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Preface

Introduction

We discuss an elegant argument that showcases the usefulness of probabilistic rea-
soning in geometry. First recall that a convex combination of points z1, . . . , zm ∈ Rn

is a linear combination with coefficients that are non-negative and sum to 1, i.e., it is
a sum of the form

m∑
i=1

λizi where λi ≥ 0 and
m∑
i=1

λi = 1. (0.1)

Given a set M ⊂ Rn, the convex hull of M is the set of all convex combinations of
all finite collections of points in M , defined as

conv(M ) := {convex combinations of z1, . . . , zm ∈M for m ∈ N}.

The number m of elements defining a convex combination in Rn is not restricted a
priori. The classical theorem of Caratheodory states that one always take m ≤ n+1.
For the convenience of the reader we briefly state that classical theorem.

Theorem 0.1 (Caratheodory’s theorem) Every point in the convex hull of a set M ⊂ Rn

can be expressed as a convex combination of at most n+ 1 points from M .

Unfortunately the bound n + 1 cannot be improved (it is clearly attained for a
simplex M ) 1 This is some bad news. However, in most applications we only want
to approximate a point x ∈ conv(M ) rather than to represent it exactly as a convex
combination.

Can we do this with fewer than n+ 1 points?
We now show that it is possible, and actually the number of required points does

not need to depend on the dimension n at all! This is certainly brilliant news for any
applications in mind - in particular for those where the dimension of the data set is
extremely high (data science and machine learning and high-dimensional geometry
and statistical mechanics models).

1A simplex is a generalisation of the notion of a triangle to arbitrary dimensions. Specifically, a k-simplex
S is the convex hull of its k+ 1 vertices: Suppose u0, . . . , uk ∈ Rk are affinely independent, which means that
u1 − u0, . . . , uk − u0 are linearly independent. Then, the simplex determined by these vertices is the set of
points

S =
{
λ0u0 + · · ·+ λkuk :

k∑
i=0

λi = 1, λi ≥ 0 for i = 0, . . . , k
}
.
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Theorem 0.2 (Approximate form Caratheodory’s theorem) Consider a set M ⊂ Rn

whose diameter diam (M ) := sup{‖x − y‖ : x, y ∈ M} is bounded by 1. Then, for ev-
ery point x ∈ conv(M ) and every positive integer k, one can find points x1, . . . , xk ∈ M
such that

‖x− 1

k

k∑
j=1

xj‖ ≤
1√
k
.

Here ‖x‖ =
√
x2

1 + · · ·+ x2
n, x = (x1, . . . , xn) ∈ Rn, denotes the Euclidean norm on Rn.

Remark 0.3 We have assumed diam (M ) ≤ 1 for simplicity. For a general setM , the bound
in the theorem changes to diam (M )/

√
k.

Why is this result surprising?

First, the number of points k in convex combinations does not depend on the di-
mension n. Second, the coefficients of convex combinations can be made all equal.

Proof. The argument upon which our proof is based is known as the empirical
method of B. Maurey. W.l.o.g., we may assume that not only the diameter but also
the radius of M is bounded by 1, i.e.,

‖w‖ ≤ 1 for all w ∈M.

We pick a point x ∈ conv(M ) and express it as a convex combination of some
vectors z1, . . . , zm ∈ M as in (0.1). Now we consider the numbers λi in that convex
combination as probabilities that a random vector Z takes the values zi, i = 1, . . . ,m,
respectively. That is, we define

P(Z = zi) = λi, i = 1, . . . ,m.

This is possible by the fact that the weights λi ∈ [0, 1] and sum to 1. Consider now
a sequence (Zj)j∈N of copies of Z. This sequence is an independent identically
distributed sequence of Rn-valued random variables. By the strong law of large
numbers,

1

k

k∑
j=1

Zj → x almost surely as k →∞.

We shall now get a quantitative version of this limiting statement, that is, we wish
to obtain an error bound. For this we shall compute the variance of 1

k

∑k
j=1 Zj. We

obtain

E
[
‖x− 1

k

k∑
j=1

Zj‖2
]

=
1

k2
E
[
‖

k∑
j=1

(Zj − x)‖2
]

(since E[Zi − x] = 0)

=
1

k2

k∑
j=1

E[‖Zj − x‖2].
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The last identity is just a higher-dimensional version of the basic fact that the vari-
ance of a sum of independent random variables equals the sum of the variances. To
bound the variances of the single terms we compute using that Zj is copy of Z and
that ‖Z‖ ≤ 1 as Z ∈M ,

E[‖Zj − x‖2] = E[‖Z − E[Z]‖2] = E[‖Z‖2]− ‖E[Z]‖2 ≤ E[‖Z‖2] ≤ 1,

where the second equality follows from the well-known property of the variance,
namely, for n = 1,

E[‖Z − E[Z]‖2] = E[(Z − E[Z])2] = E[Z2 − 2ZE[Z] + E[Z]2] = E[Z2]− E[Z]2,

and the cases for n > 1 follow similarly. We have thus shown that

E
[
‖x− 1

k

k∑
j=1

Zj‖2
]
≤ 1

k
.

Therefore, there exists a realisation of the random variables Z1, . . . , Zk such that

‖x− 1

k

k∑
j=1

Zj‖2 ≤ 1

k
.

Since by construction each Zj takes values in M , the proof is complete. 2

We shall give one application of Theorem 0.2 in computational geometry. Sup-
pose that we are given a subset P ⊂ Rn (say a polygon 2 ) and asked to cover it by
balls of a given radius ε > 0. What is the smallest number of balls needed, and how
should we place them?

Corollary 0.4 (Covering polytopes by balls) Let P be a polygon in Rn with N vertices
and whose diameter is bounded by 1. Then P can be covered by at most Nd1/ε2e Euclidean
balls of radii ε > 0.

Proof. We shall define the centres of the balls as follows. Let k := d1/ε2e and
consider the set

N :=
{1

k

k∑
j=1

xj : xj are vertices of P
}
.

The polytope P is the convex hull of the set of its vertices, which we denote by
M . We then apply Theorem 0.2 to any point x ∈ P = conv(M ) and deduce that
x is within a distance 1/

√
k ≤ ε from some point in N. This shows that the ε-balls

centred at N do indeed cover P . 2

In this lecture we will learn several other approaches to the covering problem in
relation to packing, entropy and coding, and random processes.

2In geometry, a polytope is a geometric object with’ flat’ sides. It is a generalisation of the three-dimensional
polyhedron which is a solid with flat polygonal faces, straight edges and sharp corners/vertices. Flat sides mean
that the sides of a (k + 1)-polytope consist of k-polytopes.
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1 Prelimaries on Probability Theory

In this chapter we recall some basic concepts and results of probability theory. The
reader should be familiar with most of this material some of which is taught in ele-
mentary probability courses in the first year. To make these lectures self-contained
we review the material mostly without proof and refer the reader to basic chapters of
common undergraduate textbooks in probability theory, e.g. [Dur19] and [Geo12]. In
Section 1.1 we present basic definitions for probability space and probability mea-
sure as well as random variables along with expectation, variance and moments.
Vital for the lecture will be the review of all classical inequalities in Section 1.2. Fi-
nally, in Section 1.4 we review well-know limit theorems.

1.1 Random variables

A probability space (Ω,F , P ) is a triple consisting of a set Ω, a −σ-algebra F and a
probability measure P . We write P(Ω) for the power set of Ω which is the set of all
subsets of Ω.

Definition 1.1 (σ-algebra) Suppose Ω 6= ∅. A system F ⊂ P(Ω) satisfying

(a) Ω ∈ F

(b) A ∈ F ⇒ Ac := Ω \ A ∈ F

(c) A1, A2, . . . ∈ F ⇒
⋃
i≥1Ai ∈ F .

is called σ-algebra (or σ-field) on Ω. The pair (Ω,F) is then called an event space or mea-
surable space.

Example 1.2 (Borel σ-algebra) Let Ω = Rn, n ∈ N and

G =
{ n∏
i=1

[ai, bi] : ai < bi, ai, bi ∈ Q
}

be the system consisting of all compact rectangular boxes in Rn with rational vertices and
edges parallel to the axes. In honour of Émile Borel (1871–1956), the system Bn = σ(G)
is called the Borel σ-algebra on Rn, and every A ∈ Bn a Borel set. Here, σ(G) denotes the
smallest σ-algebra generated by the system G. Note that the Bn can also be generated by the
system of open or half-open rectangular boxes, see [Dur19, Geo12].

♣

The decisive point in the process of building a stochastic model is the next step:
For each A ∈ F we need to define a value P (A) ∈ [0, 1] that indicates the probability
of A. Sensibly, this should be done so that the following holds.

