maps
with loss of regularity (see Appendices D and E for the definitions and proofs).

Also, the “starting” Hamiltonian H
(q)
0 will in general contain, in addition to

the quadratic term given by (3.8), also linear and constant terms, i.e., H
(q)
0 (X,ϕ) =∑

x∈X H(x, ϕ) with

(3.15) H(x, ϕ) = λ+

d∑
i=1

ai∇ϕ(x)+

d∑
i,j=1

ci,j∇i∇jϕ(x)+
1

2

d∑
i,j=1

qi,j∇ϕ(x)∇jϕ(x),

see (4.91) and (4.17). Note, however, that the constant and linear terms do not lead
to a change of the measure µ(q) since by periodicity of ϕ we have

∑
x∈TN ∇iϕ(x) = 0

and
∑
x∈TN ∇i∇jϕ(x) = 0. For the purpose of this broad outline of the proof we

will pretend that we can achieve H
(q)
N = 0 with the choice

λ = a = c = 0.

The general situation will be discussed in Chapter 4.5 below.

Finally, taking into account that the function K
(q)
N (X, ·) is defined only for

X = ΛN or X = ∅, we get

(3.16) ZN (u) =
Z

(q)
N

Z
(0)
N

∫
XN

(
1 +K

(q)
N (ΛN , ϕ)

)
µ

(q)
N+1(dϕ),

with q being implicitly dependent on K = Ku by the condition that the iteration

described above gives H
(q)
N = 0. Note that this formula was derived under the

assumption that the constant term λ in the initial perturbation is zero. In general,
there is an additional term depending on λ, see (4.95) or (4.110).
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Now, to get the sought smoothness with respect to u, we have to evaluate the
derivatives with respect to q and show the smooth dependence of implicitly defined
q as function of u. The smoothness with respect to q is quite straightforward as the

factor Z
(q)
N can be explicitly computed by Gaussian integration and the derivatives

of the integral term can easily be bounded as a consequence of the iterative bounds

on K
(q)
N . The smoothness of q as function of u follows by a careful examination of

the corresponding implicit function yielding q as function of the initial perturbation
Ku and by smoothness of Ku as function of u assumed in Theorem 2.1 and proven
for the particular classes of potentials considered in Propositions 2.2 and 2.4, see
Chapter 4.6.



CHAPTER 4

Detailed Setting of the Main Steps

4.1. Finite range decomposition.

First, we formulate the needed claim about the finite range decomposition of

the Green function C(q), the inverse of the operator A(q) =
∑d
i,j=1

(
δi,j−qi,j

)
∇∗i∇j

on XN . We use ‖q‖ to denote the operator norm of q viewed as operator on Rd

equipped with `2 metric. Obviously, ‖q‖ ≤
(∑

i,j q
2
i,j

)1/2
.

Proposition 4.1. Let q ∈ Rd×dsym be a symmetric d×d-matrix such that ‖q‖ ≤ 1
2 .

There exist positive definite operators C
(q)
k , k = 1, . . . , N + 1, on XN such that

(4.1) C(q) =

N+1∑
k=1

C
(q)
k .

The operators C
(q)
k commute with translations on TN . In particular, there exists

a function C(q)
k on TN such that

(
C

(q)
k ϕ

)
(x) =

∑
y∈TN C

(q)
k (x − y)ϕ(y) for each

ϕ ∈ XN . Moreover,

(4.2) C(q)
k (x) = 0 if |x|∞ ≥

1

2
Lk

and, for each multiindex α with |α| ≤ 3 and any a ∈ N0 there exists a constant
cα,a such that

(4.3) sup
‖q‖≤ 1

2

|∇αDaC(q)
k (x)(q̇, . . . , q̇)| ≤ cα,aL−(k−1)(d−2+|α|)Lη(|α|,d)‖q̇‖a

for all x ∈ TN and all k = 1, . . . , N + 1, with

(4.4) η(n, d) = max(1
4 (d+ n− 1)2, d+ n+ 6) + 10.

Here, ∇α =
∏d
i=1∇

αi
i and D is the directional derivative in the direction q̇.

The proof can be found in [AKM13] which is an extension of ideas in [BT06]
and [BGM04] applied to families of gradient Gaussian measures including vector

valued functions. In fact there it is shown that C
(q)
k is (real) analytic in q with the

natural estimates for all derivatives with respect to q.

Remark 4.2. Since the C
(q)
k are translation invariant they are diagonal in the

Fourier basis given by fp(x) = L−dN/2ei〈p,x〉 with
(4.5)

p ∈ T̂N =
{
p = (p1, . . . , pd) : pi ∈

{
− (LN−1)π

LN
,− (LN−3)π

LN
. . . , 0, . . . , (LN−1)π

LN

}}
,

i.e.,

(4.6) C
(q)
k fp = Ĉ(q)

k (p)fp,

23
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where the Fourier multiplier Ĉ(q)
k (p) is just the discrete Fourier transform of the

kernel C(q)
k . Equation (4.62) and Lemma 4.3 in [AKM13] yield

(4.7)
1

LdN

∑
p∈T̂N\{0}

|p|n |Da
q Ĉ

(q)
k (p)(q̇, . . . , q̇)| ≤ 2aa! c(n, d)Lη(n,d)L−(k−1)(d+n−2).

This estimate implies (4.3) by the discrete Fourier inversion formula, but it will
also be of independent use later. �

Now, if a random field ϕ is distributed with respect to the Gaussian measure
µ(q) = µC(q) on XN , where the covariance C(q) admits a finite range decomposition
(4.1), then there exist N + 1 independent random fields ξk, k = 1, . . . , N + 1, such

that each ξk is distributed according to the Gaussian measure µ
(q)
k = µ

C
(q)
k

with

the covariance C
(q)
k and, in distribution,

(4.8) ϕ =

N+1∑
k=1

ξk,

or,

(4.9)

∫
XN

F (ϕ)µ(q)(dϕ) = EN+1 · · ·E1F,

where Ek, k = 1, . . . , N + 1, denote the expectations with respect to the Gaussian

measures µ
(q)
k and F is taken as a function of

∑N+1
k=1 ξk.

Taking into account that operators C
(q)
k are of full rank on XN , standard Gauss-

ian calculus yields an expression in terms of convolutions,

(4.10)

∫
XN

F (ϕ)µ(q)(dϕ) =

∫
XN

F (ϕ)µ
(q)
1 ∗ · · · ∗ µ(q)

N+1(dϕ) =

=

∫
XN×···×XN

F
(N+1∑
k=1

ξk

)
µ

(q)
1 (dξ1) . . . µ

(q)
N+1(dξN+1).

Our preferred formulation is to introduce renormalisation maps R
(q)
k on func-

tions on XN by

(4.11) (R
(q)
k F )(ϕ) =

∫
XN

F (ϕ+ ξ)µ
(q)
k (dξ), k = 1, . . . , N.

Just to be on a firm ground, we can introduce the spaces M(XN ) of all func-

tions measurable with respect to λN on XN and view R
(q)
k as a map R

(q)
k : U ⊂

M(XN )→M(XN ), where

U = {F : XN → R : r.h.s of (4.11) exists and is finite}.

The integration
∫
XN

F (ϕ)µ(q)(dϕ) can be viewed, for any F ∈M(XN ), as the

consecutive application of maps R
(q)
k with a final integration with respect to µ

(q)
N+1:

(4.12)

∫
XN

F (ϕ)µ(q)(dϕ) =

∫
XN

(R
(q)
N . . .R

(q)
1 F )(ϕ)µ

(q)
N+1(dϕ).

Notice that for the operators C
(q)
N and C

(q)
N+1 (and the measures µ

(q)
N and µ

(q)
N+1) the

condition (4.2) is void. However, the suppression condition (4.3) still applies.
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4.2. Polymers, polymer functionals, ideal Hamiltonians and norms.

There is a natural hierarchical paving corresponding to the correlation range
(4.2) of random fields governed by Gaussian measures µk.

Namely, for k = 0, 1, 2, . . . , N , we pave the torus ΛN by L(N−k)d disjoint cubes
of side length Lk. These cubes are all translates (L is odd) of {x ∈ ΛN : |x|∞ ≤
1
2 (Lk − 1)} by vectors in LkZd. We call such cubes k-blocks or blocks of k-th
generation, and use Bk to denote the set of all k-blocks,

Bk = Bk(ΛN ) = {B : B is a k-block}, k = 0, 1, . . . , N.

Single vertices of the lattice are 0-blocks, the starting generation for the renor-
malisation group transforms, B0 = ΛN . The only N -block is the torus ΛN itself,
BN = {ΛN}.

A union of k-blocks is called a k-polymer. We use Pk = Pk(ΛN ) to denote the
set of all k-polymers in ΛN and we have ∅ ∈ Pk. As N is fixed through the major
part of the paper, we often skip ΛN from the notation as indicated above. Notice
that certain ambiguity stems from the fact that every k-polymer is also j-polymer
for any j ≤ k. Nevertheless, we abstain from introducing k-polymer as a pair (X, k)
consisting of a set X (union of k-blocks) and a label; the appropriate label will be
always clear from the context.

Any subset X ⊂ TN is said to be connected if for any x, y ∈ X there exist
a path x1 = x, x2, . . . , xn = y such that |xi+1 − xi|∞ = 1, i = 1, . . . , n − 1. We
use C(X) to denote the set of connected components of X. Two connected sets
X,Y ⊂ ΛN are said to be strictly disjoint if their union is not connected. Notice
that for any strictly disjoint X,Y ∈ Pk, we have dist(X,Y ) > Lk.

We use Pc
k to denote the set of all connected k-polymers and we define that

∅ /∈ Pc
k. For a polymer X ∈ Pk, we use Bk(X) to denote the set of k-blocks

in X and |X|k = |Bk(X)| to denote the number of k-blocks in X and Pk(X) to
denote the set of all polymers Y consisting of subsets of blocks from Bk(X). The
set difference X \ Y ∈ Pk of two polymers X,Y ∈ Pk is again a polymer from Pk,
X \Y = ∪B∈X,B/∈YB. The closure X of a polymer X ∈ Pk is the smallest polymer
Y ∈ Pk+1 of the next generation such that X ⊂ Y .

A polymer X ∈ Pc
k is called small if |X|k ≤ 2d and we denote Sk = {X ∈

Pc
k : |X|k ≤ 2d}. For any B ∈ Bk we define its small set neighbourhood B∗ to be

the cube of the side (2d+1 − 1)Lk centered at B. Notice that B∗ is the smallest
cube for which B ⊂ Y and Y ∈ Sk implies Y ⊂ B∗. For any polymer X ∈ Pk we
use X∗ to denote its small set neighbourhood, X∗ = ∪{B∗ : B ∈ Bk(X)}. Notice
that, strictly speaking, the operation of closure X and small set neighbourhood
X∗ should be amended by an index k + 1 or k indicating the scale from which the
relevant blocks are taken. Again we will abstain from cumbersome indexing and
avoid ambiguity by clearly stating to which Pk the considered set X is taken to
belong.

Having fixed the parameterN and using a shorthandX forXN in the following,
we first introduce the space M(Pk,X ) of all maps F : Pk ×X → R such that for
all X ∈ Pk one has F (X, ·) ∈M(X ), the map F is Lk-periodic (F (τa(X), τa(ϕ)) =
F (X,ϕ) for any a ∈ (LkZ)d, where τa(B) = B + a and τa(ϕ)(x) = ϕ(x − a))
and F (X,ϕ) depends only on values of ϕ on X∗ (ϕ,ψ ∈ X , ϕ

∣∣
X∗

= ψ
∣∣
X∗

=⇒
F (X,ϕ) = F (X,ψ) with ϕ

∣∣
X∗

denoting the restriction of ϕ to X∗).
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The sets M(Pc
k,X ),M(Sk,X ), and M(Bk,X ) are defined in an analogous way.

We also consider the set M∗(Bk,X ) ⊃M(Bk,X ) of the maps F : Bk×X → R with
F (B,ϕ) depending only on values of ϕ on the extended set (B∗)∗.

For functions from M(Pk,X ) we introduce the circle product,

(4.13) F1, F2 ∈M(Pk,X ), (F1 ◦ F2)(X,ϕ) =
∑
Y⊂X

F1(Y, ϕ)F2(X \ Y, ϕ),

where we defined F (∅, ϕ) =: 1. Notice, that the product is defined pointwise in
the variable ϕ. We often skip it and write (F1 ◦F2)(X) =

∑
Y⊂X F1(Y )F2(X \ Y ).

Observe that the circle product is commutative and distributive.
For F ∈M(Bk,X ) and X ∈ Pk, we define

(4.14) FX(ϕ) =
∏

B∈Bk(X)

F (B,ϕ).

Extending any F ∈M(Bk,X ) to M(Pk,X ) by taking

(4.15) F (X,ϕ) = FX(ϕ),

we get

(4.16) (F1 + F2)X =
∑
Y⊂X

FY1 F
X\Y
2 = (F1 ◦ F2)(X)

directly from the definitions.
For each x ∈ ΛN we define the functions

(4.17)

H(x, ϕ) = λ+

d∑
i=1

ai∇ϕ(x) +

d∑
i,j=1

ci,j∇i∇jϕ(x) +
1

2

d∑
i,j=1

di,j∇ϕ(x)∇jϕ(x)

with coefficients λ ∈ R, a ∈ Rd, c ∈ Rd×d and d ∈ Rd×dsym .
A special role will be played by a subspace M0(Bk,X ) ⊂ M(Bk,X ) of all

quadratic functions built from (4.17) of the form

(4.18) H(B,ϕ) =
∑
x∈B
H(x, ϕ) = λ|B|+ `(ϕ) +Q(ϕ),

where

(4.19) `(ϕ) =
∑
x∈B

[ d∑
i=1

ai∇iϕ(x) +

d∑
i,j=1

ci,j ∇i∇jϕ(x)
]

and

(4.20) Q(ϕ,ϕ) =
1

2

∑
x∈B

d∑
i,j=1

di,j ∇iϕ(x)∇jϕ(x).

Sometimes we use the term ideal Hamiltonians for functions in M0(Bk,X ).
Our next aim is to introduce norms ‖·‖k,r and ‖·‖k+1,r on M(Pk,X ) (with

r = 1, . . . , r0, where r0 is a fixed integer to be chosen later) and a norm ‖·‖k,0 on

M0(Bk,X ). We begin by introducing, for each k ∈ {0, 1, . . . , N} and X ∈ Pk, two
distinct (semi)norms | · |k,X and | · |k+1,X on X . For any ϕ ∈ X we define

(4.21) |ϕ|k,X = max
1≤s≤3

sup
x∈X∗

1

h
Lk
(
d−2

2 +s
)∣∣∇sϕ(x)

∣∣
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and

(4.22) |ϕ|k+1,X = max
1≤s≤3

sup
x∈X∗

1

h
L(k+1)

(
d−2

2 +s
)∣∣∇sϕ(x)

∣∣,
where

(4.23) |∇sϕ(x)|2 =
∑
|α|=s

|∇αϕ(x)|2.

Next, for any s-linear function Sk on X × · · · ×X , we define

(4.24) |S|j,X = sup
|ϕ̇|j,X≤1

∣∣Sk(ϕ̇, . . . , ϕ̇)
∣∣, j = k, k + 1,

and, for any F ∈ Cr(X ), also

(4.25) |F (ϕ)|j,X,r =
r∑
s=0

1

s!
|DsF (ϕ)|j,X .

Here, for s = 0 we take

(4.26) |D0F (ϕ)|j,X = |F (ϕ)|.
In particular, considering for any F ∈M(Pk,X ) and any X ∈ Pk (and similarly

also for any F ∈M(Bk,X )) the map F (X) : X → R defined by F (X)(ϕ) = F (X,ϕ)
and its sth derivative DsF (X,ϕ)(ϕ̇, . . . , ϕ̇), we get

(4.27) |F (X,ϕ)|j,X,r =

r∑
s=0

1

s!
sup

|ϕ̇|j,X≤1

∣∣DsF (X,ϕ)(ϕ̇, . . . , ϕ̇)
∣∣, j = k, k + 1.

Now, we are ready to introduce the weighted strong norm |‖F (X)‖|k,X as well

as weighted weak norm ‖F (X)‖k,X,r, r = 1, . . . , r0 depending on parameters h
and ω that will be used for tuning their properties. Introducing the strong weight
functions

(4.28) WX
k (ϕ) = exp

{∑
x∈X

Gk,x(ϕ)
}

with

(4.29) Gk,x(ϕ) =
1

h2

(
|∇ϕ(x)|2 + L2k|∇2ϕ(x)|2 + L4k|∇3ϕ(x)|2

)
,

we define the weighted strong norm

(4.30) |‖F (X)‖|k,X = sup
ϕ
|F (X,ϕ)|k,X,r0W−Xk (ϕ)

with W−Xk (ϕ) =
(
WX
k (ϕ)

)−1
. For F ∈ M(Bk,X ), the norm |‖F (B)‖|k,B actually

does not depend on B in view of periodicity of F , and we use the shorthand |‖F‖|k.
Further, let Bx ∈ Bk be the k-block containing x and let ∂X denote the bounda-

ry
(4.31)
∂X = {y 6∈ X | ∃z ∈ X such that |y−z| = 1}∪{y ∈ X | ∃z 6∈ X such that |y−z| = 1}

(recall that |·| is the Euclidean norm). Introducing the weak weight functions

(4.32) wXk (ϕ) = exp
{∑
x∈X

ω
(
2dgk,x(ϕ) +Gk,x(ϕ)

)
+ Lk

∑
x∈∂X

Gk,x(ϕ)
}
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with Gk,x(ϕ) as above and

(4.33) gk,x(ϕ) =
1

h2

4∑
s=2

L(2s−2)k sup
y∈B∗x

|∇sϕ(y)|2,

we define the weighted weak norm by

(4.34) ‖F (X)‖k,X,r = sup
ϕ
|F (X,ϕ)|k,X,r w−Xk (ϕ), r = 1, . . . , r0.

In addition we also introduce the norm ‖·‖k:k+1,X,r that can be viewed as being

“halfway between” ‖·‖k,X,r and ‖·‖k+1,U,r with U = X ∈ Pk+1. Namely, we define

(4.35) ‖F (X)‖k:k+1,X,r = sup
ϕ
|F (X,ϕ)|k+1,X,r

w−Xk:k+1(ϕ), r = 1, . . . , r0.

with
(4.36)

wXk:k+1(ϕ) = exp
{∑
x∈X

(
(2dω − 1)gk:k+1,x(ϕ) + ωGk,x(ϕ)

)
+ 3Lk

∑
x∈∂X

Gk,x(ϕ)
}
,

where

(4.37) gk:k+1,x(ϕ) =
1

h2

4∑
s=2

L(2s−2)(k+1) sup
y∈B∗x

|∇sϕ(y)|2,

Notice that for the functions gk:k+1,x entering the norm ‖·‖k:k+1,X,r, we still take

supy∈B∗x with k-block Bx. The prefactors L(2s−2)(k+1), however, involve the power

k + 1. Also, the norm |F (X,ϕ)|k+1,X,r
is used, involving ϕ̇k+1,X in its definition.

For any r ≤ r0, clearly,

(4.38) ‖F (X)‖k,X,r ≤ |‖F (X)‖|k,X .
Inspecting the definitions, it is also easy to show that

(4.39) ‖F (X)‖k:k+1,X,r ≤ ‖F (X)‖k,X,r
once ω ≥ 2d−1 (assuring that 2dω(L2 − 1) ≥ L2), and, for any U ∈ Pk+1 ⊂ Pk and
F ∈M(Pk+1,X ) ⊂M(Pk,X ), also

(4.40) ‖F (U)‖k+1,U,r ≤ ‖F (U)‖k:k+1,U,r ≤ ‖F (U)‖k,U,r.

Next, for any F ∈M(Pc
k,X ) and a parameter A ∈ R+ we introduce

(4.41) ‖F‖(A)
k,r = sup

X∈Pc
k

‖F (X)‖k,X,rΓk,A(X), r = 1, . . . , r0,

where

(4.42) Γk,A(X) =

{
A|X| if X ∈ Pc

k \ Sk
1 if X ∈ Sk.

Similarly we define also ‖F‖(A)
k:k+1,r. Note that this norm is only defined via func-

tional on connected polymers. Whenever we estimate functionals on arbitrary poly-
mers we simply consider the product over the connected components. Occasionally,
when the parameter A is clear from the context, we skip it and write just ‖F‖k,r
and ‖F‖k:k+1,r. For F ∈M(Bk,X ) we also define

(4.43) ‖F‖(b)
k,r = ‖F (B)‖k,B,r.
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Notice that the right hand side does not depend on B in view of Lk-periodicity of

F . Any F ∈M(Pk,X ) can be restricted to M(Bk,X ) with ‖F‖(b)
k,r ≤ ‖F‖k,r.

Finally, on the subspace M0(Bk,X ) we define an additional norm ‖·‖k,0 by
taking

(4.44) ‖H‖k,0 = Ldk|λ|+ L
dk
2 h

d∑
i=1

|ai|+ L
(d−2)k

2 h

d∑
i,j=1

|ci,j |+
h2

2

d∑
i,j=1

|di,j |

for any H ∈M0(Bk,X ) of the form (4.18).
Also, let us stress that the above norms depend on parameters like L, h, and

A that are often skipped from the notation. Finally we use the notation

(4.45) Mk,r := {K ∈M(Pc
k,X ) : ‖K‖(A)

k,r <∞}.

Sometimes we write M r = M r,k for brevity. Note that the norms ‖K‖(A)
k,r <∞ for

different A > 0 are equivalent (since there are only finitely many polymers). Thus
the definition of Mk,r does not depend on A.

4.3. Definition of the renormalisation transformation
T k : (Hk,Kk) 7→ (Hk+1,Kk+1)

Here, we introduce the renormalisation step at a scale k, k = 0, . . . , N − 1.
At each scale k, the interaction will be split between functions Hk and Kk. (Here
and in the following we suppress the notation indicating the dependence on q,
reinstating it only when it will play a crucial role.) The “ideal local Hamiltonian”
part Hk is collecting all relevant (or marginal) directions under the renormalisation
transformation, with all irrelevant ones delegated to the coordinate Kk. There is
only limited number of parameters in the relevant coordinate Hk. Being given a pair
(Hk,Kk), Hk ∈ M0(Bk,X ) and Kk ∈ M(Pk,X ), we define a pair (Hk+1,Kk+1),
Hk+1 ∈M0(Bk+1,X ) and Kk+1 ∈M(Pk+1,X ), so that

(4.46) Rk+1(e−Hk ◦Kk)(ΛN , ϕ) = (e−Hk+1 ◦Kk+1)(ΛN , ϕ)

with (Rk+1F )(X,ϕ) =
∫
X F (X,ϕ+ ξ)µk+1(dξ).

As the scale k is fixed in the rest of this chapter, we will skip it and write
(H ′,K ′) for (Hk+1,Kk+1), with (4.46) becoming

(4.47) R(e−H ◦K) = e−H
′
◦K ′.

To define the HamiltonianH ′ on the next scale, we first introduce the projection

(4.48) Π2 : M∗(B,X )→M0(B,X )

as a “homogenization” of the second order Taylor expansion T2 around zero. Namely,
for any F ∈M∗(B,X ) with

(4.49) T2F (B, ϕ̇) = F (B, 0) +DF (B, 0)(ϕ̇) + 1
2D

2F (B, 0)(ϕ̇, ϕ̇),

we define

(4.50) Π2F (B, ϕ̇) = F (B, 0) + `(ϕ̇) +Q(ϕ̇, ϕ̇)

so that ` is a (unique) linear function of the form (4.19) that agrees with DF (B, 0)
on all quadratic functions ϕ̇ on (B∗)∗ and Q is a (unique) quadratic function of
the form (4.20) that agrees with 1

2D
2F (B, 0) on all affine functions ϕ̇ on (B∗)∗.

Strictly speaking, we have in mind functions ϕ̇ ∈ X such that they are quadratic
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or affine when restricted to (B∗)∗. Since, for B ∈ Bk, k ≤ N − 1, the set (B∗)∗

is not wrapped around the torus (as soon as 2d+2 ≤ L), we do not need to be
concerned with a possibility of a contradiction in the assumption of ϕ̇ ∈ X having
a quadratic or affine restriction to (B∗)∗. Clearly, Π2F ∈ M0(B,X ) ⊂ M(B,X )
whenever F ∈ M∗(B,X ) and Π2F = F for F ∈ M0(B,X ). In particular, we will
consider the projection Π2 on functions F ∈M∗(B,X ) of the form

(4.51) F (B,ϕ) =
∑
X∈S
X⊃B

1

|X|
F (X,ϕ)

for any F ∈M(S,X ).
Now we are ready to define the iteration H ′. Recalling that R = Rk+1 is the

mapping defined by convolution with µk+1 and starting from H ∈ M0(B,X ) and
K ∈M(P,X ), we define

(4.52) H ′(B′, ϕ) =
∑
B⊂B′

Π2

(
(RH)(B,ϕ)−

∑
X∈S
X⊃B

1

|X|
(RK)(X,ϕ)

)
.

To define K ′, we first replace the original variable H(B,ϕ) (or rather H(B,ϕ+

ξ) in anticipation of the integration R) by H̃(B,ϕ), the term in the right hand side
sum above,

(4.53) H̃(B,ϕ) = Π2

(
(RH)(B,ϕ)−

∑
X∈S
X⊃B

1

|X|
(RK)(X,ϕ)

)
.

Writing Ĩ(B,ϕ) = exp
{
−H̃(B,ϕ)

}
instead of the original

I(B,ϕ+ ξ) = exp
{
−H(B,ϕ+ ξ)

}
,

and denoting J̃ = 1− Ĩ, we introduce

(4.54) K̃ = J̃ ◦ (I − 1) ◦K.

Notice that we are considering here the extension of Ĩ , J̃ , and I to M(P,X ), resp.
M(P,X × X ), according to (4.15). Let us stress that the equation above (and
in similar circumstances later) is to be interpreted as an algebraic definition valid

pointwise in the variables ϕ and ξ. It means that K̃ is actually a function on
P ×X ×X defined explicitly by

(4.55) K̃(X,ϕ, ξ) =
∑

Y,Z∈Pk(X)
Y ∩Z=∅

J̃X\Y ∪Z(ϕ)
(
I(ϕ+ ξ)− 1

)Y
K(Z,ϕ+ ξ).

Occasionally, we are skipping the polymer variable X but wish to keep the field

variables and write, slightly misusing the notation, say, K̃(ϕ, ξ) for the mapping

K̃(ϕ, ξ) : P → R defined by K̃(ϕ, ξ)(X) = K̃(X,ϕ, ξ). Then the above algebraic
equation reads

(4.56) K̃(ϕ, ξ) = J̃(ϕ) ◦
(
I(ϕ+ ξ)− 1

)
◦K(ϕ+ ξ).

It is useful to observe that I − Ĩ = (I − 1) + J̃ yields I − Ĩ = J̃ ◦ (I − 1) and thus

K̃ = (I − Ĩ) ◦ K suggesting the interpretation of K̃(ϕ, ξ) as K(ϕ + ξ) combined

with the perturbation I(ϕ+ ξ)− Ĩ(ϕ).
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Now, using I(ϕ+ ξ) = Ĩ(ϕ) + J̃(ϕ) +
(
I(ϕ+ ξ)− 1

)
, we immediately infer that

(4.57) I(ϕ+ ξ) = Ĩ(ϕ) ◦ J̃(ϕ) ◦
(
I(ϕ+ ξ)− 1

)
and thus

(4.58) I(ϕ+ξ)◦K(ϕ+ξ) = Ĩ(ϕ)◦ J̃(ϕ)◦
(
I−1

)
(ϕ+ξ)◦K(ϕ+ξ) = Ĩ(ϕ)◦K̃(ϕ, ξ).

As a result,

(4.59) R(I ◦K)(ΛN , ϕ) = (Ĩ ◦ (RK̃))(ΛN , ϕ),

or, explicitly,

(4.60) R(I ◦K)(ΛN , ϕ) =
∑

X∈P(ΛN )

ĨΛN\X(ϕ)

∫
X
K̃(X,ϕ, ξ)µk+1(dξ).

Here we kept the index k + 1 at µk+1 to avoid a confusion with the measure µ =
µ1 ∗ · · · ∗ µN+1.

The function K ′ on the next scale satisfying (4.47) will be defined by sorting the
X-terms according to the next level closure U . While for any X ∈ P(ΛN ) \ S(ΛN )
we attribute the contribution to K ′(U) with U = X ∈ P(ΛN )′, for X ∈ S(ΛN ),
we (potentially) split the contribution1 between several U ’s. Namely, introducing

the factor χ(X,U) = |{B∈B(X) : B∗=U}|
|X| for any X ∈ S(ΛN ) and χ(X,U) = 1lU=X

for X ∈ P(ΛN ) \ S(ΛN ) (including the case of X consisting of several disjoint
components from S(ΛN )), we have

(4.61) (Ĩ ◦ K̃)(ΛN , ϕ, ξ) =
∑
U∈P′

I ′
ΛN\U (ϕ)

[
χ(X,U)

∑
X⊂U

ĨU\X(ϕ)K̃(X,ϕ, ξ)
]
.

Here we used the observation that, for any X ∈ S(ΛN ) contributing to several U ’s,
we get

∑
U∈P′ χ(X,U) = 1 and, also, that X ⊂ B∗ and thus X ⊂ B∗.

Defining now

(4.62) K ′(U,ϕ) =
∑
X⊂U

χ(X,U)ĨU\X(ϕ)

∫
X
K̃(X,ϕ, ξ)µk+1(dξ)

for any connected U ∈ P ′, and extending the definition by taking the corresponding
product over connected components for a non-connected U , we get

(4.63) R(I ◦K)(ΛN , ϕ) = (I ′ ◦K ′)(ΛN , ϕ)

in view of (4.60) and (4.61).
Notice that if K is Lk-periodic, then K ′ is obviously Lk+1-periodic. Also, the

transform conserves the factorisation property of the coordinate K: if K factors on
the scale k,

(4.64) X,Y ∈ P, and X ∩ Y = ∅, then K(X ∪ Y, ϕ) = K(X,ϕ)K(Y, ϕ),

1As will become clear later, the reason for doing so is a need to deal with relevant quadratic
terms stemming from K’s with X ∈ S. In anticipation, those terms are already included as the

second term in H̃′ (cf. (4.52)) and the particular way of splitting them among U ’s leads to the
exact cancelations of the corresponding linearized terms. In particular, the linearization of the
map K → K′ contains only terms starting with the third order in the Taylor expansion of K(X,ϕ)
for X small (cf. (4.83)). Using the fact that only the terms linear in K(X) with X ∈ S are relevant

in this context, it suffices to introduce a nontrivial χ only for such terms. Our definition is thus a
slight simplification of the trick introduced by Brydges [Bry09]. We thank Felix Otto and Georg
Menz for discussions about this point.
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then K ′ factors on the scale k + 1.
Indeed, let X1, X2 ∈ P be such that their closures in P ′ are disjoint. Then

(assuming that L > 2d+2) the range 1
2L

k+1 of the covariance of µk+1 plus twice

the possible reach of up to 2dLk of X1
∗ and X2

∗ out of the closures of X1 and X2,
respectively, does not surpass the minimal distance Lk+1 of the closure of X1 from
the closure of X2, and thus

(4.65) (RK̃)(X1 ∪X2, ϕ) = (RK̃)(X1, ϕ)(RK̃)(X2, ϕ),

inheriting the property from K, I, and Ĩ. Now it is easy to observe that this
fact actually means that K ′ factors, as the pairs of sets contributing, according
to (4.62), to K ′(U1, ϕ) and K ′(U2, ϕ) with disjoint U1 and U2 are necessarily as
discussed above.

Let us summarise, reinstating the index k, what we have got.

Proposition 4.3. Let k ∈ {0, . . . , N − 1}, Hk ∈M0(Bk,X ), and
Kk ∈M(Pk,X ) be such that it factors. Let Hk+1 ∈M0(Bk+1,X ) be defined by

(4.66) Hk+1(B′, ϕ) =
∑

B∈Bk(B′)

H̃k(B,ϕ),

where

(4.67) H̃k(B,ϕ) = Π2

(
(Rk+1Hk)(B,ϕ)−

∑
X∈Sk
X⊃B

1

|X|k
(Rk+1Kk)(X,ϕ)

)
.

Using K̃k(ϕ, ξ) =
(
1−e−H̃k(ϕ)

)
◦
(
e−Hk(ϕ+ξ)−1

)
◦Kk(ϕ+ξ), let Kk+1 ∈M(Pk+1,X )

be defined by
(4.68)

Kk+1(U,ϕ) =
∑

X∈Pk(U)

χ(X,U) exp
{
−

∑
B∈Bk(U\X)

H̃k(B,ϕ)
}∫

X
K̃k(X,ϕ, ξ)µk+1(dξ)

for any connected U ∈ P ′, with

(4.69) χ(X,U) =

{
|{B∈Bk(X) : B∗=U}|

|X| if X ∈ Sk(ΛN ),

1lU=X if X ∈ Pk(ΛN ) \ Sk(ΛN ),

and by the corresponding product over connected components for any non-connected
U . Then Kk+1 ∈M(Pk+1,X ), it factors, and

(4.70) Rk+1(e−Hk ◦Kk)(ΛN , ϕ) = (e−Hk+1 ◦Kk+1)(ΛN , ϕ).

As a result, introducing

(4.71) T k(Hk,Kk, q) = (Hk+1,Kk+1)

with Hk+1 and Kk+1 defined by equations (4.66 – 4.68), we get the renormalization
map

(4.72) T k : M0(Bk,X )×M(Pk,X )× Rd×dsym →M0(Bk+1,X )×M(Pk+1,X ),

k = 0, 1, . . . , N − 1.
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4.4. Key properties of the renormalisation transformation

Of course, defining the renormalisation map T k satisfying (4.70) is only half
of our task of the definition of the renormalisation transform. Another part lies in
the verification that the choice of coordinates Hk and Kk together with the map
(Hk,Kk) 7→ (Hk+1,Kk+1) indeed isolates relevant and irrelevant variables with
correct estimates. Notice that in the definition of T k, we explicitly included the
dependence on the matrix q. It stems from the dependence of the starting Gaussian
measure µ = µC(q) (and of the corresponding generalised Laplacian A(q)) on q and it

transfers into such a dependence also for the operators C
(q)
(k) obtained from the finite

range decomposition, for the corresponding Green functions C(q)
k,0 and the measures

µk, and, eventually, for the operators T k. Even though this dependence often does
not appear in our notation, in the following two Propositions, where we state its
key properties, we explicitly address this dependence and make it thus explicit also
in the notation. For variables H and K we again skip the subscript k and replace
k + 1 by a prime.

It is easy to verify that, for any q, the origin (H,K) = (0, 0) is a fixed point of
the transformation T k. Further, the H-coordinate of the operator T k has actually
a linear dependence; we can write

(4.73) T k(H,K, q) = (A
(q)
k H +B

(q)
k K,Sk(H,K, q))

with appropriate linear operatorsA
(q)
k andB

(q)
k . While delegating the discussion of

the explicit form and the properties of these operators (as well as the linearization
of the map Sk) to Proposition 4.7, we begin with the smoothness of the nonlinear
part Sk.

The map Sk is given as a composition of several maps and its smoothness will be
a consequence of the smoothness of the composing maps. To verify its smoothness
we find it useful to introduce a notion differentiability that is rather easy to verify.

Definition 4.4. Let X and Y be normed linear spaces and U ⊂ X be open.
We use Cm∗ (U ,Y ) to denote the set of functions G : U → Y such that for each
j ≤ m and ẋ ∈ X, the directional derivative

(4.74) Djf(x, ẋj) =
dj

dtj
G(x+ tẋ)

∣∣∣
t=0

at any x ∈ U exists and the map (x, ẋ) ∈ U ×X → DjG(x, ẋj) ∈ Y is continuous.

The technical reasons for this definition will be apparent later and are explained
in great detail in Appendix D. It turns out that this notion is weak only apparently.
In particular, for m ≥ 0 the space Cm+1

∗ (U ,Y ) is contained in the usual space
Cm(U ,Y ) of Fréchet differentiable functions (with operator norms on multilinear
forms from Lm(X,Y )), see Proposition D.17.

Exploring the smoothness of the nonlinear part Sk of the operator T k, we run
into problems stemming from a loss of regularity when deriving Sk with respect to
the parameter q. For example, it turns out that

(4.75) ‖Dj′

1 D
j′′

2 D`
3Sk(H,K, q)(Ḣj′ , K̇j′′ , q̇`)‖(A)

k+1,r−2` ≤ C‖Ḣ‖
j′

0 (‖K̇‖(A)
k,r )j

′′
‖q̇‖`,

where the norm ‖·‖(A)
k+1,r−2` in the target space is weaker than the norm ‖·‖(A)

k,r in
the domain space. As a result we are compelled to consider the map Sk with a
suitable sequence of normed spaces M = M r0 ↪→ M r0−2 ↪→ . . . ↪→ M r0−2m,
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r0 > 2m, defined as the spaces Mr(Pc
k,X ) endowed with the norms ‖·‖(A)

k,r , r =

r0, r0 − 2, . . . , r0 − 2m, respectively, and the space M0 defined as M(Bk,X ) with
the norm ‖·‖k,0. Similarly, M ′ = M ′

r0 ↪→ M ′
r0−2 ↪→ . . . ↪→ M ′

r0−2m are defined

as M(Pc
k+1,X ) with the norms ‖·‖(A)

r,k+1, r = r0, r0 − 2, . . . , r0 − 2m. Further, we

will use M̃ r to denote the closure of M in M r, and similarly for M̃
′
r.

Considering now open subsets U ⊂M0 ×M and V ⊂ Rd×dsym , we will introduce

the class of functions that can be described as those G : U ×V →M ′ for which the

derivative Dj′

1 D
j′′

2 D`
3G is a continuous map U×V×M j′′

0 ×M̃
j′

r ×(Rd×dsym)` →M ′
r−2`.

More formally, we introduce the set C̃m(U × V,M ′) of maps G : U × V →M ′ as
follows (see Definition D.24 in a more general setting):

Definition 4.5. Let r0,m ∈ N, r0 > 2m. We define C̃m(U × V,M ′) as the
set of all maps G : U × V →M ′ such that

(a) G ∈ Cm∗ (U × V,M ′
r0−2m).

(b) For each 0 ≤ j′ + j′′ + ` ≤ m, the function

(H,K, q, Ḣ1, . . . , Ḣj′ , K̇1, . . . , K̇j′′ , q̇1, . . . , , q̇`)→

→ Dj′

1 D
j′′

2 D`
3G((H,K, q), q̇1, . . . , , q̇`, K̇1, . . . , K̇j′′ , Ḣ1, . . . , Ḣj′),

(which is by an implication of the claim (a) (see Theorem D.10) defined as

a map U × V ×M j′

0 ×M
j′′ × (Rd×dsym)` → M ′

r0−2m) has an extension to a

continuous mapping U × V ×M j′

0 × M̃
j′′

r0−2m+2` × (Rd×dsym)` →M ′
r0−2m. This

extension is also denoted Dj′

1 D
j′′

2 D`
3G.

(c) For each 0 ≤ j′+ j′′+ ` ≤ m and r = r0, r0−2, . . . , r0−2m+2`, the restriction

of Dj′

1 D
j′′

2 D`
3G to U×V×M j′

0 ×M̃
j′′

r ×(Rd×dsym)` (notice that it has been already

extended by (b)) has values in M ′
r−2` and is continuous as a mapping between

these spaces.

Again, see Appendix D for further context and properties of the notion of
smoothness introduced in this way. Contrary to Definition D.24 we abstain from
invoking the relevant sequences of normed spaces in the notation as here they are
fixed from the context.

In the following we will consider the constants d, ω, and r0 to be fixed (assuming
d = 2, 3, ω ≥ 2(d222d+1 +1) and we will not mention possible dependence of various
constants (like L0, h0, and A0 below) on it. For the proof of the results in Chapter 2
r0 = 9 is sufficient, see comment in Remark 4.8).

For fixed values of the parameters L, h, and A in the definition of the norms
in Chapter 4.2, let Uρ ⊂M0 ×M r0 and V ⊂ Rd×dsym be the neighbourhoods of the
origin,

(4.76) Uρ = {(H,K) ∈M0 ×M r0 : ‖H‖k,0 < ρ, ‖K‖(A)
k,r0

< ρ}

and

(4.77) V = {q ∈ Rd×dsym : ‖q‖ < 1/2}.

Proposition 4.6 (Smoothness of the nonlinear part Sk). There exists a con-
stant L0 and, for any L ≥ L0, constants h0(L) and A0(L), and for any A ≥ A0 a
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constant ρ = ρ(A) such that, for any k = 0, . . . , N − 1, any L ≥ L0, h ≥ h0, and
A ≥ A0 we have

(4.78) Sk ∈ C̃m(Uρ × V,M ′),

and there is a constant C = C(L, h,A) > 0 such that

(4.79) ‖Dj′

1 D
j′′

2 D`
3Sk(H,K, q)(Ḣj′ , K̇j′′ , q̇`)‖(A)

k+1,r−2` ≤ C‖Ḣ‖
j′

0 (‖K̇‖(A)
k,r )j

′′
‖q̇‖`,

for any (H,K) ∈ Uρ, q ∈ V, 0 ≤ j′+j′′+` ≤ m, and r = r0, r0−2, . . . , r0−2m+2`.

The proof will be deferred to Chapter 6, where we will split Sk into a com-
position of several partial maps and deal with their smoothness separately, iso-
lating in detail the needed restrictions on various constants. Here, instead, we
offer a heuristic explanation of the role of the principal constants. The restrictions
on L are purely geometric (see Lemma 5.1, Lemma 7.1, Lemma 7.2, Lemma 7.3,
Lemma 7.8). In particular, by assuming that L ≥ L0 we have L ≥ 2d+1 imply-
ing, for example, that if B ∈ Bk, then the cube B∗ has the side at most Lk+1

and thus B∗ ∈ Sk+1. The restrictions on the constant h are more subtle (see
Lemma 5.1, Lemma 7.1, Lemma 7.2, Lemma 7.3). Its role is to suppress large
fields in the norms ‖F (X)‖k,X,r and |‖F (X)‖|k,X by employing the h-dependent

weight factors WX
k and wXk , respectively. When evaluating the norms of the maps

(H,K) → H̃ (see (4.67)) and K → Rk+1(K), a major part of the coarse grained
increase is absorbed into the growth Lk → Lk+1 of the corresponding factors in
the functions Gk,x and gk,x entering the weight factors. However, some surplus

remains stemming essentially from the term Lη(n,d) in the fluctuation bound (4.3)
of the finite range decomposition. A suppression of the relevant term is obtained

by assuming that h ≥ h0(L) = h1L
d2

2 +5d+16 with h1 depending only on d and ω.
Finally, the constant A is responsible for combining the norms ‖·‖k,X,r into a single

norm ‖·‖(A)
k,r (see Lemma 6.10 and Lemma 7.2). However, it turns out that the map

K → Rk+1(K) leads to acquiring a factor 2|X|k in the norm ‖·‖k,X,r, yielding an

inevitable loss in A in the norm ‖·‖(A)
k,r . Nevertheless, the loss can be recovered when

combining the terms in (4.68) while passing to the next scale. Namely, using in the
resulting sum stemming from evaluating the norm of (4.68) the geometric bound
|X|k ≥ (1 + α(d))|X|k+1 − (1 + α(d))2d+1|C(X)| with a constant α(d) > 0, we
get the original A once we suppose that the map is restricted to sufficiently small

domain, e.g. assuming that ‖Rk+1(K)‖(A)
k:k+1,r ≤ ρ(A) = (2A2d+3

)−1 and taking A

sufficiently large depending on L (and d).
The next claim deals with the linearisation of the map T k at the fixed point

(H,K) = (0, 0). For a linear operator L between Banach spaces, we consider
here the standard norm ‖L‖ = sup{‖L(f)‖ : ‖f‖ ≤ 1}, with appropriate norms
on the corresponding spaces. Usually we indicate the corresponding norms in an
appropriate way, e.g., ‖L‖k,r;k+1,0 and ‖L‖k,r;k+1,r, or simply ‖L‖r;0 and ‖L‖r, for

a linear mapping L : M r →M ′
0 and L : M r →M ′

r, respectively.

Proposition 4.7 (Linearisation of T k). The first derivative at H = 0 and
K = 0 have a triangular form,

(4.80) DT k(0, 0, q)(Ḣ, K̇) =

(
A

(q)
k B

(q)
k

0 C
(q)
k

)(
Ḣ

K̇

)
,
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with

(4.81) (A
(q)
k Ḣ)(B′, ϕ) =

∑
B∈B(B′)

[
Ḣ(B,ϕ) +

∑
x∈B

d∑
i,j=1

ḋi,j∇i∇∗jC
(q)
k+1(0)

]
,

(4.82) (B
(q)
k K̇)(B′, ϕ) = −

∑
B∈B(B′)

Π2

∑
X∈S
X⊃B

1

|X|

(∫
X
K̇(X,ϕ+ ξ)µ

(q)
k+1(dξ)

)
,

and

(4.83) (C
(q)
k K̇)(U,ϕ) =

∑
B:B∗=U

(
1−Π2

) ∑
Y ∈S
Y⊃B

1

|Y |

(∫
X
K̇(Y, ϕ+ ξ)µ

(q)
k+1(dξ)

)
+

+
∑

X∈Pc\S
X=U

∫
X
K̇(X,ϕ+ ξ)µ

(q)
k+1(dξ).

Further, let θ ∈ (1/4, 3/4) and let L0 and h0 = h0(L) be as in Proposition 4.6.
There exists a constant M = M(d) and, for any L ≥ L0, a constant A0 = A0(L),
such that for any h ≥ h0(L) and any A ≥ A0(L), the following bounds on the

norms of operators A
(q)
k , B

(q)
k , and C

(q)
k hold independently of N and k and for

any ‖q‖ ≤ 1
2 :

(4.84) ‖C(q)
k ‖r ≤ θ, ‖A

(q)
k

−1
‖r;r ≤

1√
θ
, and ‖B(q)

k ‖r;0 ≤MLd,

r ≥ 3, and for all A ≥ A0 (note that for the contraction bound for C(q) the choice
h ≥ h0 is sufficient).

Remark 4.8. (i) Notice that as a consequence of Proposition 4.6, the operators

A
(q)
k , B

(q)
k , and C

(q)
k are m-times differentiable with respect to q, ‖q‖ ≤ 1

2 , and
there exists a finite constant C = C(h, L) > 0 such that
(4.85)

‖∂`qA
(q)
k Ḣ‖0 ≤ C‖Ḣ‖0, ‖∂

`
qB

(q)
k K̇‖0 ≤ C‖K̇‖2`+2, ‖∂

`
qC

(q)
k K̇‖r−2` ≤ C‖K̇‖r,

for any ` = 1, 2, . . . ,m and any r ≥ 2`+ 3 and A ≥ A0.
(ii) For the results in Chapter 2 we need m = 3. Thus r0 = 9 is sufficient. �

Proof of Proposition 4.7. Here, we will only show the validity of the ex-

plicit formulas for the operators A
(q)
k , B

(q)
k , and C

(q)
k . The bounds needed for the

remaining claims will be proven in Chapter 7.
Starting from (4.66) and (4.67), let us expand the linear and quadratic terms in

Ḣ(B,ϕ+ ξ) into the sum of the terms depending on ϕ, ξ, and the term proportinal

to Q̇(ϕ, ξ). Observing that the integral with respect to µk+1(ξ) of the terms linear

in ξ vanishes and that Π2(Ḣ(B,ϕ)) = Ḣ(B,ϕ), we get the expression (4.81) for

A
(q)
k once we notice that

∫
X Q̇(ξ, ξ)µk+1(dξ) =

∑
x∈B

∑d
i,j=1 ḋi,j∇i∇∗jC

(q)
k+1(0).

The formula (4.82) follows directly from the second term on the right hand side
of (4.67).
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When computing C
(q)
k we first observe that only linear terms in K̃ can con-

tribute. Taking Ḣ = 0 and using thus (4.68) with

(4.86) H̃(B,ϕ) = −Π2

∑
X∈S
X⊃B

1

|X|
(RK̇)(X,ϕ)

and K̃(ϕ, ξ) =
(
1− e−H̃(ϕ)

)
◦K(ϕ+ ξ), we get

(4.87) C
(q)
k (K̇)(U,ϕ) =

∑
Y ∈S

χ(Y, U)

∫
X
DK̃(0)(K̇)(Y, ϕ, ξ)µk+1(dξ)+

+
∑

X∈Pc\S
X=U

∫
X
DK̃(0)(K̇)(X,ϕ, ξ)µk+1(dξ).

Writing χ(Y,U) =
∑

B∈Y
B∗=U

1
|Y | and observing that

(4.88) DK̃(0)(K̇)(B,ϕ, ξ) = K̇(B,ϕ+ ξ)−De−H̃(0)(K̇)(B,ϕ) for Y = B,

(4.89) DK̃(0)(K̇)(Y, ϕ, ξ) = K̇(Y, ϕ+ ξ) for Y 6= B,

and

(4.90) De−H̃(0)(K̇)(B,ϕ) = Π2

∑
Y ∈S
Y⊃B

1

|Y |
(
RK̇

)
(Y, ϕ),

we get (4.83). �

4.5. Fine tuning of the initial conditions

Our next task is to implement in detail the idea of fine tuning outlined in
Chapter 3. More specifically we will choose an initial ideal Hamiltonian (as used in
(3.15) and defined in (4.17)),
(4.91)

H(x, ϕ) = λ+

d∑
i=1

ai∇ϕ(x) +

d∑
i,j=1

ci,j∇i∇jϕ(x) +
1

2

d∑
i,j=1

qi,j∇ϕ(x)∇jϕ(x)

such that the final ideal Hamiltonian vanishes (note that in Chapter 3 we
considered only the simplified case λ = a = c = 0).

Given an initial K we want to evaluate the integral

ZN (u) =

∫
XN

∏
x∈Λ

(
1 +K(x, ϕ)

)
µ(dϕ) =

∫
XN

(1 ◦ K)(Λ, ϕ)µ(dϕ).

Analogously to the calculation in Chapter 3 cf. (3.16) we can rewrite this integral
as

(4.92)

ZN (u) =

∫
XN

eH(Λ,ϕ)
(
e−H ◦ e−HK

)
(Λ, ϕ)µ(dϕ)

=
Z

(q)
N

Z
(0)
N

eL
dNλ

∫
XN

(
e−H ◦ e−HK

)
(Λ, ϕ)µ(q)(dϕ)

where Z
(q)
N and Z

(0)
N are as in Chapter 3. Here we used that

∑
x∈Λ∇iϕ(x) = 0 and∑

x∈Λ∇i∇jϕ(x) = 0 because ϕ is periodic.
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We will now show that for sufficiently small K there exists an H = H(K) such
that the second integral in (4.92) deviates from 1 only by an exponential small term
and such that the derivatives of this term with respect to K are also controlled.

To do so we proceed in two steps. We first show that given sufficiently small
K and H there exists an ideal Hamiltonian F1(K,H) ∈M0 and a small ’irrelevant’
term F2N (K,H) ∈MN,r such that

(4.93)

∫
XN

(
e−F1(K,H) ◦ e−HK

)
(Λ, ϕ)µ(q)(dϕ) =

∫
XN

(1 +F2N (K,H))µ
(q)
N+1(dϕ).

As a byproduct of this construction we will see that for K = 0 we have F1(0,H) = 0
and F2N (0,H) = 0 for all sufficiently small H. Together with smoothness results
for F1 this implies DHF1(0, 0) = 0 and the implicit function will guarantee that
there exists a unique map H mapping a neighbourhood of the origin in E to M0

such that

(4.94) F1(K,H(K)) = H(K).

Combining this with (4.93) and (4.92) we get

(4.95) − logZN (u) = − log
Z

(q)
N

Z
(0)
N

−λLdN − log

∫
XN

(1+F2N (K,H(K)))µ
(q)
N+1(dϕ),

where

(4.96) λ = π0(H(K)) and q = π2(H(K))

denote the constant term in H(K) and the coefficient matrix of the quadratic term,
respectively.

We now first explain how to construct the maps F1 and F2N . We rewrite the
entire cascade of maps T k in terms of a single map on a suitably defined Banach
space. First, we introduce the Banach spaces

(4.97) Yr =
{
y = (H0, H1,K1, . . . ,HN−1,KN−1,KN ) : Hk ∈Mk,0,Kk ∈Mk,r

}
with the norms

(4.98) ‖y‖Yr = max
k∈{0,...,N−1}

1

ηk
‖Hk‖k,0 ∨ max

k∈{1,...,N}

α

ηk
‖Kk‖k,r

for r = 1, . . . , r0 and with parameters η ∈ (0, 1) and α ≥ 1 to be chosen later. Here,
to avoid ambiguity, we reinstated index k also in the notation for normed spaces;
we write Mk,0 and Mk,r instead of M0 and M r used previously. Notice that the
terms K0 and HN are not present in y ∈ Yr; while the latter is put to be 0, the
former is singled out as an initial condition for a separate treatment. Also, notice
that ‖y‖Yr ≤ ‖y‖Yr+1

and thus Yr+1 ↪→ Yr.

Taking into account the dependence of T k on q (the matrix in the quadratic
term of H) and on the initial perturbation K ∈ E (see (2.21)) we define the map

(4.99) T : Yr ×E ×M0 → Yr

by

(4.100) T (y,K,H) = y.

Here, y is given by recursive equations,

(4.101)
Hk = A−1

k

(
Hk+1 −BkKk

)
,

Kk+1 = Sk(Hk,Kk, q) = CkKk + Sk(Hk,Kk, q)−D2Sk((0, 0, q),Kk).
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for k = 0, . . . , N − 1. Here CkKk = D2Sk((0, 0, q),Kk) and Sk(Hk,Kk, q) −
D2Sk((0, 0, q),Kk) is the nonlinear part of the map Sk. In addition, we set HN = 0
and define K0 ∈M(P0,X ) by K0 = e−HK, i.e., by

(4.102) K0(X,ϕ) :=
∏
x∈X

(
exp(−H(x, ϕ))K(∇ϕ(x))

)
with K ∈ E and H ∈M0.

Observe now that, for a given K and H, the 2N -tuple y is a fixed point of T ,
i.e., T (y,K,H) = y if and only if

(4.103) T k(Hk,Kk, q) = (Hk+1,Kk+1), k = 0, . . . , N − 1,

with K0 = e−HK and HN = 0. Our task thus is to find a map F from a neigh-
bourhood of origin in E ×M0 to Y r so that

(4.104) T (F(K,H),K,H) = F(K,H).

This can be done with help of the Implicit Function Theorem E.1 using the
bounds from Propositions 4.7 and 4.6 to verify its hypothesis. In Proposition 8.1,
we will summarize the smoothness properties of the obtained fixed point map F .
Note that for K = 0 the vector y = 0 is a fixed point for every H. Thus

(4.105) F(0,H) = 0.

Taking now for F1 and F2N the first and last component of F , corresponding
to H0 and KN , the equality (4.93) readily follows from the definition of F .

Now we can easily construct the map H. The condition (4.105) and the differ-
entiability of F (see Proposition 8.1) imply that

(4.106) DHF1(0, 0) = 0.

Thus we can apply the implicit function theorem in the space Cm∗ to get the fol-
lowing result.

Theorem 4.9. Let 2m + 3 ≤ r0. There exist constants ρ1, ρ2 > 0, and a
parameter ζ > 0 in the definition of the norm on the space E introduced in (2.21)
such that there exists a Cm∗ -map H : BE(ρ1) → BM0(ρ2) satisfying the fixed point
equations

(4.107) F1(K,H(K))) = H(K)

and

(4.108) T (F(K,H(K)),K,H(K)) = F(K,H(K))

for all K ∈ BE(ρ1). Moreover, the Cm∗ - norm of the map H is bounded uniformly
in N . We may choose ρ2 <

1
4h

2. Then in view of (4.44) the matrix q = π2 ◦H(K)

of the quadratic part of H(K) satisfies |q| < 1
2 .

4.6. Proof of strict convexity—Theorem 2.1

We are following the strategy outlined in Chapter 3, but we now consider the
full ideal Hamiltonian H in (4.91) and not just the quadratic part. To prove the
strict convexity of the surface tension σβ(u), we need to prove that its perturbative
component ς(u) is smooth in the tilt u. This amounts to obtaining a uniform bound
(in N ∈ N) on the approximation

(4.109) ςN (u) := − 1

LdN
logZN (u)
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with ZN (u) defined in (2.17). In view of the equality (4.95), applied with K = Ku,
we have

(4.110)

ςN (u) = − 1

LdN
log
(Z(q)

N

Z(0)

N

)
− λ

+
1

LdN
log
(∫

XN

(
1 + F2N (Ku,H(Ku))(ΛN , ϕ)

)
µ(q)

N+1(dϕ)
)
,

where, as in (4.96),

(4.111) λ = π0(H(Ku)) and q = π2(H(Ku))

denote the constant term in H(Ku) and the coefficient matrix of the qudratic term,
respectively.

The proof of strict convexity thus consists of the following three steps.
Step 1: Choose all needed constants according to Propositions 4.6 and 4.7. In
particular, we choose (with a fixed d) the constants L, h, A, ρ̄ = ρ̄(A), and a
constant C, so that the claims from Propositions 4.6 and 4.7 (i.e., differentiability
and uniform smoothness of the renormalization maps T k as well as the contractivity
of the linearisation) are valid for any (H,K, q) ∈ Uρ (in particular, ‖q‖ ≤ 1

2 ).
Step 2: Apply Theorem 4.9 to get the existence and smoothness properties of the
map H : BE(ρ1)→ BM0(ρ2).
Step 3: Finally, address the dependence of Ku on the tilt u: according to the
assumptions of Theorem 2.1 we have a C3 tilt map τ , u 7→ τ(u) = Ku. Choosing δ
sufficiently small, we have τ(Bδ(0)) ⊂ BE(ρ) ⊂ E.

Having this in mind, we show that the right hand side of (4.110) is three times
continuously differentiable in u with bounded derivatives, by analysing each of the
three terms separately.

The first term on the right hand side of (4.110) can easily be computed as

(4.112) − log
(Z(q)

N

Z(0)

N

)
= 1

2 log det
(
A(q)C(0)

)
.

Consider the dual torus
(4.113)

T̂N =
{
p = (p1, . . . , pd) : pi ∈

{
− (LN−1)π

LN
,− (LN−3)π

LN
, . . . , (LN−1)π

LN

}
, i = 1, . . . , d

}
,

and the functions fp(x) = ei〈p,x〉. The family
{
|ΛN |−1/2fp

}
p∈T̂N\{0}

is an orthonor-

mal basis of VN . The eigenvalues of A(q) are

(4.114) σ(p) = 〈q(p), (1l + q)q(p)〉 =

d∑
l,j=1

q(p)

l

(
δl,j + ql,j

)
q(p)

j , p ∈ T̂N

with q(p)

j = eipj −1, j = 1, . . . , d. Note that q(p)

l q(p)

j ≈ plpj . The eigenvalues for A(0)

and C(0) are 〈q(p), q(p)〉 ≈ ‖p‖2 and 〈q(p), q(p)〉−1 ≈ ‖p‖−2
, p ∈ T̂N , respectively. We

get

(4.115) log det
(
A(q)C(0)

)
= Tr log

(
1l+A(q)C(0)

)
=

∑
p∈T̂N\{0}

log
(

1+
〈q(p), qq(p)〉
〈q(p), q(p)〉

)
.
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Since the sum over the torus has LdN − 1 terms it follows that

− 1

LdN
log
(Z(q)

N

Z(0)

N

)
is a smooth function of q with derivatives bounded uniformly in N . Thus

u 7→ − 1

LdN
log
(Zπ2(H(Ku))

N

Z(0)

N

)
is a C3

∗ mapping with uniformly bounded derivatives. Note that the chain rule
initially states that this map is C3

∗ , but Rd being a finite dimensional vector space
it is actually a C3 mapping according to Proposition D.17.

As regards the second term we know from Theorem 4.9 and the chain rule that
u 7→ H(Ku) is C3

∗ . Thus the map u 7→ λ = π0(H(Ku)) is C3
∗ and hence C3 because

the map is defined a neighbourhood in the finite dimensional space Rd.
Regarding the last term

log
(∫

XN

(
1 + F2N (Ku,H(Ku))(ΛN , ϕ)

)
µ(q)

N+1(dϕ)
)

we first note that for a positive function G the k-th derivative of logG is a polyno-
mial in 1

G and the first k derivatives of G. Since µ(q)

N+1 is a probability measure, it
suffices to show that

(4.116)

∣∣∣∣∫
XN

F2N (Ku,H(Ku))(ΛN , ϕ)µ(q)

N+1(dϕ)

∣∣∣∣ ≤ 1

2
.

and to estimate the derivatives of the integral. We thus need to estimate
(4.117)

T (u) :=

∫
XN

F2N (Ku,H(Ku))(ΛN , ϕ)µ(q)

N+1(dϕ), where q = π2(H(Ku)),

and its derivatives with respect to u. The integral in (4.117) is exactly the appli-
cation of the renormalisation map R1, defined in (6.16), evaluated at zero:

T (u) = (R
(q)
1 P )(ΛN , 0) where P = F2N (Ku,H(Ku)) and q = π2(H(Ku)).

Thus we can apply the estimates for R1 stated in Lemma 6.5 and in Lemma 5.1
(iv). We introduce the notation

R̃1(K,H) := (R
(q)
1 K)(ΛN , 0) = R1(K, q)(ΛN , 0).

It will later be convenient to view R̃1 as a function of K and H even thus it depends
on H only through q = π2(H). We get

T (u) = R̃1

(
F2N (Ku,H(Ku)),H(Ku)

)
.

Now by Lemma 5.1 (iv) (note that there is only one N -block), Proposition 8.1, the
definition (4.98) of the norm on F , Theorem 4.9 and the assumptions on Ku in
Theorem 2.1 we get

|T (u)| ≤ ‖F2N (Ku,H(Ku))‖ ≤ 2
ηN

α
‖F(Ku,H(Ku))‖Y 0

≤ C η
N

α
.

Thus (4.116) holds if N is large enough (note that α and C are independent of N).
To verify the differentiability of T we recall the notation

(F �G)(x,H) = F (G(x,H),H)
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to rewrite T (u) as

T (u) =
(
R̃1 � F2N

)
(Ku,H(Ku))

Now by Proposition 8.1 we have F2N ∈ C̃m(BX×M0
(ρ̂1, ρ̂2),Y ) with bounds

on the derivatives which are independent of N . Here Y = Yr0 ↪→ Yr0−2 ↪→ . . . ↪→
Yr0−2m and in the domain we use the trivial scale Xm = . . . = X0 = E.

By Lemma 6.5 we have R̃1 ∈ C̃m(Y ×Bρ̂2 ,R) (as long as ρ̂2 <
1
4h

2), again with
bounds on the derivatives which are independent of N . Thus the chain rule with

loss of regularity, Theorem D.29, shows that R̃1 � F2N ∈ C̃m(BX×M0
(ρ̂1, ρ̂2),R)

with uniformly bounded derivatives. Since the scale Xm = . . . = X0 = E is trivial

(and since the target is just R) this implies that R̃1 �F2N ∈ Cm∗ (BX×M0
(ρ̂1, ρ̂2),R)

Together with the regularity of H (see Theorem 4.9) and the assumptions on Ku
in Theorem 2.1 we get T ∈ C3

∗(B(δ0)) with uniformly bounded derivatives. Since
B(δ0) ⊂ Rd by Proposition D.17 this is the same as T ∈ C3(B(δ0)). �



CHAPTER 5

Properties of the Norms

As a preparation for the proof of Propositions 4.7 and 4.6, we first address the
factorisation properties of the norms defined in Chapter 4.2 and prove a bound on
the integration map Rk defined in (4.11). Recalling that the norms ‖·‖k,X,r depend
on parameters L, h, and ω, we summarise their properties in the following lemma.
Using η(n, d) defined by (4.4), we introduce κ(d) := 1

2

(
d + η(2bd+2

2 c + 8, d)
)

with

btc denoting the integer value of t. Notice that κ(d) ≤ d2/2 + 5d+ 16.

Lemma 5.1. Let ω ≥ 1 + 18
√

2, N ∈ N, N ≥ 1, and L ∈ N odd, L ≥
3. Given k ∈ {0, . . . , N − 1}, let K ∈ M(Pk,X ) factor (at the scale k), and
let F ∈ M(Bk,X ). Then, the norms ‖·‖k,X,r, ‖·‖k:k+1,X,r, r ∈ {1, . . . , r0}, and

|‖·‖|k,X , X ∈ Pk, satisfy the following conditions:

(i) ‖K(X)‖k,X,r ≤
∏
Y ∈C(X)‖K(Y )‖k,Y,r and

‖K(X)‖k:k+1,X,r ≤
∏
Y ∈C(X)‖K(Y )‖k:k+1,Y,r,

(iia) ‖FXK(Y )‖k,X∪Y,r ≤ ‖K(Y )‖k,Y,r|‖F‖|
|X|k
k as well as

(iib) ‖FXK(Y )‖k:k+1,X∪Y,r ≤ ‖K(Y )‖k:k+1,Y,r|‖F‖|
|X|k
k for X,Y ∈ Pk dis-

joint,
(iii) |‖1l(B)‖|k,B = 1 for B ∈ Bk,

(iv) There exists a constant h1 = h1(d, ω) depending only on the dimension d
and value of the parameter ω, such that for any h ≥ Lκ(d)h1 and X ∈ Pk,
we have ‖(Rk+1K)(X)‖k:k+1,X,r ≤ 2|X|k‖K(X)‖k,X,r.

Proof.
(i) Notice first that for any F1, F2 ∈ M(Pk,X ) and any (not necessarily disjoint)
X1, X2 ∈ Pk, we have

(5.1) |F1(X1)(ϕ)F2(X2)(ϕ)|k,X1∪X2,r ≤ |F1(X1)(ϕ)|k,X1,r|F2(X2)(ϕ)|k,X2,r.

Indeed, using the definition of the norm | · |k,X,r and fact that a Taylor expansion
of a product is the product of Taylor expansions, we have
(5.2)

|F1(X1)(ϕ)F2(X2)(ϕ)|k,X1∪X2,r ≤ |F1(X1)(ϕ)|k,X1∪X2,r|F2(X2)(ϕ)|k,X1∪X2,r.

Observing now that for any ϕ̇ ∈ XN we have |ϕ̇|k,X1
≤ |ϕ̇|k,X1∪X2

, we get

(5.3) sup
|ϕ̇|k,X1∪X2

≤1

|DsF1(X1)(ϕ)(ϕ̇, . . . , ϕ̇)| ≤ sup
|ϕ̇|k,X1

≤1

|DsF1(X1)(ϕ)(ϕ̇, . . . , ϕ̇)|,

implying

(5.4) |F1(X1)(ϕ)|k,X1∪X2,r ≤ |F1(X1)(ϕ)|k,X1,r

and similarly for F2, yielding thus (5.1).

43
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Iterating (5.1) we can use it for K(X,ϕ) =
∏
Y ∈C(X)K(Y )(ϕ), yielding

(5.5) |K(X,ϕ)|k,X,r ≤
∏

Y ∈C(X)

|K(Y )(ϕ)|k,Y,r

and, similarly,

(5.6) |K(X,ϕ)|k+1,X,r ≤
∏

Y ∈C(X)

|K(Y )(ϕ)|k+1,Y,r

To conclude, it then suffices to observe that

(5.7) wXk (ϕ) =
∏

Y ∈C(X)

wYk (ϕ) and wXk:k+1(ϕ) =
∏

Y ∈C(X)

wYk:k+1(ϕ).

Here, in both cases, we use the fact that the partition X = ∪Y ∈C(X)Y splits both
X and its boundary ∂X into disjoint components: Y1, Y2 ∈ C(X), Y1 6= Y2 implies
that dist(Y1, Y2) > Lk and thus Y1∩Y2 = ∅, ∂Y1∩∂Y2 = ∅, and ∂X = ∪Y ∈C(X)∂Y .
(iia) Using (iterated) (5.1) for

∏
B∈Bk(X) F (B)(ϕ)K(Y )(ϕ) , we have

(5.8) |
(
FXK(Y )

)
(ϕ)|k,X∪Y,r ≤

∏
B∈Bk(X)

|F (B)(ϕ)|k,B,r|K(Y )(ϕ)|k,Y,r.

Bounding the right hand side by

(5.9)
∏

B∈Bk(X)

|‖F (B)‖|k,B‖K(Y )‖k,Y,r
∏

B∈Bk(X)

WB
k (ϕ)wYk (ϕ),

we get (ii) once we verify that

(5.10)
∏

B∈Bk(X)

WB
k (ϕ)wYk (ϕ) ≤ wX∪Yk (ϕ).

Inserting the definitions of the strong and weak weight functions, (5.10) is satisfied
once
(5.11)

Lk
∑
x∈∂Y

Gk,x(ϕ) ≤
∑
x∈X

(
2dωgk,x(ϕ) + (ω − 1)Gk,x(ϕ)

)
+ Lk

∑
x∈∂(X∪Y )

Gk,x(ϕ).

To verify this, it suffices to notice that each y ∈ ∂Y \ ∂(X ∪ Y ) is necessarily
contained in ∂B for some B ∈ Bk(X) (a block on the boundary of X touching Y ).
Thus, it suffices to show that for each such B one has

(5.12) Lk
∑
x∈∂B

Gk,x(ϕ) ≤
∑
x∈B

(
2dωgk,x(ϕ) + (ω − 1)Gk,x(ϕ)

)
.

Indeed, applying Proposition B.5 (a), we have

(5.13) h2Lk
∑
x∈∂B

Gk,x(ϕ) ≤

≤ 2c
(∑
x∈B
|∇ϕ(x)|2 + L2k

∑
x∈U1(B)

|∇2ϕ(x)|2
)

+ Lk
∑
x∈∂B

3∑
s=2

L(2s−2)k|∇sϕ(x)|2 ≤

≤ h22c
∑
x∈B

Gk,x(ϕ) + h22cLk
∑
z∈∂B

gk,z(ϕ),
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where z is any point z ∈ B. Observing that the size of the set ∂B is at most
(Lk + 2)d − (Lk − 2)d ≤ 2dL(d−1)k once 2 ≤ L, we get the seeked bound once

(5.14) 2c ≤ ω − 1.

Observing that c < 3
√

2, this condition is satisfied with our choice of ω.
(iib) The proof is similar, with (5.11) replaced by

(5.15)

3Lk
∑
x∈∂Y

Gk,x(ϕ) ≤
∑
x∈X

(
(2dω − 1)gk:k+1,x(ϕ) + (ω − 1)Gk,x(ϕ)

)
+ 3Lk

∑
x∈∂(X∪Y )

Gk,x(ϕ)

that, in its turn, needs (5.12) in a slightly stronger version,

(5.16) 3Lk
∑
x∈∂B

Gk,x(ϕ) ≤
∑
x∈B

(
(2dω − 1)gk:k+1,x(ϕ) + (ω − 1)Gk,x(ϕ)

)
.

This is satisfied once

(5.17) 6c ≤ ω − 1.

(iii) follows immediately from the definition.
(iv) Since convolution commutes with differentiation we have

(5.18) Ds

∫
K(ϕ+ ξ)µk+1(dξ) =

∫
DsK(ϕ+ ξ)µk+1(dξ).

For a vector (A0, A1, . . . , Ar) consisting of A0 ∈ R and multilinear symmetric maps
As : X⊗s → R, s ∈ N, we consider the norm

(5.19) |(A0, . . . , Ar)| :=
r∑
s=0

1

s!
|As|k+1,X

with |As|k+1,X defined by (4.24). Then

|K(ϕ), DK(ϕ), . . . , DrK(ϕ))| = |K(ϕ)|k+1,X,r.

Now fix ϕ and apply Jensen’s inequality to map ξ 7→ (K(ϕ+ ξ), . . . , DrK(ϕ+ ξ)).
This yields

(5.20)
∣∣∣ ∫ K(ϕ+ ξ)µk+1(dξ)

∣∣∣k+1,X,r

=

∫
|K(ϕ+ ξ)|k+1,X,rµk+1(dξ).

Since

(5.21) |ϕ̇|k,X ≤ L
− d2 |ϕ̇|k+1,X ,

we also have

(5.22) |K(X,ϕ+ ξ)|k+1,X,r ≤ |K(X,ϕ+ ξ)|k,X .

As a result,

(5.23) ‖(Rk+1K)(X)‖k:k+1,X,r ≤ sup
ϕ

∫
|K(X,ϕ+ ξ)|k,X,rµk+1(dξ)w−Xk:k+1(ϕ).

Estimating the integrand |K(X,ϕ+ ξ)|k,X,r from above by

‖K(X)‖k,X,rw
X
k (ϕ+ ξ),
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the proof of the needed bound amounts to showing that

(5.24)

∫
XN

wXk (ϕ+ ξ)µk+1(dξ) ≤ 2|X|wXk:k+1(ϕ).

As this result will be used also later in different circumstances, we state it as a
separate Lemma.

Lemma 5.2. Let ω ≥ 1 + 6
√

2. There exists a constant h1 = h1(d, ω) such that
for any N ≥ 1, L odd, L ≥ 5, h ≥ Lκ(d)h1, k ∈ {0, . . . , N − 1}, K ∈ M(Pk,X ),
and any X ∈ Pk, we have

(5.25)

∫
XN

wXk (ϕ+ ξ)µk+1(dξ) ≤ 2|X|kwXk:k+1(ϕ).

Proof. We will prove the bound (5.25) in three steps:

Step 1. Expanding the terms (∇ϕ(x) +∇ξ(x))2 in
∑
x∈X Gk,x(ϕ + ξ) and using

the Cauchy’s inequality (a + b)2 ≤ 2a2 + 2b2 for the remaining terms (those that
are preceded by a power in L that allows to absorb the resulting prefactors while
passing to the next scale), we have

(5.26) h2
∑
x∈X

Gk,x(ϕ+ ξ) ≤
∑
x∈X

(
|∇ϕ(x)|2 + |∇ξ(x)|2

)
+ 2
∣∣∑
x∈X
∇ϕ(x)∇ξ(x)

∣∣+
+ 2

∑
x∈X

(
L2k|∇2ϕ(x)|2 + L2k|∇2ξ(x)|2 + L4k|∇3ϕ(x)|2 + L4k|∇3ξ(x)|2

)
.

For the remaining terms occurring in wXk (ϕ+ξ), we simply write (again by Cauchy’s
inequality)

(5.27) gk,x(ϕ+ ξ) ≤ 2gk,x(ϕ) + 2gk,x(ξ)

and

(5.28) LkGk,x(ϕ+ ξ) ≤ 2LkGk,x(ϕ) + 2LkGk,x(ξ).

Step 2. In view of Proposition B.6, we bound the mixed term 2
∣∣∑

x∈X ∇ϕ(x)∇ξ(x)
∣∣

by

(5.29)

L2k
∑

x∈X∪∂−X

|∇2ϕ(x)|2+Lk
∑

x∈∂−X

|∇ϕ(x)|2+
1 + cd

L2k

∑
x∈X∪∂−X

ξ(x)2+c
∑
x∈X
|∇ξ(x)|2.

The sum overX in the first term above will be estimated by the regulator gk:k+1,x(ϕ)
of the next generation. Namely, combining, for any x ∈ X, its terms with the cor-
responding ϕ-terms on the second line in (5.26), we have

(5.30) 3L2k|∇2ϕ(x)|2 + 2L4k|∇3ϕ(x)|2 ≤

≤ 3L−2L2(k+1)|∇2ϕ(x)|2 + 2L−4L4(k+1)|∇3ϕ(x)|2 ≤ 3L−2h2gk:k+1,x(ϕ),

where we are assuming that

(5.31) 2L−2 ≤ 3.
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The remaining sum over ∂−X \X, together with the second term in (5.29), will be
absorbed into the sum

∑
x∈∂X Gk,x(ϕ). Collecting now all the ϕ-terms in logwk(ϕ+

ξ) with expanded mixed term, we get the bound
(5.32)∑
x∈X

2d+1ωgk,x(ϕ) +
∑
x∈X

ωGk,x(ϕ) + 3ωL−2
∑
x∈X

gk:k+1,x(ϕ) + 3Lk
∑
x∈∂X

Gk,x(ϕ).

This is bounded by

(5.33) logwXk:k+1(ϕ) =
∑
x∈X

(
(2dω− 1)gk:k+1,x(ϕ) +ωGk,x(ϕ)

)
+ 3Lk

∑
x∈∂X

Gk,x(ϕ)

once

(5.34) (3 + 2d+1)ω ≤ (2dω − 1)L2.

This condition, including also (5.31), are satisfied once L ≥ 5.
Turning now to the ξ-terms in h2 logwk(ϕ+ ξ) with expanded mixed term, we

get the bound

(5.35)∑
x∈X

h22d+1ωgk,x(ξ) +
∑
x∈X

ω
(
(1 + c)|∇ξ(x)|2 + 2L2k|∇2ξ(x)|2 + 2L4k|∇3ξ(x)|2

)
+

+ ω(1 + cd)L−2k
∑

x∈X∪∂−X

ξ(x)2 + 2Lk
∑
x∈∂X

h2Gk,x(ξ).

Bounding the last term with the help of Proposition B.5, we get

(5.36)∑
x∈X

h22d+1ωgk,x(ξ) +
∑

x∈U1(X)

(
ω(1 + cd)L−2kξ(x)2 + (ω(1 + c) + 4c)|∇ξ(x)|2+

+ (2ω + 8c)L2k|∇2ξ(x)|2 + (2ω + 8c)L4k|∇3ξ(x)|2 + 4cL6k|∇4ξ(x)|2
)
.

Finally, the term gk,x(ξ) containing l∞-norm of ∇sξ, s = 2, 3, 4, is bounded
with the help of the Sobolev inequality from Proposition A.1. Taking B∗ for the
Bn with n = (2d+1 − 1)Lk, we get

(5.37) ‖∇sξ‖2l∞(B∗) ≤ C2(2d+1 − 1)2 1

Lkd

M̃∑
l=0

L2lk
∑
x∈B∗

|∇l∇sξ|2(x),

where M̃ = bd+2
2 c is the integer value of d+2

2 and in computing the pre-factor we

took into account that 2bd+2
2 c − d ≤ 2. Notice that the constant C depends (also

through M̃) only on the dimension d. As a result, we are getting

(5.38)
∑
x∈X

h22d+1ωgk,x(ξ) ≤

≤ 2d+1ω
∑
x∈X

4∑
s=2

L(2s−2)kC2(2d+1 − 1)2 1

Lkd

M∑
l=0

L2lk
∑
y∈B∗x

|∇l∇sξ|2(x) ≤

≤ 2d+1ω2d+1C2(2d+1 − 1)d+23L−2k
M+4∑
l=2

L2lk
∑
y∈X∗

|∇lξ|2(x),
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where in the last inequality we took into account that each point y ∈ X∗ may accur
in B∗x for at most (2d+1 − 1)dLdk points x ∈ X.

Summarising, under the conditions (5.31), (5.34), we have

(5.39) wXk (ϕ+ ξ) ≤ wXk:k+1(ϕ) exp
(
h−2 C

L2k

∑
x∈X∗

M+4∑
l=0

L2lk|∇lξ(x)|2
)

with the constant

(5.40) C = max{ω(1 + cd), ω(1 + c) + 4c, 2(ω + 8c) + 32d+1ωC2(2d+1 − 1)d+2}
that depends, afters ω is chosen, only on the dimension d.

Step 3. We first bound the term in ξ in (5.39) by a smooth Gaussian and then
bound the remaining integral. Let ηX∗ be a smooth cut-off function such that
supp ηX∗ ⊂ (X∗)∗, ηX∗ = 1 on X∗, and

(5.41)
∣∣∇lηX∗ ∣∣ ≤ ΘL−lk.

Then the bound in (5.39) implies taht

(5.42) wXk (ϕ+ ξ) ≤ wXk:k+1(ϕ) exp
(1

2
κ(Bkξ, ξ)

)
,

where κ = 2Ch−2 and

(5.43) (Bkξ, ξ) =
1

L2k

∑
x∈ΛN

M+4∑
l=0

L2lk
∣∣ηX∗(x)(∇lξ)(x)

∣∣2.
Explicitly,

(5.44) Bk = B
(0)

k +

M+4∑
l=1

B
(l)

k

with

(5.45) B
(l)

k ξ =
1

L2k
(∇l)∗η2

X∗∇lξ, l = 1, . . . , M̃ + 4, and B
(0)

k ξ =
1

L2k
Π(η2

X∗ξ),

where Π : VN → XN is the projection (Πϕ)(x) = ϕ(x) − 1
|ΛN |

∑
y∈ΛN

ϕ(y) (for

l ≥ 1 the projection is not needed since (1,∇∗iϕ) = (∇i1, ϕ) = 0).
It remains only to show that∫

XN

exp
(1

2
κ(Bkξ, ξ)

)
µk+1(dξ) ≤ 2|X|.

A formal Gaussian calculation with respect to the measure µk+1 with the covariance
operator Ck+1 yields

(5.46)

∫
XN

exp
(1

2
κ(Bkξ, ξ)

)
µk+1(dξ) =

(det(C−1
k+1 − κBk)

det(C−1
k+1)

)− 1
2

= det
(
I− κC

1
2

k+1BkC
1
2

k+1

)− 1
2

.

To justify this calculation we will derive a bound on the spectrum σ(C
1
2

k+1BkC
1
2

k+1)
in the following lemma.

Lemma 5.3. Using the shorthand η(d) := η(2bd+2
2 c + 8, d) = 2κ(d) − d, we

have:
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(i) The operators C
1
2

k+1BkC
1
2

k+1 are symmetric and positive definite.

There exist constants M0 and M1 that depend only on the dimension d such that
for any N and any k = 1, . . . , N,

(ii) supσ(C
1
2

k+1BkC
1
2

k+1) ≤M0L
d+η(d) and

(iii) Tr
(
C

1
2

k+1BkC
1
2

k+1

)
≤M1|X|kLη(d).

Postponing momentarily the proof of the Lemma, we first observe that κ <
1

2M0Ld+η(d) with h ≥ Lκ(d)4CM0, and thus the eigenvalues λj , j = 1, . . . , LNd − 1

of κC
1
2

k+1BkC
1
2

k+1 lie between 0 and 1
2 . The formal Gaussian calculation is then

justified and

(5.47)

log det
(
I−κC

1
2

k+1BkC
1
2

k+1

)
≥
∑
i

log(1−λi) ≥
∑
i

−2λi = −2Tr
(
κC

1
2

k+1BkC
1
2

k+1

)
≥ −2M1L

η(d)κ|X|k = −4CM1L
η(d)h−2|X|k.

Hence

(5.48) det
(
I− κC

1
2

k+1BkC
1
2

k+1

)− 1
2 ≤ e

2CM1|X|k
h2

Lη(d)

≤ e
2CM1|X|k

h21
L−d

and the Lemma 5.2 follows with

(5.49) h1(d, ω)2 ≥ 4C max
(
M0,

M1

5d2 log 2

)
.

�

Proof of Lemma 5.3.
The claim (i) follows from definitions.
The estimate (ii) follows from the estimate

(5.50) ‖BkCk+1ξ‖2 ≤M0L
d+η(d)‖ξ‖2 for all ξ ∈ XN .

For B
(0)

k , we first observe that

(5.51) L2k‖B(0)

k ξ‖2 = ‖Π(ηX∗)
2ξ‖2 ≤ ‖(ηX∗)

2ξ‖2 ≤ ‖ξ‖2.

In view of Proposition 4.1, the operator Ck+1 acts by convolution with respect to the
function Ck+1. With the bounds (5.51), (4.2), (4.3), and cmax = max|α|≤2(M+4) cα,0,

we have (recall that η(0, d) ≤ η(2bd+2
2 c+ 8, d) = η(d)))

(5.52)

‖B(0)

k Ck+1ξ‖2 ≤ L
−2k‖Ck+1ξ‖2 ≤ L

−2k
∑
z∈ΛN

|Ck+1(z)|‖ξ‖2 ≤ cmaxL
d+η(d)‖ξ‖2.

For B
(l)

k we use the discrete product rule

(5.53) ∇i(fg) = ∇ifSig + Sif∇ig,

where

(5.54) (Sif)(x) := 1
2f(x) + 1

2f(x+ ei).

The operations Si commute with all discrete derivatives. Using multiindex notation

(5.55) ∇α :=

d∏
i=1

∇αii and Sα :=

d∏
i=1

Sαii ,



50 5. PROPERTIES OF THE NORMS

we get the Leibniz rule

(5.56) ∇γ(fg) =
∑

α+β=γ

Cα,β
(
Sα∇βf

)(
Sβ∇αg

)
,

with suitable constants Cα,β. Thus

(5.57) B
(l)

k Ck+1ξ = L(2l−2)k
∑
|γ|=l

∑
α+β=γ

Cα,βS
α(∇β)∗(ηX∗)

2Sβ(∇α)∗∇γCk+1ξ.

Notice that ‖Sβ‖ = 1 (with the operator norm induced by l2 norms on VN ). Further,
using (5.41), (4.23), and again (5.56), we have

(5.58)
∣∣(∇β)∗(ηX∗)

2
∣∣ ≤ Θ2CmaxL

−k|β|

with

(5.59) Cmax =
∑
α,β

|α+β|≤M+4

Cα,β.

As a result we get, recalling that l ≤ M̃ + 4, where M̃ = bd+2
2 c, and that

η(2(M̃ + 4), d) = η(d),

(5.60) ‖B(l)

k Ck+1‖ ≤

≤ L(2l−2)k
∑
|γ|=l

∑
α+β=γ

Cα,βΘ
2CmaxL

−k|β|L(k+1)dcmaxL
−k(d−2+|α|+l)Lη(d) ≤

≤ Θ2C2
maxcmaxL

d+η(d).

This completes the proof of (ii) with M0 = Θ2C2
maxcmax.

To prove the estimate (iii), we first observe that Ck1lΛN = 0. Hence BkCk can be
viewed as an operator from VN (instead of XN ) to VN with the same trace. To
compute the trace of BkCk+1 we now use the orthonormal basis given by the unit
coordinate vectors

(5.61) ex(z) =

{
1 , z = x,
0 , z 6= x.

According to (5.57), for l ≥ 1 we get

(5.62)
∣∣(ex,B(l)

k Ck+1ex)
∣∣ = 0 whenever x /∈ (X∗)∗.

For x ∈ (X∗)∗ we use (5.57) and the bound

(5.63) sup
z

∣∣(∇α)∗∇γCk+1(z)
∣∣ ≤ cmaxL

−k(d−2+|α|+|γ|)Lη(d)

to conclude that

(5.64)
∣∣(ex,B(l)

k Ck+1ex)
∣∣ ≤ Θ2C2

maxcmaxL
−kd+η(d)

and

(5.65) TrB(l)

k Ck+1 =
∑
x∈ΛN

(ex,B
(l)

k Ck+1ex) ≤ Θ2C2
maxcmax2d+2Lη(d)|X|k.
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For B
(0)

k , we explicitly express the projection, Πex = ex − 1lΛN
1
|ΛN | , yielding

(5.66) L2k(ex,B
(0)

k Ck+1ex) = (Πex, η
2
X∗Ck+1ex) =

= (ex, η
2
X∗Ck+1ex)− (1lΛN

1

|ΛN |
, η2
X∗Ck+1ex)

= η2
X∗(x)Ck+1(0)− 1

|ΛN |
(1lΛN , η

2
X∗Ck+1ex).

Therefore

(5.67) TrB(0)

k Ck+1 =
∑
x∈ΛN

(ex,B
(0)

k Ck+1ex) =

= L−2k
( ∑
x∈ΛN

η2
X∗(x)

)
Ck+1(0)− 1

|ΛN |
(1lΛN , η

2
X∗Ck+11lΛN ) ≤

≤ L−2kcmaxL
−k(d−2)Lη(d)

∑
x∈(X∗)∗

1 ≤ cmax2d+2Lη(d)|X|k.