(N) Normalisation: P (Ω) = 1.

(A) σ-Additivity : For pairwise disjoint events A1, A2, . . . ∈ F one has

P
(⋃
i≥1

Ai

)
=
∑
i≥1

P (Ai).
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Definition 1.3 (Probability measure) Let (Ω,F) be a measurable space. A function P : F →
[0, 1] satisfying the properties (N) and (A) is called a probability measure or a probability
distribution, in short a distribution (or, a little old-fashioned, a probability law) on (Ω,F).
Then the triple (Ω,F , P ) is called a probability space.

Theorem 1.4 (Construction of probability measures via densities) (a) Discrete case: For
countable Ω, the relations

P (A) =
∑
ω∈A

%(ω) for A ∈ P(Ω), %(ω) = P ({ω}) for ω ∈ Ω

establish a one-to-one correspondence between the set of all probability measures P on
(Ω,P(Ω)) and the set of all sequences % = (%(ω))ω∈Ω in [0, 1] such that

∑
ω∈Ω %(ω) = 1.

(b) Continuous case: If Ω ⊂ Rn is Borel, then every function % : Ω → [0,∞) satisfying the
properties

(i) {x ∈ Ω: %(x) ≤ c} ∈ BnΩ for all c > 0,

(ii)
∫

Ω
%(x) dx = 1

determines a unique probability measure on (Ω,BnΩ) via

P (A) =

∫
A

%(x) dx for A ∈ BnΩ

(but not every probability measure on (Ω,BnΩ) is of this form).

Proof. See [Dur19, Geo12]. 2

Definition 1.5 A sequence or function % as in Theorem 1.4 above is called a density (of
P ) or, more explicitly (to emphasise normalisation), a probability density (function), often
abbreviated as pdf . If a distinction between the discrete and continuous case is required, a
sequence % = (%(ω))ω∈Ω as in case (a) is called a discrete density, and a function % in case
(b) a Lebesgue density.

In probability theory one often considers the transition from a measurable space
(event space) (Ω,F) to a coarser measurable (event) space (Ω′,F ′). In general such
a mapping should satisfy the requirement

A′ ∈ F ′ ⇒ X−1A′ := {ω ∈ Ω: X(ω) ∈ A′} ∈ F . (1.1)

Definition 1.6 Let (Ω,F) and (Ω′,F ′) be two measurable (event) spaces. Then every map-
ping X : Ω → Ω′ satisfying property (1.1) is called a random variable from (Ω,F) to
(Ω′,F ′), or a random element of Ω′, or a Ω′-valued random variable. Alternatively (in the
terminology of measure theory), X is said to be measurable relative to F and F ′.

In probability theory it is common to write {X ∈ A′} := X−1A′.
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Theorem 1.7 (Distribution of a random variable) If X is a random variable from a prob-
ability space (Ω,F , P ) to a measurable space (Ω′,F ′), then the prescription

P ′(A′) := P (X−1A′) = P ({X ∈ A′}) ≡ P (X ∈ A′) for any A′ ∈ F ′

defines a probability measure P ′ on (Ω′,F ′).

Definition 1.8 (a) The probability measure P ′ in Theorem 1.7 is called the distribution of
X under P , or the image of P under X , and is denoted by P ◦X−1. (In the literature,
one also finds the notations PX or L(X;P ). The letter L stands for the more traditional
term law, or loi in French.)

(b) Two random variables are said to be identically distributed if they have the same distri-
bution.

We are considering real-valued or Rn-valued random variables in the following
and we just call them random variables for all these cases. In basic courses in
probability theory, one learns about the two most important quantities associated
with a random variable X, namely the expectation 3 (also called the mean) and
variance. They will be noted in this lecture by

E[X] and Var(X) := E[(X − E(X))
2
].

The distribution of a real-valued random variable X is determined by the cumu-
lative distribution function (CDF) of X, defined as

FX(t) = P(X ≤ t) = P((−∞, t])), t ∈ R . (1.2)

It is often more convenient to work with the tails of random variables, namely with

P(X > t) = 1− FX(t) . (1.3)

Here we write P for the generic distribution of the random variable X which is given
by the context.

For any real-valued random variable the moment generating function (MGF) (MGF)
is defined

MX(λ) := E[eλX ] , λ ∈ R . (1.4)

When MX is finite for all λ in a neighbourhood of the origin, we can easily compute
all moments by taking derivatives (interchanging differentiation and expectation (in-
tegration) in the usual way):

E[Xk] =
dk

dλk

∣∣∣
λ=0

MX(λ) , k ∈ N . (1.5)

3In measure theory the expectation E[X] of a random variable on a probability space (Ω,F , P ) is the
Lebesgue integral of the function X : Ω → R. This makes theorems on Lebesgue integration applicable in
probability theory for expectations of random variables
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Lemma 1.9 (Integral Identity) LetX be a real-valued non-negative random variable. Then

E[X] =

∫ ∞
0

P(X > t) dt .

Proof. We can write any non-negative real number x via the following identity using
indicator function 4:

x =

∫ x

0

1 dt =

∫ ∞
0

1l{t<x}(t) dt .

Substitute now the random variable X for x and take expectation (with respect to X)
on both sides. This gives

E[X] = E
[ ∫ ∞

0

1l{t<X}(t) dt
]

=

∫ ∞
0

E[1l{t<X}] dt =

∫ ∞
0

P(t < X) dt .

To change the order of expectation and integration in the second inequality, we used
the Fubini-Tonelli theorem. 2

Exercise 1.10 (Integral identity) Prove the extension of Lemma 1.9 to any real-valued ran-
dom variable (not necessarily positive):

E[X] =

∫ ∞
0

P(X > t) dt−
∫ 0

−∞
P(X < t) dt .

K

1.2 Classical Inequalities

In this section fundamental classical inequalities are presented. Here, classical
refers to typical estimates for analysing stochastic limits.

Proposition 1.11 (Jensen’s inequality) Suppose that Φ: I → R, where I ⊂ R is an inter-
val, is a convex function. Let X be a real-valued random variable. Then

Φ(E[X]) ≤ E[Φ(X)] .

Proof. See [Dur19] or [Geo12] using either the existence of sub-derivatives for
convex functions or the definition of convexity with the epi-graph of a function. The
epi-graph of a function f : I → R, I ⊂ some interval, is the set

epi(f ) := {(x, t) ∈ R2 : x ∈ I, f (x) ≤ t} .

A function f : I → R is convex if and only if epi(f ) is a convex set in R2. 2

41lA denotes the indicator function of the set A, that is, 1lA(t) = 1 if t ∈ A and 1lA(t) = 0 if t /∈ A.
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1.3 Lp-spaces

In the following let X be a R-valued random variable, i.e., there is a probability space
(Ω,F , P ) such that X : Ω → R is a measurable function. By default, we equip the
real line R with its Borel-σ-algebra. We begin with the definition of the essential
supremum of X.

Definition 1.12 (Essential supremum) Let X be R-valued random variable. The essential
supremum of X, written ess-sup(X), is the smallest number α ∈ R such that the set {x ∈
Ω: X(x) > α} has measure zero, that is,

P ({x ∈ Ω: X(x) > α}) = 0 .

If no such number exists we define ess-sup(X) =∞.

To understand this definition better we shall check the following example.

Example 1.13 (Essential supremum being infinity) Suppose that Ω = (0, 1),F = B((0, 1)),
and let P be the uniform measure on (0, 1). This measure has constant probability density,

P (A) =

∫
Ω

1lA(t) dt = b− a , for any A = (a, b) with 0 ≤ a < b ≤ 1 .

Define X : (0, 1) → R, x 7→ 1
x
. Then X is continuous function and therefore measurable.

Then ess sup(X) =∞. To see this, pick any α ∈ R+. Then

{x ∈ (0, 1) :
1

x
> α} = (0,

1

α
)

and

P ((0,
1

α
)) =

1

α
> 0 .

As this holds for all α > 0, we have that ess-sup(X) =∞. ♣

Definition 1.14 Let (Ω,F , P ) be a probability space. Given two measurable functions
f, g : [0,∞], we say that f is equivalent to g, written f ∼ g, if

f (x) = g(x) for P − a.e. x ∈ Ω,

that is,
P ({x ∈ Ω: f (x) 6= g(x)}) = 0 .

We shall identify - with an abuse of notation - identify a measurable function f with its
equivalence class [f ].
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Definition 1.15 Let (Ω,F , P ) be a probability space and 1 ≤ p <∞.

Lp ≡ Lp(Ω,F , P ) := {f : Ω→ [−∞,∞] : f measurable and ‖f‖Lp <∞} ,

where

‖f‖Lp :=
(∫

Ω

|f |p dP
) 1
p

=
(∫

Ω

|f (x)|p P (dx)
) 1
p
.

If p =∞, then

L∞ ≡ L∞(Ω,F , P ) := {f : Ω→ [−∞,∞] : f measurable and ‖f‖L∞ <∞} ,

where
‖f‖L∞ := ess-sup(|X|) ,

and we write ‖f‖∞ ≡ ‖f‖L∞ occasionally.

A consequence of Jensen’s inequality is that ‖X‖Lp is an increasing function in the
parameter p, i.e.,

‖X‖Lp ≤ ‖X‖Lq 0 ≤ p ≤ q ≤ ∞. (1.6)

This follows form the convexity of Φ(x) = x
q
p when q ≥ p.

Exercise 1.16 Show that (1.6) holds. K

Proposition 1.17 (Minkowski’s inequality) For p ∈ [1,∞], let X, Y ∈ Lp, then

‖X + Y ‖Lp ≤ ‖X‖Lp + ‖Y ‖Lp .

Proposition 1.18 (Cauchy-Schwarz inequality) For X, Y ∈ L2,

|E[XY ]| ≤ ‖X‖L2‖Y ‖L2 .

Proposition 1.19 (Hölder’s inequality) For p, q ∈ (1,∞) with 1/p + 1/q = 1 let X ∈ Lp
and Y ∈ Lq. Then

E[XY ] ≤ E[|XY |] ≤ ‖X‖Lp‖Y ‖Lq .

Lemma 1.20 (Linear Markov’s inequality) For non-negative random variablesX and t >
0 the tail probability is bounded as

P(X > t) ≤ E[X]
t

.

Proof. Pick t > 0. Any positive number x can be written as

x = x1l{X≥t} + x1l{X<t}].

As X is non-negative, we insert X into the above expression in place of x and take
the expectation (integral) to obtain

E[X] = E[X1l{X≥t}] + E[X1l{X<t}] ≥ E[t1l{X≥t}] = tP(X ≥ t) .
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2

This is one particular version of the Markov inequality which provides linear decay
in t. In the following proposition we obtain the general version which will be used
frequently throughout the lecture.

Proposition 1.21 (Markov’s inequality) Let Y be a real-valued random variable and f : [0,∞)→
[0,∞) an increasing function. Then, for all ε > 0 with f (ε) > 0,

P(|Y | ≥ ε) ≤ E[f ◦ |Y |]
f (ε)

.

Proof. Clearly, the composition f ◦ |Y | is a positive random variable such that

f (ε)1l{|Y |≥ε} ≤ f ◦ |Y |.

Taking the expectation on both sides of that inequality gives

f (ε)P(|Y | ≥ ε) = E[f (ε)1l{|Y |≥ε}] ≤ E[f ◦ |Y |].

2

The following version of the Markov inequality is often called Chebyshev’s in-
equality.

Corollary 1.22 (Chebyshev’s inequality, 1867) For all Y ∈ L2 with E[Y ] ∈ (−∞,∞)
and ε > 0,

P
(
|Y − E[Y ]| ≥ ε

)
≤ Var(Y )

ε2
.

1.4 Limit Theorems

Definition 1.23 (Variance and covariance) Let X, Y ∈ L2 be real-valued random vari-
ables.

(a)
Var(X) := E[(X − E[X])2

] = E[X2]− E[X]2

is called the variance, and
√

Var(X) the standard deviation of X with respect to P.

(b)
cov(X, Y ) := E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

is called the covariance of X and Y . It exists since |XY | ≤ X2 + Y 2.

(c) If cov(X, Y ) = 0, then X and Y are called uncorrelated.

Recall that two independent random variables are uncorrelated, but two uncor-
related are not necessarily independent as the following example shows.
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Example 1.24 Let Ω = {1, 2, 3} and let P the uniform distribution on Ω. Define two ran-
dom variables by their images, that is,

(X(1), X(2), X(3)) = (1, 0,−1) and (Y (1), Y (2), Y (3)) = (0, 1, 0).

Then XY = 0 and E[XY ] = 0, and therefore cov(X, Y ) = 0, but

P(X = 1, Y = 1) = 0 6= 1

9
= P(X = 1)P(Y = 1).

Hence X and Y are not independent. ♣

Theorem 1.25 (Weak law of large numbers, L2-version) Let (Xi)i∈N be a sequence of un-
correlated (e.g. independent) real-valued random variables in L2 with bounded variance, in
that v := supi∈N Var(Xi) <∞. Then for all ε > 0

P
(∣∣∣ 1

N

N∑
i=1

(Xi − E[Xi])
∣∣∣ ≥ ε

)
≤ v

Nε2
−→
N→∞

0,

and thus
1

N

N∑
i=1

(Xi − E[Xi])
P−→

N→∞
0,

( P−→
N→∞

means convergence in probability). In particular, if E[Xi] = E[X1] holds for all

i ∈ N, then
1

N

N∑
i=1

Xi
P−→ E[X1].

We now present a second version of the weak law of large numbers, which does
not require the existence of the variance. To compensate we must assume that
the random variables, instead of being pairwise uncorrelated, are even pairwise
independent and identically distributed.

Theorem 1.26 (Weak law of large numbers, L1-version) Let (Xi)i∈N be a sequence of pair-
wise independent, identically distributed real-valued random variables in L1. Then

1

N

N∑
i=1

Xi
P−→

N→∞
E[X1].

Theorem 1.27 (Strong law of large numbers) If (Xi)i∈N is a sequence of pairwise uncor-
related real-valued random variables in L2 with v := supi∈N Var(Xi) <∞, then

1

N

N∑
i=1

(Xi − E[Xi])→ 0 almost surely as N →∞.
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Theorem 1.28 (Central limit theorem) A.M. Lyapunov 1901, J.W. Lindeberg 1922, P. Lévy
1922.

Let (Xi)i∈N be a sequence of independent, identically distributed real-valued random vari-
ables in L2 with E[Xi] = m and Var(Xi) = v > 0. Then, as N →∞,

S∗N :=
1√
N

N∑
i=1

Xi −m√
v

d−→ N(0, 1).

The normal distribution is defined as follows.
A real-valued random variable X is normally distributed with mean µ and variance
σ2 > 0 if

P(X > x) =
1√

2πσ2

∫ ∞
x

e−
(u−µ)2

2σ2 du, for all x ∈ R.

We write X ∼ N(µ, σ2). We say that X is standard normal distributed if X ∼ N(0, 1).

A random vector X = (X1, . . . , Xn) is called a Gaussian random vector if there
exits an n×m matrix A, and an n-dimensional vector b ∈ Rn such that XT = AY +
b, where Y is an m-dimensional vector with independent standard normal entries,
i.e. Yi ∼ N(0, 1) for i = 1, . . . ,m. Likewise, a random variable Y = (Y1, . . . , Ym)
with values in Rm has the m-dimensional standard Gaussian distribution if the m
coordinates are standard normally distributed and independent. The covariance
matrix of X = AY + b is then given by

cov(Y ) = E[(Y − E[Y ])(Y − E[Y ])T ] = AAT .

Lemma 1.29 If A is an orthogonal n× n matrix, i.e. AAT = 1l, and X is a n-dimensional
standard Gaussian vector, then AX is also a n-dimensional standard Gaussian vector.

Lemma 1.30 Let X1 and X2 be independent and normally distributed with zero mean and
variance σ2 > 0. Then X1 + X2 and X1 − X2 are independent and normally distributed
with mean 0 and variance 2σ2.

Proposition 1.31 If X and Y are n-dimensional Gaussian vectors with E[X] = E[Y ] and
cov(X) = cov(Y ), then X and Y have the same distribution.

Corollary 1.32 A Gaussian random vector X has independent entries if and only if its co-
variance matrix is diagonal. In other words, the entries in a Gaussian vector are uncorre-
lated if and only if they are independent.

Bernoulli: p ∈ [0, 1], then X ∼ Ber(p) if P(X = 1) = p and P(X = 0) = 1 − p =: q.
If X ∼ Ber(p), then E[X] = p and Var(X) = pq. We call this random variable the
standard Bernoulli random variable.

Binomial: SN =
∑N

i=1Xi ∼ B(N, p) if Xi ∼ Ber(p) and (Xi), i = 1, . . . , N , indepen-
dent family. E[SN ] = Np and Var(SN ) = Npq.
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Exercise 1.33 (a) Let X ∼ Ber(p), p ∈ [0, 1]. Compute the expectation, the variance and
the moment generating function MX .