Thus

Tr
(
BkCk+1

)
≤ C

∣∣(X∗)∗∣∣
k
≤ (M + 5)Θ2C2

maxcmax2d+2Lη(d)|X|k.

We get the claim (iii) with M1 = (M̃ + 5)Θ2C2
maxcmax2d+2. �

Remark 5.4. Notice that, with the particular values of M0 and M1 given
above, we can choose h1 fulfilling (5.49) by taking

(5.68) h2
1 = C(M̃ + 5)M0.

�





CHAPTER 6

Smoothness

We prove Proposition 4.6 asserting the smoothness of the renormalisation map

(6.1) S : U ×B 1
2
⊂ (M0(B,X )×M(Pc,X ))× Rd×dsym →M((P ′)c,X )

on a suitable scale of functions spaces. Here, B = Bk, P = Pk, and P ′ = Pk+1

with k fixed. (Later, when the dependence of the map S on k will be crucial, we
will use the notation Sk instead of S.) Let us recall the explicit formula (4.68) for
Kk+1 = K ′ = S(H,K, q),

(6.2) K ′(U,ϕ) =
∑

X∈P(U)

χ(X,U)ĨU\X(ϕ)

∫
X

(
J̃(ϕ) ◦ P (ϕ+ ξ)

)
(X)µk+1(dξ)

with Ĩ = e−H̃ , J̃ = 1− Ĩ, P = (I − 1) ◦K, and I = e−H .
It will be useful to split the map S into a composition of a series of maps

and to deal with them one by one. To this end, we first recall the notation
for relevant normed spaces. In Section 4.4 we have already introduced the se-
quence of normed spaces M = M r0 ↪→ M r0−2 ↪→ . . . ↪→ M r0−2m, defined as

M r = {K ∈ M(Pc,X ) : ‖K‖(A)
k,r < ∞} and equipped with the norm ‖·‖(A)

k,r ,

r = r0, r0 − 2, . . . , r0 − 2m, the space M0 = (M(Bk,X ), ‖·‖k,0), and the se-

quence of spaces M ′ = M ′
r0 ↪→ M ′

r0−2 ↪→ . . . ↪→ M ′
r0−2m with M ′

r = {K ∈
M(Pc

k+1,X ), ‖K‖(A)
r,k+1 < ∞}, equipped with the norm ‖·‖(A)

k+1,r, r = r0, r0 −
2, . . . , r0 − 2m. We also introduce the space M |‖ = {F ∈M(B,X ), |‖F‖|k <∞}.

One difficulty is that convolution with the measure µk+1 does not preserve the
factorization in connected k-polymers.1 More precisely, if

K(X,ϕ) =
∏

Y ∈C(X)

K(Y, ϕ)

and if

RK(X,ϕ) :=

∫
X
K(X,ϕ+ ξ)µk+1(dξ),

then in general

RK(X,ϕ) 6=
∏

Y ∈C(X)

RK(Y, ϕ)

because the support of the covariance Ck+1 has range bounded by Lk+1/2 but not by
Lk/2. Thus we cannot only consider functionals defined for connected k-polymers
but we need to consider functionals which involve all k-polymers and we define

(6.3) M̂ r := {K ∈M(Pk,X ), ‖K‖(A,B)
k,r <∞},

1We are grateful to S. Buchholz for pointing this out and for suggesting the use of the norm

‖ · ‖(A,B)
k,r .

53
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(6.4) M̂ :,r := {K ∈M(Pk,X ), ‖K‖(A,B)
k:k+1,r <∞},

where

(6.5) ‖K‖(A,B)
k,r := sup

X∈Pk\∅
ΓA(X)B|C(X)| ‖K(X)‖k,X,r

with

(6.6) ΓA(X) :=
∏

Y ∈C(X)

ΓA(Y ) for X ∈ P \∅

and where ‖·‖(A,B)
k:k+1,r is defined in the same way using ‖K(X)‖k:k+1,X,r. Note that

the definition of the spaces does not depend on the weights A > 0 and B > 0 since
there are only finitely many polymers.

The map S will be rewritten as a composition of several partial maps:
The exponential map,

E : M0 →M |‖ defined by(6.7)

E(H̃) = exp{−H̃} = Ĩ ,(6.8)

three polynomial maps,

P1 : M |‖ ×M |‖ × M̂ :,r0 →M ′
r0 defined by(6.9)

P1(Ĩ , J̃ , P̃ )(U,ϕ) =
∑

X1,X2∈P(U)
X1∩X2=∅

χ(X1 ∪X2, U)ĨU\(X1∪X2)(ϕ)J̃X1(ϕ)P̃ (X2, ϕ),(6.10)

P2 : M |‖ ×M r →M r defined by(6.11)

P2(I,K) = (I − 1) ◦K,(6.12)

P3 : M r → M̂ r,(6.13)

(P3K)(X,ϕ) =
∏

Y ∈C(X)

K(Y, ϕ)(6.14)

and, finally, two linear renormalisation maps that are the source of loss of regularity,

R1 : M̂ r0 ×B 1
2
→ M̂ :,r0 defined by(6.15)

R1(P, q)(X,ϕ) = (R(q)P )(X,ϕ) =

∫
X
P (X,ϕ+ ξ)µ

(q)
k+1(dξ), X ∈ P,(6.16)

R2 : M0 ×M r0 ×B 1
2
→M0 defined by(6.17)

R2(H,K, q)(B,ϕ) = Π2

(
(R(q)H)(B,ϕ)−

∑
X∈S
X⊃B

1
|X| (R

(q)K)(X,ϕ)
)
,(6.18)

where we write B 1
2

=
{
q ∈ Rd×dsym : ‖q‖ < 1

2

}
.

In terms of these maps we have
(6.19)
S(H,K, q) = P1

(
E(R2(H,K, q)), 1− E(R2(H,K, q)), R1(P3(P2(E(H),K)), q)

)
.

Notice that the norms on the corresponding spaces are chosen in a natural way,
with the exception of the space M(P,X ) in the role of the domain space of the
map P1 as well as the target space of the map R1, that comes equipped with the

norm ‖·‖(A,B)
k:k+1,r0

. This is driven by the bound (iv) from Lemma 5.1 that makes the
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norm ‖K(X, ·)‖k:k+1,r natural for the map R1. The additional weight B|C(X)| in

the norms of M̂ r and M̂ :,r plays an important role in the estimates for the map
P1 and is a substitute for the fact that we no longer deal with maps which factor in
connected k-polymers. More precisely if K factors we can use the bound (i) from
Lemma 5.1 to conclude that

‖K(X)‖k,X,r ≤
∏

Y ∈C(X)

‖K(Y )‖k,Y,r ≤ ΓA(X)−1
[
‖K‖(A)

k,r

]|C(X)|
.

This provides additional smallness if ‖K‖(A)
k,r is small and the number of connected

components |C(X)| is large. If K does not factor we can use the bound

‖K(X)‖k,X,r ≤ ΓA(X)−1B−|C(X)|‖K‖(A,B)
k,r

instead to get a good decay for a large number of components.
The dependence on the parameters A and B in the definition of the weak norms

(4.41) and in the norm (6.5) plays an important role here, we thus incorporate it

explicitly into the notation and write, e.g., ‖·‖(A)
k,r . Note that for a fixed N (where

LN is the system size) the norms ‖·‖(A)
k,r and ‖·‖(A,B)

k,r are equivalent for all A > 0

and B > 0 (because there are only finitely many polymers), but the constant in
the equivalences depend strongly on N . Since we are interested in bounds on the
derivatives which are independent of N a careful choice of the parameters A and B
is crucial.

In the following sections we will show that all maps introduced above belong to

the class C̃m(X ×B 1
2
,Y ), introduced in Appendix D, for suitable scales of spaces

X = Xm ↪→ . . . ↪→ X0 and Y = Y m ↪→ . . . ↪→ Y 0. Finally we will use the chain

rule in the C̃m spaces to show that the same regularity for the composed map S,
see Section 6.7. In fact the maps above actually possess arbitrarily many Fréchet

derivatives (or are even real-analytic) but the setting of the C̃m spaces is setting
which naturally goes with the estimates that are independent of N (where LN is
the system size).

Let us first discuss the partial maps one by one, starting from the most interior
one in the composition (6.19).

6.1. Immersion E : M0 →M |‖

While the norm ‖H‖k,0 is expressed directly in terms of the co-ordinates λ, a, c,d

of the ideal Hamiltonian H ∈ M0, the terms involving E(H)(B,ϕ) = e−H(B,ϕ)

will be evaluated with the help of the norm |‖·‖|k. Considering thus the map
E : M0 →M |‖, we have:

Lemma 6.1. We have |‖H‖|k ≤ 5‖H‖k,0 for any H ∈ M0. Moreover, there

exist constants δ = δ(r0) and C = C(r0) so that E is smooth on Bδ = {H ∈
M0 : ‖H‖k,0 < δ} with uniformly bounded derivatives,

(6.20) |‖DjE(H)(Ḣ, . . . , Ḣ)‖|k ≤ C‖Ḣ‖
j
k,0, j ≤ m.

In particular we have

(6.21) |‖E(H)− 1‖|k ≤ C‖H‖k,0.
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Remark 6.2. The definition of norm |‖·‖|k involves the parameter r0 (see
(4.30)) but the statement does not depend on r0. �

Proof. Let H ∈M0 and B ∈ B. First, we estimate |‖H(B, ·)‖|k,B by ‖H‖k,0.

In view of the definitions (4.30) and (4.25), we need to compute the norms

|DpH(B,ϕ)|k,B , p = 0, 1, 2,

(the higher derivatives vanish as H is a quadratic function).
Starting with p = 0 and recalling the definitions (4.18)–(4.20), we get

(6.22) |D0H(B,ϕ)|k,B = |H(B,ϕ)| ≤ |λ|Ldk + L
dk
2

d∑
i=1

|ai|
(∑
x∈B
|∇ϕ(x)|2

)1/2
+

+ L
dk
2

d∑
i,j=1

|ci,j |
(∑
x∈B
|∇2ϕ(x)|2

)1/2
+
∑
x∈B
|∇ϕ(x)|2 1

2

d∑
i,j=1

|di,j |.

Here, when evaluating the term
∑
x∈B

∑d
i=1|ai||∇iϕ(x)|, we first apply the Cauchy-

Schwarz inequality in Rd and using the bound |a| =
(∑d

i=1 |ai|2
)1/2 ≤∑d

i=1 |ai| =
|a|1, we then employ the Cauchy-Schwarz inequality for the second time on the

sum
∑
x∈B 1 · |∇ϕ(x)| with |∇ϕ(x)|2 =

∑d
i=1|∇iϕ(x)|2. Similarly we treat the

next term with |∇2ϕ(x)|2 =
∑d
i,j=1|∇i∇jϕ(x)|2. In the last term we just use

the bound
∣∣ 1

2

∑d
i,j=1 di,j∇iϕ(x)∇jϕ(x)

∣∣ ≤ 1
2‖d‖|∇ϕ(x)|2 and then evaluate the

operator norm, ‖d‖ ≤ (
∑d
i,j+1 d

2
i,j)

1/2 ≤
∑d
i,j=1|di,j |.

Hence,

(6.23)
∣∣H(B,ϕ)

∣∣ ≤
≤ ‖H‖k,0

(
1 +

1

h

(∑
x∈B
|∇ϕ(x)|2

)1/2
+

1

h
Lk
(∑
x∈B
|∇2ϕ(x)|2

)1/2
+

1

h2

∑
x∈B
|∇ϕ(x)|2

)
≤ 2‖H‖k,0

(
1+

1

h2

∑
x∈B

(
|∇ϕ(x)|2 +L2k|∇2ϕ(x)|2

))
≤ 2‖H‖k,0

(
1+logWB(ϕ)

)
,

where we took into account the definition (4.28) of the weight function WB(ϕ) =
WB
k (ϕ).

Similarly, taking into account that DH(B,ϕ)(ϕ̇) = `(ϕ̇) + 2Q(ϕ, ϕ̇), we get

(6.24) |DH(B,ϕ)|k,B = sup
|ϕ̇|k,B≤1

|`(ϕ̇) + 2Q(ϕ, ϕ̇)| ≤

≤ sup{|`(ϕ̇)|+|2Q(ϕ, ϕ̇)| : sup
x∈B∗

|∇ϕ̇(x)| ≤ hL− kd2 and sup
x∈B∗

|∇2ϕ̇(x)| ≤ hL− kd2 −k}

≤ hL−
kd
2
{
Lkd

∑
i=1

|ai|+ LkdL−k
d∑

i,j=1

|ci,j |+
d∑

i,j=1

|di,j |
∑
x∈B
|(∇ϕ)(x)

)
|
}
≤

≤ ‖H‖k,0
(
1 +

1

h

(∑
x∈B
|∇ϕ(x)|2

)1/2) ≤ 2‖H‖k,0
(
1 + logWB(ϕ)

)
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and

(6.25) |D2H(B,ϕ)|k,B ≤ 2h2L−dkLdk
d∑

i,j=1

|di,j | ≤ 2‖H‖k,0.

Recalling that D3H(B,ϕ)(ψ̇, ψ̇, ψ̇) = 0, we finally get
(6.26)

|‖H‖|k = |‖H(B, ·)‖|k,B ≤ 5 sup
ϕ
W−Bk (ϕ)‖H‖k,0(1 + logWB(ϕ)) ≤ 5‖H‖k,0.

To get |‖E(H)‖|k, we need to compute the norms |DpE(H)(B,ϕ)|k,B , p =
0, . . . , r0. Using again Faà di Bruno’s chain rule for higher order derivatives and
the bounds (6.23), (6.24), and (6.25), we get

(6.27) |DpE(H)(B,ϕ)|k,B ≤ Br0e−H(B,ϕ)
(

1 + 2‖H‖k,0(1 + logWB(ϕ))
)p

with the constant Br0 ≤ r
r0
0 bounding the number of partitions of the set {1, . . . , p}.

Hence,

(6.28)

|‖E(H)‖|k ≤ Br0 sup
ϕ

e−H(B,ϕ)W−B(ϕ)

r0∑
p=0

(
1 + 2‖H‖k,0(1 + logWB(ϕ))

)p ≤
≤ Br0

r0∑
p=0

sup
ϕ

e2‖H‖k,0(1+logWB(ϕ))W−B(ϕ)e2p‖H‖k,0(1+logWB(ϕ)) ≤

≤ (r0 + 1)Br0e2(1+r0)‖H‖k,0 sup
ϕ

e2‖H‖k,0(1+r0) logWB(ϕ)W−B(ϕ) < e(r0 + 1)Br0

once ‖H‖k,0 is sufficiently small to assure that 2‖H‖k,0(1 + r0) ≤ 1 (we took into

account that WB(ϕ) ≥ 1).
Computing the derivative of the exponent E(H) as a composed function, we get

DE(H)(Ḣ)(B,ϕ) = E(H)(B,ϕ)Ḣ(B,ϕ). Using, similarly as when proving (5.1),
the fact that a Taylor expansion of a product is the product of Taylor expansions,
we get

(6.29) |DE(H)(Ḣ)(B,ϕ)|k,B,r0 ≤ |E(H)(B,ϕ)|k,B,r0 |Ḣ(B,ϕ)|k,B,r0 .
Applying now (6.27) and (6.23)–(6.25), we get

(6.30) |DE(H)(Ḣ)(B,ϕ)|k,B,r0 ≤

≤ e−H(B,ϕ)(r0 + 1)
(
1 + 2‖H‖k,0(1 + logWB(ϕ))

)r0
5 ‖Ḣ‖k,0(1 + logWB(ϕ))

yielding

|‖DE(H)(Ḣ)‖|k(6.31)

≤ sup
ϕ

e−H(B,ϕ)(r0 + 1)W−B(ϕ)e2r0‖H‖k,0(1+logWB(ϕ)) 10 ‖Ḣ‖k,0e
1
2 logWB(ϕ)

≤10 e(r0 + 1)‖Ḣ‖k,0
if 4r0‖H‖k,0 ≤ 1. Similarly, we get the bounds for higher derivatives. Formally the

estimate (6.21) follows from (6.20) and the identity

E(H)− 1 =

∫ 1

0

DE(tH)(H) dt.
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�

6.2. The map P2

Lemma 6.3. Consider the map P2 : M |‖ ×M r → M r defined in (6.12), re-
stricted to Bρ1(1)×Bρ2 ⊂M |‖ ×M r with the balls Bρ1(1) = {I : |‖I − 1‖|k < ρ1}
and Bρ2 = {K : ‖K‖(A)

k,r < ρ2} and the target space M r equipped with the norm

‖·‖(A/2)
k,r . For any A ≥ 2 and ρ1, ρ2 such that

(6.32) ρ1 < (2A)−1, and ρ2 < (2A2d)−1,

the map P2 restricted to Bρ1 ×Bρ2 is smooth and satisfies the bound

(6.33)

1

j1!j2!

∥∥(Dj1
1 D

j2
2 P2)(I,K)(İ , . . . , İ, K̇, . . . , K̇)

∥∥(A/2)

k,r

≤ (2A)j1
(
2A2d

)j2 |‖İ‖|j1k (‖K̇‖(A)
k,r

)j2
for any j1, j2 ∈ N. In particular,

(6.34) ‖P2(I,K)‖(A/2)
k,r ≤ 2A|‖I − 1‖|k + 2A2d‖K‖(A)

k,r .

Proof. Recall that

(6.35)
(
(I − 1) ◦K

)
(X) =

∑
Y ∈P(X)

(I − 1)X\YK(Y ), X ∈ Pc,

with (I−1)X\Y =
∏
B∈B(X\Y )

(
I(B)−1

)
and K(Y ) =

∏
Z∈C(Y )K(Z), where C(Y )

denotes the set of components of Y ∈ P.
Hence,

(6.36)
1

j1!j2!

(
Dj1

1 D
j2
2

(
(I − 1) ◦K

)
(X)(İ , . . . , İ, K̇, . . . , K̇) =

=
∑

Y ∈P(X),Y1∈P(X\Y ),|Y1|=j1
J⊂C(Y ),|J |=j2

(I − 1)(X\Y )\Y1 İY1

∏
Z∈C(Y )\J

K(Z)
∏
Z∈J

K̇(Z).

Further, recall that, by definition of the norm ‖K‖(A)
k,r , we have

‖K(Z)‖k,Z,r ≤ ΓA(Z)−1‖K‖(A)
k,r for any Z ∈ Pc

k.

Notice also that

(6.37) A|Z|−2d ≤ max(1,A|Z|−2d) ≤ ΓA(Z) ≤ A|Z|

for any A ≥ 1 and any Z ∈ Pc. Using the bounds (iia) and (i) from Lemma 5.1,
assumptions (6.32), as well as the lower bound on ΓA(Z) above and the fact that
the number of terms in the sum is bounded by 2|X|, we get

(6.38) ‖P2(I,K)(X)‖k,X,r ≤

≤
∑

Y ∈P(X)

|‖I − 1‖||X\Y |k

(
‖K‖(A)k,r

)|C(Y )|
A2d|C(Y )|A−|Y | ≤ A−|X|2|X| =

(
A
2

)−|X|
,



6.3. THE MAP P3 59

cf. [Bry09, Lemma 6.3]. Similarly, using that
(
n
j

)
≤ 2n, we get the claim

(6.39)
1

j1!j2!
‖(Dj1

1 D
j2
2 P2)(I,K)(X)(İ , . . . , İ, K̇, . . . , K̇)‖k,X,r

≤
∑

Y ∈P(X)

(|X\Y |
j1

)
|‖I − 1‖||X\Y |−j1k |‖İ‖|j1k

(|C(Y )|
j2

)
×
(
‖K‖(A)

k,r

)|C(Y )|−j2(‖K̇‖(A)
k,r

)j2A2dC(Y )A−|Y |

≤
∑

Y ∈P(X)

2|X\Y |(2A)−(|X\Y |−j1)|‖İ‖|j1k 2|C(Y )|(2A2d)−(|C(Y )|−j2)
(
‖K̇‖(A)

k,r

)j2
× A2dC(Y )A−|Y | =

=
∑

Y ∈P(X)

2j1A−(|X\Y |−j1)|‖İ‖|j1k 2j2Aj22d
(
‖K̇‖(A)

k,r

)j2
A−|Y |

≤ 2|X|(2A)j1 |‖İ‖|j1k (2A2d)j2
(
‖K̇‖(A)

k,r

)j2A−|X|.
Finally, (6.34) follows from the fact that P2(1, 0) = 0 and

(6.40)

d

dt
P2(1 + t(I − 1), tK) = D1P2(1 + t(I − 1), tK)(I − 1)

+D2P2(1 + t(I − 1), tK)K.

�

6.3. The map P3

Lemma 6.4. Let A ≥ 1, B ≥ 1. Consider the map P3 : M r → M̂ r defined by

(6.41) (P3K)(X) =
∏

Y ∈C(X)

K(Y ).

restricted to Bρ = {K ∈M r : ‖K‖(A)
k,r < ρ} and the target space M̂ r equipped with

the norm ‖·‖(A,B)
k,r . For any

(6.42) ρ ≤ (2B)−1

the map P3 restricted to Bρ is smooth and satisfies the bound

(6.43)
1

j!

∥∥(Dj
1P3)(K)(K̇, . . . , K̇)

∥∥(A,B)

k,r
≤
(
2B‖K̇‖(A)

k,r

)j
for any j1, j2 ∈ N.

Proof. The proof is similar to, but simpler than, the proof of Lemma 6.3. We
have

(6.44)
1

j!
DjP3(K)(X)(K̇, . . . , K̇) =

∑
J⊂C(X),|J |=j

∏
Z∈C(X)\J

K(Z)
∏
Z∈J

K̇(Z).
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Thus using the estimate
(|C(X)

j

)
≤ 2|C(X) and the identity ΓA(X) =

∏
Z∈C(X) ΓA(Z)

and arguing as in the proof of Lemma 6.3 we get
(6.45)

B|C(X)|ΓA(X)
1

j!
‖DjP3(K)(X)(K̇, . . . , K̇)‖k,X,r ≤(2B)|C(X)|

(
‖K‖(A)

k,r

)|C(X)|−j
×

×
(
‖K̇‖(A)

k,r

)j
.

Since 2B‖K‖(A)
k,r ≤ 2Bρ ≤ 1 it follows that

(6.46)
1

j!
‖DjP3(K)(X)(K̇, . . . , K̇)‖(A,B)

k,r ≤
(

2B‖K̇‖(A)
k,r

)j
and this finishes the proof. �

6.4. The map R1

Lemma 6.5. Let m ∈ N, 2m ≤ r0, and for any n = 0, 1, . . . ,m, let Xn denote

the space M̂ r0−2m+2n equipped with the norm ‖·‖Xn
= ‖·‖(A,B)

k,r0−2m+2n and Y n the

space M̂:,r0−2m+2n equipped with the norm ‖·‖Y n = ‖·‖(A/2,B/2
2d )

k:k+1,r0−2m+2n. Further, let

B 1
2

= {q ∈ Rd×dsym : ‖q‖ < 1
2}. Consider the map R1 : X×B 1

2
→ Y defined in (6.16)

with X = Xm = M̂ r0 and Y = Ym = M̂ :,r0 . There exists a constant C = C(r0, d)

such that for any h ≥ Lκ(d)h1 with h1 = h1(d, ω) and κ(d) as in Lemma 5.1 (iv)
(see (5.68)), A ≥ 2, and any r = 1, . . . , r0, we have

(6.47) R1 ∈ C̃m(X ×B 1
2
,Y ).

Moreover the constants in the estimates of the relevant derivatives are independent
of k and N . More precisely for 0 ≤ ` ≤ m, 0 ≤ n ≤ m − `, there are C(n, d) > 0
such that

‖D`
2R1(P, q, q̇`)‖Y n ≤ C(n, d)‖P‖Xn+`

‖q̇‖`,(6.48)

‖D1D
`
2R1(P, q, Ṗ , q̇`)‖Y n ≤ C(n, d)‖Ṗ‖Xn+`

‖q̇‖`,(6.49)

D2
1D

`
2R1(P, q, Ṗ 2, q̇`) = 0.(6.50)

Remark 6.6. (i) Note that (6.49) follows from (6.48) since R1 is linear in the
first argument, whereas (6.50) is trivial.
(ii) The proof below actually shows that

(6.51) ‖D`
2R1(P, q, q̇`)(X)‖k:k+1,X,n ≤ C(n, d)2|X|‖P (X)‖k,X,n+`‖q̇‖

`

The estimate (6.48) then follows by the choice of weights A/2 and B/22d on the
target space, see Step 2 of the proof.
(iv) It follows from Step 1 in the proof, the bound

‖R(q)P (X)‖k:k+1,X,r ≤ 2|X|k‖P (X)‖k,X,r
in Step 2 of the proof and the linearity of R1 in the first argument that R1 is
actually a real-analytic map from Xr × B 1

2
to Y r without any loss of regularity.

The bounds on the corresponding derivatives depend, however, on the system size
N and the level k, while the bounds stated in Lemma 6.5 do not. �
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Proof. Recall from (6.16) that

R1(P, q)(X,ϕ) = (R(q)P )(X,ϕ) =

∫
X
P (X,ϕ+ ξ)µ(q)

k+1(dξ).

The fact that R1 maps Mm × B 1
2

to Ym follows from Lemma 5.1(iv). Note that

R1 is linear in P . Thus by Lemma D.31 it suffices to show that

(i) For each P ∈Xm and 0 ≤ ` ≤ m the map q 7→ R(q)P is in C`∗(B 1
2
;Y m−`).

(ii) For each q0 ∈ B 1
2

there exist δ, C > 0 such that

‖D`
qR

(q)(P, q), q̇`)‖Y n ≤ C‖P‖Xn+`
‖q̇‖`

for any 0 ≤ ` ≤ m, 0 ≤ n ≤ m− `, and for all (P, q, q̇) ∈ Xm ×Bδ(q0)×
Rd×dsym .

We split the proof of (i) and (ii) into seven steps below. Note that the required
constant C will be given as the maximum of all constants in (6.48) and (6.49). We
first show (i) in step 1 below. Indeed we even show that q 7→ R(q)P is real-analytic
with values in Y m ⊂ Y m−`.

Step 1: Assume that P ∈ M r = (Mr(Pc
k,X ), ‖·‖(A)k,r) for some r ∈ {r0, . . . , r0 −

2m}. Then the map
q 7→ R1(P, q)

is real-analytic from B 1
2

to M :,r = (Mr(Pc
k,X ), ‖·‖(A/2)k:k+1,r). First it suffices to show

the result for r = 0, since differentiation with respect to ϕ commutes with R(q).
Secondly it suffices to consider a fixed polymer X, since there are only finitely many
polymers. Thus we need to show the following: If

‖P (X)‖k,X,0 = sup
ξ

|P (X, ξ)|
wXk (ξ)

<∞,

then the map

B 1
2
3 q 7→

∫
X
P (X, ·+ ξ)µ

C
(q)
k+1

(dξ)

is real-analytic with values in the space of continuous functions F of the field with
the weighted norm

‖F‖k:k+1,X,0 = sup
ϕ

|F (ϕ)|
wXk:k+1(ϕ)

.

This follows from Gaussian calculus (see Lemma C.1), Lemma 5.3 and the properties
of the finite range decomposition, see Proposition 4.1. To see this recall (5.42), i.e.,

wXk (ϕ+ ξ) ≤ wXk:k+1(ϕ)e
1
2κ(Bkξ,ξ),

where κ = 2Ch−2 and Bk is given by (5.43). If h1 and κ(d) are chosen as in
Lemma 5.1 and h ≥ Lκ(d)h1 then it follows from Lemma 5.3 that for q ∈ B 1

2
and

Ck+1 = C
(q)

k+1 we have

(6.52) 0 ≤ C
1/2
k+1κBkC

1/2
k+1 ≤

1

2
Id and hence C−1

k+1 > κBk,

i.e.,
B 1

2
3 q 7→ Uk,

where we define
Uk := {C ∈ Sym(+)(X ) : C−1 > κBk}.
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By Lemma C.1 the map

C 7→
∫
X
P (·+ ξ)µC(dξ)

is real-analytic from Uk to the desired space. Finally, by Proposition 4.1 and (6.52)
the map q 7→ C

(q)

k+1 is real-analytic from B 1
2

to Uk.

Hence q 7→ R1(P, q) is real-analytic from B 1
2

to the space M :,r, and thus (i)

is proven.

In the remaining steps we are going to prove (ii). In step 2 we show the bounds
for ` = 0 followed by the bound for ` = 1 in step 3 to step 6. The bounds for higher
derivatives are then finally settled in step 7.

Step 2: Bounds on R(q). By Lemma 5.1(iv) we have for all q ∈ B 1
2

the following

estimate
‖R(q)P (X)‖k:k+1,X,r ≤ 2|X|k‖P (X)‖k,X,r.

For connected polymers Y we have

(6.53) 2|Y |ΓA/2(Y ) ≤ 22dΓA(Y ).

Thus for general polymer X we get

(6.54) 2|X|ΓA/2(X) ≤ 22d|C(X)|ΓA(X).

and thus

(6.55) 2|X|
(
B/22d

)|C(X)|
ΓA/2(X) ≤ B|C(X)|ΓA(X).

Therefore

‖R(q)P‖(A/2,B/2
2d )

k:k+1,r ≤ ‖P‖(A,B)k,r ,

and hence with r = r0 − 2m+ 2n we obtain

(6.56) ‖R1(P, q)‖Y n = ‖R(q)P‖Y n ≤ ‖P‖Xn
, for all q ∈ B 1

2
.

Step 3: Bounds for D2R1(P, q, q̇). Let q ∈ B 1
2

and ‖q̇‖ = 1 and write γ(t) =

q + tq̇ in the following. By Lemma C.2 and (C.23) we have

D2R1(P, q, q̇)(X,ϕ) =
d

dt

∣∣∣
t=0

∫
X
P (X,ϕ+ ξ)µ

C
(γ(t))
k+1

(dξ)

=

∫
X
AĊk+1

P (X,ϕ+ ξ)µ
C

(q)
k+1

(dξ) = (R(q)AĊk+1
P )(X,ϕ)

with

Ċk+1 =
d

dt

∣∣∣
t=0

C
(γ(t))

k+1

and where the functional AĊk+1
is defined as

AĊk+1
P (X, ξ) =

LdN−1∑
i,j=1

D2P (X, ξ, ei, ej)(Ċk+1)i,j ,

where {ej}L
dN−1

j=1 is any orthonormal basis of X and (Ċk+1)i,j = (Ċk+1ei, ej). By
Step 2 we obtain the following bound for the derivative with respect to q, for
0 ≤ n ≤ m− 1,

(6.57) ‖D2R1(P, q, q̇)‖Y n ≤ ‖AĊk+1
P‖Xn

.
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Step 4: Estimate for ‖AĊk+1
P‖. We now express and estimate the functional

AĊk+1
P using the orthonormal Fourier basis {fp}p∈T̂N of the (complexified space)

X given by

(6.58) fp(x) =
ei〈p,x〉

LdN/2
, p ∈ T̂N , x ∈ ΛN .

We denote by
˙̂Ck+1(p) the Fourier multiplier of Ċk+1. Now C

(q)

k+1 and hence Ċk+1

are diagonal in the Fourier basis and

Ċk+1fp =
˙̂Ck+1(p)fp with

˙̂Ck+1(p) ∈ R.

Thus by (C.13)

AĊk+1
P (X, ξ) =

∑
p∈T̂N

D2P (X, ξ, Ċk+1fp, fp)

∑
p∈T̂N

D2P (X, ξ, fp, fp)
˙̂Ck+1(p).

We claim that
(6.59)

|AĊk+1
D2P (X, ξ)Ċk+1)|k,X,r−2 ≤ r(r − 1)|P (X, ξ)|k,X,r

∑
p∈T̂N\{0}

|fp|2k,X |
˙̂Ck+1|(p) .

whenever Ċk+1 is diagonal in the Fourier basis. In particular we now show that
there exists a C(n, d) > 0 such that for 0 ≤ n ≤ m−1 the following estimate holds,

(6.60) ‖AĊk+1
P‖Xn

≤ C(n)‖P‖Xn+1

∑
p∈T̂N

|fp|2
˙̂Ck+1(p).

Indeed, using the fact that
˙̂Ck+1(p) is real and the definition of the trace we

have

(6.61)

G(X, ξ) :=Tr
(
D2P (X, ξ)Ċk+1)

)
= AĊk+1

P (X, ξ)

=
∑

p∈T̂N\{0}

(
fp, D

2P (X, ξ)fp
) ˙̂Ck+1(p)

=
∑

p∈T̂N\{0}

(
Re (fp), D

2P (X, ξ)Re (fp)
) ˙̂Ck+1(p)

+
∑

p∈T̂N\{0}

(
Im (fp), D

2P (X, ξ)Im (fp)
) ˙̂Ck+1(p).

By a standard symmetrisation argument we have

(6.62) |DσP (X, ξ)(ϕ̇1, . . . , ϕ̇σ)| ≤ σσ

σ!
|DσP (X, ξ)|k,X

σ∏
i=1

|ϕ̇i|k,X .

Set

(6.63) M :=
∑

p∈T̂N\{0}

|fp|2k,X |
˙̂Ck+1|(p) .
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Then for all ϕ̇ with |ϕ̇|k,X ≤ 1 we have

(6.64)

|DsG(X, ξ)(ϕ̇, . . . , ϕ̇)| ≤

≤
∑

p∈T̂N\{0}

|Ds+2P (X, ξ)(ϕ̇, . . . , ϕ̇; Re (fp),Re (fp))||
˙̂Ck+1|(p)

+
∑

p∈T̂N\{0}

|Ds+2P (X, ξ)(ϕ̇, . . . , ϕ̇; Im (fp), Im (fp))||
˙̂Ck+1|(p)

≤ 2
(s+ 2)s+2

(s+ 2)!
|Ds+2P (X, ξ)|k,X,r|ϕ̇|sk,XM.

Hence |DsG(X, ξ)|k,X ≤ C(r0)M |Ds+2P (X, ξ,X)|k,X , for all s ≤ r0 − 2 and

C(r0) = 2
r
r0
0

r0! . This yields

(6.65) |G(X, ξ)|k,X,r−2 ≤

≤M
r−2∑
s=0

1

s!
|Ds+2P (X, ξ)|k,X ≤ r(r − 1)C(r0)M

r−2∑
s=0

1

(s+ 2)!
|Ds+2P (X, ξ)|k,X ≤

≤ r(r − 1)C(r0)M |P (X, ξ)|k,X,r

and hence the assertion (6.60). Note that in the proof we only used the fact that

C
(γ(t))
k+1 is diagonal in the Fourier basis. Hence the same computation yields the

corresponding result for the higher derivatives

(6.66) |Tr(D2P (X, ξ)
dj

dtj
Cγ(t)
k+1)|k,X,r−2 ≤

≤ r(r − 1)C(r0)|P (X, ξ)|k,X,r
∑

p∈T̂N\{0}

|fp|2k,X

∣∣∣∣ dj

dtj
Ĉ(γ(t))
k+1 (p)

∣∣∣∣ .
Step 5: Estimate for the term (6.63) involving the Fourier multiplier.
Let

γ(t) = q + tq̇ with q ∈ B 1
2

and ‖q̇‖ = 1.

We claim that, with our choice of h, there exists C = C(n, d) > 0 such that

(6.67)
∑

p∈T̂N\{0}

|fp|2k,X
∣∣∣∣ dj

dtj
Ĉ(γ(t))
k+1 (p)

∣∣∣∣ ≤ Cj!.
To see this note first that by the definition of the | · |k,X norm

(6.68) |fp|k,X ≤
1

h

1

LNd/2
Lkd/2 max(|p|, Lk|p|2, L2k|p|3) .

The estimate (4.7) in Remark 4.2 can be rewritten as

(6.69)
∑

p∈T̂N\{0}

|p|n
∣∣∣∣ dj

dtj
Ĉ(γ(t))
k+1 (p)

∣∣∣∣ ≤ C2jj!Lη(n,d)+n+d−2L−k(n+d−2)LdN ,

where η(n, d) = max( 1
4 (d + n − 1)2, d + n + 6) + 10. Applying this estimate with

n = 2, 4 and 6 and using the monotonicity of η(n, d) in n, we need a bound on
η(6, d) + 4 + d. It turns out that η(6, d) + 4 + d ≤ 2κ(d) whenever d ≥ 2. Indeed,
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this amounts to showing that η(6, d) + 4 ≤ η(12, d) (with 2bd+2
2 c + 8 = 12 for

d = 2). Using this and assuming that h1 ≥ 1, we can conclude that

(6.70) h−2Lη(n,d)+n+d−2 ≤ 1

for n = 2, 4, 6, implying thus (6.67).

Step 6: Estimate for D2R1(P, q, q̇). It follows from Step 3, (6.60) with

Ċk+1 = d
dt

∣∣
t=0

C
(γ(t))

k+1 , and Step 5 with j = 1 for any 0 ≤ n ≤ m− 1 that there exists

C(n, d) > 0 such that

(6.71) ‖D2R1(P, q, q̇)‖Y n ≤ ‖AĊk+1
P‖Xn

≤ C(n, d)‖P‖Xn+1
.

Step 7: Bounds for the higher derivatives D`
2R1(P, q, q̇`). These bounds

follow from Gaussian calculus in Lemma C.4, the chain rule and the estimates for
dj

dtj C
(γ(t))

k+1 (see step 5). We consider first the case ` = 2. As in (C.1) in appendix C
we set

H(C)(·) =

∫
X
P (X, ·+ ξ)µC(dξ),

respectively,

h̃(t)(·) =

∫
X
P (X, ·+ ξ)µ

C
γ(t)
k+1

(dξ).

By Lemma C.4 and (C.24) we obtain

D2
2R1(P, q, q̇, q̇)(X,ϕ) =

d2

dt2

∣∣∣
t=0

R1(P,γ(t))(X,ϕ) = D2H(Ck+1, Ċk+1, Ċk+1)

+DH(C, C̈k+1) = R1(A2
Ċk+1

P, q)(X,ϕ) +R1(AC̈k+1
P, q)(X,ϕ)

where we use that

Ċk+1 =
d

dt

∣∣∣
t=0

C
(γ(t))

k+1 and C̈k+1 =
d2

dt2

∣∣∣
t=0

C
(γ(t))

k+1 .

By step 2 we have the estimate

‖D2
2R1(P, q, q̇, q̇)‖Xn

≤
(
‖A2

Ċk+1
P‖Xn

+ ‖AC̈k+1
P‖Xn

)
.

Now step 4 and step 5 yield the following bound, for 0 ≤ n ≤ m− 2,

‖AC̈k+1
P‖Xn

≤ C(n)‖P‖Xn+1
≤ C(n)‖P‖Xn+2

.

Applying now the steps 4 and 5 twice we get that

‖A2
Ċk+1

P‖Xn
≤ C(n)‖AĊk+1

P‖Xn+1
≤ C(n)‖P‖Xn+2

,

and thus the required estimate for the second derivative D2
2R1. For general ` ≥ 2

it follows from Lemma C.4 and the chain rule that

D`
2R1(P, q, q̇`)

is a linear combination of terms of the form

R1(AĊ1
· · ·AĊκ

P, q)

where

Ċi :=
dji

dtji

∣∣∣
t=0

C
(γ(t))

k+1 with

κ∑
i=1

ji = `.
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Thus the desired estimate follows from step 2 and a κ-fold application of (6.60) and
step 5. �

6.5. The map R2

Lemma 6.7. Let m ∈ N, 2m + 2 ≤ r0. For n = 0, , . . . ,m let Zn denote

the space M r0−2m+2n equipped with the norm ‖·‖Zn = ‖·‖(A)
k,r0−2m+2n. Let Xn =

M0 × Zn, Y n = M0 (for all n) and B 1
2

= {q ∈ Rd×dsym : ‖q‖ < 1
2}. Consider the

map R2 : M0 ×X ×B 1
2
→ Y , defined in (6.18) with X = Xm = M0 ×M r0 and

Y = Y m = M0. There exists a constant C = C(d) such that for any h ≥ Lκ(d)h1

with h1 = h1(d, ω) and κ(d) as in Lemma 5.1 (iv), A ≥ 1, we have

(6.72) R2 ∈ C̃m(X ×B 1
2
,Y ).

Moreover for any q and q̇ with |q| < 1
2 and |q̇| ≤ 1, and any ` ≤ m, we have

(6.73)

‖Dj
1D

n
2D

`
3R2(H,K, q)(Ḣ, K̇, q̇, . . . , q̇)‖k,0

≤ C


‖H‖k,0 + ‖K‖Z` if j = 0, n = 0,

‖Ḣ‖k,0 if j = 1, n = 0,

‖K̇‖Z` if j = 0, n = 1;

and

(6.74) Dj
1D

m
2 D

`
3R2(H,K, q) = 0 if j +m ≥ 2.

Remark 6.8. It follows from Remark 6.6 and Lemma 6.9 below that the map
R2 is actually a real analytic map from M0 ×M2 to M0. �

First, we estimate the main component of R2, namely the map Π2.

Lemma 6.9. Let B ∈ Bk, X ∈ Sk with X ⊃ B, and let K ∈M(Pk,X ). Then

(6.75) ‖Π2K(X, ·)‖k,0 ≤ [2d(d
3
2 + d) + d

1
2 ] |K(X, 0)|k,X,2.

Note that since X ∈ Sk we have X ⊂ B∗ and thus the maps ϕ 7→ K(X,ϕ) can
be viewed as an element of M∗(B,X ) on which the projection Π2 was defined.

Proof. Let H = Π2K(X, ·). By definition we have H(B, ϕ̇) = Ldkλ + `(ϕ̇) +
Q(ϕ̇, ϕ̇), where

`(ϕ̇) =
∑
x∈B

d∑
i=1

ai∇iϕ̇+ ci,j∇i∇jϕ̇(x)(6.76)

Q(ϕ̇, ϕ̇) =
1

2

∑
x∈B

d∑
i,j=1

di,j∇iϕ̇(x)∇jϕ̇(x)(6.77)

and

Ldkλ = K(X, 0)(6.78)

`(ϕ̇) = DK(X, 0)(ϕ̇) ∀ϕ̇ quadratic + affine in (B∗)∗(6.79)

Q(ϕ̇, ϕ̇) =
1

2
D2K(X, 0)(ϕ̇, ϕ̇) ∀ϕ̇ affine in (B∗)∗(6.80)
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To estimate di,j and ai we consider functions ϕ̇ which are linear on ((B∗)∗)∗

(6.81) ϕ̇ =

d∑
i=1

ηiπi,

where η = (ηi)i=1,...,d ∈ Rd, and πi is the co-ordinate projection πi(x) = xi for
x ∈ Zd. Then for x ∈ (B∗)∗ we have ∇iϕ̇(x) = ηi and ∂αϕ̇(x) = 0 if |α| = 2 or
|α| = 3. Hence,
(6.82)

Ldk|1
2

d∑
i,j=1

di,jηiηj | = |Q(ϕ̇)| =
∣∣∣1
2
D2K(X, 0)(ϕ̇, ϕ̇)

∣∣∣ ≤ 1

2
|D2K(X, 0)|k,X |ϕ̇|2k,X

=
1

2
|D2K(X, 0)|k,Xh−2

d∑
i=1

|ηi|2Ldk.

This yields max|η|2=1| 12
∑d
i,j=1 di,jηiηj | ≤

1
2h
−2|D2K(X, 0)|k,X and thus

(6.83)

d∑
i,j=1

|di,j | ≤ d

 d∑
i,j=1

|di,j |2
 1

2

≤ d 3
2

(
λmax(d2)

)1/2 ≤ 1

2
d

3
2h−2|D2K(X, 0)|k,X .

Similarly, we have
(6.84)

Ldk
d∑
i=1

aiηi = `(ϕ̇) = DK(X, 0)(ϕ̇) ≤ |DK(X, 0)|k,Xh−1

(
d∑
i=1

|ηi|2
) 1

2

L
dk
2 .

The choice ηi = ai yields

(6.85)

d∑
i=1

|ai| ≤ d
1
2

(
d∑
i=1

|ai|2
) 1

2

≤ d 1
2h−1L−

dk
2 |DK(X, 0)|k,X .

For the evaluation of the second derivative we use a test function which satisfies

(6.86) ϕ̇(x) =
1

2

d∑
i,j=1

ηi,j(x− x)i(x− x)j ∀x ∈ ((B∗)∗)∗,

where x = 1
|B|
∑
x∈B x and ηi,j = ηj,i. Then, for any x ∈ (B∗)∗,

(6.87)

∇jϕ̇(x) =

d∑
i=1

ηi,j(x− x)i,

∇i∇jϕ̇(x) = ηi,j , and

∇αϕ̇(x) = 0 for |α| = 3.
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Now |(x − x)i| ≤ 2d+1−1
2 Lk ≤ 2dLk for any x ∈ (B∗)∗ and thus |∇jϕ̇(x)| ≤

d
1
2 (
∑d
i=1 |ηi,j |2)

1
2 2dLk which yields

(6.88) |ϕ̇|k,B ≤
1

h

(
2dd

1
2LkL

kd
2 (

d∑
i,j=1

|ηi,j |2)
1
2 + |Lk( d2 +1)

)
(

d∑
i,j=1

|ηi,j |2)
1
2 ≤

≤ (2dd
1
2 + 1)h−1Lk( d2 +1)(

d∑
i,j=1

|ηi,j |2)
1
2 .

Note that
∑
x∈B ηi,j(x− x)iai vanishes in view of the definition of x. Hence

(6.89)

d∑
i,j=1

Ldkηi,jci,j =

= `(ϕ̇) ≤ |DK(X, 0)|k,X |ϕ̇|k,X ≤ (2dd
1
2 +1)h−1Lk( d2 +1)(

d∑
i,j=1

|ηi,j |2)
1
2 |DK(X, 0)|k,X

Taking ηi,j = ci,j we get

(6.90)

d∑
i,j=1

|ci,j | ≤ d

 d∑
i,j=1

|ci,j |2
 1

2

≤ (2dd
3
2 + d)h−1L−( d2−1)k|DK(X, 0)|k,X .

This yields the assertion with

(6.91) C(d) = max(1, d
1
2 + 2d(d

3
2 + d), d

3
2 ) = d

1
2 + 2d(d

3
2 + d).

�

Proof of Lemma 6.7. We first note that R2(H,K, q) = R
(q)
2,aH +R

(q)
2,bK where

R
(q)
2,a and R

(q)
2,b are linear maps. Thus (6.74) is obvious. To prove the remaining

statements we can consider the maps H 7→ R
(q)
2,aH and K 7→ R

(q)
2,bK separately. We

will establish the relevant estimates for the directional derivatives t 7→ R(q+tq̇)

2,a and

t 7→ R(q+tq̇)

2,b . The assertion on the existence and continuity of the total derivatives
then follows as in the proof of Lemma 6.5, using in particular the continuity of the
map q 7→ R(q). We first consider the map

(6.92) R
(q)
2,aH := Π2R

(q)H

which acts on ideal Hamiltonians. The integral of an odd functions against µ
(q)
k+1 is

zero and

(6.93)

∫
X
Q(ξ, ξ)µ

(q)
k+1 = Ldk

1

2

∑
i,j

di,j∇i∇∗jC
(q)
k+1(0)

(cf. (4.81)). Thus R(q)H is again an ideal Hamiltonian and the action of R
(a)
2 in

the coordinates (λ, a, c,d) for H is simply

(6.94) (λ, a, c,d) 7→ (λ+
∑
i,j

di,j∇i∇∗jC
(q)
k+1(0), a, c,d)

By (4.3) we have |∇i∇∗jC
(q)
k+1(0)| ≤ C(d)Lη(2,d)L−dk and thus

(6.95) ‖R(q)
2,aH‖ ≤ (1 + C(d)h−2Lη(2,d))‖H‖k,0 ≤ C(d)‖H‖k,0,
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where we used the lower bound on h in the assumption of the lemma. The estimates

for D`
qR

(q)
2,aH follow in the same way from (4.3) since h2 ≥ Lκ(d) ≥ Lη(8,d).

Now let X ∈ S : k with X ⊃ B and let K ∈M(Pk,X ). We will estimate

(6.96) Π2R
(q)K(X, ·)

and its derivatives with respect to q. The operator R
(q)
2,b is obtained by taking a

sum over all such X (for a fixed block B) with weight 1
|X|k . Since there are at most

(3d − 1)2d such polymers X is suffices to estimate (6.96).
By Lemma 6.9 and Lemma 5.1 (iv) we have

(6.97)
1

C(d)
‖Π2R

(q)K(X, ·)‖k,0 ≤ |R
(q)K(X, 0)|

k,X,2

≤
∫
X
|K(X, ξ)|k,X,2 µ(q)

k+1(dξ) ≤ 2|X|k‖K(X)‖k,X,2 ≤ 22d‖K(X)‖k,X,2

≤ 22d‖K‖(A)
k,2 .

The derivatives with respect to q are estimated using Gaussian calculus and
the estimates used in the proof of Lemma 6.5. Let ‖q‖ < 1

2 and ‖q̇‖ = 1, and
consider the curve γ(t) = q + tq̇ on a sufficiently small interval (−a, a). Let

(6.98) G(X,ϕ) := Tr
[
D2K(X,ϕ)Ċ(q)

k+1

]
.

Then (see Appendic C)

(6.99)
d

dt

∣∣∣
t=0

(R(γ(t))K)(X,ϕ) = (R(q)G)(X,ϕ)

Now by (6.66) and (6.67) as well as the assumption on h we have

|G(X,ϕ)|k,X,2 ≤ C|K(X,ϕ)|k,X,4.

Using again Lemma 6.9 and Lemma 5.1 (iv) we get

(6.100)
1

C(d)
‖DqΠ2R

(q)K(X, ·)(q̇)‖k,0 =
1

C(d)

∥∥∥∥ d

dt

∣∣∣
t=0

Π2R
(γ(t))K(X, ·)

∥∥∥∥
k,0

≤ |(R(q)G)(X, 0)|
k,X,2

≤ 22d‖G(X)‖k,X,2 ≤ C22d‖K(X)‖k,X,4 ≤ C22d‖K‖(A)
k,4 .

The higher derivatives with respect to t are estimated in a similar way using
the functions

G2(X,ϕ) := Tr
[
D2K(X,ϕ)C̈(q)

k+1

]
, G3(X,ϕ) := Tr

[
D2G(X,ϕ)Ċ(q)

k+1

]
,(6.101)

G4(X,ϕ) := Tr
[
D2K(X,ϕ)

...
C

(q)

k+1

]
, G5(X,ϕ) := Tr

[
D2G(X,ϕ)C̈(q)

k+1

]
,(6.102)

G6(X,ϕ) := Tr
[
D2G3(X,ϕ)Ċ(q)

k+1

]
.(6.103)

and the estimates (see (6.66) and (6.67))

|G2(X, ξ)|k,X,2 + |G4(X, ξ)|k,X,2 ≤ C|K(X, ξ)|k,X,4,(6.104)

|G3(X, ξ)|k,X,2 + |G5(X, ξ)|k,X,2 ≤ C|G(X, ξ)|k,X,4 ≤ C|K(X, ξ)|k,X,6,(6.105)

|G6(X, ξ)|k,X,2 ≤ C|G3(X, ξ)|k,X,4 ≤ C|K(X, ξ)|k,X,8.(6.106)

�
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6.6. The map P1

Lemma 6.10. Consider the map

P1 : M |‖ ×M |‖ × M̂ :,r →M ′
r

defined in (6.10), restricted to Bρ1(1)×Bρ2 × M̂ :,r ⊂M |‖ ×M |‖ × M̂ :,r with the

balls Bρ1(1) and Bρ2 defined in terms of respective norms |‖·‖|k, i.e., Bρ1(1) = {Ĩ ∈
M |‖ : |‖Ĩ − 1‖|k < ρ1} and Bρ2 = {J̃ ∈ M |‖ : |‖J̃‖|k < ρ2}, and the target space

M ′
r equipped with the norm ‖·‖(A)

k+1,r. There exists A0 = A0(L, d) such that for any

A ≥ A0 and ρ1, ρ2, and B̃ such that

(6.107) ρ1 ≤ 1/2, ρ2 < (2A1+2d+2

)−1 and B̃ ≥ A2d+3

the map P1 is smooth and, for any j1, j2 ∈ N, satisfies the bounds

(6.108) 1
j1!

1
j2!‖D

j1
1 D

j2
2 P1(Ĩ , J̃ , P̃ )(

˙̃
I, . . . ,

˙̃
I,

˙̃
J, . . . ,

˙̃
J)‖(A)

k+1,r ≤

≤ |‖ ˙̃
I‖|

j1

k

(
A1+2d+2

|‖ ˙̃
J‖|k

)j2
max

(
‖P̃‖(A/4,B̃)

k:k+1,r, 1
)
,

(6.109) 1
j1!

1
j2!‖D

j1
1 D

j2
2 D3P1(Ĩ , J̃ , P̃ )(

˙̃
I, . . . ,

˙̃
I,

˙̃
J, . . . ,

˙̃
J,

˙̃
P )‖(A)

k+1,r ≤

≤ |‖ ˙̃
I‖|

j1

k

(
A1+2d+2

|‖ ˙̃
J‖|k

)j2 ‖ ˙̃
P‖(A/4,B̃)

k:k+1,r,

(6.110) Dj1
1 D

j2
2 D

j3
3 P1 = 0 for j3 ≥ 2.

Proof. Since P1 is affine in the last argument, (6.110) is obvious and (6.109)

follows from (6.108). Indeed since P̃ (∅) ≡ 1 the map P1 can be written as

(6.111) P1(Ĩ , J̃ , P̃ ) = P 0
1 (Ĩ , J̃) + P 1

1 (Ĩ , J̃ , P̃ )

with

(6.112) P 0
1 (Ĩ , J̃)(U) =

∑
X1∈P(U)

χ(X1, U)ĨU\X1 J̃X1 ,

(6.113) P 1
1 (Ĩ , J̃ , P̃ ) =

∑
X1,X2∈P(U)

X1∩X2=∅,X2 6=∅

χ(X1 ∪X2, U)ĨU\(X1∪X2)J̃X1 P̃ (X2)

Since P 1
1 is linear in P we have

(6.114) D3P1(Ĩ , J̃ , P̃ )(
˙̃
P ) = P 1

1 (Ĩ , J̃ ,
˙̃
P ) = lim

λ→∞
1
λP1(Ĩ , J̃ , λP̃ )

and an analogous identity holds for 1
j1!

1
j2!D

j1
1 D

j2
2 D3P1. Thus (6.109) follows from

(6.108).
To prove (6.108) we first consider the case j1 = j2 = 0. Pick U ∈ Pc

k+1. Taking
into account that

‖F (U)‖k+1,U,r ≤ ‖F (U)‖k:k+1,U,r,
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and applying Lemma 5.1 (iib) we get

(6.115) ‖P 1
1 (Ĩ , J̃ , P̃ )(U)‖k+1,U,r ≤

≤
∑

X1,X2∈P(U)
X1∩X2=∅,X2 6=∅

χ(X1 ∪X2, U)|‖Ĩ‖|
|U\(X1∪X2)|
k |‖J̃‖|

|X1|
k ‖P̃ (X2)‖k:k+1,X2,r

≤
∑

X1,X2∈P(U)
X1∩X2=∅

χ(X1∪X2, U) 2|U\(X1∪X2)|A−(1+2d+2)|X1|‖P̃‖(A/4,B̃)
k:k+1,rΓA/4(X2)−1B̃−|C(X2)|

Now

(6.116) ΓA/4(X2) ≥
(
A
4

)|X2|−2d|C(X2)|

and using that B̃ ≥ A2d+3

and 2d+3 − 2d ≥ 2d+2 we get

(6.117) ‖P 1
1 (Ĩ , J̃ , P̃ )(U)‖k+1,U,r ≤

≤ 4|U |
∑

X1,X2∈P(U)
X1∩X2=∅,X2 6=∅

χ(X1 ∪X2, U)A−(1+2d+2)|X1|−|X2|−2d+2|C(X2)|) ‖P̃‖(A/4,B̃)
k:k+1,r.

Now, we will rely on the combinatorial Lemma 6.16 from [Bry09] stated in
(F.2) in Lemma F.1,

(6.118) |X|k ≥ (1+α(d))|X|k+1−(1+α(d))2d+1|C(X)| with α(d) = 1
(1+2d)(1+6d)

.

Applying this inequality with X = X1 ∪X2 and using the trivial estimate C(X1 ∪
X2) ≤ |X1|+ C(X2), we get

(6.119) (1 + 2d+2)|X1|k + |X2|k + 2d+2|C(X2)| ≥ (1 + α(d))|X1 ∪X2|k+1

and thus

(6.120)

‖P 1
1 (Ĩ , J̃ , P̃ )(U)‖k+1,U,r

≤ 4|U |k
∑

X1,X2∈P(U)
X1∩X2=∅,X2 6=∅

χ(X1 ∪X2, U)A−(1+α(d))|X1∪X2|k+1 ‖P̃‖(A/4,B̃)
k:k+1,r.

Similarly we obtain for P 0
1

‖P 0
1 (Ĩ , J̃)(U)‖k+1,U,r ≤

∑
X1∈P(U)

χ(X1, U)|‖Ĩ‖|
|U\X1|
k |‖J̃‖|

|X1|
k(6.121)

≤ 2|U |
∑

X1∈P(U)

χ(X1, U)A−(1+2d+2)|X1|

Since α(d) ≤ 1 ≤ 2d+2 and since |X1|k ≥ |X1|k+1 it is easy to combine the estimates
for P 1

1 and P 0
1 . To prove (6.108) for j1 = j2 = 0 it thus suffices to show that

(6.122) ΓA(U) 4|U |k
∑

X1,X2∈P(U)
X1∩X2=∅

χ(X1 ∪X2, U)A−(1+α(d))|X1∪X2|k+1 ≤ 1.

for any U ∈ Pc
k+1 once

(6.123) A ≥ A0(L, d) = (12)L
d(1+2d)(1+6d).
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If |U |k+1 ≤ 2d then ΓA(U) = 1 and we use |U |k = Ld|U |k+1 as well as the fact

that the sum in (6.122) has at most 3|U |k ≤ 3L
d2d terms, each contributing at most

A−1 ≤ A−2dα(d) to bound the left hand side of (6.122) by

(6.124) 4(2L)d3(2L)dA−1 ≤
(

(12)L
d

A−α(d)
)2d

≤ 1.

For |U |k+1 > 2d, there is no B ∈ Pk such that U = B∗ and as a result X1 ∪X2

is not small and U = X1 ∪X2 (cf. definition (4.69) of χ(X1∪X2, U)). Hence, using
again that the number of terms in the sum is bounded by 3|U |k , we can bound the
left hand side of (6.122) by

A|U |k+1 4L
d|U |k+1A−(1+α(d))|U |k+1

∑
X1,X2∈P(U)
X1∩X2=∅

χ(X1 ∪X2, U)(6.125)

≤ (12)L
d|U |k+1A−α(d)|U |k+1 ≤ 1

once (12)L
d

A−α(d) ≤ 1.
For the derivatives

(6.126) 1
j1!

1
j2!D

j1
1 D

j2
2 P

1
1 (Ĩ , J̃ , P̃ )(U)(

˙̃
I, . . . ,

˙̃
I,

˙̃
J, . . . ,

˙̃
J)

=
∑

X1,X2∈P(U)
X1∩X2=∅,X2 6=∅

χ(X1∪X2, U)
∑

Y1∈P(U\(X1∪X2)),|Y1|=j1
Y2∈P(X1),|Y2|=j2

Ĩ(U\(X1∪X2))\Y1(
˙̃
I)Y1 J̃X1\Y2(

˙̃
J)Y2 P̃ (X2)

we proceed as above in (6.115) and (6.117) to get

(6.127) 1
j1!

1
j2!‖D

j1
1 D

j2
2 P

1
1 (Ĩ , J̃ , P̃ )(U)(

˙̃
I, . . . ,

˙̃
I,

˙̃
J, . . . ,

˙̃
J)‖k+1,U,r ≤

≤
∑

X1,X2∈P(U)
X1∩X2=∅,X2 6=∅

χ(X1 ∪X2, U)
(|U\(X1∪X2)|

j1

)
|‖Ĩ‖|

|U\(X1∪X2)|−j1
k

(|X1|
j2

)
×

× |‖J̃‖|
|X1|−j2
k ‖P (X2)‖k:k+1,X2,r |‖

˙̃
I‖|

j1

k |‖
˙̃
J‖|

j2

k ≤

≤
∑

X1,X2∈P(U)
X1∩X2=∅,X2 6=∅

χ(X1 ∪X2, U)2|U\(X1∪X2)|2|U\(X1∪X2)|−j12|X1|×

(2A1+2d+2

)−|X1|+j2 (A
4 )−|X2|+2d|C(X2)| A−2d+3|C(X2)| ‖P̃‖(A/4,B̃)

k:k+1,r |‖
˙̃
I‖|

j1

k |‖
˙̃
J‖|

j2

k ≤

≤ ‖P̃‖(A/4,B̃)
k:k+1,r |‖

˙̃
I‖|

j1

k

(
A1+2d+2

|‖ ˙̃
J‖|k

)j2×
× 4|U |

∑
X1,X2∈P(U)

X1∩X2=∅,X2 6=∅

χ(X1 ∪X2, U)A−(1+2d+2)|X1|−|X2|−2d+2|C(X2)|).
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Similarly we get

(6.128) 1
j1!

1
j2!‖D

j1
1 D

j2
2 P

0
1 (Ĩ , J̃)(U)(

˙̃
I, . . . ,

˙̃
I,

˙̃
J, . . . ,

˙̃
J)‖k+1,U,r ≤

≤
∑

X1∈P(U)

χ(X1, U)2|U\X1|2|U\X1)|−j12|X1| (2A1+2d+2

)−|X1|+j2 |‖ ˙̃
I‖|

j1

k |‖
˙̃
J‖|

j2

k

≤ |‖ ˙̃
I‖|

j1

k

(
A1+2d+2

|‖ ˙̃
J‖|k

)j2
4|U |

∑
X1∈P(U)

χ(X1, U)A−(1+2d+2)|X1|

Now (6.108) follows as in the case j1 = j2 = 0 by using (6.119) and (6.122) as well
as the obvious estimates α(d) ≤ 1 ≤ 2d+2 and |X1|k ≥ |X1|k+1.

�

6.7. Proof of Proposition 4.6

Proposition 4.6 now follows from the estimates on the maps E,P1, R1, R2, P2

and P3 and the chain rule, Theorem D.29, in connection with Remark D.30 which
provides uniform control of the relevant derivatives. For the convenience of the
reader we spell out the details. We first write S as a composition of five maps
F 1, . . . ,F 5 and describe the scales of Banach spaces X(i), i = 1, . . . , 5, on which
these maps are defined. Then we recursively identify neighbourhoods U (i) ⊂ X(i)

such that

F i ∈ C̃m(U (i) ×B 1
2
), i = 1, . . . , 5,

and verify that F i(U
(i)×B 1

2
) ⊂ U (i−1) for i ≥ 2 and that each map F i satisfies the

assumptions of the chain rule Theorem D.29. Recall the definitions in Appendix D
and denote by � the composition defined by

(6.129)
(
F �G

)
(x,p) := F (G(x,p),p).

Define

(6.130) B̃ = A2d+3

, B = 22d B̃.

In the following we will always assume

(6.131) r0 ≥ 2m+ 2.

We also assume that

(6.132) A ≥ A0(L, d)

where A0(L, d) is the quantity in Lemma 6.10 and

(6.133) h ≥ Lκ(d)h1 with h1 = h1(d, ω)

and κ(d) as in Lemma 5.1 (iv) (see (5.68)).
Note that

(6.134) S = F 1 � F 2 � F 3 � F 4 � F 5,

where the maps F i, i = 1, . . . , 5, and the scales of Banach spaces are given by

(6.135) F 1 : X(1) ×B 1
2
→X(0), F 1(K1,K2,K3, q) = P1(K1,K2,K3),
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with

(6.136)

X(1)

n = M2
|‖ × (M̂ :,r0−2m+2n, ‖·‖(A/4,B̃)

k:k+1,r0−2m+2n)

X(0)

n = (M ′
r0−2m+2n, ‖·‖

(A)
k+1,r0−2m+2n),

B 1
2

= {q ∈ Rd×dsym : ‖q‖ < 1

2
};

and
(6.137)

F 2 : X(2) ×B 1
2
→X(1), F 2(H,K, q) := (E(H), 1− E(H), R1(K, q)),

with

(6.138) X(2)

n = (M0, ‖·‖k,0)× (M̂ r0−2m+2n, ‖·‖(A/2,B)
k,r0−2m+2n);

and

(6.139) F 3 : X(3) →X(2), F 3(H,K) := (H,P3(K)),

with

(6.140) X(3)

n = (M0, ‖·‖k,0)× (M r0−2m+2n, ‖·‖(A/2)
k,r0−2m+2n)

(6.141) F 4 : X(4) ×B 1
2
→X(3), F 4(H, K̃,K, q) := (R2(H,K, q), P2(K̃,K)),

with

(6.142) X(4)

n = (M0, ‖·‖k,0)×M |‖ × (M r0−2m+2n, ‖·‖(A)
k,r )

and

(6.143) F 5 : X(5) ×B 1
2
→X(4), F 5(H,K) := (H,E(H),K),

with

(6.144) X(5)

n = (M0, ‖·‖k,0)× (M r0−2m+2n, ‖·‖(A)
k,r0−2m+2n).

Let

(6.145)
U (1) = Bρ1(1)×Bρ2 × M̂ :,r0 ⊂X

(1)

m with

ρ1 ≤
1

2
, ρ2 <

(
2A1+2d+2)−1

.

Then by Lemma 6.10 we have

(6.146) F 1 ∈ C̃m(U (1) ×B 1
2
,X(0)),

and the derivatives of F 1 satisfy the assumptions of the chain rule, Theorem D.29.
Let C6.1 denote the constant in (6.21) in Lemma 6.1 (we may assume that C6.1 ≥ 1)
and let

(6.147) ρ3 =
1

C6.1
min{ρ1, ρ2} =

ρ2

C6.1
.

Then H ∈ Bρ3 implies that E(H)− 1 ∈ Bρ1 ∩Bρ2 ⊂M
2
|‖. Thus the choice

U (2) := Bρ3 × M̂ r0

yields

(6.148) F 2(U (2) ×B 1
2
) ⊂ U (1).
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Moreover by Lemma 6.1 and Lemma 6.5 the map F 2 : U (2) × B 1
2
→ X(1)

m satisfies

the assumptions of the chain rule, Theorem D.29.

Let
ρ4 := (2B)−1, U (3) = Bρ3 ×Bρ4

Then

(6.149) F 3(U (3) ×B 1
2
) ⊂ U (2)

and by Lemma 6.4 the map F3 is a smooth map on U (3) and on U (3) satisfies the as-
sumptions of the chain rule Theorem D.29. Note that we are applying Lemma D.32
for those maps which do not depend on q like F1, F2 and F5.

We have ρ4 ≤ 1. Let C6.7 be the constant in Lemma 6.7 and let

(6.150) ρ5 =
ρ3

2C6.7
, ρ6 =

ρ4

4A
, ρ7 = min

{ ρ3

2C6.7
,
ρ4

4A2d

}
.

Then it follows from (6.34) in Lemma 6.3 and Lemma 6.7 (with r1 = r0) that

(6.151) F 4(Bρ5 ×Bρ6(1)×Bρ7 ×B 1
2
) ⊂ Bρ3 ×Bρ4 = U (3).

Set U (4) := Bρ5×Bρ6(1)×Bρ7 . Then F (4) : U (4)×B 1
2
→X(3)

m satisfies the assump-

tions of the chain rule.
Finally set

(6.152) ρ8 =
ρ6

C6.1
, ρ9 = ρ7, and U (5) = Bρ8 ×Bρ9 .

Then F 5(U (5) × B 1
2
) ⊂ U (4) and F 5 : U (5) × B 1

2
→ X(4)

m satisfies the assumptions

of the chain rule. Now an application of the chain rule, Theorem D.29, shows that
the conclusions of Proposition 4.6 hold with ρ = min{ρ8, ρ9}.

�





CHAPTER 7

Linearization of the Renormalization Map

Here we prove Proposition 4.7 summarizing the properties of the linearization
(4.80) of the maps T k at the fixed point (Hk,Kk) = (0, 0) guaranteeing that Hk

and Kk are the relevant and irrelevant variables, respectively. First, we prove the

contraction property of the operator C(q) in Section 7.2. We finish the proof of

Proposition 4.7 in Section 7.2 with the bounds on the operators A(q)−1
and B(q).

7.1. Contractivity of operator C(q)

Lemma 7.1. Let θ ∈ ( 1
4 ,

3
4 ) and ω ≥ 2(d222d+1+1). Consider the constant h1 =

h1(d, ω) and κ(d) chosen from Lemma 5.1 and let L ≥ 2d + 1, h ≥ Lκ(d)h1(d, ω).
There exists A0 = A0(d, L) such that

(7.1) ‖C(q)‖(A)
r = sup

‖K‖(A)k,r≤1

‖C(q)K‖(A)
k+1,r ≤ θ.

for any ‖q‖ ≤ 1
2 , any k = 1, . . . , N , r = 1, . . . , r0, and any A ≥ A0.

Proof. Let us begin by evaluating the large set term: the last term on the right
hand side of (4.83).

Lemma 7.2. Let L ≥ 2d + 1 and ω ≥ 18
√

2 + 1. Whenever h ≥ Lκ(d)h1,

and A such that 2A−
2α

1+2α ≤ 1
8δ(d, L) with α from Lemma F.1 and δ(d, L) from

Lemma F.2, then

(7.2) ‖F‖(A)
k+1,r ≤

θ
2‖K‖

(A)
k,r

for any K ∈M(Pk,X ). Here, the function F ∈M(Pk+1,X ) is defined by

(7.3) F (U,ϕ) =
∑

X∈Pc
k\Sk

X=U

∫
X
K(X,ϕ+ ξ)µk+1(dξ).

Proof. Considering, for any X ⊂ U , the function (Rk+1K)(X,ϕ) and its norm

|(Rk+1K)(X,ϕ)|k+1,U,r
as defined by (4.25), we have

(7.4) sup
ϕ
|(Rk+1K)(X,ϕ)|k+1,U,r

w−Uk+1 ≤ sup
ϕ
|(Rk+1K)(X,ϕ)|k+1,X,r

w−Xk:k+1.

To see it, we just notice that, as in (5.4) in the proof of Lemma 5.1, one has

(7.5) |(Rk+1K)(X,ϕ)|k+1,U,r ≤ |(Rk+1K)(X,ϕ)|k+1,X,r

and that

(7.6) w−Uk+1(ϕ) ≤ w−Xk:k+1.

77
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The last inequality amounts to

(7.7)
∑
x∈X

(
(2dω − 1)gk:k+1,x(ϕ) + ωGk,x(ϕ)

)
+ 3Lk

∑
x∈∂X

Gk,x(ϕ) ≤

≤
∑
x∈U

ω
(
2dgk+1,x(ϕ) +Gk+1,x(ϕ)

)
+ Lk+1

∑
x∈∂U

Gk+1,x(ϕ).

This is clearly valid since gk:k+1,x(ϕ) ≤ gk+1,x(ϕ), Gk,x(ϕ) ≤ Gk+1,x(ϕ), and any
x ∈ ∂X \ ∂U is necessarily contained in ∂B for some B ∈ Bk(U \X) and, in view
of (5.16), for each such B one has

(7.8) 3Lk
∑
x∈∂B

Gk,x(ϕ) ≤
∑
x∈B

ω
(
2dgk+1,x(ϕ) +Gk+1,x(ϕ)

)
once ω ≥ 6c+ 1.

Combining now (7.4) with the bound from Lemma 5.1 (iv), we get

(7.9) Γk+1,A(U)‖F (U)‖k+1,U,r ≤ A|U |k+1

∑
X∈Pc

k\Sk
X=U

2|X|k‖K(X)‖k,X,r ≤

≤ ‖K‖(A)
k,r A|U |k+1

∑
X∈Pc

k\Sk
X=U

(A
2 )−|X|k ≤ ‖K‖(A)

k,r

∑
X∈Pc

k\Sk
X=U

(2A−
2α

1+2α )|X|k ≤ θ
2‖K‖

(A)
k,r .

Here, in the last two inequalities, we first used |X|k ≥ (1 + 2α(d))|X|k+1 for any X
contributing to the sum (see [Bry09, Lemma 6.15]; (F.1) in Lemma F.1) and then

applied Lemma F.2 assuming that 2A−
2α

1+2α ≤ θ
2δ(d, L). �

Turning to the first term on the right hand side of (4.83), we have:

Lemma 7.3. Let L ≥ 7, ω ≥ 2(d222d+1 + 1), h ≥ Lκ(d)h1, and K ∈M(Pk,X )
with G ∈M(Pk+1,X ) defined by

(7.10) G(U,ϕ) =
∑

B∈Bk(U)

B∗=U

(
1−Π2

) ∑
X∈Sk,
X⊃B

1

|X|k
(Rk+1K)(X,ϕ).

Then

(7.11) ‖G‖(A)
k+1,r ≤ 2d+2d(3d − 1)2d

(
5L−

d
2 + 2d+3L

d
2−2 + 9L−1

)
‖K‖(A)

k,r

for any A > 1.

Remark 7.4. Notice that (7.11) is used later only for d ≤ 3. Our method can
be extended also to include higher dimension when employing additional higher
order terms to estimate the projection of the second Taylor polynomial. �

Proof. Notice first that the sum vanishes unless U ∈ Sk+1 and, necessarily, for
any contributing X, one has X ⊂ U and X∗ ⊂ U∗. As a result, the norms in (7.11)
contain only the contributions of small sets and do not depend on A according to the
definition of the factor Γj,A(X), j = k, k + 1. Considering R ∈ M∗(Bk,X ) defined
by R(B,ϕ) =

∑
X∈Sk
X⊃B

1
|X|k (Rk+1K)(X,ϕ) and replacing the operator 1 − Π2 by

(1− T2) + (T2 −Π2), we split G(U,ϕ) into two terms,

(7.12) G1(U,ϕ) =
∑

B∈Bk(U)

B∗=U

(1− T2)R(B,ϕ)
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and

(7.13) G2(U,ϕ) =
∑

B∈Bk(U)

B∗=U

(T2 −Π2)R(B,ϕ),

and evaluate them separately in Lemma 7.6 and Lemma 7.7.

First, however, considering the norm |F (X,ϕ)|j,X,r, j = k, k + 1, as defined in
(4.27) for any F ∈M(Pk,X ) with X ∈ Pk and ϕ ∈ X , we prove the following.

Lemma 7.5. Let F ∈ M(Pk,X ), X ∈ Pk, r = 1, . . . , r0, and j = k, k + 1.
Then

(7.14) |F (X,ϕ)− T2F (X,ϕ)|j,X,r ≤ (1 + |ϕ|j,X)3 sup
t∈(0,1)

r∑
s=3

1

s!
|DsF (X, tϕ)|j,X .

Proof. Cf. [Bry09, Lemma 6.8]. Introducing the shorthands

f(ϕ) = (1− T2)F (X,ϕ)

and

fs(ϕ) = DsF (X,ϕ)(ϕ̇, . . . , ϕ̇)

for any s ≥ 1, we express the terms contributing to the left hand side of (7.14) with
the help of the integral form of the Taylor polynomial remainder,

(7.15) f(ϕ) =

∫ 1

0

(1− t)2

2
D3F (X, tϕ)(ϕ,ϕ, ϕ) dt,

(7.16) Df(ϕ)(ϕ̇) = f1(ϕ)− f1(0)−Df1(0)(ϕ) =

∫ 1

0

(1− t)D2f1(tϕ)(ϕ,ϕ) dt =

=

∫ 1

0

(1− t)D3F (X, tϕ)(ϕ̇, ϕ, ϕ) dt,

(7.17)
1

2
D2f(ϕ)(ϕ̇, ϕ̇) =

1

2

(
f2(ϕ)− f2(0)

)
=

=
1

2

∫ 1

0

Df2(tϕ)(ϕ) dt =

∫ 1

0

D3F (X, tϕ)(ϕ̇, ϕ̇, ϕ) dt,

and, for s ≥ 3,

(7.18)
1

s!
Dsf(ϕ)(ϕ̇, . . . , ϕ̇) =

1

s!
DsF (X,ϕ)(ϕ̇, . . . , ϕ̇).

Summing all the right hand sides above and using the bound

(7.19) |Ds+mF (X, tϕ)(ϕ̇, . . . , ϕ̇, ϕ, . . . , ϕ)| ≤ |Ds+mF (X, tϕ)|j,X |ϕ̇|sj,X |ϕ|
m
j,X ,

as well as the fact that

(7.20) |ϕ|3j,X
∫ 1

0

(1− t)2

2
dt+ |ϕ|2j,X

∫ 1

0

(1− t) dt+
1

2
|ϕ|j,X +

1

3!
=

1

3!
(1+ |ϕ|j,X)3,

we get the seeked result. �
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Lemma 7.6. Let K ∈ M(Sk,X ), X ∈ Sk, B ∈ Bk(X), and U = B∗, and
assume that L ≥ 7, ω ≥ 2(d222d+1 + 1), and h ≥ Lκ(d)h1. Then
(7.21)

sup
ϕ
|(Rk+1K)(X,ϕ)− T2(Rk+1K)(X,ϕ)|k+1,X,r

w−Uk+1(ϕ) ≤ 5L−
3d
2 2|X|k‖K(X)‖k,X,r.

For G1 defined in (7.12) we have

(7.22) ‖G1(U)‖k+1,U,r ≤ 5 2d+2d(3d − 1)2dL−
d
2 ‖K‖(A)

k,r .

Proof. Lemma 7.5 yields

(7.23) |(Rk+1K)(X,ϕ)− T2(Rk+1K)(X,ϕ)|k+1,X,r ≤

≤ (1 + |ϕ|k+1,X)3 sup
t∈(0,1)

r∑
s=3

1

s!
|Ds(Rk+1K)(X, tϕ)|k+1,X

for any ϕ ∈ X . Interchanging differentiation and integration, we get

(7.24)

r∑
s=3

1

s!
|Ds(Rk+1K)(X, tϕ)|k+1,X ≤

≤
r∑
s=3

1

s!
sup
ϕ̇6=0

∫
X
µk+1(dξ)

∣∣∣DsK(X, tϕ+ ξ)(ϕ̇, . . . , ϕ̇)

|ϕ̇|sk+1,X

∣∣∣ =

=

r∑
s=3

1

s!
sup
ϕ̇6=0

∫
X
µk+1(dξ)

∣∣∣DsK(X, tϕ+ ξ)(ϕ̇, . . . , ϕ̇)

|ϕ̇|sk,X

|ϕ̇|sk,X
|ϕ̇|sk+1,X

∣∣∣ ≤
≤ L− 3d

2

∫
X
µk+1(dξ) |K(X, tϕ+ ξ)|k,X,r.

In the last inequality we used the bound (5.21). Next, we apply

|K(X, tϕ+ ξ)|k,X,r ≤ ‖K(X)‖k,X,rw
X
k (tϕ+ ξ)

and (5.25), to get
(7.25)

r∑
s=3

1

s!
|Ds(Rk+1K)(X, tϕ)|k+1,X ≤ 2|X|kL−

3d
2 ‖K(X)‖k,X,r

wXk:k+1(ϕ)

wUk+1(ϕ)
wUk+1(ϕ).

Here we also used the fact that wXk:k+1(tϕ) is monotone in t.

Bounding (1 + |ϕ|k+1,X)3 with the help of

(7.26) (1 + u)3 ≤ 5eu
2

(proven by showing that minu≥0
eu

2

(1+u)3 ≥
1
5 ), we would like to show that

(7.27) |ϕ|2k+1,X ≤ log
wUk+1(ϕ)

wXk:k+1(ϕ)
.
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Notice, first, that

(7.28)

log
wUk+1(ϕ)

wXk:k+1(ϕ)
≥

∑
x∈U\X

(
(2dω − 1)gk+1,x(ϕ) + ωGk+1,x(ϕ)

)
+
∑
x∈U

gk:k+1,x(ϕ)+

+ Lk(L− 3)
∑
x∈∂U

Gk+1,x(ϕ)− 3Lk
∑

x∈∂X\∂U

Gk,x(ϕ) ≥

≥
∑

x∈U\X

(2dω − 1)gk+1,x(ϕ) + Lk(L− 3)
∑
x∈∂U

Gk+1,x(ϕ).

To verify the last inequality, we show that

(7.29) 3Lk
∑

x∈∂X\∂U

Gk,x(ϕ) ≤
∑
x∈U

gk:k+1,x(ϕ) +
∑

x∈U\X

ωGk+1,x(ϕ)

in analogy with (5.15). Indeed, arguing that any x ∈ ∂X \ ∂U is contained in ∂B
for B ∈ Bk(U \X), and applying again Proposition B.5 (a), we have

(7.30) h2Lk
∑
x∈∂B

Gk,x(ϕ) ≤

≤ 2c
(∑
x∈B
|∇ϕ(x)|2 + L2k

∑
x∈U1(B)

|∇2ϕ(x)|2
)

+ Lk
∑
x∈∂B

3∑
s=2

L(2s−2)k|∇sϕ(x)|2 ≤

≤ h22c
∑
x∈B

Gk,x(ϕ) + h22cLk
∑
x∈∂B

L−2gk:k+1,z(ϕ),

where z is any point z ∈ B. Using |∂B| ≤ 2dL(d−1)k, we get the seeked bound once

ω ≥ 18
√

2 and L ≥ 5 (when 6c ≤ ω and 6cL−2 ≤ 1).

In view of (7.28) and using that |ϕ|2k+1,X ≤ |ϕ|
2
k+1,U , it suffices to show that

(7.31) |ϕ|2k+1,U ≤
∑

x∈U\X

(2dω − 1)gk+1,x(ϕ) + Lk(L− 3)
∑
x∈∂U

Gk+1,x(ϕ).

Clearly,

(7.32) h2|ϕ|2k+1,U ≤
∑

1≤s≤3

L(k+1)(d−2+2s) max
x∈U∗

|∇sϕ(x)|2

Applying Lemma B.7, we get
(7.33)

L(k+1)d max
x∈U∗

|∇ϕ(x)|2 ≤ 2L(k+1)d

|∂U |
∑
x∈∂U

|∇ϕ(x)|2+2L(k+1)d(diamU∗)2 max
x∈U∗

|∇2ϕ(x)|2.

Using that |∂U | ≥ 2dL(k+1)(d−1), the first term above is covered by the second term
on the right hand side of (7.31) once L ≥ 7,

(7.34)
2L(k+1)d

|∂U |
≤ 2L(k+1)d

2dL(k+1)(d−1)
=

1

d
Lk+1 ≤ Lk(L− 3).

Taking into account that diamU∗ ≤ d2dLk+1 (here we use the fact that U is nec-
essarily contained in a block of the side 2Lk+1), the second term is bounded by

d222d+1L(k+1)(d+2) maxx∈U∗ |∇2ϕ(x)|2 and will be treated together with the re-

maining terms maxx∈U∗ |∇sϕ(x)|2, s = 2, 3, contained in |ϕ|2k+1,U .
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Using the fact that the number of (k + 1)-blocks in U is at most 2d, we get

(7.35) max
x∈U∗

|∇sϕ(x)|2 ≤ 2d
∑

B∈Bk+1(U)

max
x∈B∗

|∇sϕ(x)|2.

This yields

(7.36) (d222d+1L(k+1)(d+2) + L(k+1)(d+2)) max
x∈U∗

|∇2ϕ(x)|2 ≤

≤ 2d(d222d+1 + 1)L(k+1)(d+2)
∑

B∈Bk+1(U)

max
x∈B∗

|∇2ϕ(x)|2.

and

(7.37) L(k+1)(d+4) max
x∈U∗

|∇3ϕ(x)|2 ≤ 2dL(k+1)(d+4)
∑

B∈Bk+1(U)

max
x∈B∗

|∇3ϕ(x)|2.

Each of the terms on the right hand sides will be bounded by the corresponding
term in
(7.38)

h2
∑

x∈B\X

(2dω − 1)gk+1,x(ϕ) = (2dω − 1)
∑

x∈B\X

4∑
s=2

L(2s−2)(k+1) sup
y∈B∗x

|∇sϕ(y)|2,

Indeed, observing that gk+1,x(ϕ) is constant over each (k + 1)-block B ⊂ U , and

the volume of B \X is at least Lkd(Ld− 2d) = L(k+1)d(1− ( 2
L )d) since the number

of k-blocks in X is at most 2d, while B consists of Ld of them, we need

(7.39) 2d(d222d+1 + 1)L(k+1)(d+2) ≤ (2dω − 1)L(k+1)d(1− ( 2
L )d)L2(k+1)

and

(7.40) 2dL(k+1)(d+4) ≤ (2dω − 1)L(k+1)d(1− ( 2
L )d)L4(k+1).

These conditions are satisfied once ω ≥ 2(d222d+1 + 1).
In summary, combining (7.25), (7.26), and (7.27), we have

(7.41) (1 + |ϕ|k+1,X)3
r∑
s=3

1

s!
|Ds(Rk+1K)(X, tϕ)|k+1,X ≤

≤ 5L−
3d
2 2|X|k‖K(X)‖k,X,r w

U
k+1(ϕ).

for any ϕ ∈ X and any t ∈ (0, 1), finishing thus the proof of the inequality (7.21).
To prove the bound (7.22), we use that |Bk(U)| ≤ (2L)d and the obvious bound

|{X ∈ Sk | X ⊃ B}| ≤ (3d − 1)2d , to get

(7.42) ‖G1(U)‖k+1,U,r ≤ 5L−
3d
2

∑
B∈Bk(U)

B∗=U

∑
X∈Sk
X⊃B

1

|X|k
2|X|k‖K(X)‖k,X,r ≤

≤ 5L−
3d
2 (2L)d(3d − 1)2d‖K‖(A)

k,r22d ≤ 5 2d+2d(3d − 1)2dL−
d
2 ‖K‖(A)

k,r .

�
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Lemma 7.7. Let K ∈ M(Sk,X ), U = B∗, and assume that L ≥ 7 and ω ≥
2(d222d+1 + 1). For G2 defined in (7.13) we have

(7.43) ‖G2(U)‖k+1,U,r ≤

≤ 22d+d+1(3d − 1)2d
(
(2d+2 − 1)L

d
2−2 + (8L−1 + 2L−2)

)
‖K‖k,r.