(b) Let Z := X − 1 with X ∼ Ber(p). Z is called symmetric Bernoulli variable. Compute
the expectation, the variance and the moment generating function MZ .

K

Poisson: λ > 0, then X ∼ Poi(λ) if

P(X = k) =
e−λλk

k!
k ∈ N0,

Poi(λ) ∈ M1(N0,P(N0)). Here,M1(Ω) denotes the set of probability measures on Ω
and P(N0) is the power set.

Exercise 1.34 Let X ∼ Poi(λ), λ > 0. Compute the expectation, the variance and the
moment generating function MX .

K

Exponential: A random variable X taking positive real values is exponentially dis-
tributed with parameter α > 0 when the probability density function is

fX(t) = αe−αt for t ≥ 0.

We write X ∼ Exp(α). If X ∼ Exp(α), then E[X] = 1
α

and Var(X) = 1
α2 .

Exercise 1.35 Let X ∼ Exp(α), α > 0. Compute the expectation, the variance and the
moment generating function MX . K

Theorem 1.36 (Poisson limit theorem) Let X (N )
i , i = 1, . . . , N , be independent Bernoulli

random variables X (N )
i ∼ Ber(p(N )

i ), and denote SN =
∑N

i=1X
(N )
i their sum. Assume that, as

N →∞,

max
1≤i≤N

{p(N )
i } −→

N→∞
0 and E[SN ] =

N∑
i=1

p(N )
i −→

N→∞
λ ∈ (0,∞).

Then, as N →∞,
SN −→ Poi(λ) indistribution.

2 Concentration inequalities for independent random variables

2.1 Why concentration inequalities

Suppose a random variable X has mean µ, then, for any t ≥ 0,

P(|X − µ| > t) ≤ something small
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is a concentration inequality. One is interested in cases where the bound on the right
hand side decays with increasing parameter t ≥ 0. We now discuss a very simple
example to demonstrate that we need better concentration inequalities than the ones
obtained for example from the central limit theorem (CLT). Toss a fair coin N times.
What is the probability that we get at least 3N/4 heads? Recall that E[SN ] = N

2
and

Var(SN ) = N
4

in conjunction with Corollary 1.22 gives the bound

P
(
SN ≥

3

4
N
)
≤ P

(
|SN −

N

2
| ≥ N

4

)
≤ 4

N
.

This concentration bound vanishes linearly in N . One may wonder if we can do
better using the CLT. The De Moivre Laplace limit theorem (variant of the CLT for
Binomial distributions) states that the distribution of the normalised number of heads

ZN =
SN −N/2√

N/4

converges to the standard normal distribution N(0, 1). We therefore expect to get the
following concentration bound

P
(
SN ≥

3

4
N
)

= P
(
ZN ≥

√
N/4

)
≈ P(Y ≥

√
N/4), (2.1)

where Y ∼ N(0, 1). To obtain explicit bounds we need estimates on the tail of the
normal distribution.

Proposition 2.1 (Tails of the normal distribution) Let Y ∼ N(0, 1). Then, for all t > 0,
we have (1

t
− 1

t3

) 1√
2π

e−t
2/2 ≤ P(Y ≥ t) ≤ 1

t

1√
2π

e−t
2/2.

Proof. Denote f (x) := exp(−x2/2). For the upper bound we use x ≥ t to get the
estimate ∫ ∞

t

f (x) dx ≤
∫ ∞
t

x

t
e−x

2/2 dx =
1

t
e−t

2/2.

For the lower bound we use integration by parts (IBP) and f ′(x) = −xe−x2/2:∫ ∞
t

e−x
2/2 dx =

∫ ∞
t

1

x
xe−x

2/2 dx =
[
− 1

x
e−x

2/2
]∞
t
−
∫ ∞
t

1

x2
e−x

2/2 dx

=
1

t
e−t

2/2 −
∫ ∞
t

1

x3
xe−x

2/2 dx =
1

t
e−t

2/2 −
[
− 1

x3
e−x

2/2
]∞
t

+

∫ ∞
t

3

x4
e−x

2/2 dx.

Hence ∫ ∞
t

e−x
2/2 dx =

(1

t
− 1

t3

)
e−t

2/2 +

∫ ∞
t

3

x4
e−x

2/2 dx,
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and, as the integral on the right hand side is positive,

P(Y ≥ t) ≥ 1√
2π

(1/t− 1/t3)e−t
2/2.

2

The lower bound in Proposition 2.1 is lower than the tail lower bound in Lemma
C.5 in the appendix.

Lemma 2.2 (Lower tail bound for normal distribution) Let Y ∼ N(0, 1). Then, for all
t ≥ 0,

P(Y ≥ t) ≥
( t

t2 + 1

) 1√
2π

e−t
2/2.

Proof. Define

g(t) :=
1√
2π

(∫ ∞
t

e−x
2/2 dx− t

t2 + 1
e−t

2/2
)
.

Then g(0) > 0 and g′(t) = −2e−t
2/2

(t2+1)2 < 0. Thus g is strictly decreasing with limt→∞ g(t) =
0 implying that g(t) > 0 for all t ∈ R. 2

Using the tail estimates in Proposition 2.1 we expect to obtain an exponential
bound for the right hand side of (2.1), namely that the probability of having at least
3N/4 heads seems to be smaller than 1√

2π
e−N/8. However, we have not taken into

account the approximation errors of ’≈‘ in (2.1). Unfortunately, it turns out that the
error decays too slowly, actually even more slowly than linearly in N . This can be
seen form the following version of the CLT which we state without proof, see for
example [Dur19].

Theorem 2.3 (Berry-Esseen CLT) In the setting of Theorem 1.28, for every N and every
t ∈ R, we have

|P (ZN ≥ t)− P(Y ≥ t)| ≤ %√
N
,

where Y ∼ N(0, 1) and % = E[|X1 −m|3]/σ3.

Can we improve the approximation error ’≈’ in (2.1) by simply computing the
probabilities with the help of Stirling’s formula ? Suppose that N is even. Then

P(SN = N/2) = 2−N
(
N

N/2

)
∼ 1√

N
and P(ZN = 0) ∼ 1√

N
,

but P(Y = 0) = 0. We thus see that we shall get a better concentration bound. This
is the content of the next section.

2.2 Hoeffding’s Inequality

In this section we study sums of symmetric Bernoulli random variables defined as
follows.
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Definition 2.4 A random variable Z taking values in {−1,+1} with

P(Z = −1) = P(Z = +1) =
1

2

is called symmetric Bernoulli random variable.

Note that the ’standard ’ Bernoulli random variable X takes values in {0, 1}, and that
one can easily switch between both via Z = 2X − 1.

Theorem 2.5 (Hoeffding’s inequality) Suppose thatX1, . . . , XN , are independent symmet-
ric Bernoulli random variables and let a = (a1, . . . , aN ) ∈ RN . Then, for any t ≥ 0, we
have

P
( N∑
i=1

aiXi ≥ t
)
≤ exp

(
− t2

2‖a‖2
2

)
.

Proof. Without loss of generality we can put ‖a‖2 = 1, namely, if ‖a‖2 6= 1, then
define ãi = ai/‖a‖2, i = 1, . . . , N , to obtain the bound for

P
( N∑
i=1

ãiXi ≥ t
)

= P
( N∑
i=1

aiXi ≥ ‖a‖2t
)
≤ exp

(
− t2

2

)
.

Let λ > 0, then, using Markov’s inequality, obtain

P
( N∑
i=1

aiXi ≥ t
)

= P
(

exp
(
λ

N∑
i=1

aiXi

)
≥ eλt

)
≤ e−λt E

[
exp

(
λ

N∑
i=1

aiXi

)
].

To bound the right hand side use first that the random variables are independent,

E
[

exp
(
λ

N∑
i=1

aiXi

)
] =

N∏
i=1

E[eλaiXi ]

and then compute for i ∈ {1, . . . , N},

E[eλaiXi ] =
eλai + e−λai

2
= cosh(λai).

We are left to find a bound for the hyperbolic cosine. There are two ways to get the
upper bound

cosh(x) ≤ ex
2/2.

1.) Simply write down both Taylor series and compare term by term, that is,

cosh(x) = 1 +
x2

2!
+
x4

4!
+
x6

6!
+ · · ·

and

ex
2/2 =

∞∑
k=0

(x2/2)k

k!
= 1 +

x2

2
+

x4

222!
+ · · · .
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2.) Use the product expansion (complex analysis – not needed for this course, just
as background information)

cosh(x) =
∏(

1 +
4x2

π2(2k − 1)2

)
≤ exp

( ∞∑
k=1

4x2

π2(2k − 1)2

)
= ex

2/2 ,

where we used 1 + x ≤ ex for the inequality.
In any case, we obtain

E[eλaiXi ] ≤ eλ
2a2i /2,

and thus

P
( N∑
i=1

aiXi ≥ t
)
≤ exp

(
− λt+

λ2

2
‖a‖2

2

)
.