Recall that G2(U,ϕ) =
∑

B∈Bk(U)

B∗=U
(T2 − Π2)R(B,ϕ) with R ∈ M∗(Bk,X ) de-

fined by R(B,ϕ) =
∑

X∈Sk
X⊃B

1
|X|k (Rk+1K)(X,ϕ). The polynomial Π2R(B,ϕ) =

λ|B|+ `(ϕ)+Q(ϕ,ϕ) is characterised by taking a unique linear function `(ϕ) of the

form (4.19), `(ϕ) =
∑
x∈(B∗)∗

[∑d
i=1 ai∇iϕ(x)+

∑d
i,j=1 ci,j ∇i∇jϕ(x)

]
, that agrees

with DR(B, 0)(ϕ) on all quadratic functions ϕ on (B∗)∗ and a unique quadratic

functionQ(ϕ,ϕ) of the form (4.20), Q(ϕ,ϕ) =
∑
x∈(B∗)∗

∑d
i,j=1 di,j ∇iϕ(x)∇jϕ(x),

that agrees with 1
2D

2R(B, 0)(ϕ,ϕ) on all affine functions ϕ on (B∗)∗.
In view of the definition of the map Rk+1 we can write

R(B,ϕ) =

∫
X
µk+1(dξ)Rξ(B,ϕ)

with

Rξ(B,ϕ) =
∑
X∈Sk
X⊃B

1

|X|k
K(X, ξ + ϕ).

Observing that

D(Rk+1K)(X, 0)(ϕ) =

∫
X
µk+1(dξ)DK(X, ξ)(ϕ),

D2(Rk+1K)(X, 0)(ϕ,ϕ) =

∫
X
µk+1(dξ)D2K(X, ξ)(ϕ,ϕ),

and introducing, similarly as above, Π2Rξ(B,ϕ) = λξ|B| + `ξ(ϕ) + Qξ(ϕ,ϕ), the
unicity implies that `(ϕ) =

∫
X µk+1(dξ) `ξ(ϕ) and Q(ϕ,ϕ) =

∫
X µk+1(dξ)Qξ(ϕ,ϕ).

Given that G2(B,ϕ) = (T2 − Π2)R(B,ϕ) is a polynomial of second order, we

have |G2(B,ϕ)|k+1,U,r
= |G2(B,ϕ)|k+1,U,2

. In a preparation for the evaluation of
this norm, we first evaluate separately the absolute value of the linear and quadratic
terms P1(ϕ) and P2(ϕ) in G2(B,ϕ).

Observing that for any affine function ϕ1 and any quadratic function ϕ2 on
(B∗)∗ we have P1(ϕ− ϕ1 − ϕ2) = P1(ϕ), we get

(7.44)
∣∣P1(ϕ)

∣∣ =
∣∣∫

X
µk+1(dξ)

(
DRξ(B, 0)(ϕ− ϕ1 − ϕ2)− `ξ(ϕ− ϕ1 − ϕ2)

)∣∣ ≤
≤ (2d+2 − 1)

∑
X∈Sk
X⊃B

1

|X|k
‖K(X)‖k,X,r|ϕ− ϕ1 − ϕ2|k,B∗

∫
X
µk+1(dξ)wXk (ξ) ≤

≤ 22d(3d − 1)2d(2d+2 − 1)‖K‖k,r|ϕ− ϕ1 − ϕ2|k,B∗ .

Here, we first used the inequalities

(7.45) |`ξ(ϕ)| ≤ (2d+2 − 2)
∑
X∈Sk
X⊃B

1

|X|k
|K(X, ξ)|k,X,r|ϕ|k,B∗
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and

(7.46) |DRξ(B, 0)(ϕ)| ≤
∑
X∈Sk
X⊃B

1

|X|k
|K(X, ξ)|k,X,r|ϕ|k,X

combined with the bounds |K(X, ξ)|k,X,r ≤ ‖K(X)‖k,X,rwXk (ξ) and |ϕ|k,X ≤
|ϕ|k,B∗ , and then the bounds

∫
X µk+1(dξ)wXk (ξ) ≤ 2|X|k , and, as in (7.42), |{X ∈

Sk | X ⊃ B}| ≤ (3d − 1)2d . To verify (7.45), we first observe that `ξ(ϕ) =∑d
i=1 ai(ξ) si +

∑d
i,j=1 ci,j(ξ) ti,j where si = si(ϕ) =

∑
x∈(B∗)∗ ∇iϕ(x) and ti,j =

ti,j(ϕ) =
∑
x∈(B∗)∗ ∇i∇jϕ(x). The same values of “average slopes” s = {si} and

t = {ti,j} are obtained with the quadratic function
(7.47)

ϕs,t(x) = L−dk(2d+2−3)−d
∑
i

(
si−
∑
j

(ti,j+tj,i)xj
)
xi+L

−dk(2d+2−3)−d
∑
i,j

ti,jxixj ,

where xj = L−dk(2d+2 − 3)−d
∑
y∈B yj (notice that (B∗)∗ contains (2d+2 − 3)d

k-blocks). Further, observe that

(7.48) h|ϕs,t|k,X = max
(
L
dk
2 max
x∈X∗

|∇ϕs,t(x)|, L dk
2 +k max

x∈X∗
|∇2ϕs,t(x)|

)
≤

≤ L− dk2 (2d+2 − 3)−d max
(
|s|+ 2|t| 12L

k(2d+2 − 3), Lk|t|
)

=

= L−
dk
2 (2d+2 − 3)−d|s|+ L−

dk
2 +k(2d+2 − 3)−d+1|t| ≤ (1 + 2d+2 − 3)h|ϕ|k,B∗ .

Here, the last inequality, valid for any ϕ such that si(ϕ) = si and ti,j(ϕ) = ti,j ,
is implied by obvious bounds maxx∈(B∗)∗ |∇iϕ(x)| ≥ L−dk(2d+2 − 3)−d|si| and

maxx∈(B∗)∗ |∇i∇jϕ(x)| ≥ L−dk(2d+2 − 3)−d|ti,j |.
Now, for the quadratic function ϕs,t we have `ξ(ϕs,t) = DRξ(B, 0)(ϕs,t). As a

result,

(7.49) |`ξ(ϕ)| = |`ξ(ϕs,t)| ≤

≤
∑
X∈Sk
X⊃B

1

|X|k
|DK(X, ξ)(ϕs,t)| ≤

∑
X∈Sk
X⊃B

1

|X|k
|K(X, ξ)|k,X,r|ϕs,t|k,X ≤

≤ (2d+2 − 2)
∑
X∈Sk
X⊃B

1

|X|k
|K(X, ξ)|k,X,r|ϕ|k,B∗ .

Here, the last inequality, valid for any ϕ such that si(ϕ) = si and ti,j(ϕ) = ti,j ,
is implied by obvious bounds maxx∈(B∗)∗ |∇iϕ(x)| ≥ L−dk(2d+2 − 3)−d|si| and

maxx∈(B∗)∗ |∇i∇jϕ(x)| ≥ L−dk(2d+2 − 3)−d|ti,j |.
Choosing now, for any fixed ϕ, the functions ϕ1 and ϕ2 as an optimal approx-

imation in accordance with the Poincaré inequalities,

(7.50) inf
ϕ1 affine

|ϕ− ϕ1|k,B∗ ≤
1

h
Lk( d2 +1) sup

x∈(B∗)∗
|∇2ϕ(x)| ≤ L−( d2 +1)|ϕ|k+1,B∗

and
(7.51)

inf
ϕ1 affine,

ϕ2 quadratic

|ϕ− ϕ1 − ϕ2|k,B∗ ≤
1

h
Lk( d2 +2) sup

x∈(B∗)∗
|∇3ϕ(x)| ≤ L−( d2 +2)|ϕ|k+1,B∗ ,
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we get

(7.52)
∣∣P1(ϕ)

∣∣ ≤ L−( d2 +2)22d(3d − 1)2d(2d+2 − 1)‖K‖k,r|ϕ|k+1,B∗ .

Similarly for the quadratic part. First, we prove the bound

(7.53) |P2(ϕ,ϕ)| ≤ 22d+1(3d − 1)2d‖K‖k,r|ϕ|
2
k,B∗ .

While deriving it, the bound (7.45) is replaced by

(7.54) |Qξ(ϕ,ϕ)| ≤
∑
X∈Sk
X⊃B

1

|X|k
|K(X, ξ)|k,X,r|ϕ|2k,B∗ .

For its proof we consider the linear function

(7.55) ϕs(x) = L−dk(2d+2 − 3)−d
∑
i

sixi

with the slope si = si(ϕ) and

(7.56) h|ϕs|k,X =

= L
dk
2 max
x∈X∗

|∇ϕs(x)| ≤ L− dk2 (2d+2 − 3)−d|s| = L−
dk
2 (2d+2 − 3)−d|s| ≤ h|ϕ|k,B∗

yielding

(7.57) |Qξ(ϕ,ϕ)| = |Qξ(ϕs, ϕs)| ≤
∑
X∈Sk
X⊃B

1

|X|k
| 12D

2K(X, ξ)(ϕs, ϕs)| ≤

≤
∑
X∈Sk
X⊃B

1

|X|k
|K(X, ξ)|k,X,r|ϕs|2k,X ≤

∑
X∈Sk
X⊃B

1

|X|k
|K(X, ξ)|k,X,r|ϕ|2k,B∗ .

Validity of (7.53) for all ϕ, implies |P2(ϕ,ψ)| ≤ 22d+2(3d−1)2d‖K‖k,r|ϕ|k,B∗ |ψ|k,B∗
for all ϕ and ψ. Taking now into account that P2(ϕ1, ϕ1) = 0 for any affine function
ϕ1, we rewrite P2(ϕ,ϕ) = 2P2(ϕ,ϕ− ϕ1)− P2(ϕ− ϕ1, ϕ− ϕ1) to get

(7.58) |P2(ϕ,ϕ)| ≤ 22d+1(3d − 1)2d‖K‖(A)
k,r |ϕ− ϕ1|k,B∗(4|ϕ|k,B∗ + |ϕ− ϕ1|k,B∗).

Applying further (7.50), we get

(7.59) |P2(ϕ,ϕ)| ≤
(
4L−(d+1) + L−(d+2)

)
22d+1(3d − 1)2d‖K‖(A)

k,r |ϕ|
2
k+1,B∗ .

Finally, combining (7.52) and (7.59), we get

(7.60) |
(
T2 −Π2

)
R(B,ϕ)| ≤

≤ 22d(3d−1)2d
(
(2d+2−1)L−( d2 +2)+(8L−(d+1)+2L−(d+2))|ϕ|k+1,B∗

)
|ϕ|k+1,B∗‖K‖

(A)
k,r .

For the first and second the derivatives, we first notice that

(7.61) D
(
P1(ϕ) + P2(ϕ,ϕ)

)
(ϕ̇) = P1(ϕ̇) + 2P2(ϕ, ϕ̇)

and

(7.62) D2
(
P1(ϕ) + P2(ϕ,ϕ)

)
(ϕ̇, ϕ̇) = 2P2(ϕ̇, ϕ̇)
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yielding with the help of (7.52) and (7.59)

(7.63)
∣∣D(P1(ϕ) + P2(ϕ,ϕ)

)∣∣k+1,B∗ ≤

≤ 22d(3d − 1)2d
(
(2d+2 − 1)L−( d2 +2) + (16L−(d+1) + 4L−(d+2))|ϕ|k+1,B∗

)
‖K‖(A)

k,r

and, using again (7.59),
(7.64)∣∣D2

(
P1(ϕ) + P2(ϕ,ϕ)

)∣∣k+1,B∗ ≤ 22d(3d − 1)2d(8L−(d+1) + 2L−(d+2))‖K‖(A)
k,r .

Combining last two inequalities with (7.60), we get

(7.65) |
(
T2 −Π2

)
R(B,ϕ)|k+1,B∗,r ≤ 22d(3d − 1)2d

(
(2d+2 − 1)L−( d2 +2)+

+ (8L−(d+1) + 2L−(d+2))(1 + |ϕ|k+1,B∗)
)
(1 + |ϕ|k+1,B∗)‖K‖

(A)
k,r .

With (1 + u)2 ≤ 2eu
2

and (7.27), we get

(7.66) ‖G2(U)‖k+1,U,r ≤

≤ 22d+1(3d − 1)2d(2L)d
(
(2d+2 − 1)L−( d2 +2) + (8L−(d+1) + 2L−(d+2))

)
‖K‖(A)

k,r

yielding the sought bound. �
The proof of Lemma 7.1 is the finished by combining the claims of Lemma 7.2

and Lemma 7.3. �

7.2. Bounds on the operators A(q)−1
and B(q)

The bounds on operators A−1 and B are rather straightforward.

Lemma 7.8. Let θ ∈ ( 1
4 ,

3
4 ) and ω ≥ 2(d222d+1 + 1). Consider the constant

h1 = h1(d, ω), κ(d), A0 = A0(d, L) as chosen from Lemma 7.1. Then there exists
L0(d) such that

(7.67) ‖A(q)
−1

‖0;0 ≤
1√
θ

and there exists M = M(d) such that

(7.68) ‖B(q)‖r;0 ≤MLd

for any ‖q‖ ≤ 1
2 , any N ∈ N, k = 1, . . . , N , r = 1, . . . , r0, and any L ≥ L0,

h ≥ Lκh1, and A ≥ A0.

Proof.
When expressed in the coordinates λ̇, ȧ, ċ, ḋ of Ḣ, the linear map A according

to (4.81) keeps ȧ, ċ, and ḋ unchanged and only shifts λ̇ by

1

2

∑
x∈B

d∑
i,j=1

ḋi,j∇i∇∗jC
(q)
k+1(0).
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Hence, A−1 only makes the opposite shift and thus

(7.69) ‖A−1Ḣ‖k,0 =

= Ldk|λ̇|+ L
dk
2 h

d∑
i=1

|ȧi|+ L
(d−2)

2 kh

d∑
i,j=1

|ċi,j |+
h2

2

d∑
i,j=1

|ḋi,j |

+
Ldk

2

d∑
i,j=1

|ḋi,j |
∣∣∇i∇∗jC(q)

k+1(0)
∣∣.

Using

(7.70)
1

2

d∑
i,j=1

|ḋi,j | ≤
1

h2
‖Ḣ‖k,0,

we get
‖A−1Ḣ‖k,0 ≤ (1 + c2,0L

η(d)h−2)‖Ḣ‖k+1,0

using that maxdi,j=1

∣∣∇i∇∗jC(q)
k+1(0)

∣∣ ≤ c2,0L
−kdLη(d) according to Proposition 4.1.

Given that h2 ≥ L2κ(d) = Lη(d)+d we can get

(7.71) 1 + c2,0L
η(d)h−2 ≤ 1 + c2,0L

−d ≤ θ−1/2

once L >
( 2c2,0

log 4

)1/d
.

For the second bound, using Lemma 6.9, the first inequality of (4.40) and
Lemma 5.1(iv),

(7.72) ‖BK‖k+1,0 ≤
∑

B∈Bk(B′)

∥∥Π2

∑
X∈Sk,
X⊃B

1

|X|k
(Rk+1K)(X)

∥∥
k+1,0

≤

≤
∑

B∈Bk(B′)

C
∑
X∈Sk,
X⊃B

1

|X|k
‖(Rk+1K)(X)‖k:k+1,X,r

≤
∑

B∈Bk(B′)

∑
X∈Sk,
X⊃B

C2|X|k

|X|k
‖K(X)‖k,X,r ≤

≤
∑

B∈Bk(B′)

∑
X∈Sk,
X⊃B

C2|X|k

|X|k
‖Kk‖(A)

k ≤ LdM‖Kk‖(A)
k ,

for any B′ ∈ Bk+1. Here the factor Ld comes from the number of blocks B ∈ Bk(B′)
and we included into M = M(d) the constant C = C(d) as well as the bound on
the number of short polymers containing a fixed block. �

Lemma 7.1 in conjunction with the estimates above give the estimates (4.84) in
Proposition 4.7.

Proof of Remark 4.8.
The smoothness of the operators with respect to the fine tuning parameter q

follows for B(q) and C(q) with the corresponding bounds in Chapter 6 and for A(q)

from the regularity of the finite range decomposition (4.3), i.e., (4.85) follows with
C = C(d, h, L, ω) > 0 and r ≥ 2`+ 3 and all ‖q‖ ≤ 1

2 . �





CHAPTER 8

Fine Tuning of the Initial Conditions

Finally, we address the fine tuning Theorem 4.9. First, in Section 8.1, we prove
the smoothness of the map F assigning a fixed point of the renormalisation map
T to initial values H and K. Then we can specify the map H that chooses the
initial ideal Hamiltonian H in a self-consistent way so that it is reproduced in the
first component H0 of F . Its properties summarized in Theorem 4.9 are proven in
Section 8.2.

8.1. Properties of the map F

Considering the space E with the norm ‖·‖ζ with ζ > 0 as defined in (2.21)

and the Banach space Yr introduced in (4.97) and (4.98), we find a map F from a
neighbourhood of origin in E×M0 (with a shorthand M0 = M0(B0,X )) to Yr so
that T (F(K,H),K,H) = F(K,H) with the following smoothness properties.

Proposition 8.1. Let d = 2, 3, ω ≥ 2(d222d+1 + 1), r0 ≥ 9, and 2m+ 2 ≤ r0

be fixed and let L0, h0(L), A0(L), M > 0 (see (4.98)), and θ ∈ (1/4, 3/4) be the
constants from Propositions 4.6 and 4.7. Then there exist constants α = α(M, θ) ≥
1 and η = η(θ) ∈ (0, 1) determining the norm of the spaces Yr, r = r0, r0 −
2, . . . , r0 − 2m and, for any L ≥ L0, h ≥ h0(L), and A ≥ A0(L), a constant
ζ = ζ(h) determining the norm ‖·‖ζ on E and constants ρ̂, ρ̂1, ρ̂2 > 0 so that

there exists a unique function F : BE×M0
(ρ̂1, ρ̂2) → BYr0 (ρ̂) solving the equation

T (F(K,H),K,H) = F(K,H) (see (4.104)). Moreover,

(8.1) F ∈ C̃m(BE×M0
(ρ̂1, ρ̂2),Y )

with bounds on derivatives that are uniform in N , i.e., there is Ĉ such that

(8.2) ‖Dj
KD

`
HF(K,H)(K̇, . . . , K̇, Ḣ, . . . , Ḣ)‖Yr0−2`

≤ Ĉ‖Ḣ‖`0‖K̇‖
j
ζ ,

for all (K,H) ∈ BE×M0
(ρ̂1, ρ̂2) and all `, j ∈ N0 with `+ j ≤ n ≤ m.

The proof of Proposition 8.1 is based on Theorem E.1 applied in conjunction
with Propositions 4.6 and 4.7. Here, the map T : Y × E ×M0 → Y plays the
role of the map F and the sequence of spaces Y = Yr0 ↪→ Yr0−2 ↪→ . . . ↪→ Yr0−2m,
2m < r0, the role of the sequence Xn, n = m,m − 1, . . . , 0. Using Oρ := BY (ρ),
Wρ := BE(ρ) = {K ∈ E : ‖K‖ζ ≤ ρ}, and Vρ := {H ∈ M0 : ‖H‖0 ≤ ρ}, we
just have to verify the assumptions of Theorem E.1, that is we need to prove the
following claim.

Lemma 8.2. Let L, h, and A be constants as in Proposition 8.1 and let θ ∈
(1/4, 3/4) and M > 0 be the constants from Proposition 4.7. Then there exist
parameters α and η of the norms in Yr depending only on θ and M , constants
ρ > 0, and ζ depending on h and A, so that:

89
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(i) T ∈ C̃m(Oρ ×Wρ × Vρ,Y ) with the bounds on corresponding derivatives that
are uniform in N ,
(ii) T (0, 0,H) = 0 for all H ∈ Vρ, and

(iii)
∥∥∥D1T (y, 0,H)

∣∣
y=0

∥∥∥
L(Yr,Yr)

≤ θ for all H ∈ Vρ and r = r0, r0−2, . . . , r0−2m.

Proof. Let us recall the definition of the map T . The 2N coordinates of the
image

(8.3) T (y,K,H) = y = (H0, H1,K1, . . . ,HN−1,KN−1,KN )

are defined by

(8.4)
Hk =

(
A

(H)
k

)−1(
Hk+1 −B(H)

k Kk

)
and

Kk+1 = Sk(Hk,Kk,H),

where we set HN = 0 and

(8.5) K0(X,ϕ) := exp
{
−
∑
x∈X
H(x, ϕ)

} ∏
x∈X
K(∇ϕ(x))

with K ∈ E. Notice that AHk ,B
H
k , and Sk(Hk,Kk,H) depend on H only through

the coefficient of its quadratic term q = q(H). We will also use a shorthand

(8.6) K0(X,ϕ) =: K(K,H)

0 (X,ϕ) =
∏
x∈X
K(K,H)

0 (x, ϕ)

with

(8.7) K(K,H)
0 (x, ϕ) = exp

{
−H(x, ϕ)

}
K(∇ϕ(x)).

Here we explicitly invoke the dependence of the map Sk on k in contradistinction
to Chapter 6, where the index k was omitted. Notice that the only two coordinates

of y that depend on K (through K0) are H0 =
(
A

(H)
0

)−1(
H1 − B(H)

0 K0

)
and

K1 = S0(H0,K0,H).

(i) The fact that T ∈ C̃m(Oρ×Wρ×Vρ,Y ) follows from Propositions 4.6 and 4.7.

We will treat separately the coordinates Kk+1, k = 1, 2, . . . , N − 1, the coordinates
Hk, k = 1, 2, . . . , N − 1, and finally, the coordinates H0 and K1 that depend on K.

Reinstating the dependence on k, we denote more explicitly the sequence of

normed spaces Mk,r = {M(Pc
k,X ) : ‖·‖(A)

k,r < ∞}, r = r0, r0 − 2, . . . , r0 − 2m, as

well as Mk,0 = (M0(Bk,X ), ‖·‖k,0). Then the claim of Proposition 4.6 is that the

maping Sk : Uk,ρ × V1/2 → Mk+1 = Mk+1,r0 belongs to C̃m(Uk,ρ × V1/2,Mk+1)
for all k = 1, 2, . . . , N − 1. Here,

Uk,ρ = {(H,K) ∈Mk,0 ×Mk,r0 : ‖H‖k,0 < ρ, ‖K‖(A)
k,r0

< ρ}

For the coordinates Hk, k = 1, 2, . . . , N − 1, we first observe that the defining

map Hk = (A
(H)
k )−1

(
Hk+1 −B(H)

k Kk

)
is linear in Hk+1 and Kk and that it does

not depend on K. Consider thus the map

(8.8) G : (y,H) 7→ (A
(H)
k )−1

(
Hk+1 −B(H)

k Kk

)
and verify that G ∈ C̃m(Y × Vρ,Mk,0).
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First, we will address the smoothness of the term B
(H)
k Kk. Comparing the

formula (4.82) with (6.18), we see that

(8.9) B
(H)
k Kk(B′, ϕ) = −

∑
B∈B(B′)

R2(0,Kk, q(H)),

obtaining the needed smoothness relying on the fact that R2 ∈ C̃m(Uk,ρ×Vρ,Mk,0)
(see Lemma 6.7) and the fact that the projection H 7→ q(H) is a linear mapping.

Denoting H = Hk+1−B(H)
k Kk ∈Mk+1,0 and rewriting it in terms of the coor-

dinates λ, a, c,d we see that the linear operator (A
(H)
k )−1 only shifts the coordinate

λ by

(8.10) −1

2

∑
x∈B

d∑
i,j=1

di,j∇i∇∗jC
(q(H))
k+1 (0),

keeping the other coordinates unchanged (cf. the proof of Lemma 7.8). The deriva-
tives of this shift can be estimated by finite range decomposition bound (4.3) yield-
ing

(8.11) sup
‖H‖0≤

1
2

∣∣(D`∇i∇∗jC
(q(H))
k+1 )(0)(Ḣ, . . . , Ḣ)

∣∣ ≤ c2,`L−kdLη(2,d)‖Ḣ‖`0

where we used that

(8.12)
1

2

d∑
i,j=1

|di,j | ≤
1

h2
‖H‖k+1,0

according to (4.44). Hence

(8.13)
‖D`((A

(q(H))
k )−1H)(Ḣ, . . . , Ḣ)‖k,0 = ‖D`G(y,H)(Ḣ, . . . , Ḣ)‖k,0

≤ c2,`Lη(2,d)h−2‖H‖k+1,0‖Ḣ‖
`
0,

for ‖H‖0 ≤
1
2 and y ∈ Y . Actually, in [AKM13] it is shown that ∇i∇∗jC

(q)
k+1(0) is

analytic in q.

Finally, we consider the coordinates H0 and K1. Their derivatives with respect
to K have to be evaluated by composing the derivatives of H0 and K1 with respect
to K0 with the derivatives of K0 with respect to K. We first deal with the coordinate
K1 which can be viewed as a composition of maps

(8.14) F : M0×E×M0 →M0,0×M0,r0 and S0 : (M0×M0,r0)×M0 →M1,r0 .

Indeed, with

(8.15) F (H0,K,H) = (H0,K
(K,H)
0 )

we get

(8.16) K1 = S0 � F, i.e., K1(H0,K,H) = S0(F (H0,K,H),H).

Here, K
(K,H)
0 is the polymer defined in (8.6), where we explicitly denoted the de-

pendence on K and H.
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Now, we apply the Chain Rule according to Theorem D.29 jointly with Re-
mark D.30 providing bounds on derivatives that are uniform in N . The needed con-

dition S0 ∈ C̃m(U0,ρ×V1/2,M1) is just the corresponding claim (4.78) from Propo-
sition 4.6. For the map F , there is no grading on the domain space M0×E×M0,
and we will actually show that F ∈ Cm∗ (U0,ρ × Wρ × Vρ,M0 ×M0,r0). Indeed,
choosing a suitable parameter ζ and ρ, both depending on h, we will prove that the

derivative DjD`K
(K,H)
0 (K̇j , Ḣ`) exists and

(8.17)
∥∥∥DjD`K

(K,H)
0 (K̇j , Ḣ`)

∥∥∥
0,r
≤ C1‖K̇‖jζ‖Ḣ‖

`
0

for any j, ` ≤ m+ 1 with C1 = C1(h,A,m), and thus also

(8.18) lim
(K′,H′)→(K,H)

∥∥∥DjD`K
(K,H)
0 (K̇j , Ḣ`)−DjD`K

(K,H)
0 (K̇j , Ḣ`)

∥∥∥
0,r

= 0

for any j, ` ≤ m and any (H0,K,H) ∈ U0,ρ ×Wρ × Vρ.
Indeed, in view of the product form in (8.5) and (8.6), we first have

(8.19)

D`K0(X,ϕ)(Ḣ, . . . , Ḣ) =
∑

k∈NX0 :∑
x∈X kx=`

(−1)``!∏
x∈X kx!

∏
x∈X

(
Ḣ(x, ϕ)kxe−H(x,ϕ)K(∇ϕ(x))

)
,

and thus
(8.20)

DjD`K
(K,H)
0 (K̇j , Ḣ`) =

∑
k∈NX0 :∑
x∈X kx=`

∑
Y⊂X
|Y |=j

(−1)``!∏
x∈X kx!

∏
x∈X

(
Ḣ(x, ϕ)kxe−H(x,ϕ)

)

×
∏
y∈Y
K̇(∇ϕ(y))

∏
y∈X\Y

K(∇ϕ(y))

=
∑

k∈NX0 :∑
x∈X kx=`

∑
Y⊂X
|Y |=j

(−1)``!∏
x∈X kx!

∏
x∈X

(
Ḣ(x, ϕ)kx

) ∏
x∈Y
K̇(K,H)

0 (x, ϕ)
∏

x∈X\Y

K(K,H)
0 (x, ϕ).

Here, we use the shorthand K̇(K,H)
0 (x, ϕ) = exp

{
−H(x, ϕ)

}
K̇(∇ϕ(x)). Observ-

ing that, in the case k = 0, the unit blocks are actually single sites, Bk(ΛN ) = ΛN ,
we can apply the claim (iia) of Lemma 5.1 to get

(8.21)
∥∥∥∏
y∈Y
K̇(H,Ḣ,ky)

0 (y, ϕ)
∏

y∈X\Y

K(H,Ḣ,ky)
0 (y, ϕ)

∥∥∥
0,X,r

≤
∏
y∈Y
|‖K̇(H,Ḣ,ky)

0 ‖|0,{y}
∏

y∈X\Y

|‖K(H,Ḣ,ky)
0 ‖|0,{y}.

Here we introduced the shorthands

(8.22) K(H,Ḣ,ky)
0 (y, ϕ) = −Ḣ(y, ϕ)kyK(K,H)

0 (y, ϕ)

and

(8.23) K̇(H,Ḣ,ky)
0 (y, ϕ) = −Ḣ(y, ϕ)ky K̇(K,H)

0 (y, ϕ).

Further, using definitions (4.30) and (4.27),

(8.24) |‖K(H,Ḣ,kyy)
0 ‖|0,{y} = sup

ϕ
|K(H,Ḣ,ky)

0 (y, ϕ)|0,{y},r0 exp{−G0,y(ϕ)}
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with the weight function G0,y(ϕ) defined in (4.29) and

(8.25) |K(H,Ḣ,ky)
0 (y, ϕ)|0,{y},r0 =

r0∑
r=0

1

r!
sup

|ϕ̇|0,{y}≤1

∣∣DrK(H,Ḣ,ky)
0 (y, ϕ)(ϕ̇, . . . , ϕ̇)

∣∣.
Using the definition (4.21), we can bound

(8.26) |ϕ̇|0,{y} = max
1≤s≤3

sup
w∈{y}∗

1

h

∣∣∇sϕ̇(w)
∣∣ ≥ max

( 1

h
|∇ϕ̇(y)|, 1

h
|∇2ϕ̇(y)|

)
.

Now
(8.27)

sup
|ϕ̇|0,{y}≤1

∣∣DrK(H,Ḣ,ky)
0 (y, ϕ)(ϕ̇, . . . , ϕ̇)

∣∣ ≤ sup
|ϕ̇|0,{y}≤1

∣∣∣∣∣drK
(H,Ḣ,ky)
0 (y, ϕ+ tϕ̇)

dtr

∣∣∣
t=0

∣∣∣∣∣.
Defining v = ∇ϕ(y), w = ∇2ϕ(y), and z = 1

h

(
|v|2 + |w|2

)1
/2 we notice that

drK(H,Ḣ,ky)
0 (y, ϕ+ tϕ̇)

dtr

is a sum of terms of the form

(8.28)

(λ̇+ȧv+ 1
2 〈q̇v, v〉+ċw)i0(ȧv̇+〈q̇v, v̇〉+ċẇ)i1〈q̇v̇, v̇〉i2(av̇+〈qv, v̇〉+zẇ)j1〈qv̇, v̇〉j2×

× exp{−(λ+ av + 1
2 〈qv, v〉+ cw)}dsK(v + tv̇)

dts

∣∣∣
t=0

such that i0 + i1 + i2 = ky and i1 + 2i2 + j1 + 2j2 + s = r. Using the definition of
the norm ‖H‖0 and the fact that 1

h max(|v̇|, |ẇ|) ≤ |ϕ̇|0,{y} ≤ 1, the absolute value

of the prefactor above can be bounded by

2i1+i2+j1+j2‖Ḣ‖j1+j2
0

(
1 + z

)2i0+i1+j1

Now assume that

(8.29) ‖H‖0 ≤ ρ̃ ≤ 1.

Since ky ≤ m+ 1 and j1 ≤ m+ 1 we have

(8.30) (1 + z)2i0+i1+j1 ≤ (1 + z)4(m+1) ≤
(
1 +

16(m+ 1)

ρ̃

)2(m+1)
exp{ρ̃z2}.

In the last inequality we used that for a > 0, z ≥ 0,

(8.31) (1 + z)a ≤
(
1 +

2a

ρ̃

)a/2
exp{ρ̃z2}

To see this observe that for a > 0 the maximum of the function

(8.32) t 7→ (1 + t)a exp{−ρ̃t2}

for t ≥ 0 is attained at

t = t =
1

2

(√
1 +

2a

ρ̃
− 1
)

and is bounded by

(1 + t)a ≤ (1 + 2t)a =
(
1 +

2a

ρ̃

)a/2
.
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As a result, there exists a constant C(r0) so that for |ϕ̇| ≤ 1 and hence |v̇| ≤ h,
we have

(8.33)

∣∣∣∣∣drK
(H,Ḣ,ky)
0 (ϕ+ tϕ̇)

dtr

∣∣∣
t=0

∣∣∣∣∣ ≤ C(r0)
(
1 + 16(m+1)

ρ̃

)2(m+1)‖Ḣ‖ky0 ×

× exp{ρ̃|z|2}
( r0∑
s=0

∣∣∣∣dsK(v + tv̇)

dts

∣∣∣
t=0

∣∣∣∣)
≤ C(r0)

(
1 + 16(m+1)

ρ̃

)2(m+1)‖Ḣ‖ky0 exp{ρ̃z2}
∑
|α|≤r0

h|α||∂αvK(v)|

for any ‖H‖0 ≤ ρ̃, and any r ≤ r0. Finally, choosing

(8.34) ζ ≥ h

and taking into account that

(8.35) G0,y(ϕ) ≥ 1

h2
|∇ϕ(y)|2 +

1

h2
|∇2ϕ(y)|2 = z2

and the definition (2.21) of the norm ‖K‖ζ and using |v| ≤ hz we get

(8.36) |‖K(H,Ḣ,ky)

0 ‖|0,{y} ≤ C̃‖Ḣ‖
ky
0 sup

z≥0

(
exp{(ρ̃− 1)z2} exp{ζ−2h2z2}‖K‖ζ

)
with

(8.37) C̃ = C̃(r0,m, h, ρ̃) = C(r0)
(
1 +

16(m+ 1)

ρ̃

)2(m+1)
.

The same estimate holds for K̇(H,Ḣ,ky) if we replace ‖K‖ζ on the right hand side

by ‖K̇‖ζ . The exponential term can be controlled if for given h we choose ζ and ρ̃
such that

(8.38)
h2

ζ2
+ ρ̃ ≤ 1.

In particular we may take

(8.39) ρ̃ =
1

2
and ζ =

√
2h.

Note that (8.38) implies (8.34) and (8.29).

Summarising, we get,

(8.40)
∥∥∥∏
y∈Y
K̇(H,Ḣ,ky)

0 (∇ϕ(y))
∏

y∈X\Y

K(H,Ḣ,ky)
0 (y, ϕ)

∥∥∥
0,X,r

≤

≤ C̃ |X|‖Ḣ‖`0‖K̇‖
j
ζ‖K‖

|X|−j
ζ .

Since ` ≤ m+ 1 the sum in (8.20) over k ∈ NX0 with
∑
x∈X kx = ` involves at

most (m+ 2)|X| terms. The sum over Y involves at most 2|X| terms. The counting
terms with the factorial in (8.20) are bounded by (m+ 1)!. Thus (8.20) and (8.40)
give

(8.41)
‖Dj

1D
`
2K0(X,K,H, K̇, . . . , K̇, Ḣ, . . . , Ḣ)‖0,r
≤ (m+ 1)!(2(m+ 2))|X|C̃ |X|‖K‖X−jζ ‖K̇‖jζ‖Ḣ‖

`
0.
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Thus with ζ =
√

2h we have for all K ∈ BE(ρ1) with

(8.42) ρ1 = ρ1(A) =
(
2(m+ 2)(m+ 1)!AC̃

)−1

and all H ∈ BM0(ρ̃) with ρ̃ = 1
2 ,

(8.43)
ΓA(X)‖Dj

1D
`
2K0(X,K,H, K̇, . . . , K̇, Ḣ, . . . , Ḣ)‖0,r

≤ C1‖K̇‖jζ‖H‖
`
0

with

(8.44) C1 = C1(A,m) =
(
(m+ 1)!(2(m+ 2)C̃A

)m+1
.

Finally, for the coordinate H0 = (A(H))−1
0

(
H1−B(H)

0 K0

)
, we can again apply

the Chain Rule according to Theorem D.29. The image coordinate H0 is obtained
as a composition of maps
(8.45)
F : M1,0 ×E ×M0 →M1,0 ×M0,r0 and G : (M1,0 ×M0,r0)×M0 →M0,r0

with
(8.46)

F (H1,K,H) = (H1,K
(K,H)
0 ) and G((H1,K0),H) = (A

(H)
0 )−1

(
H1 −B(H)

0 K0

)
yielding H0 = G � F . Both needed conditions, G ∈ C̃m(Y × Vρ,M0,r0) as well as
F ∈ Cm∗ (U1,ρ ×Wρ × Vρ,M1,0 ×M0,r0) have been already proven.

(ii) This is an immediate consequence of the definition of the map T and the fact
that S(0, 0,H) = 0 (cf. (4.62)).

(iii) Using that K0 = 0 for K = 0 and that ∂Sk
∂Hk

(0, 0,H) = ∂Sk
∂Kk

(0, 0,H) = 0, we can

compute the derivatives of y = T (y, 0,H) at H = 0:

∂Hk

∂Hj
=

{
A−1
k if j = k + 1, j = 0, . . . , N − 2

0 otherwise,

∂Hk

∂Kj
=

{
−A−1

k Bk if j = k,

0 otherwise,

(8.47)

and

∂Kk+1

∂Hj
= 0,

∂Kk+1

∂Kj
=

{
Ck if j = k 6= 0,

0 otherwise,

(8.48)

for k, j = 0, . . . , N − 1.
Consider now a vector y ∈ Yr with ‖y‖Yr ≤ 1 and its image y under the map

∂T (y,0,H)
∂y

∣∣
y=0

,

(8.49) y =
∂T (y, 0,H)

∂y

∣∣∣
y=0

y.
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Since ‖y‖Yr ≤ 1, we have ‖H(y)
k ‖k,0 ≤ ηk, k = 0, . . . , N − 1, and ‖K(y)

k ‖k,r ≤
ηk

α ,

k = 1, . . . , N , for the coordinates H
(y)
k ,K

(y)
k of the vector y. Using H

(y)
k ,K

(y)
k , for

the coordinates of the image y, we get

‖H(y)
0 ‖k,0 ≤ ‖A

−1
0 ‖η;

‖H(y)
k ‖k,0 ≤ ‖A

−1
k ‖η

k+1 + ‖A−1
k ‖‖Bk‖

ηk

α
≤ ηk√

θ
(η +

M

α
), k = 1, . . . , N − 2;

‖H(y)
N−1‖N−1,0 ≤ ‖A

−1
N−1‖‖BN−1‖

ηN−1

α
≤ ηN−1M

α
√
θ

;

‖K(y)
1 ‖k,r = 0;

‖K(y)
k ‖k,r ≤ ‖Ck−1‖

ηk

α
≤ θ η

k

α
, k = 2, . . . , N.

As a result,

‖y‖Yr ≤
( 1√

θ
(η +

M

α
)
)
∨ θ
η
.

It suffices to choose the parameters η and α so that η+M/α ≤ θ1/2 (θ < η < θ1/2),
yielding

(8.50)
∥∥∥∂T (y, 0,H)

∂y

∣∣∣
y=0

∥∥∥
L(Zs,Zs)

≤ θ < 1, s = r0, r0 − 2, . . . , r0 − 6.

�

Proof of Proposition 8.1. Having thus, in Lemma 8.2, verified the assump-
tions (E.1)-(E.4) of Theorem E.1 for the map T in the role of F , there exist con-

stants ρ̂1, ρ̂2, and ρ̂ depending (through ρ in Lemma 8.2) on h and A and Ĉ,
depending (through C = C(L, h,A) in Proposition 4.6) on L, h, and A, and the
map

(8.51) F : BE×M0(ρ̂1, ρ̂2)→ BYr0 (ρ̂)

(in the role of f) so that T (F(K,H),K,H) = F(K,H) for any

(K,H) ∈ BE×M0
(ρ̂1, ρ̂2),

and

(8.52) F ∈ C̃m(BE×M0
(ρ̂1, ρ̂2),Y ),

satisfying (8.2) whenever (K,H) ∈ BE×M0(ρ̂1, ρ̂2) and j, ` ∈ N0 with ` + j ≤ m.
Here, the estimates (8.2) follow from the bounds (E.8). �

8.2. Properties of the map H

Using our results in the previous section we finally obtain a map H mapping
a neighbourhood of the origin in E to M0 so that T (F(K,H(K)),K,H(K)) =
F(K,H(K)) and Π(F(K,H(K))) = H(K). This requires another application of
the implicit function theorem, this time for the composition of the projection Π
with the map F in Proposition 8.1. We write G := Π ◦ F in the following. The
projection Π: Y r0−2n → M0 is a bounded linear mapping for any 0 ≤ n ≤ m.
Using Proposition 8.1 we obtain, in particular, that G ∈ Cm∗ (BE×M0(ρ̂1, ρ̂2),M0).
Note that F(0,H) = 0 because T (0, 0,H) = 0 for allH ∈ Vρ (see (ii) in Lemma 8.2),
and thus G(0,H) = 0 and DHG(0, 0) = 0. Therefore, by standard implicit function
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theorem, there exists a Cm∗ -map H : BE(ρ1) → BM0
(ρ2) with a suitable ρ1 ≤ ρ̂1

and ρ2 = ρ̂2 such that G(K,H(K)) = H(K).





APPENDIX A

Discrete Sobolev Estimates

For the convenience of the reader we recall a discrete version of the Sobolev
inequality. Discrete Sobolev inequalities are classical, see, e.g., Sobolev’s original
work [Sob40]. Let Bn = [0, n]d ∩ Zd, and for p > 0 define the norm

(A.1) ‖f‖p = ‖f‖p,Bn =
( ∑
x∈Bn

|f(x)|p
)1/p

for any function f : Bn → R.

Proposition A.1. For every p ≥ 1 and m,M ∈ N there exists a constant
C = C(p,M,m) such that:

(i) If 1 ≤ p ≤ d, 1
p∗ = 1

p −
1
d , and q ≤ p∗, q <∞, then

(A.2) n−
d
q ‖f‖q ≤ Cn−

d
2 ‖f‖2 + Cn1− dp ‖∇f‖p.

(ii) If p > d, then

(A.3)
∣∣f(x)− f(y)

∣∣ ≤ Cn1− dp ‖∇f‖p for all x, y ∈ Bn.

(iii) If m ∈ N, 1 ≤ p ≤ d
m , 1

pm
= 1

p −
m
d , and q ≤ pm, q <∞, then

(A.4) n−
d
q ‖f‖q ≤ Cn−

d
2

M−1∑
k=0

‖(n∇)kf‖2 + Cn−
d
p ‖(n∇)Mf‖p.

(iv) If M = bd+2
2 c, the integer value of d+2

2 , then

(A.5) max
x∈Bn

|f(x)| ≤ Cn−
d
2

M∑
k=0

‖(n∇)kf‖2.

Remark A.2.
(i) In the proof of (iv) we actually get

(A.6) max
x∈Bn

|f(x)| ≤ (n+ 1)−
d
2

∑
x∈Bn

|f(x)|2 + Cn−
d
2

M∑
k=1

‖(n∇)kf‖2.

(ii) As written, the higher derivatives on the RHS of (i)-(iv) require the values of
f outside Bn. If one traces the dependence more carefully then one sees that
(∇α1

1 . . .∇αdd f)(x) is only needed for x such that x + α1e1 + · · · + αded ∈ Bn, so
that only the values of f inside Bn are needed.
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The proof may be reduced to the continuous case by interpolation. Let n = 1,

B1 = {0, 1}d, f : B1 → R+, and let f̃ be the interpolation of f which is affine in

each coordinate direction, i.e., f̃ is the unique function of the form

(A.7) f̃(x) =

d∏
i=1

(aixi + bi), f̃(x) = f(x) for x ∈ {0, 1}d.

The Proposition A.1 will be proven with help of the following Lemma.

Lemma A.3.

(i) 1
(p+1)d2d

∑
x∈B1

fp(x) ≤
∫

(0,1)d
f̃p(x)dx ≤ 1

2d

∑
x∈B1

fp(x).

(ii) supx∈(0,1)d |∂if̃(x)| ≤ maxx∈B1,xi=0 |f(x+ei)−f(x)| ≤
(∑

x∈B1,xi=0 |f(x+

ei)− f(x)|p
)1/p

for any i = 1, . . . , d.

Proof. (i) The integrand is a product of functions of one variable. Taking
into account that

(A.8)
1

2d

∑
x∈B1

fp(x) =

d∏
i=1

(1

2
(ai + bi)

p +
1

2
bpi

)
,

it suffices to prove the claim for d = 1. Considering thus a nonnegative function on
the interval [0, 1] of the form ax+ b and assuming w.l.o.g. that a, b ≥ 0, we get
(A.9)∫ 1

0

(ax+ b)pdx =

p∑
k=0

(
p

k

)
1

k + 1
akbp−k ≤ bp +

p∑
k=1

(
p

k

)
1

2
akbp−k =

1

2
bp +

1

2
(a+ b)p.

On the other hand,

(A.10)

p∑
k=0

(
p

k

)
1

k + 1
akbp−k ≥ 1

p+ 1

p∑
k=0

(
p

k

)
akbp−k =

1

p+ 1
(a+ b)p

≥ 1

p+ 1

(1

2
(a+ b)p +

1

2
bp
)
.

(ii) For f̃ of the form (A.7) we have ∂if̃(x) = ai
∏d
j 6=i(ajxj + bj) while, on the

other hand, we have ai
∏d
j 6=i(ajxj + bj) = f̃(x+ ei)− f̃(x) = f(x+ ei)− f(x) for

any x ∈ B1 such that xi = 0. �

Proof of Proposition A.1. (i) and (ii) follow from Lemma A.3 and the
continuous embedding Theorem.

The claim (iii) follows from (i) by iteration.
To prove (iv), assume first that d is odd and thus M = bd+2

2 c = d
2 + 1

2 . Let us
apply (iii) with p = 2, m = M − 1, and

(A.11)
1

pm
=

1

2
− M − 1

d
=
d− (d− 1)

2d
=

1

2d
.

Hence,

(A.12) n−
d
2d ‖∇f‖2d ≤ Cn−

d
2−1

M∑
k=1

‖(n∇)kf‖2.
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Further,

(A.13)
∣∣f(x)− f(y)

∣∣ ≤ Cn1− d
2d ‖∇f‖2d = Cn

1
2 ‖∇f‖2d

for all x, y ∈ Bn by (ii). Averaging over y yields

(A.14)
∣∣f(x)− (n+ 1)−d

∑
y∈Bn

f(y)
∣∣ ≤ Cn

1
2 ‖∇f‖2d.

On the other hand,
(A.15)∣∣(n+ 1)−d

∑
y∈Bn

f(y)
∣∣ ≤ (n+ 1)−d

( ∑
y∈Bn

f(y)2
)1/2( ∑

y∈Bn

1
)1/2

≤ (n+ 1)−d/2‖f‖2

yielding

(A.16) |f(x)| ≤ Cn
1
2 ‖∇f‖2d + (n+ 1)−d/2‖f‖2

for all x ∈ Bn. The assertion (iv) for odd d follows.
Similarly for even d when M = bd+2

2 c = d
2 + 1 and we use m = M − 2 and

q = 2d > pm = d. �





APPENDIX B

Integration by Parts and Estimates of the
Boundary Terms

For the convenience on the reader we spell out the estimates of the boundary
terms in detail.

a) d = 1

The forward and backward derivative are ∂v(x) = v(x+1)−v(x) and ∂∗v(x) =
v(x− 1)− v(x).

Proposition B.1 (Integration by parts). Let g, v, u : Z → R and m ∈ N.
Then:

(i)
m∑

x=−m
g(x)∂v(x) =

m∑
x=−m

∂∗g(x)v(x) + g(m)v(m+ 1)− g(−m− 1)v(−m).

(ii)
m∑

x=−m
∂u(x)∂v(x) =

m∑
x=−m

(∂∗∂u)(x)v(x) + ∂u(m)v(m+ 1)− ∂u(−m− 1)v(−m).

Proposition B.2 (Evaluation of the boundary terms). There exist a

constant c < 3
√

2 such that for any v : Z→ R and any m ∈ N, m > 1, one has

(B.1) v(−m)2 + v(m+ 1)2 ≤ c

2m+ 1

m∑
x=−m

v(x)2 + c(2m+ 1)

m∑
x=−m

∂v(x)2.

Proof. Assume first that the number of those x ∈ {−m, . . . ,m} for which
v(x)2 ≥ 1

3

(
v(−m)2 + v(m+ 1)2

)
is at least 2m+1√

2
. Then

∑m
x=−m v(x)2 ≥ 1

3
√

2
(2m+

1)
(
v(−m)2 + v(m+ 1)2

)
.

On the other hand, if the number of such x’s is less then 2m+1√
2

, then there

exists x such that ∂v(x)2 ≥
√

2
6
v(−m)2+v(m+1)2

2m+1 , implying

m∑
x=−m

∂v(x)2 ≥ 1

3
√

2

v(−m)2 + v(m+ 1)2

2m+ 1
.

Indeed, having assured the existence of y and z such v(y)2 < 1
3

(
v(−m)2 + v(m +

1)2
)

(the existence of such y is obvious for m > 1 implying that
(
1 − 1√

2

)
(2m +

1) > 1) and v(z)2 ≥ 1
2

(
v(−m)2 + v(m + 1)2

)
(again, its existence follows since
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1
2

(
v(−m)2 + v(m + 1)2

)
≤ max

{
v(−m)2, v(m + 1)2

}
) implying that the interval[

1
3

(
v(−m)2 +v(m+1)2

)
, 1

2

(
v(−m)2 +v(m+1)2

)]
has to be spanned within at most

2m+1√
2

increments ∂v(x)2.

In both cases,

(B.2)
1

2m+ 1

m∑
x=−m

v(x)2 + (2m+ 1)

m∑
x=−m

∂v(x)2 ≥ 1

3
√

2

(
v(−m)2 + v(m+ 1)2

)
implying the claim. �

The combination of Proposition B.1 and B.2 yields:

Proposition B.3. Let u, v : Z → R and m ∈ N. With the constant c from
Proposition B.2 and any η > 0, one has

(B.3)∣∣∣ m∑
x=−m

∂u(x)∂v(x)
∣∣∣ ≤ 1

2
(2m+1)2 1

η

m∑
x=−m

∣∣(∂∗∂u)(x)
∣∣2+

1

2

η

(2m+ 1)2

m∑
x=−m

v(x)2+

+
2m+ 1

2η

[
∂u(−m−1)2 +∂u(m)2

]
+

c η

2

[ 1

(2m+ 1)2

m∑
x=−m

v(x)2 +

m∑
x=−m

∂v(x)2
]
.

b) Multidimensional case

Let X ∈ Pk be a union of k-blocks. Further, let ∂±X = ∪di=1∂
±
i X, where, for

any i = 1, . . . , d,

(B.4) ∂−i X := {x ∈ Zd : x /∈ X,x+ ei ∈ X or x ∈ X,x+ ei /∈ X}
and

(B.5) ∂+
i X = ∂−i X + ei := {x+ ei : x ∈ ∂−i X}.

Notice that ∂−X ∪ ∂+X = ∂X, the boundary defined in (4.31).

Lemma B.4. Let B be a k-block and let v : B ∪ ∂B → R. Then, for any
i = 1, . . . , d,

(B.6)
∑

x∈∂+
i B

v(x)2 ≤ c
( 1

Lk

∑
x∈B

v(x)2 + Lk
∑
x∈B
|∇iv(x)|2

)
and

(B.7)
∑

x∈∂−i B

v(x)2 ≤ c
( 1

Lk

∑
x∈B

v(x)2 + Lk
∑
x∈B
|∇∗i v(x)|2

)
,

where c is the constant from Proposition B.2.

Proof. Applying Proposition B.2 to all lines in B that are parallel to ei, we
get (B.6). Similarly for (B.7), when considering the sites on these lines in the
opposite order. �

Notice that, using∇∗i v(x) = −∇iv(x−ei), the last term in (B.7) can be actually

replaced by Lk
∑
x∈B−ei |∇iv(x)|2

To formulate the following immediate corollary of Lemma B.4, let, for any
X ∈ Pk and ` ∈ N, the neighbourhood U`(X) be defined iteratively with U1(X) =
X ∪ ∂X and U`+1(X) = U`(X) ∪ ∂U`(X).
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Proposition B.5. Let X ∈ Pk and u : U4(X)→ R. With the constant c from
Proposition B.2,

(a)

Lk
∑
x∈∂X

|∇v(x)|2 ≤ 2c
(∑
x∈X
|∇v(x)|2 + L2k

∑
x∈U1(X)

|∇2v(x)|2
)
,

(b)

L3k
∑
x∈∂X

|∇2v(x)|2 ≤ 2c
(
L2k

∑
x∈X
|∇2v(x)|2 + L4k

∑
x∈U1(X)

|∇3v(x)|2
)
,

and
(c)

L5k
∑
x∈∂X

|∇3v(x)|2 ≤ 2c
(
L4k

∑
x∈X
|∇3v(x)|2 + L6k

∑
x∈U1(X)

|∇4v(x)|2
)
.

Proof. Let B1, . . . , Bn denote the k-blocks contained in X. Applying Lemma
B.4 to each B`, ` = 1, . . . , n, i = 1, . . . , d, observing that

(B.8) ∂X ⊂
n⋃
`=1

∂B`,

and summing over i, we get
(B.9)

Lk
∑
x∈∂X

|∇v(x)|2 ≤ c
(

2
∑
x∈X
|∇v(x)|2 + L2k

∑
x∈X

d∑
i=1

(
|∇2

i v(x)|2 + |∇∗i∇iv(x)|2
))
.

Using

(B.10)
∑
x∈X

d∑
i=1

|∇∗i∇iv(x)|2 =
∑

x∈X−ei

d∑
i=1

|∇2
i v(x)|2 ≤

∑
x∈U1(X)

|∇2v(x)|2,

we get the first claim.
The second and the third claim follow in a similar way. �

Notice that the sums over x ∈ U1(X) on the right hand side of the bounds in
Proposition B.5 can be actually replaced by the sums over x ∈ (X ∪ ∂−X) \ (X ∩
∂−X).

Proposition B.6. Let u, v : X ∪ ∂X → R and X ∈ Pk. With the constant c
from Proposition B.2 and any η > 0, we get

(B.11)
∣∣∑
x∈X
∇u(x)∇v(x)

∣∣ ≤ η(1 + cd)

2L2k

∑
x∈X∪∂−X

v(x)2 +
Lk

2η

∑
x∈∂−X

|∇u(x)|2+

+
cη

2

∑
x∈X
|∇v(x)|2 +

L2k

2η

∑
x∈X∪∂−X

|∇2u(x)|2.

Proof. For any x ∈ ∂−i X, let εi(x) = +1 if x ∈ X and εi(x) = −1 if x 6∈ X.
By Proposition B.1, for each i ∈ {1, . . . , d}, we have

(B.12)
∑
x∈X
∇iu(x)∇iv(x) =

∑
x∈X
∇∗i∇iu(x)v(x) +

∑
x∈∂−i X

εi(x)∇iu(x)v(x+ ei).
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Summing over i = 1, . . . , d, we get

(B.13)∣∣∑
x∈X
∇u(x)∇v(x)

∣∣ ≤ d∑
i=1

∑
x∈X−ei

|∇2
iu(x)v(x)|+

d∑
i=1

∑
x∈∂−i X

|∇iu(x)v(x+ ei)| ≤

≤ L2k

2η

∑
x∈X∪∂−X

|∇2u(x)|2 +
η

2L2k

d∑
i=1

∑
x∈X−ei

v(x)2 +
Lk

2η

∑
x∈∂−X

|∇u(x)|2

+
η

2Lk

d∑
i=1

∑
x∈∂+

i X

v(x)2.

Applying now Lemma B.4 on the last term, we get the claim. �

Lemma B.7. Let Y ⊂ X, X,Y ∈ Pk, and u : U4(X)→ R. Then

(B.14) max
x∈X

u(x)2 ≤ 2

|Y |
∑
x∈Y

u(x)2 + 2(diamX)2 max
x∈X
|∇u(x)|2.

Proof. Cf. [Bry09, Lemma 6.20]. Considering the shortest path from any
x ∈ X to y ∈ Y , we have

(B.15) |u(x)| ≤ |u(y)|+ |x− y|∞max
z∈X
|∇u(z)|.

Using that |x−y|∞ ≤ diamX (with the diameter taken in |·|∞ metric on Zd), using
the inequality (a+ b)2 ≤ 2a2 + 2b2, and averaging both sides over Y , we get

(B.16) u(x)2 ≤ 2

|Y |
∑
y∈Y

u(y)2 + 2(diamX)2 max
z∈X
|∇u(z)|2

yielding the claim. �



APPENDIX C

Gaussian Calculus

Here we recall the formulae for the derivative of a Gaussian integral with respect
to the covariance matrix. The arguments are classical, but we provide proofs for
the convenience of the reader. We begin with the first derivative. We will make the
following general assumptions throughout this appendix.

Let V be a finite dimensional Euclidean vector space with scalar product (·, ·)
and Lebesgue measure λ. Denote by Sym(+)(V ) and Sym(≥)(V ) the set of positive
definite respectively of positive semi-definite symmetric operators on V . For C ∈
Sym(+)(V ) denote by µC the Gaussian measure with covariance C. Let g : V → R be
measurable and assume that there exists a B ∈ Sym(≥)(V ) and a constant M ∈ R
such that

|g(x)| ≤Me
1
2 (Bx,x) for all x ∈ V.

For C−1 > B define

(C.1) H(C) :=

∫
V

g(x)µC(dx) =
1

det(2πC)1/2

∫
V

g(x)e−
1
2 (C−1x,x) λ(dx).

We first recall that H is real-analytic in the set {C ∈ Sym(+)(V ) : C−1 > B}. In

fact we will extend H to a complex analytic function as follows. Let Ṽ denote the

complexification of V with the canonical sesquilinear-form (·, ·), let GL(Ṽ ) denote

the set of all invertible C-linear maps from Ṽ to itself and let

U := {C ∈ GL(Ṽ ) : Re (C−1x, x) > (Bx, x) ∀x ∈ V \ {0}}.

Define H on U by the right hand side of (C.1).

Lemma C.1. (i) The map H : U → C is analytic and the derivative at C

in direction Ċ reads as

(C.2) DH(C, Ċ) =

∫
V

g(x)
1

2

(
(C−1ĊC−1x, x)− Tr(C−1Ċ)

)
µC(dx).

(ii) Assume in addition that g is continuous and that there exists a continuous
function w : V → (0,∞) such that

(C.3) g(x+ y) ≤Me
1
2 (Bx,x)w(y), x, y ∈ V.

Define

(C.4) H̃(C)(y) :=

∫
V

g(x+ y)µC(dx) for all y ∈ V.

Then H̃ is an analytic map from U to the space

C0
w := {h ∈ C0(V ) : ‖h‖w <∞},

107
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where

‖h‖w := sup
y∈V

|h(y)|
|w(y)|

,

and the derivative at C in direction Ċ ∈ GL(Ṽ ) is given as

DH̃(C, Ċ)(y) =

∫
V

g(x+ y)D1f(C, x, Ċ)λ(dx), y ∈ V,

where

f(C, x) :=
e−

1
2 (C−1x,x)

det(2πC)1/2
.

Proof. (i) Set

(C.5) f(C, x) :=
e−

1
2 (C−1x,x)

det(2πC)1/2
.

Then for every x ∈ V the map C 7→ f(C, x) is complex differentiable in U , and
(using Jacobi’s formula for the derivative of determinants) we get that

(C.6) D1f(C, x, Ċ) =
1

2

(
(C−1ĊC−1x, x)− Tr(C−1Ċ)

)
f(C, x).

In particular for each ε > 0 there exists M ′ > 0 such that

(C.7)
∣∣D1f(C, x, Ċ)

∣∣ ≤M ′e 1
2 ε|x|

2

e−
1
2 (C−1x,x)|Ċ|.

Since Re (C−1) > B and since V is finite-dimensional we also have that Re (C−1) >
B + εId and thus the function

g(x)
∣∣D1f(C, x, Ċ)

∣∣
is integrable. Now for any Ċ 6= 0 we estimate

(C.8)

1

|Ċ|

∣∣∣H(C + Ċ)−H(C)−
∫
V

g(x)D1f(C, x, Ċ)λ(dx)
∣∣∣

≤
∫
V

|g(x)|
∣∣∣f(C + Ċ)− f(C)−D1f(C, x, Ċ)

|Ċ|

∣∣∣λ(dx).

For Ċ → 0 the integrand on the right hand side of (C.8) goes to zero for every
x ∈ V . It remains to find an integrable majorant. We have

f(C + Ċ, x)− f(C, x) =

∫ 1

0

D1f(C + sĊ, x) ds.

Now for every C ∈ U and every ε > 0 there exist δ > 0 and M ′′ > 0 such that for

all C̃ ∈ Bδ(C) we have∣∣D1f(C̃, x, Ċ)
∣∣ ≤M ′′e 1

2 ε|x|
2

e−
1
2 (C−1x,x)|Ċ|.

Hence for |Ċ| < δ the integrand in (C.8) is bounded by the integrable function

|g(x)|(M ′ +M ′′)e
1
2 ε|x|

2

e−
1
2 (C−1x,x).

Thus by the dominated convergence theorem the right hand side of (C.8) goes to

zero as Ċ→ 0. This concludes the proof of (i).
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(ii) The continuity of the map y 7→ H̃(C)(y) follows directly from the dominated
convergence theorem. Indeed, assume that yk → y in V as k → ∞. Using the
continuity of g we obtain

g(x+ yk)f(C, x)→ g(x+ y)f(C, x) for every x ∈ V as k →∞.
Moreover, for |yk − y| < δ we have∣∣g(x+ yk)f(C, x)

∣∣ ≤Me
1
2 (Bx,x)

(
sup

z∈Bδ(y)

w(z)
)
f(C, x),

and the right hand side is integrable. Hence

H̃(C)(yk)→ H̃(C)(y) as k →∞
by the dominated convergence theorem. To verify complex differentiability define
first the linear map

(LĊ)(y) :=

∫
V

g(x+ y)D1f(C, x, Ċ)λ(dx).

Then one sees as above that y 7→ (LĊ)(y) is continuous. Moreover it follows from
the bounds (C.3) and (C.7) that

‖LĊ‖w ≤MM ′|Ċ|
∫
V

e
1
2 ((B+εId−C−1)x,x) λ(dx) <∞.

Thus L is a bounded linear map from GL(Ṽ ) to C0
w(V ). Finally we check differen-

tiability. We have∣∣∣H̃(C + Ċ)(y)− H̃(C)(y)− LĊ(y)
∣∣∣

≤
∫
V

|g(x+ y)|
∣∣f(C + Ċ, x)− f(C, x)−D1f(C, x, Ċ)

∣∣λ(dx)

≤Mw(y)

∫
V

e
1
2 (Bx,x)

∣∣f(C + Ċ, x)− f(C, x)−D1f(C, x, Ċ)
∣∣λ(dx).

Dividing by w(y)|Ċ| and taking the supremum over y we get

‖H̃(C + Ċ) + H̃(C)− LĊ‖w

≤M
∫
V

e
1
2 (Bx,x)

∣∣f(C + Ċ, x)− f(C, x)−D1f(C, x, Ċ)
∣∣

|Ċ|
λ(dx).

Now as in (i) it follows from the dominated convergence theorem that the right hand

side goes to zero as Ċ → 0. Thus H̃ is complex differentiable at C with derivative

DH̃(C) = L. �

We will apply Lemma C.1 with C = C
(q)

k , the covariance matrices which arise

in the finite range decomposition (see Proposition 4.1), and B = κBk = 2Ch−2Bk
where Bk is as in Lemma 5.3. Now an important point is that the finite range
decomposition in Proposition 4.1 does not yield a bound on terms like

Tr
(
C

(q)

k

)−1
DqĊ

(q)

k q̇

which are independent of k and N .
In order to derive bounds on the derivatives of q 7→ H(C(q)

k ) which are inde-
pendent of k and N we now derive different expressions for the derivatives of H
which do not involve C−1 but which require derivatives of g. This leads to a loss of
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regularity when we consider the convolution operator g 7→
∫
g(·+ x)µC(dx) as an

operator between function spaces and we shall see later how to deal with this loss
of regularity.

In the following we assume that

(C.9) e1, . . . , edim (V ) is an orthonormal basis of V.

Lemma C.2. Let B ∈ Sym(≥)(V ) and let g ∈ C2(V ) with

(C.10) sup
x∈V

2∑
s=0

|Dsg(x)|e− 1
2 (Bx,x) <∞ .

Furthermore, let C ∈ Sym(+)(V ) be given with C−1 > B. Let Ċ ∈ Sym(+)(V ) and
define

h(t) :=

∫
V

g(x)µC+tĊ(dx).

Then h is a C1-function on some interval (−a0, a0) and

(C.11) h′(t) =

∫
V

(
Ag
)
(x)µC+tĊ(dx),

where

(C.12) Ag(x) :=
1

2

dim (V )∑
i,j=1

Ċi,jD2g(x, ei, ej), with Ċi,j := (Ċei, ej).

Remark C.3. In coordinate free notation the map A in (C.12) can be written
as

Ag(x) = Tr
(
Hess (g(x))Ċ

)
,

where Hess (g(x)) is the linear map V → V defined by(
Hess (g(x))a, b

)
= D2g(x, a, b) for all a, b ∈ V.

Sometimes it is more convenient to use an orthonormal basis of the complexification

Ṽ of V to evaluate Ag. If we extend Hess (g(x)) as a C-linear map and D2g(x, ·, ·)
as a C-bilinear map, then(

Hess (g(x))a, b
)

= D2g(x, a, b) for all a, b ∈ Ṽ

since the sesquilinear form (·, ·) on Ṽ × Ṽ is anti-linear in the second argument. If

we also extend Ċ as a C-linear map and if f1 . . . , fdim (V ) is an orthonormal basis

of Ṽ , then

TrV
(
Hess (g(x))Ċ

)
= TrṼ

(
Hess (g(x))Ċ

)
=

dimV∑
i=1

(
Hess (g(x))Ċfi, fi

)
.

Hence

(C.13) Ag(x) =

dim (V )∑
i=1

D2g(x, Ċfi, f i).

�
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Proof. One can easily check that the definition of A is independent of the
choice of the orthonormal basis. The whole statement is invariant under isometries.
Hence we may assume that V = Rn with the standard scalar product and that
e1, . . . , en is the standard basis. Furthermore, we write C(t) := C + tĊ in the
following. The starting point is the formula for the Fourier transform of a Gaussian

(C.14)

∫
Rn

e−i(ξ,x) µC(t)(dx) = e−
1
2 (C(t)ξ,ξ) .

By continuity of t 7→ C(t) we may assume that there is an a0 > 0 and a δ > 0
such that for t ∈ (−a0, a0) we have B ≤ C−1(t)− δId and C(t) ≥ δId. From now on
we consider h(t) only on the interval (−a0, a0).

Now assume first that g belong to the Schwartz class S(Rn) of smooth and
rapidly decreasing functions. By Plancherel’s formula we have

(C.15) h(t) =

∫
Rn
g(x)µC(t)(dx) =

1

(2π)n

∫
Rn
ĝ(ξ)e−

1
2 (C(t)ξ,ξ) dξ .

Since g ∈ S(Rn), the right hand side is differentiable with respect to t and the

identity ∂̂jg(ξ) = iξj ĝ(ξ) yields, with another application of Plancherel’s formula,

ḣ(t) = −1

2

1

(2π)n

∫
Rn
ĝ(ξ)

n∑
j,k=1

Ċjkξjξke−
1
2 (C(t)ξ,ξ) dξ

=
1

2

1

(2π)n

∫
Rn

n∑
j,k=1

Ċjk(∂̂j∂kg(ξ)e−
1
2 (C(t)ξ,ξ) dξ

=
1

2

∫
Rn

n∑
j,k=1

Ċjk(∂j∂kg)(x)µC(t)(dx) =
1

2

∫
Rn

Tr(ĊD2g(x))µC(t)(dx)

=

∫
Rn

Ag(x)µC+tĊ(dx).

This proves assertion (C.11) and (C.12) for g ∈ S(Rn). For a general g we use
a cut-off and a convolution with a mollifier. To do so we first rewrite the result for
g ∈ S(Rn) in the integral form
(C.16)∫

Rn
g(x)µC(t)(dx)−

∫
Rn
g(x)µC(0)(dx) =

∫ t

0

1

2

∫
Rn

Tr(Ċ(s)D2g(x))µC(s)(dx) ds.

Now, for g ∈ C2
c (Rn) consider the Gaussian measure hk(x)dx on R with covariance

1
k and define gk := hk ∗ g ∈ S(Rn). Hence (C.16) holds for gk and we have a

uniform convergence gk → g and D2gk → D2g. Since C(s) ≥ δId we can pass to
the limit using the dominated convergence theorem which proves (C.16) whenever
g ∈ C2

c (Rn). Finally, for g as in the lemma we let η ∈ C∞c (Rn) to be a cut-off
function that vanishes outside the unit ball B(0, 1) and equals 1 in the ball B(0, 1

2 ).

Let gk(x) = ϕ(xk )g(x). Then gk ∈ C2
c (Rn) with gk → g and D2gk → D2g uniformly

on compact subsets and

(C.17) sup |gk(x)|+ sup |D2gk(x)| ≤ C sup

2∑
s=0

|∇sg(x)|.

Since C−1(s) ≥ B + δId we may pass to the limit by the dominated convergence
theorem. This shows that (C.16) holds for all g ∈ C2(Rn) which satisfy (C.10)
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with r = 1. Finally continuity of t 7→ C(t), the bound B ≤ C−1(s) − δId and

the dominated convergence theorem imply that s 7→
∫
Rn Tr(ĊD2g(x))µC(s)(dx) is

continuous. This finishes the proof. �

Lemma C.4. Let B ∈ Sym(≥) and assume that g ∈ C2`(V ), ` ∈ N, satisfies

(C.18) sup
x∈V

2∑̀
s=0

∣∣Dsg(x)
∣∣e− 1

2 (Bx,x) <∞.

Assume that C ∈ Sym(+) with C−1 > B. Then the function H defined by (C.1)
satisfies

(C.19) D`H(C, Ċ1, . . . , Ċ`) =

∫
V

(
AĊ1
· · ·AĊ`

g
)
(x)µC(dx),

where for f ∈ C2(V ) the operator AĊi
is defined by

(C.20) (AĊi
f)(x) =

1

2

dim (V )∑
i,j=1

Ċi,jD2f(x, ei, ej).

Proof. Since we already know that H is analytic in U it suffices to show the
result for Ċ1 = · · · = Ċ` = Ċ. The full result follows by polarization. It thus suffices
to show that the function h in Lemma C.2 satisfies

(C.21)
dk

dtk
h(t) =

∫
V

(
Akg

)
(x)µC+tĊ(dx) for 1 ≤ k ≤ `,

where A = AĊ. We prove this by induction. The case k = 1 is just Lemma C.2.

Thus assume that k ≤ `− 1 and (C.21) holds for k. Let g̃ := Akg. Then g̃ satisfies
the assumptions of Lemma C.2. Thus by the induction assumption and Lemma C.2,
we obtain

dk+1

dtk+1
h(t) =

d

dt

∫
V

g̃(x)µC+tĊ(dx) =

∫
V

(
Ag̃
)
(x)µC+tĊ(dx)

=

∫
V

(
Ak+1g

)
(x)µC+tĊ(dx).

�

We finally collect formulae for the derivatives up to the third order for a general
dependence, that is, we now let (−δ, δ) 3 t 7→ C(t) ∈ Sym(+)(V ) be a C` map with
C(0)−1 > B and let g satisfies the assumptions of Lemma C.4. Then

(C.22) h̃(t) :=

∫
V

g(x)µC(t)(dx)

is a C` map on some interval (−δ′, δ′) and the derivatives of h̃ can be computed by
the chain rule. In particular we obtain the following formulae.

˙̃
h(t) = DH(C(t), Ċ(t)),(C.23)

¨̃
h(t) = D2H(C(t), Ċ(t), Ċ(t)) +DH(C(t), C̈(t)),(C.24)
...
h̃ (t) = D3H(C(t), Ċ(t), Ċ(t), Ċ(t)) + 3D2H(C(t), Ċ(t), C̈(t))(C.25)

+DH(C(t), C̈(t)).
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In general Dkh̃(t) is a sum of terms of the form

(C.26) D`H(C(t), A1, . . . , Ak)

with

(C.27) Ai = Dj1C(t) and
∑̀
i=1

ji = k.





APPENDIX D

Chain Rules

Here we formulate and prove a chain rule with loss of regularity for a composi-
tion of two maps. It turns out that proving the needed claims as well as checking
their assumptions in particular cases is much simpler when formulated in terms of
higher order one-dimensional directional derivatives and the related Peano deriva-
tives. We first review their properties and the mutual relations.1

D.1. Motivation

Before we enter into the precise statement of the setting and the results we
consider a simple example how loss of regularity can easily arise even for seemingly
innocuous maps and we sketch the key calculation in the proof of the main re-
sult. Consider the space Ck(S1) of 2π-periodic k times continuously differentiable
functions and the map F : Ck(S1)× R→ Ck(S1) defined by

F (y, p)(t) = sin(y(t− p)).

It is easy to see that F is continuous and that the map y 7→ F (y, p) is smooth (in
fact real-analytic) as a map from Ck(S1) to itself. For a fixed y ∈ Ck(S1)\Ck+1(S)
the map p 7→ F (y, p) is, however, not differentiable as a map from R to Ck(S1). It
is only differentiable as a map from R to Ck−1(S1) and we have

∂

∂p
F (y, p)(·) = − cos y(· − p) y′(· − p).

Similarly p 7→ F (y, p) is a Cl map to Ck−l for l ≤ k. Thus each derivative with re-
spect to p leads to loss of one derivative in y. A similar phenomenon occurs if we use
formula (C.11) to compute the derivative of the convolution maps G(g,C) := g ∗µC

with respect to the covariance C. Our renormalisation step involves a composition
of several maps of this type and one might think that this leads to a multiple loss of
regularity. The main result of this appendix, Theorem D.29 below, shows that this
is not the case. The behaviour of the composed map is no worse than the behaviour
of the individual maps.

To state the result informally consider scales of of Banach spaces Xm ⊂
Xm−1 ⊂ . . . ⊂ X0, Y m ⊂ . . . ⊂ Y 0 and Zm ⊂ . . . ⊂ Z0 as well as a Banach
space P and maps

G : Xm × P → Y m, F : Y m × P → Zm

1The present version of this Appendix is based on notes written by David Preiss. He has not

only provided a suitable framework for smoothness, in terms of classes Cm
∗ and C̃m introduced

below, with particularly clear proofs of chain rule with loss of regularity, but he has also shown
(Theorem D.10) that functions from Cm

∗ have continuous, multilinear, and symmetric directional
derivatives. Nevertheless, all deficiencies of the present Appendix are the author’s fault.
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and the composed map

H(x, p) := F (G(x, p), p).

Informally, the assumptions on F and G are that these maps are well-behaved
with respect to the first argument, but each derivative with respect to the second
argument leads to a loss of order one in the scale of Banach spaces, i.e., that for all
0 ≤ n ≤ m− l

(D.1) Dj
1D

l
2F (y, p) : Y j

n+l × P
l → Zn is bounded

and

(D.2) Dj
1D

l
2G(x, p) : Xj

n+l × P
l → Y n is bounded.

Then we want to show that

(D.3) Dj
1D

l
2H(y, p) : Xj

n+l × P
l → Zn is bounded.

If we assume that all natural expressions make sense this can be seen as follows.
From the chain rule we deduce inductively that Dl

2H(x, p, ṗl) := Dl
2H(x, p, ṗ, . . . , ṗ)

is a weighted sum of the terms

Dk
1D

i
2F (G(x, p), p, Dl1

2 G(x, p, ṗl1), . . . , Dlk
2 G(x, p, ṗlk), ṗi)

with k ≥ 0 and i +
∑k
s=1 ls = l. Another application of the chain rule shows that

Dj
1D

l
2H(x, p, ẋj , ṗl) is a weighted sum of the terms

Dk+k̄
1 Di

2F (G(x, p), p, Dj̄1
1 G(x, p, ẋj̄1), . . . , Djk

1 D
lk
2 G(x, p, ẋjk , ṗlk), ṗi)

with j̄r ≥ 1, js ≥ 0, ls ≥ 1 and

k̄∑
r=1

j̄r +

k∑
s=1

js = j, i+

k∑
s=1

ls = l.

In particular we have ls ≤ l − i and hence

Djs
1 D

ls
2 G : Xjs

n+l × P
ls → Y n+l−(l−i) = Y n+i is bounded.

Moreover

Dk+k̄
1 Di

2F : Y k+k̄
n+i × P

i → Zn is bounded.

Thus ‖Dj
1D

l
2H(x, p, ẋj , ṗl)‖Zn is bounded in terms of ‖ẋ‖jXn+l

and ‖ṗ‖lP . By polar-

ization we get the desired assertion (D.3). The main point in the proof of Theorem
D.29 is to give a precise definition of the informal assumptions (D.1) and (D.2) and
to show that under these assumptions all the operations performed above make
sense.

D.2. Derivatives and their relations

Directional derivatives.

Definition D.1. Let X and Y be normed linear spaces, U ⊂ X open and
G : U → Y be a function. Directional derivatives of G at x ∈ U in directions
ẋ1, . . . , ẋj ∈X are defined by

(D.4) DjG(x, ẋ1, . . . , ẋj) =
d

dtj
. . .

d

dt1
G(x+

∑
tkẋk)

∣∣∣
t1=...=tj=0

.
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We will use the shorthand DjG(x, ẋj) = DjG(x, ẋ, . . . , ẋ︸ ︷︷ ︸
j

), and later, similarly,

DjG(x, ẋj11 , . . . , ẋ
jk
k ) = DjG(x, ẋ1, . . . , ẋ1︸ ︷︷ ︸

j1

, . . . , ẋk, . . . , ẋk︸ ︷︷ ︸
jk

)

with j =
∑k
s=1 js.

Definition D.2. We use Cm∗ (U ,Y ) to denote the set of continuous functions
G : U → Y such that for each j ≤ m and ẋ ∈ X, the derivative DjG(x, ẋj) exists
and the map (x, ẋ) ∈ U ×X → DjG(x, ẋj) ∈ Y is continuous.

Remark D.3. The star ∗ is added just to indicate that this is not the standard
class Cm of m-differentiable functions. Also, this definition is formally much weaker
than that by Hamilton [Ham82] who takes G to be m-times differentiable if Dmf :
U×X × · · · ×X︸ ︷︷ ︸

m

→ Y exists and is continuous (jointly as a function on the product

space). However, Theorem D.10 below shows that it actually yields the same space.
Note that for X = R it follows directly from the definition of Cm∗ (U ,Y ) that
Cm∗ (U ,Y ) = Cm(U ,Y ). We will see in Proposition D.17 that this identity holds
whenever X is finite dimensional. �

In proofs, especially when proving chain rules, it is often useful to rely on the
notion of Peano derivatives.

Definition D.4. The Peano derivatives G(n)(x, ẋ) of a function G at x in
direction ẋ are defined inductively by

(D.5) G(n)(x, ẋ) = n! lim
t→0

G(x+ tẋ)−
∑n−1
j=0

G(j)(x,ẋ)
j! tj

tn

whenever the derivative exists. Equivalently,

(D.6)
∥∥∥G(x+ tẋ)−

n∑
j=0

G(j)(x, ẋ)

j!
tj
∥∥∥
Y

= o(tn) as t→ 0.

Lemma D.5. We notice the following obvious properties of these derivatives.

(a) G(0)(x, ẋ) exists iff G is continuous at x in direction ẋ; then G(0)(x, ẋ) = G(x).
(b) G(n)(x, tẋ) = tnG(n)(x, ẋ).

We show that Cn∗ (U ,Y ) can be equivalently defined using the Peano derivatives.

Lemma D.6. Suppose G is m-times Peano differentiable at every point of the
line segment [x, x+ ẋ] in the direction of ẋ. Then for any 0 ≤ j ≤ n ≤ m,∥∥∥G(j)(x+ ẋ, ẋ)−

n−j∑
i=0

G(j+i)(x, ẋ)

i!

∥∥∥
Y
≤ sup

0≤τ≤1

∥∥∥G(n)(x+ τ ẋ, ẋ)−G(n)(x, ẋ)

(n− j)!

∥∥∥
Y
.

Proof. The case j = n is obvious. When j < n, X = Y = R and ẋ = 1, the
inequality follows immediately from the mean value statement of [Oli54, Theorem
2(ii)]. To prove the general case, find y∗ ∈ Y ∗ realizing the norm on the left and
use the special case for the map t ∈ R→ y∗G(x+ tẋ) ∈ R. �

Proposition D.7. G ∈ Cm∗ (U ,Y ) iff G(n)(x, ẋ), n ≤ m exist and are contin-
uous on U ×X. Moreover, for such G, DnG(x, ẋn) = G(n)(x, ẋ) on U ×X for
n ≤ m.
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Proof. If G ∈ Cm∗ (U ,Y ) and the segment [x, x + ẋ] ⊂ U , then the function
(−ε, 1 + ε) 3 t 7→ G(x + tẋ) ∈ Y is m-times continuously differentiable, and, in
view of [Die60, 8.14.3 and 8.14, Problem 5],

(D.7)
∥∥∥G(x+ tẋ)−

n∑
j=0

DjG(x, ẋj)

j!
tk
∥∥∥
Y

= o(tn) as t→ 0,

for each n ≤ m, yielding G(j)(x, ẋ) = DjG(x, ẋj), j = 0, 1, . . . ,m.
For the opposite implication, suppose G(m) exists and is continuous on U ×X.

Given any (x, ẋ) ∈ U ×X, for small enough |t| we may use Lemma D.6 with n = m
and tẋ instead of ẋ to infer that for each 0 ≤ j < n = j + 1 ≤ m,∥∥∥G(j)(x+ tẋ, ẋ)−

1∑
i=0

G(j+i)(x, ẋ)tj
∥∥∥
Y

= o(t) as t→ 0,

which says that d
dtG

(j)(x+ tẋ, ẋ)
∣∣
t=0

= G(j+1)(x, ẋ). Hence DnG(x, ẋn) exists and

equals to G(n)(x, ẋ) for every (x, ẋ) ∈ U × X and 0 ≤ n ≤ m. Since G(n) are
continuous, G ∈ Cm∗ (U ,Y ). �

We also show that in the presence of continuity it suffices to require the exis-
tence of the Peano derivatives in a rather weak sense.

Lemma D.8. Suppose G : U → Y and gj : U × X → Y , 0 ≤ j ≤ m, are
continuous functions such that for a weak∗ dense set of y∗ ∈ Y ∗, y∗ ◦ G is m-
times Peano differentiable on U with its jth Peano derivative being y∗ ◦ gj. Then

G ∈ Cm∗ (U ,Y ) and DkG(x, ẋj) = G(j)(x, ẋ) = gj(x, ẋ).

Proof. For the y∗ for which the assumption holds, Proposition D.7 shows
that y∗ ◦G ∈ Cm∗ (U ,R) and Dj(y∗ ◦G)(x, ẋj) = y∗ ◦ gj(x, ẋ). Hence, whenever the
segment [x, x+ tẋ] is contained in U ,

y∗
(
G(x+ tẋ)−

m∑
j=0

gj(x, ẋ)

j!
tj
)

=
1

m!

∫ t

0

(t− s)my∗
(
gm(x+ sẋ, ẋ)− gm(x, ẋ)

)
ds.

The function s ∈ [0, t]→ (t− s)m(gm(x+ sẋ, ẋ)− gm(x, ẋ)) is continuous, hence its
Riemann integral, say I, exists as an element of the completion of Y . But since by

the above y∗(I) = y∗
(
G(x+ tẋ)−

∑m
j=0

gj(x,ẋ)
j! tj

)
for a weak∗ dense set of y∗ ∈ Y ∗,

G(x+ tẋ)−
m∑
j=0

gj(x, ẋ)

j!
tj =

1

m!

∫ t

0

(t− s)m
(
gm(x+ sẋ, ẋ)− gm(x, ẋ)

)
ds.

Since gm is continuous, G is m times Peano differentiable at every x ∈ U as a
mapping of U to Y , with continuous G(j)(x, ẋ) = gj(x, ẋ). So the statement follows
from Proposition D.7. �

The previous Lemma will be used in the situation when G : U → Y and
Y ↪→ V (meaning Y is a linear subspace of V and ‖ · ‖V ≤ ‖ · ‖Y ) to require
differentiability for the map G : U → V only.

Corollary D.9. Suppose Y ↪→ V and G : U → Y is m times Peano differ-
entiable when considered as a map to V and such that each function G(j)(x, ẋ),
0 ≤ j ≤ m, has values in Y and is continuous as a map of U ×X to Y . Then
G ∈ Cm∗ (U ,Y ) and DjG(x, ẋj) = G(j)(x, ẋ).
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Proof. Since V ∗ is weak∗ dense in Y ∗, Lemma D.8 is applicable with

gj(x, ẋ) = G(j)(x, ẋ).

�

Multilinearity and symmetry of derivatives.

Theorem D.10. X, Y be normed linear spaces with U ⊂X open, and let G ∈
Cm∗ (U ,Y ). Then, for every 1 ≤ j ≤ m, the directional derivative DjG(x, ẋ1, . . . , ẋj)
exists for all x ∈ U and ẋ1, . . . , ẋj ∈X.

Moreover, it is a continuous, symmetric, j-linear map in the variables ẋ1, . . . , ẋj
and DjG ∈ Cm−j∗ (U ×Xj ,Y ).

The main idea is to get information on the map s 7→ G(j)(x + sv, ẋ, . . . , ẋ) by
writing

G(x+ s(v + tẋ)) = G(x+ sv + stẋ)

and using Peano differentiability of G at x on the left hand side and Peano differ-
entiability at x+ sv on the right hand side. A key tool is the following polynomial
interpolation lemma. Theorem D.10 will then be a consequence of Proposition D.12
below.

Lemma D.11. For any j = 0, . . . ,m, let Φj : (−s0, s0) → X be bounded and
Ψj : R→X. Suppose that

(D.8)

m∑
j=0

sj(Ψj(t)− Φj(s)tj) = o(sm) as s→ 0

for every t ∈ R. Then for each j = 0, . . . ,m:

(a) The function Ψj is a polynomial of degree at most j and
(b) there exists a polynomial pj : R → X of degree at most m − j such that

Φj(s) = pj(s) + o(sm−j) as s→ 0.

(c) Moreover, if Φ̂j , Ψ̂j also satisfy (D.8) then2

‖Φ̂j − Φj‖poly ≤ C lim sup
s→0

sup
t∈(0,1)

∥∥∥ m∑
j=0

sj(Ψ̂j − Ψj(t))
∥∥∥.

Proof. Fix different t0, . . . , tm ∈ (0, 1) and let qj be the corresponding La-
grange basis polynomials, qj(tk) = δk,j . Then for every t ∈ R,

(D.9)

m∑
j=0

sj
(
Ψj(t)−

m∑
k=0

Ψj(tk)qk(t)
)

=

=

m∑
j=0

sj(Ψj(t)− Φj(s)tj)−
m∑
k=0

qk(t)

m∑
j=0

sj(Ψj(tk)− Φj(s)tjk) = o(sm),

implying that Ψj(t)−
∑m
k=0 Ψj(tk)qk(t) = 0 for each j = 0, 1, . . . ,m and thus each

Ψj(t) is a polynomial of degree at most m. Only now we use that Φj are bounded,

yielding from (D.8) that
∑j
k=0 s

k(Ψk(t)− Φk(s)tk) = o(sj) for every j = 0, . . . ,m,
and the above argument with j instead of m shows that Ψj has degree at most j.