Using ‖a‖2 = 1, and optimising over the value of λ we get λ = t ( 0 = g′(λ) =
−t+ λ, g(λ) = −λt+ λ2/2) and thus the right hand is simply exp(−t2/2).

2

With Hoeffding’s inequality in Theorem 2.5 we are now in the position to answer
our previous question on the probability for a fair coin to have at least 3/4N times
with heads. The fair coin is a standard Bernoulli random variable Y with P(Y = 1) =
P(Y = 0) = 1

2
, and the symmetric one is just Z = 2Y − 1. Thus we obtain the

following bound,

P
( N∑
i=1

Yi ≥ 3/4N
)

= P
( N∑
i=1

Zi + 1

2
≥ 3/4N

)
= P

( N∑
i=1

Zi
2
≥ 1/4N

)
= P

( N∑
i=1

Zi√
N
≥ 1

2

√
N
)
≤ exp

(
− 1

2 · 4
N
)
.

This shows that Hoeffding’s inequality is a good concentration estimate avoiding
the approximating error using the CLT. We also get two-sided tail / concentration
estimates for S =

∑n
i=1 aiXi using Theorem 2.5 writing

P(|S| ≥ t) = P(S ≥ t) + P(−S ≥ t).

Theorem 2.6 (Two-sided Hoeffding’s inequality) Suppose that X1, . . . , XN , are indepen-
dent symmetric Bernoulli random variables and let a = (a1, . . . , aN ) ∈ RN . Then, for any
t ≥ 0, we have

P
(
|
N∑
i=1

aiXi| ≥ t
)
≤ 2 exp

(
− t2

2‖a‖2
2

)
.

Exercise 2.7 Prove Theorem 2.6. K

As the reader may have realised, the proof of Hoeffding’s inequality, Theorem 2.5,
is quite flexible as it is based on bounding the moment generating function. For ex-
ample, the following version of Hoeffding’s inequality is valid for general bounded
random variables. The proof will be given as an exercise.
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Theorem 2.8 (Hoeffding’s inequality for general bounded random variables) Suppose that
X1, . . . , XN are independent random variable with Xi ∈ [mi,Mi],mi < Mi, for i =
1, . . . , N . Then, for any t ≥ 0, we have

P
( N∑
i=1

(Xi − E[Xi]) ≥ t
)
≤ exp

(
− 2t2∑N

i=1(Mi −mi)2

)
.

Exercise 2.9 Prove Theorem 2.8.
KK

Example 2.10 LetX1, . . . , XN non-negative independent random variables with continuous
distribution (i.e., having a density with respect to the Lebesgue measure). Assume that the
probability density functions fi ofXi are uniformly bounded by 1. Then the following holds.

(a) For all i = 1, . . . , N ,

E[exp(−tXi)] =

∫ ∞
0

e−txfi(x) dx ≤
∫ ∞

0

e−tx dx =
1

t
.

(b) For any ε > 0, we have

P
( N∑
i=1

Xi ≤ εN
)
≤ (eε)N . (2.2)

To show (2.2), we use Markov’s inequality for some λ > 0, the independence, and part
(a) to arrive at

P
( N∑
i=1

(−Xi

ε

)
≥ −N

)
≤ eλN

N∏
i=1

E[e−λ/εXi ] ≤ eλN
( ε
λ

)N
= eλNeN log(ε/λ).

Minimising over λ > 0 gives λ = 1 and thus the desired statement.

♣

2.3 Chernoff’s Inequality

Hoeffding’s inequality is already good but it does not produce good results in case
the success probabilities/parameter pi are very small. In that case one knows that
the sum SN of N Bernoulli random variables has an approximately Poisson distribu-
tion. The Gaussian tails are not good enough to match Poisson tails as we will see
later.

Theorem 2.11 (Chernoff’s inequality) Let Xi be independent Bernoulli random variables
with parameter pi ∈ [0, 1], i.e., Xi ∼ Ber(pi), i = 1, . . . , N . Denote SN =

∑N
i=1Xi their

sum and µ = E[SN ] its mean. Then, for any t > µ, we have

P
(
SN ≥ t

)
≤ e−µ

(eµ
t

)t
.
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Proof. Let λ > 0, then Markov’s inequality gives

P(SN ≥ t) = P(eλSN ≥ eλt) ≤ e−λt
N∏
i=1

E[exp(λXi)].

We need to bound the MGF of each Bernoulli random variable Xi separately. Using
1 + x ≤ ex, we get

E[exp(λXi)] = eλpi + (1− pi) = 1 + (eλ − 1)pi ≤ exp((eλ − 1)p1).

Thus
N∏
i=1

E[exp(λXi)] ≤ exp
((

eλ − 1
) N∑
i=1

pi

)
= exp

((
eλ − 1

)
µ
)
,

and therefore

P(SN ≥ t) ≤ e−λt exp((eλ − 1)µ) for all λ > 0.

Define g(λ) := −λt + (eλ − 1)µ. Optimising g over λ > 0, we obtain λ = log(t/µ) as
t > µ for the minimal upper bound. 2

Exercise 2.12 In the setting of Theorem 2.11, prove that, for any t < µ,

P
(
SN ≤ t

)
≤ e−µ

(eµ
t

)t
.

K

Solution. We get

P(SN ≤ t) = P(−SN ≥ −t) ≤ E[e−λSN ]eλt

and
N∏
i=1

E[e−λXi] ≤ exp ((e−λ − 1)µ).

Thus
P(SN ≤ t) ≤ eλt exp ((e−λ − 1)µ).

Minimising over λ > 0, gives −λ = log(t/µ) which is valid as t < µ. ,

We shall now discuss some example on random graphs where concentration
inequalities provide sufficient bounds.

Example 2.13 (Degrees of Random Graphs) We consider the Erdös-Rényi random graph
model. This is the simplest stochastic model for large, real-world networks. The random
graph G(n, p) consists of n vertices, and each pair of distinct vertices is connected inde-
pendently (from all other pairs) with probability p ∈ [0, 1]. The degree of a vertex is the
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(random) number of edges incident to that vertex. The expected degree of every vertex i (we
label the n vertices by numbers 1, . . . , n), is

d(i) = E[D(i)] = (n− 1)p , i = 1, . . . , n.

Note that d(i) = d(j) for all i 6= j, i, j = 1, . . . , n, and thus we simply write d in the
following. We call the random graph dense when d ≥ logn holds, and the graph is denoted
regular if the degree of all vertices approximately equal d.

♣

Proposition 2.14 (Dense graphs are almost regular) There is an absolute constant C > 0
such that the following holds: Suppose that G(n, p) has expected degree d ≥ C logn. Then,
with high probability, all vertices of G(n, p) have degrees between 0.9d and 1.1d.

Proof. Pick a vertex i of the graph, the degree is simply a sum of Bernoulli random
variables, i.e.,

D(i) =
n−1∑
k=1

Xk , Xk ∼ Ber(p).

We are using the two-sided version of the Chernoff bound in Theorem 2.11, see
Exercise 2(a) of Example Sheet 1:

P(|D(i)− d| ≥ 0.1d) ≤ 2e−cd for some absolute constant c > 0.

We can now ’unfix’ i by taking the union bound over all vertices of the graph:

P(∃i ∈ {1, . . . , n} : |D(i)− d| ≥ 0.1d) ≤
n∑
i=1

P(|D(i)− d| ≥ 0.1d) ≤ 2ne−cd .

If d ≥ C logn for a sufficiently large absolute constant C, the probability on the left
hand side is bounded as

P(∃i ∈ {1, . . . , n} : |D(i)− d| ≥ 0.1d) ≤ 2ne−cC logn = 2n1−cC ≤ 0.1.

This means that, with probability 0.9, the complementary event occurs and we have

P(∀ i ∈ {1, . . . , n} : |D(i)− d| < 0.1d) ≥ 0.9.

2

2.4 Sub-Gaussian random variables

In this section we introduce a family of random variables, the so-called sub-Gaussian
random variables, who show exponential concentration bounds similar to the Nor-
mal distribution (Gaussian). Before we define this class via various properties, we
discuss some facts on Chernoff bounds.
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Suppose the real-valued random variable X has mean µ ∈ R and there is some
constant b > 0 such that the function

Φ(λ) := E[eλ(X−E[X])] (2.3)

the so-called centred moment generating function exits for all |λ| ≤ b. For λ ∈ [0, b],
we may apply Markov’s Inequality in Theorem 1.21 to the random variable Y =
eλ(X−E[X]), thereby obtaining the upper bound

P((X − µ) ≥ t) = P(eλ(X−E[X]) ≥ eλt) ≤ Φ(λ)
eλt

.

Optimising our choice of λ so as to obtain the tightest results yields the so-called
Chernoff bound, namely, the inequality

logP((X − µ) ≥ t) ≤ inf
λ∈[0,b]

{ log Φ(λ)− λt}. (2.4)

Example 2.15 (Gaussian tail bounds) Let X ∼ N(µ, σ2), µ ∈ R, σ2 > 0, and recall the
probability density function (p.d.f) of X ,

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

The moment generating function (MGF) is easily computed as

MX(λ) = E[eλX ] =
1√

2πσ2

∫
R

e−
(x−µ)2

2σ2
+λx dx =

eλµ√
2πσ2

∫
R

e−y
2/2σ2+λy dy

= eλµ+λ2σ2/2 <∞

for all λ ∈ R. We obtain the Chernoff bound by optimising over λ ≥ 0 using Φ(λ) =
e−λµMX(λ) = eλ2σ2/2,

inf
λ≥0
{ log Φ(λ)− λt} = inf

λ≥0

{λ2σ2

2
− λt

}
= − t2

2σ2
.

Thus any N(µ, σ2) random variable X satisfies the upper deviation inequality

P(X ≥ µ+ t) ≤ exp
(
− t2

2σ2

)
, t ≥ 0 ,

and the two-sided version

P(|X − µ| ≥ t) ≤ 2 exp
(
− t2

2σ2

)
, t ≥ 0 .

♣
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Exercise 2.16 (Moments of the normal distribution) Let p ≥ 1 and X ∼ N(0, 1). Then

‖X‖Lp = (E[|X|])1/p
=
( 1√

2π

∫
R
|x|pe−x2/2 dx

)1/p

=
( 2√

2π

∫ ∞
0

xpe−x
2/2, dx

)1/p

=
(x2/2=w)

( 2√
2π

∫ ∞
0

(
√

2
√
w)

pe−w
√

2√
w

1

2
dw
)1/p

=
( 2√

2π

√
2
p√

2

2
Γ(p/2 + 1/2)

)1/p

=
√

2
(Γ(p/2 + 1/2)

Γ(1/2)

)1/p

.

Hence
‖X‖Lp = O(

√
p) as p→∞.

K

We also note that the MGF of X ∼ N(0, 1) is given as MX(λ) = eλ2/2. In the
following proposition we identify equivalent properties for a real-valued random vari-
able which exhibits similar tail bounds. moment bounds and MGF estimates than a
Gaussian random variable does.

Proposition 2.17 (Sub-Gaussian properties) LetX be a real-valued random variable. Then
there are absolute constants Ci > 0, i = 1, . . . , 5, such that the following statements are
equivalent:

(i) Tails ofX:
P(|X| ≥ t) ≤ 2 exp (− t2/C2

1) for all t ≥ 0.

(ii) Moments:
‖X‖Lp ≤ C2

√
p for all p ≥ 1.

(iii) MGF of X2:

E[ exp (λ2X2)] ≤ exp (C2
3λ

2) for all λ with |λ| ≤ 1

C3

.

(iv) MGF bound:
E[ exp (X2/C2

4)] ≤ 2.

Moreover, if E[X] = 0, then the statements (i)-(iv) are equivalent to the following
statement

(v) MGF bound of X:

E[ exp (λX)] ≤ exp (C2
5λ

2) for all λ ∈ R.

Proof. (i)⇒ (ii): Without loss of generality we can assume that C1 = 1 for property
(i). This can be seen by just multiplying the parameter t with C1 which corresponds
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to multiply X by 1/C1. The integral identity in Lemma 1.9 applied to the non-negative
random variable |X|p gives

E[|X|p] =

∫ ∞
0

P(|X|p > t) dt =
t=up

∫ ∞
0

P(|X| ≥ u)pup−1 du ≤
(i)

∫ ∞
0

2e−u
2

pup−1 du

=
u2=s

pΓ(
p

2
) ≤ p(

p

2
)
p/2

,

where we used the property Γ(x) ≤ xx of the Gamma function. 5 Taking the pth root
gives p

√
p
√
p
√

1/2 and p
√
p ≤ 2 gives (ii) with some C2 ≤ 2. To see that p

√
p ≤ 2 recall

that limn→∞
n
√
n = 1. More precisely, in that proof one takes n

√
n = 1 + δn and shows

with the binomial theorem that 0 < δn <
√

2
n−1

.

(ii) ⇒(iii): Again without loss of generality we can assume that C2 = 1. Taylor
expansion of the exponential function and linearity of the expectation gives

E[exp(λ2X2)] = 1 +
∞∑
k=1

λ2kE[X2k]
k!

.

Property (ii) implies that E[X2k] ≤ (2k)k and Stirling’s formula give 6 we get that
k! ≥ (ke )

k. Thus

E[exp(λ2X2)] ≤ 1 +
∞∑
k=1

(2λ2k)k

(k/e)k
=
∞∑
k=0

(2eλ2)k =
1

1− 2eλ2
,

provided that 2eλ2 < 1 (geometric series). To bound the right hand side, i.e., to
bound 1/(1− 2eλ2), we use that

1

1− x
≤ e2x for all x ∈ [0, 1/2] .

For all |λ| ≤ 1
2
√

e we have 2eλ2 < 1
2
, and thus

E[exp(λ2X2)] ≤ exp(4eλ2) for all |λ| ≤ 1

2
√

e
,

5Γ(n) = (n− 1)!, n ∈ N.

Γ(z) :=

∫ ∞
0

xz−1e−x dx for all z = x+ iy ∈ C with x > 0 ,

Γ(z + 1) = zΓ(z) ,
Γ(1) = 1 ,

Γ(
1

2
) =
√
π .

6Stirling’s formula:

N ! ∼
√

2πNe−NNN where ∼ means quotient goes to zero when N →∞ .

Alternatively,

N ! ∼
√

2πNe−NNN
(

1 +
1

12N
+O

( 1

N2

))
.
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and (iii) follows with C3 = 2
√

e.

(iii)⇒ (iv): Trivial and left as an exercise.

(iv)⇒ (i): Again, we assume without loss of generality that C4 = 1. Using Markov’s
inequality 1.21 with f = exp ◦x2, we obtain

P(|X| ≥ t) = P(eX
2 ≥ et

2

) ≤ e−t
2E[eX

2

] ≤
(iv)

2e−t
2

.

Suppose now that E[X] = 0. We show that (iii)⇒ (v) and (v)→ (i).

(iii) ⇒ (v): Again, we assume without loss of generality that C3 = 1. We use the
well-known inequality

ex ≤ x+ ex
2

, x ∈ R ,

to obtain
E[eλX] ≤ E[λX + eλ

2X2

] = E[eλ
2X2

] ≤
(iii)

eλ
2

if |λ| ≤ 1 ,

and thus we have (v) for the range |λ| ≤ 1. Now, assume |λ| ≥ 1. This time, use the
inequality 2λx ≤ λ2 + x2, λ, x ∈ R, to arrive at

E[eλX] ≤ eλ
2/2E[eX

2/2] ≤ eλ
2/2 exp(1/2) ≤ eλ

2

as |λ| ≥ 1 .

(v)⇒ (i): Again, assume that C5 = 1. Let λ ≥ 0.

P(X ≥ t) = P(eλX ≥ eλt) ≤ e−λtE[eλX] ≤ e−λteλ
2

= exp(−λt+ λ2) .

Optimising over λ ≥ 0, we obtain λ = t/2, and thus P(x ≥ t) ≤ e−t2/4. Now we repeat
the argument for −X and obtain P(X ≤ −t) ≤ e−t2/4, and thus

P(|X| ≥ t) ≤ 2e−t
2/4,

and C1 = 2 implies (i).
2

Definition 2.18 (Sub-Gaussian random variable, first definition) A random real-valued
variableX that satisfies one of the equivalent statements (i)-(iv) in Proposition 2.17 is called
sub-Gaussian random variable. Define, for any sub-Gaussian random variable

‖X‖ψ2
:= inf

{
t > 0: E( exp (X2/t2)] ≤ 2

}
.

Exercise 2.19 (Sub-Gaussian norm) Let X be a sub-Gaussian random variable and define

‖X‖ψ2
:= inf

{
t > 0: E[ exp(X2/t2)] ≤ 2

}
.