2For p(s) =
∑n

`=0 p`s
` we define ‖p‖poly = max`=0,...,n|p`|.
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For (b), let 0 ≤ ` ≤ m and find ak so that
∑m
i=0 akt

j
k = δj,`. By the degree

estimate on Ψj ,
∑m
k=0 akΨj(tk) = 0 for j < `. Hence

(D.10)

Φ`(s)−
m−∑̀
j=0

sj
m∑
k=0

akΨj+`(tk) = −s−`
m∑
k=0

ak

m∑
j=0

sj(Φj(s)t
j
k − Ψj(tk)) = o(sm−`).

For (c), we just notice that, in view of (D.10), the coefficients of pk(s) are linear
combinations (with fixed coefficients) of the values Ψj+k(tk) with tk ∈ (0, 1).

�

Proposition D.12. Let G ∈ Cm∗ (U ,Y ). Then for every 1 ≤ j ≤ m, the
directional derivative DjG(x, ẋ1, . . . , ẋj) exists for all x ∈ U and ẋ1, . . . , ẋj ∈X, it

is symmetric and j-linear in the variables ẋ1, . . . , ẋj, and DjG ∈ Cm−j∗ (U×Xj ,Y ).

Proof. We show that f(x, ẋ) := G(1)(x, ẋ) belongs to Cm−1
∗ (U×X,Y ) and is

linear in ẋ. Used recursively, this shows that for each 1 ≤ j ≤ m, (x, ẋ1, . . . , ẋj)→
DjG(x, ẋ1, . . . , ẋj) is j-linear in ẋ1, . . . , ẋj and belongs to Cm−j∗ (U ×Xj ,Y ). Re-

call that by Proposition D.7, G is m-times Peano differentiable and G(j)(x, ẋ) =
DjG(x, ẋj) for j ≤ m, x ∈ U , and ẋ ∈X.

Fix x, ẋ, v ∈ X and denote Φj(s) = G(j)(x+ sv, ẋ)/j! and Ψj(t) = G(j)(x, v +
tẋ)/j!. By definition, for each t ∈ R, G(x + s(v + tẋ)) =

∑m
j=0 Ψj(t)s

j + o(sm).
Also, by Lemma D.6,

(D.11) ‖G((x+ sv) + stẋ)−
m∑
j=0

Φj(s)(st)
j‖ ≤

≤ (st)m sup
0≤τ≤1

‖G(m)(x+ sv + τstẋ, u)−G(m)(x+ sv)‖ = o(sm).

Hence
∑m
j=0 s

j(Ψj(t) − Φj(s)t
j) = o(sm) and we see from Lemma D.11(a) that

G(1)(x, v + tẋ) = a + bt for some a, b. For t = 0 we get a = G(1)(x, v) and
by continuity, b = limt→∞G(1)(x, v/t + ẋ) = G(1)(x, ẋ). Hence G(1)(x, v + ẋ) =
G(1)(x, v) +G(1)(x, ẋ), and we infer that f(x, ẋ) = G(1)(x, ẋ) is linear in the second
variable.

By Lemma D.11(b), for each fixed x, ẋ the function gẋ(x) = f(x, ẋ) has the

Peano derivative g
(j)
ẋ (x, v), j = 1, . . . ,m−1. Moreover, continuity of Peano deriva-

tives G(n) and Lemma D.11(c) imply that (x, ẋ, v) → g
(j)
ẋ (x, v) is continuous on

U ×X2. Since f(x, ẋ) is linear in ẋ,

(D.12) f((x, ẋ) + t(u, u̇))− f((x, ẋ)) = gẋ(x+ tu)− gẋ(x) + tgu̇(x+ tu),

showing that f is m− 1 times continuously Peano differentiable. Hence f belongs
to Cm−1

∗ (U ×X,Y ) by Proposition D.7.
Symmetry of the directional derivatives follows from the following lemma. �

Lemma D.13. Let G : U → Y and fix (not necessarily distinct) ẋ1, . . . , ẋk ∈X.

Suppose that the directional derivative x ∈ U → DjG(x, ẋj11 , . . . , ẋ
jk
k ) exists and is

continuous whenever j := j1 + · · ·+ jk ≤ m. Then for any t1, . . . , tk ∈ R,

(D.13) G(j)(x,

k∑
s=1

tsẋs) = j!
∑

j1+···+jk=j

DjG(x, ẋj11 , . . . , ẋ
jk
k )

tj11 . . . tjkk
j1! · · · jk!

.
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In particular, DkG(x, (
∑k
s=1 tsẋs)

k) = G(k)(x,
∑k
s=1 tsẋs) exists and

(D.14) DkG(x, ẋ1, . . . , ẋk) = DkG(x, ẋπ(1), . . . , ẋπ(k))

for every permutation π of {1, . . . , k}.

Proof. Expanding recursively and estimating errors by Lemma D.6, we get

(D.15) G(x+ t
∑

tsẋs) =
∑

j:=j1+···+jk≤m

DjG(x, ẋj11 , . . . , ẋ
jk
k )

tj11 . . . tjkk
j1! · · · jk!

tj + o(tm),

which shows (D.13). Since the right hand side of (D.13) is continuous in x, Propo-

sition D.7 used separately on each line in the direction
∑k
s=1 tsẋs implies that the

iterated derivative DkG(x, (
∑k
s=1 tsẋs)

k) exists and equals G(k)(x,
∑k
s=1 tsẋs).

Using the equality (D.13) with
∑k
s=1 tsẋs replaced by

∑k
s=1 tπ(s)ẋπ(s) gives the

same left hand side. Since the right side is a polynomial, the coefficients in front of
t1 · · · tk are equal, giving the last statement. �

Remark D.14. Notice that the order of directions in the recursive expansion
can be chosen. As a result, the assumption can be narrowed, say in the case of
two directions {ẋ1, ẋ2}, to the assumption that the directional derivative x ∈ U →
DjG(x, ẋj11 , ẋ

j2
2 , ẋ

j3
1 ) exists and is continuous whenever j := j1 + j2 + j3 ≤ m and

j3 ∈ {0, 1}. �

The following Corollary is a useful criterion for proving that a given func-
tion on a product space belongs to Cm∗ . It involves partial derivatives which are

defined and denoted in the standard way. In particular, Dj
1D

`
2G((x, p), ṗ`, ẋj) =

Dj+`G((x, p), (0, ṗ)`, (ẋ, 0)j).

Corollary D.15. Suppose G : O ⊂ X × P → Y , m ∈ N, and for each
j+` ≤ m, the derivative (x, p, ẋ, ṗ)→ Dj

1D
`
2G((x, p), ṗ`, ẋj) exists and is continuous

on O ×X × P . Then G ∈ Cm∗ (O,Y ).

Proof. Lemma D.13 shows that for each j ≤ m the Peano derivative

G(j)((x, p), (ẋ, ṗ)) = DjG((x, p), ((ẋ, 0) + (0, ṗ))j) =

=

j∑
k=0

(
j

k

)
DjG((x, p), (0, ṗ)k, (ẋ, 0)j−k) =

=

j∑
k=0

(
j

k

)
Dj−k

1 Dk
2G((x, p), ṗk, ẋj−k)

exists and is continuous. Hence G ∈ Cm∗ (O, Y ) by Proposition D.7. �

Remark D.16. Notice that in view of Remark D.14, there is also a flexibility
in the demanded order of partial derivatives in the condition in the Corollary. �

Relation to usual derivatives.

Proposition D.17. Using Cm(U ,Y ) to denote the usual spaces of Fréchet
differentiable functions (with operator norms on multilinear forms from Lm(X,Y ))
and m ≥ 0, we have

Cm(U ,Y ) =
{
G ∈ Cm∗ (U ,Y ) : DmG ∈ C(U , Lm(X,Y ))

}
⊃ Cm+1

∗ (U ,Y ).

If X is finite dimensional then Cm(U ,Y ) = Cm∗ (U ,Y ).
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Proof. We first show the inclusion

(D.16) {G ∈ Cm∗ (U ,Y ) : DmG ∈ C(U , Lm(X,Y )} ⊃ Cm+1
∗ .

Let G ∈ Cm+1
∗ (U ,Y ). Given x ∈ U find δ > 0 with

(D.17) ‖Dm+1G(x+ ẋ, ẋ1, . . . , ẋm+1)‖ ≤ 1 whenever max{‖ẋ‖, ‖ẋi‖} ≤ δ.

Hence for ‖ẋ‖ < εδm+1 and maxi ‖ẋi‖ ≤ 1,

(D.18) ‖DmG(x+ ẋ, ẋ1, . . . , ẋm)−DmG(x, ẋ1, . . . , ẋm)‖ =

= δ−m‖DmG(x+ ẋ, δẋ1, . . . , δẋm)−DmG(x, δẋ1, . . . , δẋm)‖ ≤
≤ δ−m−1 sup

0<t<1
‖Dm+1G(x+ tẋ, δẋ1, . . . , δẋm, δẋ/‖ẋ‖)‖ ‖ẋ‖ < ε,

yielding the inclusion.
Now we show by induction that

(D.19) Cm(U ,Y ) ⊃ {G ∈ Cm∗ (U ,Y ) : DmG ∈ C(U , Lm(X,Y )}

since the other inclusion is obvious. For m = 1 the inclusion follows from the
linearity of the derivative DG(x, ·), Proposition D.7 and Lemma D.6 applied with
n = 1 and j = 0. Now assume that (D.19) holds for m− 1 and let G ∈ Cm∗ (U ,Y )
with DmG ∈ C(U , Lm(X,Y ). By (D.16) applied with m− 1 instead of m we have
Dm−1G ∈ C(U , Lm−1(X,Y )) and thus by induction assumption G ∈ Cm−1(U ,Y ).

Define the maps F : U → Lm−1(X,Y ) and K : U → L(X, Lm−1(X,Y )) by

F (x)(ẋ1, . . . , ẋm−1) := Dm−1G(x, ẋ1, . . . ẋm−1),(D.20)

K(x)(ẋm)(ẋ1, . . . , ẋm−1) := DmG(x, ẋ1, . . . ẋm).(D.21)

Our aim is to show that F is Fréchet differentiable at x ∈ U and its Fréchet
derivative agrees with K. Then F ∈ C1(U , Lm−1(X,Y )) and thus G ∈ Cm(U ,Y ).

For a fixed ẋ1, . . . , ẋm−1 ∈X, let Φ(t) := F (x+tẋm)(ẋ1, . . . , ẋm−1) and assume
that [x, x+ ẋm] ⊂ U . Since G ∈ Cm∗ (U ,Y ), the function Φ is in C1((−ε, 1 + ε),Y )
and by Lemma D.6,

(D.22) ‖Φ(1)− Φ(0)− Φ′(0)‖Y ≤ sup
τ∈(0,1)

‖Φ′(τ)− Φ′(0)‖Y ≤

≤ sup
τ∈(0,1)

‖DmG(x+ τ ẋm)−DmG(x)‖Lm(X,Y )‖ẋ1‖ . . . ‖ẋm‖.

Now Φ′(0) = K(x)(ẋm)(ẋ1, . . . , ẋm−1) and taking the supremum over all

ẋ1, . . . , ẋm−1

with ‖ẋi‖ ≤ 1 we get

(D.23) ‖F (x+ ẋm)− F (x)−K(x)(ẋm)‖Lm−1(X,Y ) ≤
≤ sup
τ∈(0,1)

‖DmG(x+ τ ẋm)−DmG(x)‖Lm(X,Y )‖ẋm‖.

It follows from the continuity of DmG (as a map with values in Lm(X,Y )) that F
is Fréchet differentiable with derivative K.

Finally assume that X is finite dimensional and let G ∈ Cm∗ (U ,Y ). By multi-
linearity of DmG(x, ·) and polarization we see that

‖DmG(x)−DmG(x′)‖Lm(X,Y ) ≤ C(m) sup
v∈X:‖v‖=1

‖DmG(x, vm)−DmG(x′, vm)‖Y .
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Since (x, v) → DmG(x, vm) is continuous and {v ∈ X : ‖v‖ = 1} is compact it
follows that DmG ∈ C(U , Lm(X,Y ). This finishes the proof of the proposition.

�

D.3. Chain rule with a loss of regularity

Here we consider the chain rule showing that F ◦ G ∈ Cm∗ (U ,Z) in the sit-
uation when G : U → Y, F : Y → Z, where U and Y are open subsets of X
and Y , respectively, and G ∈ Cm∗ (U ,V ) for some Y ↪→ V (meaning, as above,
that Y is a linear subspace of V and ‖·‖V ≤ ‖·‖Y ). This generalizes the chain
rule of [Ham82, Theorem 3.6.4] where V = Y and F is assumed to belong to
Cm∗ (Y,Z). In our situation, although F ◦ G obviously makes sense, expressions
such as DF (G(x), DG(x, ẋ)) may not, since derivatives of G belong to V and so
not to the domain of the derivative of F . So for the chain rule to hold, a natural
assumptions are that Y is dense in V and DjF has a continuous extension from
Y × Y j to Y × V j . (The density of Y in V is not really needed, but is conve-
nient since it guarantees that the extension is unique and j-multilinear in the last
variables.)

Definition D.18. We use CmV (Y,Z) to denote the space of maps F : Y ⊂
Y → Z such that for any j ≤ m, the derivative DjF exists and can be extended to
a continuous map Dj

V F of Y ×V j to Z (with a slight abuse of notation we usually

skip the subscript V from Dj
V ).

Remark D.19.

(a) For j = 0 this requires only that F : Y → Z be continuous.
(b) Proposition D.7 and the polarization formula show that it suffices to extend

the maps (y, ẏ) ∈ Y × Y → DjF (y, ẏj) to continuous maps defined on Y × V .
(c) By Proposition D.7, CmV (Y,Z) ⊂ Cm∗ (Y,Z) with equality when V = Y . �

Lemma D.20. Let F ∈ CmV (Y,Z) and j ≤ m. Then Dj
V F ∈ C

m−j
V j+1(Y×V j ,Z).

Proof. By the polarization formula it suffices to show that (y, v)→ Φ(y, v) :=

Dj
V F (y, vj) belongs to Cm−j

V 2 (Y × V ,Z). Considering first Φ as a map of Y × Y
to Z and using multilinearity of the derivative, we have

(D.24) Dk
1D

`
2Φ((y, v), v̇`, ẏk) = j · · · (j − `+ 1)Dj+kF (y, vj−`, v̇`, ẏk)

for ` ≤ j and k ≤ m − j. Since these derivatives are zero for ` > j, we have Φ ∈
Cm−j∗ (Y×Y ,Z) by Corollary D.15 and Theorem D.10. Moreover, expressing DsΦ,
0 ≤ s ≤ m−j, with the help of partial derivatives, we see that these derivatives have
continuous extensions to maps (Y×V )×(V ×V )s → Z implying the statement. �

Theorem D.21. Suppose U ⊂ X and Y ⊂ Y are open, Y ↪→ V , G : U → Y ,
G(U) ⊂ Y, G ∈ Cm∗ (U ,V ), and F : Y → Z, F ∈ CmV (Y,Z). Then F ◦ G ∈
Cm∗ (U ,Z) and Dj(F ◦G)(x, ẋj) is a linear combination of terms

(D.25) Dk
V F (G(x), Dj1G(x, ẋj1), . . . , DjkG(x, ẋjk))

where js ≥ 1 and
∑k
s=1 js = j.

Proof. We will show existence and continuity of Peano derivatives of F ◦G.
Let x ∈ U , ẋ ∈X. For any t, working just on the segment

It := [G(x), G(x+ tẋ)] ⊂ Y
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we have an estimate

(D.26)
∥∥∥F (G(x+ tẋ))−

j∑
s=0

DsF (G(x), (G(x+ tẋ)−G(x))s)

s!

∥∥∥
≤ sup
y∈It

∥∥∥DjF (y, (G(x+ tẋ)−G(x))j)−DjF (x, (G(x+ tẋ)−G(x))j)

j!

∥∥∥
for any j ≤ m. Here all derivatives of F are applied to elements of Y , so the
extension has not been used yet. Since (G(x+ tẋ)−G(x))/t converge, in the norm
‖ · ‖V , to G′(x, ẋ), G′(x, ẋ) ∈ V and, using continuity of the extended DjF ,

DjF (yt, ((G(x+ tẋ)−G(x))/t)j)→ DjF (x,G′(x, ẋ)j) as t→ 0

whenever yt ∈ It. Hence the right side of (D.26) is o(tj). Since x, ẋ are fixed,
expanding DsF (G(x), (G(x + tẋ) − G(x))s) is standard: DsF (y, ẏ1, . . . , ẏs) has
been extended to a continuous s-linear form on V s, into which one plugs a Cj

function R→ Y ⊂ V , namely t→ G(x+ tẋ)−G(x).
It follows that F◦G ism-times Peano differentiable with derivatives given by the

terms from the expansion of DsF (G(x), (G(x+ tẋ)−G(x))s), giving (D.25). These
formulas show that (F ◦G)(s) is continuous as a map U ×X → Z. Consequently,
F ◦G ∈ Cm∗ (U ,Z) by Proposition D.7. �

D.4. Chain rule with parameter and a graded loss of regularity

In the chain rule of this section, the main point is that the inner and/or outer
function depend on an additional parameter, the regularity of partial derivatives de-
pends on the order of the derivative with respect to the parameter, and the resulting
composition has the same regularity properties as the functions we are composing.
In principle, this chain rule is very different from the one in Theorem D.29, although
we will reduce its proof to is.

Proposition D.22. Suppose P ,Q,Y ,V are normed linear spaces, P, Q and
Y are open subsets of P , Q and Y , respectively, Y = Ym ↪→ Ym−1 ↪→ . . . ↪→ Y0,
Φ : P → Y and F : Y ×Q → V are such that Φ(P) ⊂ Y and for each 0 ≤ ` ≤ m,

(i) Φ ∈ Cm−`∗ (P,Y`);
(ii) for each j ≤ m− `, Dj

1D
`
2F exists on Y ×Q×Q`×Y j and has a continuous

extension to Y ×Q×Q` × Y j
` .

Then the map Ψ(p, q) := F (Φ(p), q) belongs to Cm∗ (P×Q,V ) and for each j+` ≤ m
the derivative Dj

1D
`
2Ψ((p, q), q̇`, ṗj) is a combination of terms

(D.27) Dk
1D

`
2F ((Φ(p), q), q̇`, Dj1Φ(p, ṗj1), . . . , DjkΦ(p, ṗjk))

where js ≥ 1,
∑k
s=1 js = j and Di

1D
`
2F denotes the extension from (ii).

Proof. Clearly, D`
2Ψ((p, q), q̇`) = D`

2F ((Φ(p), q), q̇`) exists for each 0 ≤ ` ≤ m,
and with fixed q and q̇ it is a composition fq,q̇ ◦ Φ, where fq,q̇(y) = D`

2F ((y, q), q̇`).

By (i), Φ ∈ Cm−`∗ (P,Y`), and by (ii), fq,q̇ ∈ Cm−`Y`
(Y,V ). Hence by Theorem D.21,

the function p→ D`
2Ψ((p, q), q̇`) belongs to Cm−`∗ (P,V ) and its jth derivative is a

combination of the terms specified in (D.27).
It remains to observe that (p, q)→

(
(Φ(p), q), q̇, Dj1Φ(p, ṗj1), . . . , DjkΦ(p, ṗjk)

)
maps, by the condition js ≤ j ≤ m−` and (i), P×Q continuously to (Y×Q)×Q×
Y k
` and this space is mapped by

(
(y, q), q̇, ẏ1, . . . , ẏk

)
→ Di

1D
`
2F
(
(y, q), q̇`, ẏ1, . . . , ẏk

)
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continuously to V by (ii). Hence each of the functions in (D.27) maps P ×Q con-
tinuously to V , implying that Ψ ∈ Cm∗ (P ×Q,V ). �

Corollary D.23. If, under the assumptions of Proposition D.22 we are also
given a function Υ ∈ Cm∗ (P,Q) with Υ (P) ⊂ Q, the map Θ(p) := F (Φ(p), Υ (p)) be-
longs to Cm∗ (P,V ) and for each n ≤ m, the derivative DnΘ(p, ṗn) is a combination
of terms

Di
1D

k
2F
(
(Φ(p), Υ (p)), Dj1Υ (p, ṗj1), . . . , DjiΥ (p, ṗji), D`1Φ(p, ṗ`1), . . . , D`kΦ(p, ṗ`k)

)
where js, `s ≥ 1 and

∑i
s=1 js +

∑k
s=1 `s = n.

Proof. Observe that Θ = Ψ ◦ κ where Ψ comes from Proposition D.22 and
κ : P → P ×Q is κ(p) = (p, Υ (p)). Since κ ∈ Cm∗ (P,P ×Q), κ(P) ⊂ P ×Q and
Ψ ∈ Cm∗ (P ×Q, V ), the statement follows from Theorem D.21. �

The following main chain rule is a ‘symmetric’ version of the above, which
is capable of being iterated. It will be stated in the following situation. Let P ,
X = Xm ↪→ . . . ↪→ X0, Y = Ym ↪→ . . . ↪→ Y0 and Z = Zm ↪→ . . . ↪→ Z0 be

normed linear spaces, U ⊂ X, V ⊂ P , and Y ⊂ Y are open. We will use X̃n to

denote the closure of X in Xn, and similarly for Ỹn and Z̃n. Also, we use X (and
similarly Y and Z) for the sequence (Xm, . . . ,X0).

The class of functions we will consider may be informally described as those

G : U × V → Y for which Dj
1D

`
2G is a continuous map U × V × P ` × X̃

j

n → Yn+`,
i.e., ` derivatives in the parameter p ∈ V lead to a loss of regularity of order ` in
the scale of Banach spaces. Since this description has several interpretations, we
give a rather detailed one as a formal definition.

Definition D.24. For any 0 ≤ k ≤ m, we define C̃k(U ×V,X,Y) as the set of
all maps G : U × V → Y such that

(a) G ∈ Ck∗ (U × V,Y0).
(b) For each j + ` ≤ k, the function

(x, p, ẋ1, . . . , , ẋj , ṗ1, . . . , , ṗ`)→ Dj
1D

`
2G((x, p), ṗ1, . . . , , ṗ`, ẋ1, . . . , , ẋj),

which is by (a) defined as a map U × V ×Xj × P ` → Y0 has a (necessarily

unique) extension to a continuous mapping U × V × X̃
j

` × P
` → Y0. This

extension is also denoted Dj
1D

`
2G.

(c) For each 0 ≤ j ≤ k−` and each 0 ≤ n ≤ m−` the restriction of Dj
1D

`
2G (which

has been already extended by (b)) to U ×V × X̃
j

n+`×P
` has values in Yn and

is continuous as a mapping between these spaces.

Notice that, clearly, C̃i(U ×V,X,Y)) ⊂ C̃k(U ×V,X,Y) for k ≤ i. For proving

that G ∈ C̃k(U × V,X,Y) the following simplification of this definition is rather
useful.

Lemma D.25. Assume that 0 ≤ k ≤ m. Then G : U × V → Y belongs to

C̃k(U × V,X,Y) iff

(i) as a map of U × V to Y0, G has derivatives Dj
1D

`
2G((x, p), ṗ`, ẋj) for all

j + ` ≤ k, (x, p) ∈ U × V, ṗ ∈ P and ẋ ∈X;
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(ii) for 0 ≤ j ≤ k − ` and all 0 ≤ n ≤ m− ` there is continuous map Ψj,`,n : U ×
V × X̃n+` × P → Yn such that Dj

1D
`
2G((x, p), ṗ`, ẋj) = Ψj,`,n(x, p, ẋ, ṗ) for

every (x, p) ∈ U × V, ṗ ∈ P , and ẋ ∈X.

Proof. If G ∈ C̃k(U × V,X,Y), (i) and (ii) are obvious. For the opposite
implication, assuming (i) and (ii) we see that for each j + ` ≤ k, (x, p, ẋ, ṗ) →
Dj

1D
`
2G((x, p), ṗ`, ẋj) is a continuous map U×V×X×P → Y0. Hence G ∈ Ck∗ (U×

V,Y0) by Corollary D.15, yielding D.24(a). Lemma D.13 and the polarization
formula establish the function

(x, p, ẋ1, . . . , ẋj , ṗ1, . . . , ṗ`)→ Dj
1D

`
2G((x, p), ṗ1, . . . , ṗ`, ẋ1, . . . , ẋj)

as a combination of terms

(x, p, ẋ1, . . . , ẋj , ṗ1, . . . , ṗ`)→ Dj
1D

`
2G((x, p), (

∑
k∈I

σkṗk)`, (
∑
k∈J

τkẋk)j)

where I ⊂ {1, . . . , `}, J ⊂ {1, . . . , j}, and σk, τk = ±1. This shows that for each

0 ≤ n ≤ m− `, the derivative Dj
1D

`
2G can be extended to a continuous map Ψ̃j,`,n,

from U ×V ×X̃
j

n+`×P
` to Yn. With n = 0 this shows D.24(b). For 0 ≤ n ≤ m− `

we see from X = Xm ↪→Xn+` ↪→X` that both Ψ̃j,`,n and the restriction of Ψ̃j,`,0

to U ×V ×X̃
j

n+`×P ` are continuous as maps of U :=
(
U ×V ×X̃

j

n+`×P
`, ‖ · ‖X`

)
to Y0. Since X is dense in (X̃n+`, ‖ · ‖Xn+`

), and so also in (X̃n+`, ‖ · ‖X`), the

maps Ψ̃j,`,n and Ψ̃j,`,0 coincide on a dense subset of U , hence on all of U , proving
D.24(c). �

Remark D.26. Clearly, the claim remains true if one replaces

Dj
1D

`
2G((x, p), ṗ`, ẋj)

with the derivatives taken in the opposite order (see Remark D.16). In the present

and the following appendices, in the notation C̃m(U×V,X,Y) we indicate, somehow
pedantically but usefully for clarity in proofs, the sequences X, Y of Banach spaces.
When using this notion in particular applications, the sequences X and Y will
be clear from the context and we will skip them from the notation writing just

C̃m(U × V). �

For working with functions from C̃m(U ×V,X,Y) it is useful to know that they
have properties stronger than those given in the definition.

Lemma D.27. Let G ∈ C̃m(U × V,X,Y) and 0 ≤ j, n ≤ m− `. Then

(1) for fixed x ∈ U , the map p→ G(x, p) belongs to C`∗(V, Ỹm−`);
(2) for fixed p ∈ V and ṗ1, . . . , ṗ` ∈ P , the (extended) map

(x, ẋ1, . . . , ẋj)→ Dj
1D

`
2G((x, p), ṗ1, . . . , ṗ`, ẋ1, . . . , ẋj)

belongs to Cm−`−j
Xj+1
n+`

(U × X̃
j

n+`, Ỹ n).

Proof. (1) By Corollary D.9 and D.24(c) with n = m−`, the map p→ G(x, p)
belongs to C`∗(P,Ym−`). Hence the derivative D`

2G is an iterated limit of elements

of Y taken in the norm of Ym−`, and so it belongs to Ỹm−`.
(2) By Lemma D.20 it suffices to show that the function

x→ D`
2G((x, p), ṗ1, . . . , ṗ`)
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belongs to Cm−`Xn+`
(U , Ỹn). But this follows by the same argument as in the proof of

(1). �

Remark D.28. Since (2) puts the values of the (extended) derivatives into the
corresponding closures of Y , G belongs to Cm(U ×V,X,Y) iff and only if it belongs

to this space when Xn and Yn are replaced by X̃n and Ỹn, respectively. So, at
least in proofs, we may always assume that X is dense in Xn and Y in Yn. �

Theorem D.29. Let G ∈ C̃m(U×V,X,Y), G(U×V) ⊂ Y, F ∈ C̃m(Y×V,Y,Z)
and define F � G : U × V → Z by F � G(x, p) := F (G(x, p), p). Then F � G ∈
C̃m(U × V,X,Z).

Proof. By Remark D.28, we may assume X̃n = Xn, and similarly for Yn and
Zn. Set H := F �G. For fixed x ∈ U , the function p→ H(x, p) is of the form of a
composition F (Φ(p), Υ (p)) where the outer function F : Y × V → Z and the inner
functions Φ(p) = G(x, p) and Υ (p) = p satisfy the assumptions of Corollary D.23
with Q = P , Q = P and V = Z0. Hence p → H(x, p) belongs to Cm∗ (P,Z0) and
for each ` ≤ m, the derivative D`

2H((x, p), ṗ`) is a combination of terms

(D.28) Dk
1D

i
2F
(
(G(x, p), p), ṗi, Dm1

2 G((x, p), ṗm1), . . . , Dmk
2 G((x, p), ṗmk)

)
where ms ≥ 1 and i+

∑k
s=1ms = `.

We now fix p, ṗ and differentiate the function in (D.28) with respect to x. We
set

K(x) :=
(
G(x, p), Dm1

2 G((x, p), ṗm1), . . . , Dmk
2 G((x, p), ṗmk)

)
and

L(y, ẏ1, . . . , ẏk) = Dk
1D

i
2F
(
(y, p), ṗi, ẏ1, . . . , ẏk

)
.

Then the expression in (D.28) is given by the composition (L ◦K)(x). Since ms ≤
l− i ≤ m− i we have m−ms ≥ i and it follows from Lemma D.27 (2) (applied to
the s-th component of K with n = m−ms) that

K ∈ Cm−l∗ (U ;Y × Y k
i ).

Application of Lemma D.27 (2) to F yields that

L ∈ Cm−i−k
Y k+1
i

(Y × Y k
i ,Z0) ⊂ Cm−`

Y k+1
i

(Y × Y k
i ,Z0).

where the inclusion follows from the relation l ≥ i+k. Hence, Theorem D.21 shows
L ◦ K ∈ Cm−l∗ (U ,Z0) and for each j ≤ m − ` the derivative of Dj(L ◦ K) (and

hence the derivative Dj
1D

`
2H) exists and is given by a sum of terms of the form

(D.29)

Dk
1D

i
2F
(

(G(x, p), p), ṗi, Dj1
1 D

`1
2 G((x, p), ṗ`1 , ẋj1), . . . , Djk

1 D
`k
2 G((x, p), ṗ`k , ẋjk)

)
where js + `s ≥ 1, i+

∑k
s=1 `s = ` and

∑k
s=1 js = j.

Finally, we rely on Lemma D.27 once more. For any s = 1, . . . , k, the map
(x, p, ẋ, ṗ)→ Djs

1 D
`s
2 G((x, p), ṗ`s , ẋjs) is a continuous map from U×V×Xns+`s×P

to Yns whenever ns ≤ m− `s. Choosing ns = n+ `− `s for any fixed n ≤ m− `, we
get a map U×V×Xn+`×P → Yn+`−`s . Using that `s ≤ `− i, the derivatives have
been extended so that the function of (x, p, ẋ, ṗ) defined in (D.29) is a composition
of continuous maps

U × V ×Xn+` × P → Y × P × P i × Y k
n+i
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and

Y × P × P i × Y k
n+i → Zn.

Hence (x, p, ẋ, ṗ)→ Dj
1D

`
2H((x, p), ṗ`, ẋj) is continuous as a map of U×V×Xn+`×

P to Zn and we conclude from Lemma D.25 that H ∈ C̃m(U × V,X,Z). �

Remark D.30. Let p0 ∈ V and assume that G(U ×Bδ(p0)) ⊂ Y,

(D.30) ‖Dj
1D

`
2G((x, p), ṗ`, ẋj)‖Yn ≤ C1‖ẋ‖jXn+`

‖ṗ‖`

for any (x, p, ẋ, ṗ) ∈ U ×Bδ(p0)×Xn+`×P and any 0 ≤ j+ ` ≤ m, 0 ≤ n ≤ m− l
and

(D.31) ‖Dj
1D

`
2F ((y, p), ṗ`, ẏj)‖Zn ≤ C2‖ẏ‖jY n+`

‖ṗ‖`

for any (y, p, ẏ, ṗ) ∈ Y× Bδ(p0)×Yn+`×P and any 0 ≤ j+ ` ≤ m, 0 ≤ n ≤ m− l.
Then

(D.32) ‖Dj
1D

`
2H((x, p), ṗ`, ẋj)‖Zn ≤ C3‖ẋ‖jXn+`

‖ṗ‖`

for any (x, p, ẋ, ṗ) ∈ U ×Bδ(p0)×Xn+`×P and any 0 ≤ j+` ≤ m, 0 ≤ n ≤ m− l,
where C3 depends only on C1, C2 and m. In fact, since Dj

1D
`
2H((x, p), ṗ`, ẋj) is a

weighted sum of the terms in (D.29) it is easy to see that there exists a constant
C(m) such that C3 ≤ C(m)C1(1 + Cm2 ). �

If we the introduce the norm

‖G‖C̃m(U×V,X,Y) := inf
{
M : ‖Dj

1D
`
2G((x, p), ṗ`, ẋj)‖Yn ≤M‖ẋ‖

j
Xn+`

‖ṗ‖`,

(D.33)

∀(x, p, ẋ, ṗ) ∈ U × V ×Xn+` × P and any 0 ≤ j + ` ≤ m, 0 ≤ n ≤ m− l}

then the remark implies that ‖H‖ can be controlled in terms of ‖F‖ and ‖G‖.

D.5. A special case of a function G that is linear in its first argument

Here we discuss conditions assuring that G ∈ C̃m in a special case of linear
dependence on the first variable:

Lemma D.31. Let G : X × V → Y and assume that:

(i) For any p ∈ V, the map x 7→ G(x, p) is linear.
(ii) For any 0 ≤ ` ≤ m and any x ∈X, the map p 7→ G(x, p) is in C`∗(V,Ym−`).

(iii) For any p0 ∈ V there exists δ, C > 0 such that

‖D`
2G((x, p), ṗ`)‖Yn ≤ C‖x‖Xn+`

‖ṗ‖`

for any 0 ≤ ` ≤ m, 0 ≤ n ≤ m− `, and (x, p, ṗ) ∈X ×Bδ(p0)× P .

Then G ∈ C̃m(X × V,X,Y). Moreover

(D.34) ‖G‖C̃m(BR×V,X,Y) ≤ C(m)(1 +R)M ′,

where

M ′ := inf
{
M : ‖D`

2G((x, p), ṗ`)‖Yn ≤M‖ẋ‖Xn+`
‖ṗ‖`,

for any (x, p, ẋ, ṗ) ∈X × V × P and any 0 ≤ n+ ` ≤ m}(D.35)
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Proof. We will verify the conditions of Lemma D.25.
The conditions (i) and (ii) above imply the condition Lemma D.25(i). In-

deed, taking into account the linearity of G in the first variable, the derivative
D1G((x, p), ẋ) exists and equals G(ẋ, p) (with any norm ‖·‖Yn , 0 ≤ n ≤ m (in

particular, also n = m − `) on the target space Y ). Thus D`
2D1G((x, p), ẋ, ṗ`) =

D`
2G((ẋ, p), ṗ`) and D`

2D
j
1G((ẋ, p), ẋj , ṗ`) = 0 for j ≥ 2.

Further, we show that the derivatives (x, p, ṗ) → D`
2G((x, p), ṗ`) can be ex-

tended to continuous maps Φ`,n : X̃n+` × V × P → Yn. Indeed, consider fixed

p ∈ V, ṗ ∈ P , x ∈ X̃n+`, and a sequence xk ∈ Xm converging to x in the norm of
Xn+`, ‖xk − x‖Xn+`

→ 0. The derivative D`
2G((xk, p), ṗ

`) belongs to Ym−` ↪→ Yn
for each xk, and in view of the bound (iii) we get

(D.36) ‖D`
2G((xk, p), ṗ

`)−D`
2G((xk′ , p), ṗ

`)‖Yn ≤ C‖xk − xk′‖Xn+`
‖ṗ‖`,

yielding the existence of the limit Φ`,n(x, p, ṗ) := limk→∞D`
2G((xk, p), ṗ

`) ∈ Yn.
This also gives the continuity of the map x → Φ`,n(x, p, ṗ). Combined with the
continuity (p, ṗ)→ D`

2G((x, p), ṗ`) from the condition (ii), we get the continuity of
Φ`,n as stated above.

To conclude, we introduce the continuous Ψ0,`,n : X × V ×Xn+` × P → Yn
defined by Ψ0,`,n(x, p, ẋ, ṗ) = Φ`,n(p, x, ṗ) and Ψ1,`,n : X × V ×Xn+` × P → Yn
defined by Ψ1,`,n(x, p, ẋ, ṗ) = Φ`,n(p, ẋ, ṗ). For j ≥ 2 we take Ψj,`,n(x, p, ẋ, ṗ) = 0.

The assumptions of Lemma D.25 are thus satisfied, allowing us to conclude

that G ∈ C̃m(X × V,X,Y). �

D.6. A special case of function G not depending on the parameter p

In applications of the chain rule it is convenient to also consider the case of
maps that do not explicitly depend on the parameter p. We get

Lemma D.32. Suppose that G : U × V → Y and G̃ : U → Y satisfy

(D.37) G(x, p) = G̃(x) ∀(x, p) ∈ U × V.

Assume that

(1) G̃ ∈ Cm∗ (U ,Y m) and

(2) for 1 ≤ ` ≤ m the map (x, ẋ) 7→ D`G̃(x, ẋ`) can be extended to a contin-
uous map from U ×X0 to Y 0 and for 1 ≤ n ≤ m − 1 the restriction of
this map to U ×Xn is continuous as a map with values in Y n.

Then G ∈ C̃m(U × V,X,Y). Moreover

(D.38) ‖G‖C̃m(U×V,X,Y) ≤M
′

with
(D.39)

M ′ = inf
{
M : ‖DjG(x, ẋ`)‖Y n ≤M‖ẋ‖lXn ∀(x, ẋ) ∈ U ×Xn ∀ 0 ≤ n ≤ m

}
.

Proof. First note that D`
2G = 0 for ` 6= 0. Let φl,0 : U ×X0 → Y0 denote the

extension of DlG to U ×X0 and let φl,n denote the restriction of φl,0 to U ×Xn.
Set

(D.40) ψj,0,n(x, p, ẋ, ṗ) := φl,n(x, ẋ), ψj,l,n(x, p, ẋ, ṗ) = 0 if l 6= 0.

Then the assertion follows from Lemma D.25 �
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D.7. A map in C1 \C1
∗ and failure of the inverse functions theorem in C1

∗

Proposition D.33. Let H be an infinite dimensional separable Hilbert space.
Then there exists G ∈ C1

∗(H,H) ∩ C∞(H \ {0}, H) such that G is not Fréchet
differentiable at zero. Moreover the exists a function F ∈ C1

∗(H,H) which satisfies
DF (0, ẋ) = ẋ but which is not invertible in any neighbourhood of 0.

Proof. Let (ek)k∈N be an orthonormal basis of H. We will construct G as a
convergent sum

(D.41) G(x) =
∑
k∈N

Gk(x)ek

such that

• Gk ∈ C∞(H),
• the support suppGk of Gk is concentrated near 2−kek,
• suppGk ∩ suppGl = ∅ for k 6= l,
• the gradients ∇Gk are uniformly bounded and converge weakly, but not

strongly, to 0 as k →∞.

Specifically Gk can be defined as follows. Let Pk denote the orthogonal projec-
tion of H onto the subspace

(D.42) Xk := {x ∈ H : (x, ej) = 0 ∀j ≤ k − 1}.
Let

(D.43) ϕ ∈ C∞c
(
(− 1

16 ,
1
16 )
)
, 0 ≤ ϕ ≤ 1, ϕ(0) = 1,

(D.44) Gk(x) = 2−kϕ(‖2kPkx− ek‖2)
∏

j≤k−1

ϕ
(

2
j+k
2 (x, ej)

)
.

For k = 0 the product
∏
j≤k−1 is replaced by 1. Clearly Gk ∈ C∞(H). Moreover

(D.45) suppGk ⊂ Kk :=
{
x : |(x, ej)| ≤ 1

42−
k+j
2 if j ≤ k − 1,

|(x, ek)− 2−k| ≤ 1
4 and |Pk+1x| ≤ 1

42−k
}
.

We claim that

(D.46) Kk ∩Kl = ∅ if k 6= l.

To show this we may assume that k < l. If x ∈ Kk ∩ Kl then the definition of

Kk implies that (x, ek) ≥ 3
42−k while the definition of Kl yields |(x, ek)| ≤ 1

42−
k+l
2 .

Since both inequalities cannot hold simulateneously we get Kk∩Kl = ∅. Note also
that

(D.47) x ∈ Kk =⇒ |x|2 ≤ 1

8
2−k +

25

16
2−2k +

1

8
2−2k ≤ 2−k+1

In particular if x0 6= 0 then the ball B|x0|/2(x0) intersects only finitely many of
the sets Kk. Hence the sum G =

∑
kGkek is a finite sum in B|x0|/2(x0) and thus

defines a C∞ map on that set. Thus

(D.48) G ∈ C∞(H \ {0}, H).

Moreover Gk(0) = 0 and thus G(0) = 0.
We now show that

(D.49) the directional derivative D1G(0, ẋ) exists and equals 0; and that
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(D.50) the map (x, ẋ) 7→ D1G(x, ẋ) is a continuous map from H ×H to H.

To prove (D.49) we note that Gk(x) = 0 if |(x, ek)| ≤ 1
2 and |Gk(x)| ≤ 1 for all

x ∈ H. Thus

(D.51) |Gk(x)| ≤ 2|(x, ek)|.
Since each function Gk is in C∞(H) it suffices to show that for each ẋ ∈ H

(D.52) lim
m→∞

lim sup
t→0

1

t

∣∣∣ ∑
k≥m

Gk(tẋ)ek

∣∣∣ = 0.

Now by (D.51) and orthogonality

(D.53)
∣∣∣ ∑
k≥m

Gk(tẋ)ek

∣∣∣2 =
∑
k≥m

|Gk(tẋ)|2 ≤ 4t2
∑
k≥m

|(ẋ, ek)|2 = 4t2|Pmẋ|2.

Thus

(D.54) lim sup
t→0

1

t

∣∣∣ ∑
k≥m

Gk(tẋ)ek

∣∣∣ ≤ 2|Pmẋ|

and the assertion (D.52) follows.
To prove (D.50) it suffices to prove continuity at (0, ẋ) since we already know

that G ∈ C∞(H \ {0}, H). Thus we need to show

(D.55) lim
(x,v)→(0,ẋ)

D1G(x, v) = 0.

Since D1G is linear in the second argument and since finite linear combinations∑M
l=0 alel are dense in H it suffices to establish the following two properties

(D.56) ‖D1G(x, v)‖ ≤ C‖v‖ ∀(x, v) ∈ H ×H,

(D.57) lim
x→0

D1G(x, em) = 0 ∀m ∈ N.

To prove the bound on D1G note that (for x 6= 0)

∇Gk(x) = 2ϕ′(‖2kPkx− ek‖2)(2kPkx− ek)
∏

j≤k−1

ϕ
(
2
j+k
2 (x, ej)

)
(D.58)

+ϕ(‖2kPkx− ek‖2)
∑
l≤k−1

ϕ′
(
2
l+k
2 (x, el)

)
2
l−k
2 el

∏
j≤k−1,j 6=l

ϕ
(
2
j+k
2 (x, ej)

)
.

Since the vectors e1, . . . , ek−1, 2
kPkx − ek are orthogonal this yields, with C ′ =

sup |ϕ′|2,

(D.59) |∇Gk(x)|2 ≤ 4C ′
1

4
+ C ′

∑
l≤k−1

2l−k ≤ 2C ′.

Since the Gk have disjoint support and since D1G(0, v) = 0 it follows that

(D.60) ‖D1G(x, v)‖ ≤
√

2 sup |ϕ′| ‖v‖ ∀(x, v) ∈ H ×H
and thus (D.56).