Show that ‖·‖ψ2
is indeed a norm on the space of sub-Gaussian random variables.

KK
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Example 2.20 (Examples of Sub-Gaussian random variables) (a) X ∼ N(0, 1) is sub-
Gaussian random variable: pick t > 0 with 1 > 2

t2
and set a(t) := 1− 2

t2
. Then

E[ exp (X2/t2)] =
1√
2π

∫
R

e−
a(t)x2

2 dx =

√
1

a(t)

shows that there is an absolute constant C > 0 with ‖X‖ψ2
≤ C.

(b) Let X be a symmetric Bernoulii random variable, ‖X‖ = 1.

E[eX
2/t2 ] = e1/t2 ≤ 2⇔ 1

log 2
≤ t2.

Thus ‖X‖ψ2
= 1/

√
log 2.

(c) Let X be a real-valued, bounded random variable, that is, |X| ≤ b = ‖X‖∞. Thus

E[eX
2/t2 ] ≤ e‖X‖

2
∞/t

2 ≤ 2⇔ t ≥ ‖X‖∞/
√

log 2,

and ‖X‖ψ2
= ‖X‖∞/

√
log 2.

♣

Exercise 2.21 (Exponential moments) Show that if X ∼ N(0, 1), the function

R 3 λ 7→ E[exp(λ2X2)]

of X2 is finite only in some bounded neighbourhood of zero. Determine this neighbourhood.
K

Solution. Recall that when X ∼ N(0, 1), X has the probability density
√

2π
−1

e−x2/2.
Thus

E[exp(λ2X2)] =
1√
2π

∫
R

eλ
2x2e−x

2/2 dx =
1√
2π

∫
R

exp ((λ2 − 1

2
)x2) dx <∞

⇔ (λ2 − 1

2
) < 0⇔ λ ∈

(
−
√

1

2
,

√
1

2

)
because λ ∈

(
−
√

1
2
,
√

1
2

)
ensures that the integrand is a so-called log-concave

density with finite integral, where a log-concave density is a probability density f
which can be written as

f (x) = exp(ϕ(x)) , with ϕ being concave, i.e., ϕ′′(x) ≤ 0 .

,
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Recall that the sum of independent normal random variables Xi ∼ N(µi, σ2
i ), i =

1, . . . N , is normally distributed, that is,

SN =
N∑
i=1

Xi ∼ N
( N∑
i=1

µi ,
N∑
i=1

σ2
i

)
.

For a proof see [Dur19] or [Geo12]. We then may wonder if the sum of independent
sub-Gaussian random variables is sub-Gaussian as well. There are different state-
ments on this depending whether µi = 0 for all i = 1, . . . , N , as done in the book
[Ver18], or not vanishing means. We shall follow the general case here. It proves
useful to have the following equivalent definition of sub-Gaussian random variables.

Definition 2.22 (Sub-Gaussian random variables, second definition) A real-valued ran-
dom variable X with mean µ = E[X] is a sub-Gaussian random variable if there is a
positive number σ such that

E[eλ(X−µ)]] ≤ eσ
2λ2/2 for all λ ∈ R. (2.5)

The constant σ satisfying (2.5) is referred to as the sub-Gaussian parameter; for instance,
we say that X is sub-Gaussian with parameter σ when (2.5) holds.

Remark 2.23 (Sub-Gaussian definitions:) It is easy to see that our two definitions are equiv-
alent when the random variable X has zero mean µ = 0: use statement (v) of Proposi-
tion 2.17. If µ 6= 0 and X satisfies (2.5), we obtain the following tail bound

P(|X| ≥ t) ≤ 2 exp (− 1

2σ2
(t− µ)2) for all t ≥ 0. (2.6)

This tail bound is not exactly the statement (i) of Proposition 2.17 as the parameter t ≥ 0
is chosen with respect to the mean. In most cases, one is solely interested in tail estimates
away from the mean. Thus the definitions are equivalent in case µ 6= 0 if we limit the range
for parameter t to t ≥ |µ|. In the literature and in applications Definition 2.22 is widely used
and sometimes called sub-Gaussian for centred random variables. We use both definitions
synonymously. �

We now show that the sum of sub-Gaussian random variables is again sub-
Gaussian, and we do so for each of the two definitions separatly.

Proposition 2.24 (Sum of independent sub-Gaussian random variables)

(a) Let X1, . . . , XN be independent sub-Gaussian random variables with sub-Gaussian pa-
rameters σi, i = 1, . . . , N , respectively. Then SN =

∑N
i=1Xi is a sub-Gaussian random

variable with sub-Gaussian parameter
√∑N

i=1 σ
2
i .
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(b) LetX1, . . . , XN be independent mean-zero sub-Gaussian random variables. Then SN =∑N
i=1Xi is a sub-Gaussian random variable, and

∥∥∥ N∑
i=1

Xi

∥∥∥2

ψ2

≤ C
N∑
i=1

‖Xi‖2
ψ2
, (2.7)

where C > 0 is an absolute constant.

Proof. (a) Recall Definition 2.22, then

E[ exp (λ
N∑
i=1

(Xi − µi))] =
N∏
i=1

E[ exp (λ(Xi − µi))] ≤ exp (λ2/2
N∑
i=1

σ2
i ) for all λ ∈ R.

(b) We first compute the MGF of the sum SN . Indeed, for λ ∈ R,

E
[

exp
(
λSN

)]
=

N∏
i=1

E[ exp (λXi) ≤
N∏
i=1

exp (Cλ2‖Xi‖2
ψ2

) = exp (λ2K2) ,

where K2 := C
∑N

i=1‖Xi‖2
ψ2

. The inequality follows directly from Proposition 2.17,
see Exercise 2.42. Recall the equivalence of (v) and (iv) in Proposition 2.17 to see
that the sum SN is sub-Gaussian and

‖SN‖ψ2
≤ C1K ,

where C1 > 0 is an absolute constant. 2

This allows us to obtain a Hoeffding bound for independent sum of sub-Gaussian
random variables.

Proposition 2.25 (Hoeffding bounds for sums of independent sub-Gaussian random variables)
LetX1, . . . , XN be real-valued independent sub-Gaussian random variables with sub-Gaussian
parameter σi and mean µi, i = 1, . . . , N , respectively. Then, for all t ≥ 0,

P
( N∑
i=1

(Xi − µi) ≥ t
)
≤ exp

(
− t2

2
∑N

i=1 σ
2
i

)
.

Proof. Set S̃N :=
∑N

i=1(Xi−µi). Using again the exponential version of the Markov
inequality in Proposition 1.21, we obtain

P(S̃N ≥ t) ≤ E[eλS̃N ]e−λt = e−λt
N∏
i=1

E[eλ(Xi−µi)] ≤ exp
(
− λt+ λ2/2

N∑
i=1

σ2
i

)
.

Optimising over λ, we obtain λ = t/
∑N

i=1 σ
2
i , and conclude with the statement.

2
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Example 2.26 (Bounded random variables) Let X be a real-valued random variable with
mean-zero and (bounded) supported on [a, b], a < b. Denote X ′ an identical independent
copy of X , i.e., X ∼ X ′. For any λ ∈ R, using Jensen’s inequality 1.11,

EX[eλX] = EX[eλ(X−EX′ [X′])] ≤ EX,X′ [eλ(X−X′)] ,

where EX,X′ is expectation with respect to the two independent and identically distributed
random variables X and X ′. Suppose ε is an independent (from X and X ′ Rademacher
function, that is ε is a symmetric Bernoulli random variable. Then (X −X ′) ∼ ε(X −X ′).
For Rademacher functions/symmetric Bernoulli random variables ε we estimate the moment
generating function as

E[eλε] =
1

2
(eλ + e−λ) =

1

2

( ∞∑
k=0

(λ)k

k!
+
∞∑
k=0

(−λ)k

k!

)
=
∞∑
k=0

λ2k

(2k)!

≤ 1 +
∞∑
k=1

λ2k

2kk!
= eλ

2/2.

Thus
EX,X′ [eλ(X−X′)] = EX,X′ [Eε[eλε(X−X′)]] ≤ EX,X′ [ exp(λ2(X −X ′)2/2)]

≤ EX,X′ [ exp(λ2(b− a)2/2)],

as |X − X ′| ≤ b − a. Thus X sub-Gaussian with sub-Gaussian parameter σ = b − a > 0,
see Definition 2.22. ♣

As discussed above in Remark 2.23, in many situations and results we encounter
later, we typically assume that the random variables have zero means. Then the two
definitions are equivalent. In the next lemma we simply show that centering does
not harm the sub-Gaussian property. This way we can see that we can actually use
both our definitions for sub-Gaussian random variables.