To prove (D.57) note that Gk(x) = 0 if ‖x‖ ≤ 3
42−k. Thus for ‖x‖ ≤ 3

42−m we
have

(D.61) |D1G(x, em)|

{
≤ 2

m−k
2 if x ∈ suppGk for some k,

= 0 else.
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Now if x ∈ suppGk and x→ 0 then k →∞. This implies (D.57).
Thus we have shown that

(D.62) G ∈ C1
∗(H,H) with D1G(0, ẋ) = 0 ∀ẋ ∈ H.

We finally show that G is not Fréchet differentiable at 0. If G was Fréchet differ-
entiable at 0 the Fréchet derivative DG(0) would satisfy DG(0) = 0. Thus Fréchet
differentiability would give

(D.63) lim
x→0

‖G(x)‖
‖x‖

= 0.

On the other hand we have

(D.64) G(2−kek) = Gk(2−kek)ek = 2−kek.

Taking k →∞ we get a contradiction to (D.63).

To get a counterexample to the inverse function theorem in C1
∗(H,H) set

(D.65) F (x) := x−G(x).

Then F ∈ C1
∗(H,H) and by (D.62)

(D.66) D1F (0, ẋ) = ẋ ∀ẋ ∈ H.
Now (D.64) imlies that

(D.67) F (2−kek) = 0 = F (0)

and hence there exists no neighbourhood of 0 in which F is invertible. �



APPENDIX E

Implicit Function Theorem with Loss of Regularity

Here we state and prove a version of the implicit function theorem which in-
corporates a loss of regularity and is tailored for the use in Chapters 4.5 and 8.

We consider a function of three variables (rather than a function of two variables
as in the standard version of the implicit function theorem). The implicit function
we are looking for expresses the first variable as a function of the second and the
third variable. The reason for this set-up is that the second and the third variable
play very different roles. Differentiation with the respect to the third variable (which
in our application is the renormalised coefficient in the difference operator) leads
to a loss of regularity, while differentiation with respect to the second variable does
not. This bad behaviour with respect to the third variable is partially compensated
by the fact that we know that F (0, 0, p) = 0 for all values of the third variable in a
neighbourhood of 0 (and not just for p = 0) and that we have uniform control of
D1F (0, 0, p).

Theorem E.1. Let m ≥ 2. Let X = Xm ↪→ . . . ↪→ X0, E, and P be
normed spaces, with X = (Xm, . . . ,X0), E = (E, . . . ,E), and X × E = (Xm ×
E, . . . ,X0 × E). Further, let U ⊂ X, V ⊂ E, and W ⊂ P be open and assume

that F ∈ C̃m((U × V) × W;X × E,X), i.e., F ∈ Cm∗ (U × V × W,X0), for any
j′ + j′′ + ` ≤ m the derivative

Dj′

1 D
j′′

2 D`
3F can be extended to a continuous map

U × V ×W ×Xj′

` ×E
j′′ × P ` →X0(E.1)

and

the restriction of Dj′

1 D
j′′

2 D`
3F defines a continuous map

U × V ×W ×Xj′

n+` ×E
j′′ × P ` →Xn if 0 ≤ n ≤ m− `.(E.2)

Assume, moreover, that (0, 0, 0) ∈ U × V ×W and

(E.3) F (0, 0, p) = 0 for all p ∈ W,

and, there exists γ ∈ (0, 1) such that

(E.4) ‖D1F (0, 0, p)‖L(Xn,Xn) ≤ γ for any n ≤ m and p ∈ W.

Then there exist open subsets Ũ ⊂ U , Ṽ ⊂ V, and W̃ ⊂ W with 0 ∈ Ũ , 0 ∈ Ṽ,

0 ∈ W̃, and a unique function f : Ṽ × W̃ → Ũ such that

(E.5) F (f($, p), $, p) = f($, p) for any ($, p) ∈ Ṽ × W̃.

Moreover f ∈ C̃m(Ṽ × W̃,X), i.e.,

(E.6) f ∈ Cn∗ (Ṽ × W̃,Xm−n) for all 0 ≤ n ≤ m

133
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and

(E.7) Dj′′

1 Dl
2f : Ṽ × W̃ × Ej

′′
× P l →Xm−l is continuous

for j′′ + l ≤ m.

Finally if F (x,$, p) = x and (x,$, p) ∈ Ũ × Ṽ × W̃ then x = f($, p). The
derivatives of f are given by the usual formulae, see (E.28) for the first derivative
and the inductive definitions (E.33) and (E.34) for the higher derivatives.

If

‖Dj′

1 D
j′′

2 D`
3F (x,$, p, ẋj

′
, $̇j′′ , ṗl)‖Xn ≤ C1‖ẋ‖j

′

Xn+l
‖$̇‖j

′′

E ‖ṗ‖
`
P .

for all (x,$, p) ∈ U × V ×W and all 0 ≤ n ≤ m − `, then there exists a constant
C2 = C2(C1, γ,m) such that

(E.8) ‖Dj
1D

`
2f($, p, $̇j , ṗ`)‖Xm−l ≤ C2‖$̇‖j ‖ṗ‖`

for all ($, p) ∈ Ṽ × W̃.

The examples in Proposition D.33 shows that the inverse function theorem
(and hence the implicit function theorem) in general does not hold in C1

∗ , even
when there is no loss of regularity. This is why we assume m ≥ 2 in Theorem E.1.

Remark E.2. The usual implicit function theorem also holds in the Cm∗ spaces
instead of the Cm spaces as long as m ≥ 2. More specifically, let U ⊂ X, V ⊂ E
and assume that F ∈ Cm∗ (U × V,X) with F (0, 0) = 0 and ‖D1F (0, 0)‖ ≤ γ < 1.

Then there exist Ũ ⊂ U and Ṽ ⊂ V and f ∈ Cm∗ (Ṽ,X) with f(Ṽ) ⊂ Ũ such

that F (f($), $) = f($) for all $ ∈ Ṽ. This follows directly from Theorem E.1.
Indeed, it suffices to consider the situation where Xm = . . . = X0 = X and to
extend F trivially to a function on U × V × P which is independent of the third
argument. Then F satisfies all the hypothesis of Theorem E.1 and the conclusion
of the theorem gives the desired assertion. �

Remark E.3. Let Û = U × V, X̂` = X` × E. Then, strictly speaking, the

definition of C̃m((U × V)×W,X× E,X) requires that

Dj
(x,$)D

`
pF can be extended to a continuous map

Û ×W × X̂
j′

n+l × P
` →Xn if 0 ≤ n ≤ `−m and j + ` ≤ m.(E.9)

In view of Corollary D.15 this is equivalent to (E.2). �

Proof.
Step 1. Prelimary estimates.

We claim that there exist subsets Ũ ⊂ U , Ṽ ⊂ V, W̃ ⊂ W that are balls around
0 and a constant M such that the following estimates hold:

(E.10) ‖Dj′

1 D
j′′

2 D`
3F ((x,$, p), ẋj

′
, $̇j′′ , ṗ)‖Xn+`

≤M‖ẋ‖j
′

Xn
‖$̇‖j

′′

E ‖ṗ‖
`
P

for all (x,$, p) ∈ Ũ × Ṽ × W̃, all ẋ ∈ X, $̇ ∈ E, ṗ ∈ P , and all j′ + j′′ + ` = 2,
0 ≤ n+ ` ≤ m,

(E.11) ‖D2F ((x,$, p), $̇)‖Xm
≤M‖$̇‖E for all (x,$, p) ∈ Ũ × Ṽ × W̃,

(E.12) ‖F (0, $, p)‖Xm
≤M‖$‖E for all ($, p) ∈ Ṽ × W̃, and



E. IMPLICIT FUNCTION THEOREM WITH LOSS OF REGULARITY 135

(E.13) ‖D1F (x,$, p)‖L(Xn,Xn) ≤ 1+γ
2 for all (x,$, p) ∈ Ũ×Ṽ×W̃, 0 ≤ n ≤ m.

Indeed, using the joint continuity in (E.2) at (x,$, p) = 0 and (ẋ, $̇, ṗ) = 0 we see
that for ε = 1 there exists a δ ∈ (0, 1] such that

‖Dj′

1 D
j′′

2 D`
3F ((x,$, p), ẋj

′
, $̇j′′ , ṗ)‖Xn+`

< 1

if max(‖ẋ‖Xn
, ‖$̇‖E , ‖ṗ‖P ) < δ and max(‖x‖X , ‖$‖E , ‖p‖P ) < δ. By the mul-

tilinearity of Dj′

1 D
j′′

2 D`
3 this implies (E.10) if M ≥ δ−2. Similarly we see that

(E.11) holds. Now (E.12) follows from (E.11), the assumption F (0, 0, p) = 0 and
Lemma D.6. Finally (E.13) follows from the assumption ‖D1F (0, 0, p)‖L(Xn,Xn) ≤
γ and (E.10) (applied with ` = 0) provided that the radius of Ũ and Ṽ is chosen
sufficiently small.

Step 2. Existence, uniqueness and continuity of f .
First, observe that, according to (E.2), the derivative D1F defines a continuous

map D1F : Ũ × Ṽ × W̃ ×Xm → Xm. Taking into account the inequality (E.13)

and, possibly, shrinking the diameters of balls Ũ , Ṽ, and W̃, we have

(E.14) ‖F (x1, $, p)− F (x2, $, p)‖Xm
≤ 1+γ

2 ‖x1 − x2‖Xm

for any x1, x2 ∈ Ũ and any $ ∈ Ṽ and p ∈ W̃. Employing now the Banach fixed

point theorem [Die60, (10.1.1)] (and possibly shrinking Ṽ and W̃ further) we get

the existence of a unique map f : Ṽ × W̃ → Ũ such that F (f($, p), $, p) = f($, p)

for any ($, p) ∈ Ṽ × W̃; moreover, f ∈ C0(Ṽ × W̃,Xm).

Step 3. Differentiability of f , i.e., f ∈ C1
∗(Ṽ × W̃,Xm−1).

Using the characterisation in terms of Peano derivatives, Proposition D.7, we

need to find a continuous function f (1) : (Ṽ × W̃)× (E ×P )→Xm−1 so that, for

any $ × p ∈ Ṽ × W̃ and $̇ × ṗ ∈ E × P , we have

(E.15) lim
t→0

∥∥∥ξ(t)
t
− f (1)

∥∥∥
Xm−1

= 0

with

(E.16) ξ(t) := f($ + t$̇, p+ tṗ)− f($, p).

Introducing

(E.17) G(x,$, p) := F (x,$, p)− x,
the function f is defined by

(E.18) G(f($, p), $, p) = 0 for all ($, p) ∈ Ṽ × W̃.

Differentiating now formally the equation

(E.19) G(f(($, p) + t($̇, ṗ)), $ + t$, p+ tṗ)) = 0

with respect to t and setting

(E.20) R
(1)
1 := D2G((x,$, p), $̇) +D3G((x,$, p), ṗ)

we expect that

(E.21) f (1)(($, p), ($̇, ṗ)) = −D1G(x,$, p)−1R
(1)
1

with x = f($, p).
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The mapping D1G(x,$, p) : Xn → Xn is bounded and invertible for any
n ≤ m since, according to (E.13),

(E.22) ‖D1G(x,$, p)− 1l‖L(Xn,Xn) ≤
1 + γ

2
< 1

and thus

(E.23) ‖D1G(x,$, p)−1‖L(Xn,Xn) ≤
2

1− γ

for any (x,$, p) ∈ Ũ × Ṽ × W̃. Hence, the function f (1) introduced by (E.21) is
well defined.

To verify the claim (E.15), we recall that ξ is continuous (with values in Xm)
and use the first assertion in Lemma D.27 with l = 1 and Lemma D.6 to estimate

(E.24)

‖G(x+ ξ(t), $ + t$̇, p+ tṗ)︸ ︷︷ ︸
=0

−G(x+ξ(t), $+t$̇, p)−D3G(x+ξ(t), $+t$̇, p, tṗ)‖Xm−1

≤ t sup
τ∈[0,1]

‖D3G(x+ ξ(t), $+ t$̇, p+ τtṗ, ṗ)−D3G(x+ ξ(t), $+ t$̇, p, ṗ)‖Xm−1

= o(t).

Similarly, using the second assertion in Lemma D.27 and Lemma D.6 we get

(E.25)

‖G(x+ξ(t), $+ t$̇, p)−G(x,$, p)︸ ︷︷ ︸
=0

−D1G(x,$, p, ξ(t))−D2G(x,$, p, t$̇)‖Xm−1

= o(t) + o(‖ξ(t)‖Xm−1
).

Combining these two estimate we deduce that

(E.26) ‖D1G(x,$, p)ξ(t) + tR
(1)
1 ‖Xm−1

≤ o(t) + o(‖ξ(t)‖Xm−1
)

. and using (E.23) and the definition of f (1) it follows that

(E.27) ‖ξ(t)− tf (1)‖Xm−1
= o(t) + o(‖ξ(t)‖Xm−1

).

This implies first that ‖ξ(t)‖Xm−1 ≤ Ct for small |t| and then division by t yields
the desired assertion (E.15).

We finally show that
(E.28)

f (1)(($, p), ($̇, ṗ)) = −D1G(x,$, p)−1(D2G((x,$, p), $̇) +D3G((x,$, p), ṗ))

defines a continuos map from Ṽ × W̃ × ×E × P to Xm−1. Together with (E.15)

this show that f ∈ C1
∗(Ṽ × W̃;Xm−1). Clearly the map

(E.29) ($, p), ($̇, ṗ)) 7→ D2G((x,$, p), $̇) +D3G((x,$, p), ṗ)

has the desired continuity properties.
It thus suffices to verify the following continuity property of D1G

−1 for any n
with 0 ≤ n ≤ m:

(E.30) Whenever (xj , $j , pj , yj)→ (x,$, p, y) in Ũ × Ṽ × W̃ ×Xn

then D1G(xj , $j , pj)
−1yj → D1G(x,$, p)−1y in Xn.

This would be obvious if were able to assume that (x,$, p) → D1G(x,$, p) is
continuous as a map with values in L(Xn,Xn). However, we only have continuity



E. IMPLICIT FUNCTION THEOREM WITH LOSS OF REGULARITY 137

of (x,$, p, ẋ) → D1G((x,$, p), ẋ) as a map from Ũ × Ṽ × W̃ ×Xn to Xn. To
show that (E.30) holds under this weaker assumption let z := D1G(x,$, p)−1y and
zj := D1G(xj , $j , pj)

−1yj . Then

(E.31) D1G((xj , $j , pj), zj−z) = (yj−y)−(D1G((xj , $j , pj), z)−y)→ 0 in Xn.

Since ‖D1G(xj , $j , pj)
−1‖L(Xn,Xn) ≤ 2/(1− γ) it follows that zj → z in Xn.

Step 4. Higher Peano derivatives and proof of (E.6).
Let 2 ≤ k ≤ m. Employing Proposition D.7 again, we will prove that f ∈

Ck∗ (Ṽ × W̃,Xm−k) by showing that f : Ṽ × W̃ → Xm−k has continuous Peano

derivatives up to order k. As before ($, p) ∈ Ṽ × W̃ and for sufficiently small t let
ξ(t) := f(s + t$̇, p + tṗ) − f($, p). We will show by induction that ξ(t) is Peano
differentiable at 0 and that the Peano derivatives up to order k can be computed
by expanding the identity

(E.32) 0 = G(x+ ξ(t), $ + t$̇, p+ tṗ)), where x = f($, p),

to order k in t.
Define f (1) by (E.21). For k ≥ 2 define inductivelyRk = Rk(t) = Rk(t,$, p, $̇, ṗ)

and f (k) = f (k)($, p, $̇, ṗ) as follows,

(E.33) Rk(t) :=

∑
j′+j′′+`≤k
j′′+`≥1

1
j′! j′′! `!D

j′

1 D
j′′

2 D`
3G

(x,$, p),

(
k−`−j′′∑
q=1

f (q)

q!
tq

)j′
, $̇j′′ , ṗ`)tj

′′+`

+

+
∑

2≤j′≤k

1
j′!D

j′

1 G

(
(x,$, p),

(k−1∑
q=1

f (q)

q!
tq
)j′)

.

Note that Rk is a polynomial in t. We use R
(j)
k to denote its j-th order derivative

at t = 0, i.e., R
(j)
k /j! is the coefficient of tj in the polynomial Rk. Also, notice that

in the right hand side of the equation above, only terms f (q) of the order q ≤ k− 1
occur. Note also that Rk(t) contains all the terms of order tj with j ≤ k of the
joint Taylor expansion of G and ξ(t) except for the term D1G(x,$, p, ξ(t)). Thus
looking on the coefficients of tk it is natural to define

(E.34) f (k) := −D1G(x,$, p)−1R
(k)
k ,

i.e., f (k) is the unique solution of the linear equation D1G(x,$, p, ẋ) + R
(k)
k = 0

(we will see below that R
(k)
k ∈ Xm−k and that this equation has indeed a unique

solution in Xm−k).
For k ≤ m, we will prove by induction that

(E.35) f (k) ∈Xm−k

and that f (k) is the sought Peano derivative since

(E.36)
∥∥∥ξ(t)− k∑

q=1

f (q)

q!
tq
∥∥∥
Xm−k

= o(tk).

For k = 1 the definitions of R
(1)
1 and f (1) agree with those given in Step 3. The

claims (E.35) and (E.36) for k = 1 were also established in Step 3.
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Assume now that (E.35) and (E.36) hold for k − 1 and that k ≤ m. Then it is

easy to see that for all t we have Rk(t) ∈ Xm−k and in particular R
(k)
k ∈ Xm−k.

Indeed, if `+ j′′ ≥ 1 then
∑k−`−j′′
q=1

f(q)

q! t
q ∈Xm−k+` and, since

(E.37) Dj′

1 D
j′′

2 D`
3G maps U × V ×W ×Xj′

m−k+` ×E
j′′ × P ` to Xm−k,

the first sum in the definition ofRk(t) is inXm−k. If ` = j′′ = 0, then
∑k−1
q=1

f(q)

q! t
q ∈

Xm−k+1 which is mapped by Dj′

1 G(x,$, p) into Xm−k+1 implying that the second
sum in the definition of Rk(t) is contained in Xm−k+1 ⊂ Xm−k. We have seen
in Step 3 that the map ẋ 7→ D1G((x,$, p), ẋ) is bounded and invertible as a map
from Xn to Xn for all 0 ≤ n ≤ m. Hence, the definition (E.34) implies that f (k)

is well defined and lies in Xm−k.
To prove (E.36), we first define

(E.38) R̃k(t) :=
∑

j′+j′′+`≤k
j′′+`≥1

1
j′! j′′! `!D

j′

1 D
j′′

2 D`
3((x,$, p), ξ(t)j

′
, $̇j′′ , ṗ`)tj

′′+`+

+
∑

2≤j′≤k

1
j′!D

j′

1 G((x,$, p), ξ(t)j
′
).

Similar to the estimate for the first derivative, it follows from Lemma D.27, Lemma D.6
and Proposition D.7 (c.f. also Lemma D.13) that
(E.39)∥∥∥G(x+ ξ(t), $ + t$̇, p+ tṗ)︸ ︷︷ ︸

=0

−G(x,$, p)︸ ︷︷ ︸
=0

−D1G((x,$, p), ξ(t))− R̃k(t)
∥∥∥
Xm−k

≤

≤ sup
τ∈[0,1]

∥∥∥ ∑
j′′+`=k

1
j′′! `!

(
Dj′′

2 D`
3G((x+ τξ(t), $ + τt$̇, p+ τtṗ), $̇j′′ , ṗ`)−

−Dj′′

2 D`
3G((x,$, p), $̇j′′ , ṗ`)

)∥∥∥
Xm−k

tk

+ sup
τ∈[0,1]

∥∥∥ ∑
j′+j′′+`=k

j′≥1

1
j′! j′′! `!

(
Dj′

1 D
j′′

2 D`
3G((x,+τξ(t), $+τt$̇, p+τtṗ), ( ξ(t)t )j

′
, $̇j′′ , ṗ`)−

− Dj′

1 D
j′′

2 D`
3G((x,$, p), ( ξ(t)t )j

′
, $̇j′′ , ṗ`)

)∥∥∥
Xm−k

tk

The first term on the right hand side is o(tk) since Dj′′

2 D`
3G is continuous in all of

its arguments and since ξ(t)→ 0 in Xm. For the second term we use that ` ≤ k−1
since j′ ≥ 1 and that, as proven in the Step 3, the function ξ(t)/t converges to

f (1) in Xm−1. As a result, observing that Dj′

1 D
j′′

2 D`
3 is a continuous map from

U × V × W ×Xj′

m−1 × Ej
′′ × P ` to Xm−1−` ↪→ Xm−k, the second term is also

o(tk). In summary,

(E.40) ‖D1G((x,$, p), ξ(t)) + R̃k(t)‖Xm−k = o(tk).

Combining the induction assumption,

(E.41)
∥∥∥ξ(t)− k−j′′−`∑

q=1

f (q)

q!
tq
∥∥∥
Xm−k+`+j′′

= o(tk−j
′′−`)
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valid for any j′′ + ` ≥ 1 with the estimate ‖
∑k−j′′−`
q=1

f(q)

q! t
q‖Xm−k+`+j′′ ≤ 3Ct

which follows from (E.41) and the bound ‖ξ(t)‖Xm−1
≤ Ct proven in Step 3, we

can evaluate every term occurring in Rk − R̃k. Namely, we bound
(E.42)∥∥∥Dj′1+j′2

1 Dj′′

2 D`
3G((x,$, p),

(k−`−j′′∑
q=1

f(q)

q! t
q−ξ(t)

)j′1
, ξ(t)j

′
2 , $̇j′′ , ṗ`)tj

′′+`
∥∥∥
Xm−k

= o(tk).

Here we took into account that the difference Rk − R̃k contains only terms with
j′1 ≥ 1 implying that o((tk−j

′′−`)j
′
1)tj

′′+`tj
′
2 = o(tk) since (k−j′′−`)j′1+j′′+`+j′2 ≥

k + (j′1 − 1)(k − j′′ − `) + j′2 ≥ k. Similarly for the remaining terms,

(E.43)
∥∥∥Dj′1+j′2

1 G((x,$, p),
(k−1∑
q=1

f(q)

q! t
q − ξ(t)

)j′1
, ξ(t)j

′
2)
∥∥∥
Xm−k

= o(tk)

since j′1 ≥ 1 and j′1+j′2 ≥ 2 and thus o((tk−1)j
′
1)tj

′
2 = o(tk)t(k−1)(j′1−1)+j′2−1 = o(tk).

As a result, we can conclude that

(E.44) ‖Rk(t)− R̃k(t)‖Xm−k = o(tk)

and thus

(E.45) ‖D1G((x,$, p), ξ(t)) +Rk(t)‖Xm−k = o(tk).

Moreover one can easily check that for any q ≤ k
(E.46) ‖Rq(t)−Rk(t)‖Xm−k = o(tq)

and thus the derivatives of order q at 0 satisfy R
(q)
q = R

(q)
k . Now the definition of

f (q) for q ≤ k implies that

(E.47) D1G((x,$, p), f (q)) = −R(q)
q = −R(q)

k .

Thus

(E.48) ‖D1G((x,$, p),

k∑
q=1

f (q)

q!
tq) +Rk(t)‖Xm−k = o(tk)

since Rk is a polynomial with values in Xm−k. Comparison with (E.45) yields

(E.49) ‖D1G((x,$, p), ξ(t)−
k∑
q=1

f (q)

q!
tq)‖Xm−k = o(tk)

and this implies the claim (E.36) since ẋ 7→ G((x,$, p), ẋ) is a bounded and invert-
ible map from Xm−k to itself.

We have thus shown that for any n ≤ m the map f : V × W → Xm−n has
Peano derivatives for any k ≤ n given by

(E.50) f (k)(($, p), ($̇, ṗ)) = f (k),

where f (k) is inductively defined by (E.33) and (E.34) with x = f($, p). It follows
by induction that the maps

($, p, ($̇, ṗ)) 7→ R
(k)
k ,(E.51)

($, p, ($̇, ṗ)) 7→ f (k)(E.52)

are continuous as maps from Ṽ × W̃ ×E×P to Xm−n (here we use again (E.30)).
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Thus f (n) exists and is continuous on (Ṽ × W̃,Xm−n). By Proposition D.7,
the existence and continuity of Peano derivatives f (n) thus finally implies that

f ∈ Cn∗ (Ṽ × W̃,Xm−n) for all n ≤ m.

Step 5. Improved estimates for Dj
1D

`
2f and proof of (E.7).

For j = 0 there is nothing to show since Dl
2f($, p, ṗ`) = f (l)($, p, 0, ṗ) and thus

(E.7) follows from (E.6). For j ≥ 1 set

n := j + `

and note that

(E.53)
1

n!
f (n)($, p, $̇, sṗ) =

n∑
l=0

sl
1

j!

1

`!
Dj

1D
l
2f($, p, $̇j , ṗ`)

Thus, up to a constant factor, Dj
1D

`
2f is given by the coefficient of sl in the

polynomial s 7→ f (n)($, p, $̇, sṗ). Using this observation we will now prove (E.7)
by induction over n.

For n = 1 the assertion follows directly from (E.28).
Assume the assertion has been shown for j+ l ≤ n− 1 (where n ≤ m). We will

show the assertion for j + l = n. In view of (E.34) it suffices to show the following:

If R
(n)
n,l ($, p, $̇, ṗ) is the coefficient of sl in the polynomial

h(s) := R(n)
n ($, p, $̇, sṗ)

then
R

(n)
n,l : Ṽ × W̃ × E × P → Xm−l is continuous.

To see this note that h(s) is a weighted sum of terms of the form

Dj′

1 D
j′′

2 D`′

3 F (x,$, p, f (q1), . . . , f (qj′ ), $̇j′′ , ṗ`
′
) s`

′

with f (qi) = f (qi)($, p, $̇, sṗ) and terms of the form

Dj′

1 F (x,$, p, f (q1), . . . , f (qj′ )).

Using (E.53) we see that R
(n)
n,l is a weighted sum of terms

T1 := Dj′

1 D
j′′

2 D`′

3 F (x,$, p,Da1
1 D`1

2 f, . . . ,D
aj′
1 D

`j′
2 f, $̇j′′ , ṗ`

′
) with `i ≤ `− `′

and of terms

T2 := Dj′

1 F (x,$, p,Da1
1 D`1

2 f, . . . ,D
aj′
1 D

`j′
2 f) with qi ≤ `

where
Dai

1 D
`i
2 f = Dai

1 D
`i
2 f($, p, $̇ai , ṗli).

Now by induction assumption

Dai
1 D

`i
2 f : Ṽ × W̃ × Eai × P li → Xm−(`−`′)

is continuous if `i ≤ ` − `′. Thus T1 : Ṽ × W̃ × E × P → Xm−` is continuous.
Similarly one shows continuity of T2.

Step 6. Proof of (E.8).
This is proved by induction over n = j + l very similar to Step 5.

�



APPENDIX F

Geometry of Course Graining

We will use two combinatorial lemmas (Lemma 6.15 and 6.16 from [Bry09])
proven by Brydges that are for completeness summarised below.

Lemma F.1. Let X ∈ Pc
k \ Sk. Then

(F.1) |X|k ≥ (1 + 2α(d))|X|k+1 with α(d) = 1
(1+2d)(1+6d)

.

For any X ∈ Pk we have

(F.2) |X|k ≥ (1 +α(d))|X|k+1− (1 +α(d))2d+1|C(X)| with α(d) = 1
(1+2d)(1+6d)

.

Lemma F.2. There exist δ = δ(d, L) < 1 such that

(F.3)
∑

X∈Pc
k\Sk

X=U

δ|X|k ≤ 1

for any k ∈ N and any U ∈ Pc
k+1.

Proof. For any X contributing to the sum we have |X|k ≥ (1 + 2α(d))|X|k+1

and thus

(F.4)
∑

X∈Pc
k\Sk

X=U

δ|X|k ≤ 2L
d|U |k+1δ(1+2α(d))|U |k+1 ≤ 1

once δ ≤ 2−
Ld

1+2α(d) . �
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(q)
k , page 36

χ(X,U) =

{
|{B∈Bk(X) : B∗=U}|

|X| if X ∈ Sk(ΛN ),

1lU=X if X ∈ Pk(ΛN ) \ Sk(ΛN ),
for any connected U ∈

Pk+1, page 31
Ik(B,ϕ) = exp

{
−Hk(B,ϕ)

}
, page 30

Ĩk(B,ϕ) = exp
{
−H̃k(B,ϕ)

}
, page 30

J̃k(B,ϕ) = 1− Ĩ(B,ϕ), page 30

Kk+1(U,ϕ) =
∑
X∈Pk(U) χ(X,U) exp

{
−
∑
B∈Bk(U\X) H̃k(B,ϕ)

} ∫
X K̃k(X,ϕ, ξ)µk+1(dξ),

page 32
Kk+1 = Sk(Hk,Kk, q) = CkKk + Sk(Hk,Kk, q)−D2Sk((0, 0, q),Kk) ,

page 38

Kκ,p,u(z) =
∏d
i=1

[
p+ (1− p) exp

{
1
2 (1− κ)

(
zi − ui)2

}]
− 1, Mayer function

for the potential from [BK07], page 11

K(q)(X,ϕ) = exp
{

1
2

∑
x∈X

∑d
i,j=1 qi,j∇iϕ(x)∇jϕ(x)

}
K(X,ϕ), page 20

Ku(X,ϕ) =
∏
x∈X Ku(∇ϕ(x)) with a function Ku : Rd → R, page 9

KV,β,u(z) = exp
{
−β
∑d
i=1 U

(
zi√
β
, ui
)}
− 1, the Mayer function for pertur-

bation V , page 8
KV,β,u(X,ϕ) =

∏
x∈X KV,β,u(∇ϕ(x)), page 9

K̃k(X,ϕ, ξ) =
∑
Y ∈Pk(X)(Ik(ϕ+ ξ)− Ĩk(ϕ))X\Y (ϕ, ξ)Kk(Y, ϕ+ ξ), page 30

κ parameter in Kκ,p,u, page 11

κ(d) = 1
2

(
d+ η(2bd+2

2 c+ 8, d)
)
, page 43

L linear size of a renormalization block, page 7

`(ϕ) =
∑
x∈B

[∑d
i=1 ai∇iϕ(x) +

∑d
i,j=1 ci,j ∇i∇jϕ(x)

]
, linear term of

ideal Hamiltonian, page 26
λN (LNd − 1)-dimensional Hausdorf measure on XN , page 7
ΛN = {x ∈ Zd : |x|∞ ≤

1
2 (LN−1)} (identified with torus TN ) , page 7

M(Bk,X ) the set of all Lk-periodic maps F : Bk × X → R such that
F (B, ·) ∈M(X , νk+1) for all B ∈ Bk, page 26

M∗(Bk,X ) the set of all Lk-periodic maps F : Bk × X → R such that
F (B, ·) ∈M(X , νk+1) for all B ∈ Bk living on (B∗)∗, page 26

M̂ r {K ∈M(Pk,X ), ‖K‖(A,B)
k,r <∞}, page 54

M̂ :,r {K ∈M(Pk,X ), ‖K‖(A,B)
k:k+1,r <∞}, page 54

M(Pk,X ) the set of all Lk-periodic maps F : Pk × X → R such that
F (X, ·) ∈M(X , νk+1) for all X ∈ Pk, page 25
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M(Sk,X ) the set of all Lk-periodic maps F : Sk × X → R such that
F (X, ·) ∈M(X , νk+1) for all X ∈ Sk, page 26

M(XN ) set of all functions on XN measurable with respect to λN , page 24
M0(Bk,X ) the set of all ideal Hamiltonians: quadratic functions of the form

H(B,ϕ) = λ|B|+ `(ϕ) +Q(ϕ) , page 26
M1(XN ) =M1(XN ,BXN ), the set of probability measures on XN , page 7
µ(q)(dϕ) = 1

Z
(q)
N

exp
{
−Eq(ϕ)

}
λN (dϕ), page 19

µ
(q)
k (dϕ) Gaussian measure with covariance C

(q)
k , page 20

M0 =Mk,0 = (M(Bk,X ), ‖·‖k,0), page 34

M r =Mk,r = (Mr(Pc
k,X ), ‖·‖(A)

k,r ), page 34

N the power yielding the size (of the torus) LN , page 7
ν(dϕ) = νβ=1(dϕ), page 9
νβ(dϕ) = 1

Z
(0)
N,β

exp
(
−βEN (ϕ)

)
λN (dϕ), Gaussian measure on XN , page 8

ν
(q)
k the measure on XN with covariance C

(q)
k + · · ·+ C

(q)
N+1, page 24

∇iϕ(x) = ϕ(x+ ei)− ϕ(x), discrete derivative, page 7
∇∗iϕ(x) = ϕ(x− ei)− ϕ(x), dual of discrete derivative ∇i, page 7

|∇sϕ(x)|2 =
∑
|α|=s|∇αϕ(x)|2, page 27

p = (p1, . . . , pd) ∈ T̂N , dual variables, page 23
p parameter in Kκ,p,u (replacing β), page 11
pt = pt(κ), corresponding phase transition value, page 12

P1 P1(Ĩ , J̃ , P̃ )(U,ϕ) =
∑

X1,X2∈P(U)
X1∩X2=∅

χ(X1∪X2, U)ĨU\(X1∪X2)(ϕ)J̃X1(ϕ)P̃ (X2, ϕ)

mapping (M(Bk,X ), |‖·‖|k)×(M(Bk,X ), |‖·‖|k)×(M(Pc
k,X ), ‖·‖(A/2)

k:k+1,r)

into (M((Pk+1)c,X ), ‖·‖(A)
k+1,r) , page 54

P2 P2(I,K) = (I − 1) ◦K mapping , page 54
P3 (P3K)(X,ϕ) =

∏
Y ∈C(X)K(Y, ϕ) , page 54

πi the co-ordinate projection πi(x) = xi for x ∈ Zd, page 67
Π2 the projection fromM∗(B,X ) toM0(B,X ): Π2F (B, ϕ̇) = F (B, 0)+

`(ϕ̇)+Q(ϕ̇, ϕ̇): ` agrees with DF (B, 0) on all quadratic functions
ϕ̇ on (B∗)∗ and Q agrees with 1

2D
2F (B, 0) on all affine functions

ϕ̇ on (B∗)∗, page 29
Pk = Pk(ΛN ) the set of all k-polymers in ΛN , page 25
Pk(X) the set of all polymers Y consisting of subsets of blocks from

Bk(X), page 25
Pc
k the set of all connected k-polymers, page 25
q a symmetric d× d-matrix, page 19
q(Ku) the value of q yielding HN = 0, page 21
‖q‖ operator norm of q viewed as operator on Rd equipped with `2

metric, page 23

Q(ϕ,ϕ) = 1
2

∑
x∈B

∑d
i,j=1 di,j(∇iϕ)(x)(∇jϕ)(x), quadratic term of ideal

Hamiltonian, page 26
r0 a bound on the order of derivatives used in the norm ‖·‖ζ , page 10

R1 R1(P, q)(X,ϕ) = (R(q)P )(X,ϕ) =
∫
X P (X,ϕ+ ξ)µ

(q)
k+1(dξ) map-

ping (M(Pc
k,X ), ‖·‖(A)

k,r )× (Rd×dsym , ‖·‖) into (M(Pc
k,X ), ‖·‖(A)

k:k+1,r)
, page 54
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R2 R2(H,K, q)(B,ϕ) = Π2

(
(R(q)H)(B,ϕ)−

∑
X∈S
X⊃B

1
|X| (R

(q)K)(X,ϕ)
)

mapping (M0(Bk,X ), ‖·‖k,0) × (M(Pc
k,X ), ‖·‖(A)

k,r ) × (Rd×dsym , ‖·‖)
into (M0(Bk,X ), ‖·‖k,0) , page 54

Rk renormalisation maps (RkF )(ϕ) =
∫
XN

F (ϕ+ξ)µ
(q)
k (dξ), page 24

ρ(x, y) = inf{|x− y + k|∞ : k ∈ (LNZ)d}, page 7
Rd×dsym the set of symmetric d× d-matrices, page 19

Sk the map S : M0(Bk,X ) ×M(Pc
k,X ) × Rd×dsym → M((Pk+1)c,X )

given by
S(Hk,Kk, q) = Kk+1, page 33

S the map S is composed as
S(H,K, q) = P1

(
E(R2(H,K, q)), 1−E(R2(H,K, q)), R1(P2(E(H),K), q)

)
, page 54

σβ(u) = − limN→∞
1

βLdN
logZN,β(u), free energy (surface tension) with

tilt u, page 8
ς(u) = − limN→∞

1
LdN

logZN (u), the perturbative component of the
surface tension, page 9

ςN (u) = − 1
LdN

logZN (u), the finite volume perturbative component of
the surface tension, page 19

Sk = Sk(ΛN ) = {X ∈ Pc
k : |X|k ≤ 2d}, the set of small polymers, page 25

T2 Taylor expansion up to the second order, T2F (B, ϕ̇) = F (B, 0) +
DF (B, 0)(ϕ̇) + 1

2D
2F (B, 0)(ϕ̇, ϕ̇), page 29

T k map from M0(Bk,X ) × M(Pk,X ) × Rd×dsym to M0(Bk+1,X ) ×
M(Pk+1,X ), T k((Hk,Kk)) = (Hk+1,Kk+1), page 32

T the map from Y ×E ×M0 to Y , page 38

TN =
(
Z/LNZ

)d
, torus, page 7

T̂N =
{
p = (p1, . . . , pd) : pi ∈ {− (LN−1)π

LN
,− (LN−3)π

LN
. . . , 0, . . . , (LN−1)π

LN
}
}

,
dual torus, page 23

τa a translation by a vector a ∈ Zd, page 25
u = (u1 . . . , ud) ∈ Rd a tilt, page 7
U(s, t) = V (s− t)− V (−t)− V ′(−t)s, page 8

Uρ ={(H,K) ∈ M0(Bk,X ) ×M(Pk,X ) : ‖H‖k,0 < ρ, ‖K‖(A)
k,r0

< ρ},
page 34

V : R→ R potential perturbation, page 7
V ={q ∈ Rd×dsym : ‖q‖ < 1/2}, page 34

VN = {ϕ : Zd → R; ϕ(x + k) = ϕ(x) ∀k ∈ (LNZ)d}, set of fields

taken as `2(RLNd), page 7

wXk (ϕ) = exp
{∑

x∈X ω
(
2dgk,x(ϕ) +Gk,x(ϕ)

)
+Lk

∑
x∈∂X Gk,x(ϕ)

}
, the

weak weight function, page 28

wXk:k+1(ϕ) = exp
{∑

x∈X
(
(2dω−1)gk:k+1,x(ϕ)+ωGk,x(ϕ)

)
+3Lj

∑
x∈∂X Gk,x(ϕ)

}
,

the weak weight function, page 28
WX
k (ϕ) = exp

{∑
x∈X Gk,x(ϕ)

}
the strong weight function, page 27

ω a parameter in the weightfunction wXk (ϕ), page 28
∂X ={y 6∈ X|∃z ∈ X such that |y−z| = 1}∪{y ∈ X|∃z 6∈ X such that |y−

z| = 1}, the boundary of X, page 27
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X the closure of X: the smallest polymer Y ∈ Pk+1 of the next
generation such that X ⊂ Y , page 25

X∗ = ∪{B∗ : B ∈ Bk(X)}, the small set neighbourhood of X, page 25
|X|k = |Bk(X)|, page 25
XN = {ϕ ∈ VN :

∑
x∈TN ϕ(x) = 0}, page 7

ξk a random field distributed according to µk = µ
C

(q)
k

, page 24

y an element y = (H0, H1,K1, . . . ,HN−1,KN−1,KN ) of Y , page 38
y = T (y,K,H) the 2(N+1)-tuple defined by Hk and Kk , page 38

Z
(0)
N = Z

(0)
N,β=1, page 9

Z
(0)
N,β =

∫
XN

exp
(
−βEN (ϕ)

)
λN (dϕ), page 8

ZN,β(u) =
∫
XN

exp
(
−βHu

N (ϕ)
)
λN (dϕ), partition function on TN with tilt

u, page 8

Z
(q)
N =

∫
XN

exp
{
−Eq(ϕ)

}
λN (dϕ), page 20

ζ a parameter in the exponential weight of a norm (e.g. ‖·‖ζ) ,
page 10

ZN (u) =
∫
XN

∑
X Ku(X,ϕ)ν(dϕ), page 9

◦ (F1 ◦F2)(X,ϕ) =
∑
Y⊂X F1(Y, ϕ)F2(X \Y, ϕ), the circle product

of F1, F2 ∈M(Pk,X ), page 26
(·, ·) the scalar product (ϕ,ψ) =

∑
x∈TN ϕ(x)ψ(x), page 7

|x|∞ maxi=1,...,d|xi|, page 7

|x| =
√∑

x2
i , the Euclidean norm, page 7

|‖·‖|k |‖F‖|k = |‖F (B)‖|k,B for F ∈M(Bk,X ), page 27

|‖·‖|k,X the weighted strong norm, |‖F (X)‖|k,X = supϕ |F (X,ϕ)|k,X,r0W−Xk (ϕ),
page 27

‖·‖k,0 ‖H‖k,0 = Ldk|λ|+L dk
2 h
∑d
i=1|ai|+L

(d−2)k
2 h

∑d
i,j=1|ci,j |+

h2

2

∑d
i,j=1|di,j |,

page 29

‖·‖(A)
k,r ‖F‖k,r = supX∈Pc

k
‖F (X)‖k,X,rΓk,A(X), r = 1, . . . , r0,, page 28

‖·‖(A)
k:k+1,r ‖F‖k:k+1,r = supX∈Pc

k
‖F (X)‖k:k+1,X,rΓk,A(X), r = 1, . . . , r0,

page 28

‖·‖(b)
k,r ‖F‖(b)

k,r = ‖F (B)‖k,B,r for F ∈M(Bk,X ), page 28

| · |j,X |S|j,X = sup|ϕ̇|j,X≤1

∣∣Sk(ϕ̇, . . . , ϕ̇)
∣∣, j = k, k + 1,

for s-linear function Sk on X × · · · ×X , page 27

| · |j,X,r |F |j,X,r =
∑r
s=0

1
s! |D

sF (ϕ)|j,X , j = k, k + 1, for F ∈ Cr(X ),
page 27

‖·‖k,X,r ‖F (X)‖k,X,r = supϕ |F (X,ϕ)|k,X,r w−Xk (ϕ), r = 1, . . . , r0, page 28

‖·‖k:k+1,X,r ‖F (X)‖k:k+1,X,r = supϕ |F (X,ϕ)|k,X,r w−Xk:k+1(ϕ), r = 1, . . . , r0,
page 28

| · |k,X a norm onX : |ϕ|k,X = max1≤s≤3 supx∈X∗
1
hL

k
(
d−2

2 +s
)∣∣∇sϕ(x)

∣∣,
page 27

| · |k+1,X a norm onX : |ϕ|k+1,X = max1≤s≤3 supx∈X∗
1
hL

(k+1)
(
d−2

2 +s
)∣∣∇sϕ(x)

∣∣,
page 27

‖L‖ = sup{‖L(f)‖ : ‖f‖ ≤ 1}, norm of a linear operator L between
Banach spaces, page 35
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‖·‖Y r the norm on Y r, ‖y‖Y r = maxk∈{0,...,N−1}
1
ηk
‖Hk‖k,0∨maxk∈{1,...,N}

α
ηk
‖Kk,r‖k,

page 38

‖·‖ζ ‖K‖ζ = supz∈Rd
∑
|α|≤r0 ζ

|α|
∣∣∂αz K(z)

∣∣e−ζ−2|z|2 , norm in the Ba-

nach space E, page 10
ϕ
∣∣
X∗

the restriction of ϕ to X∗, page 25