Lemma 2.27 (Centering) If X is sub-Gaussian random variable then X − E[X] is sub-
Gaussian too with

‖X − E[X]‖ψ2
≤ C‖X‖ψ2

for some absolute constant C > 0.

Proof. We use the fact that ‖·‖ψ2
is a norm. Triangle inequality gives

‖X − E[X]‖ψ2
≤ ‖X‖ψ2

+ ‖E[X]‖ψ2
.

For any a ∈ R one can find t ≥ |a|
log 2

such that E[exp(a2/t2)] ≤ 2, thus

‖a‖ψ2
=
|a|

log 2
≤ c|a|

for some constant c > 0. Hence

‖E[X]‖ψ2
≤ c|E[X]| ≤ cE[|X|] = c‖X‖L1 ≤ C‖X‖ψ2

using ‖X‖Lp ≤ C‖X‖ψ2

√
p for all p ≥ 1.

2
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2.5 Sub-Exponential random variables

Suppose Y = (Y1, . . . , YN ) ∈ RN is a random vector with independent coordinates
Yi ∼ N(0, 1), i = 1, . . . , N . We expect that the Euclidean norm ‖Y ‖2 exhibits some
form of concentration as the square of the norm ‖Y ‖2

2 is the sum of independent
random variables Y 2

i . However, although the Yi are sub-Gaussian random variables,
the Y 2

i are not. Recall our tail estimate for the Gaussian random variables and note
that

P(Y 2
i > t) = P(|Yi| >

√
t) ≤ C exp(−

√
t
2
/2) = C exp(−t/2).

The tails are like those for the exponential distribution. To see that, suppose that
X ∼ Exp(λ), λ > 0, i.e., the probability density function (pdf) is

fX(t) = λe−λt1l{t ≥ 0} .

Then, for all t ≥ 0,

P(X ≥ t) =

∫ ∞
t

λe−λt dt = λe−λt .

We can therefore use our general Hoeffding bound. The following proposition sum-
marise properties of a new class of random variables.

Proposition 2.28 (Sub-exponential properties) Let X be a real-valued random variable.
Then the following properties are equivalent for absolute constant Ci > 0, i = 1, . . . , 5:

(i) Tails:
P(|X| ≥ t) ≤ 2 exp(−t/C1) for all t ≥ 0 .

(ii) Moments:
‖X‖Lp = (E[|X|p])1/p ≤ C2p for all p ≥ 1 .

(iii) Moment generating function (MGF) of |X|:

E[exp(λ|X|)] ≤ exp(C3λ) for all λ such that 0 ≤ λ ≤ 1/C3 .

(iv) MGF of |X| bounded at some point:

E[exp(|X|C4) ≤ 2 .

Moreover, if E[X] = 0, the properties (i)-(iv) are also equivalent to (v):

(v) MGF of X:

E[exp(λX)] ≤ exp(C2
5λ

2) for all λ such that |λ| ≤ 1/C5 .

Definition 2.29 (Sub-exponential random variable, first definition) A real-valued ran-
dom variable X is called Sub-exponential if it satisfies one of the equivalent properties
(i)-(iv) of Proposition 2.28 (respectively properties (i)-(v) when E[X] = 0). Define ‖X‖ψ1

by
‖X‖ψ1

:= inf{t > 0: E[exp(|X|/t)] ≤ 2} . (2.8)
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Lemma 2.30 Equation (2.8) defines the sub-exponential norm ‖X‖ψ on the set of all sub-
exponential random variables X .

Proof. Supportclass. 2

Lemma 2.31 A real-valued random variable X is sub-Gaussian if and only if X2 is sub-
exponential. Moreover,

‖X2‖ψ1
= ‖X‖2

ψ1
. (2.9)

Proof. Suppose X is sub-Gaussian and t ≥ 0. Then

P(|X|2 ≥ t) = P(|X| ≥
√
t) ≤ 2 exp(−

√
t
2
/C2

1 ) ,

and thus X2 is sub-exponential according to Proposition 2.28 (i). If X2 is sub-
exponential we have

P(|X| ≥ t) = P(|X|2 ≥ t2) ≤ 2 exp(−t2/C1) ,

and thus X is sub-Gaussian. As for the norms, recall that ‖X2‖ψ1
is the infimum

of all numbers C > 0 satisfying E[exp(X2/C)] ≤ 2, whereas ‖X‖ψ2
is the infimum

of all numbers K > 0 satisfying E[exp(X2/K2)] ≤ 2. Putting C = K2, one obtains
‖X2‖ψ1

= ‖X‖2
ψ2

.
2

Lemma 2.32 (Product of sub-Gaussians) Let X and Y real-valued sub-Gaussian random
variables. Then XY is sub-exponential and

‖XY ‖ψ1
≤ ‖X‖ψ2

‖Y ‖ψ2
.

Proof. Suppose that 0 6= ‖X‖ψ2
(if ‖X‖ψ2

= 0 and/or ‖Y ‖ψ2
= 0 the statement

trivially holds). Then X̃ = X/‖X‖ψ2
is sub -Gaussian with ‖X̃‖ψ2

= 1
‖X‖ψ2

‖X‖ψ2
= 1.

Thus we assume without loss of generality that ‖X‖ψ2
= ‖Y ‖ψ2

= 1. To prove the
statement in the lemma we shall show that E[exp(X2)] ≤ 2 and E[exp(Y 2)] ≤ 2 both
imply that E[exp(|XY |)] ≤ 2, where E[exp(|XY |)] ≤ 2 implies that ‖XY ‖ψ1

≤ 1. We
are going to use Young’s inequality :

ab ≤ a2

2
+
b2

2
for a, b ∈ R .

Thus

E[exp(|XY |)] ≤ E
[

exp
(X2

2
+
Y 2

2

)]
= E

[
exp

(X2

2

)
exp

(Y 2

2

)]
Young’s inequality

≤ 1

2
E
[

exp (X2) + exp (Y 2)
)]

=
1

2
(2 + 2) = 2 Young’s inequality.

2
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Example 2.33 (Exponential random variables) SupposeX ∼ Exp(α), α > 0. Then E[X] =
1
α

and Var(X) = 1
α2 . We compute for every t 6= 1

α
to get

E[exp(|X|/t)] =

∫ ∞
0

αex/te−αx dx =
[ −α

(α− 1/t)
e−x(α−1/t)

]∞
0

=
α

(α− 1/t)
≤ 2

if and only if t ≥ 2/α. Hence ‖X‖ψ1
= 2

α
.

♣

Example 2.34 (Sub-exponential but not sub-Gaussian) Suppose that Z ∼ N(0, 1), and
define X := Z2. Then E[X] = 1. For λ < 1

2
we have

E[eλ(X−1)] =
1√
2π

∫ ∞
−∞

eλ(z2−1)e−z
2/2 dz =

e−λ√
1− 2λ

,

whereas for λ > 1
2

we have E[eλ(X−1)] = +∞. Thus X is not sub-Gaussian. In fact one can
show, after some computation, that

e−λ√
1− 2λ

≤ e2λ2 = e4λ2/2 for all |λ| < 1

4
.

This motivates the following alternative definition of sub-exponential random variables which
corresponds to the second definition for sub-Gaussian random variables in Definition 2.22.

♣

Definition 2.35 (Sub-exponential random variables, second definition) A real-valued
random variable X with mean µ ∈ R is sub-exponential if there exist non-negative
parameters (ν, α) such that

E[ exp (λ(X − µ))] ≤ eν
2λ2/2 for all |λ| < 1

α
. (2.10)

Remark 2.36 (a) The random variable X in Example 2.34 is sub-exponential with param-
eters (ν, α) = (2, 4).

(b) It is easy to see that our two definitions are equivalent when the random variable X has
zero mean µ = 0: use statement (v) of Proposition 2.28. If µ 6= 0 and X satisfies (2.10),
we obtain the following tail bound

P(|X| ≥ t) ≤ 2 exp
(
− 1

2ν2
(t− µ)

2
)

for all t ≥ 0. (2.11)

This tail bound is not exactly the statement (i) of Proposition 2.28 as the parameter t ≥ 0
is chosen with respect to the mean. In most cases, one is solely interested in tail estimates
away from the mean. Thus the definitions are equivalent in case µ 6= 0 if we limit the
range for parameter t to t ≥ |µ|. In the literature and in applications Definition 2.35
is widely used and sometimes called sub-exponential for centred random variables. We
use both definitions synonymously.

�
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Example 2.37 (Bounded random variable) LetX be a real-valued, mean-zero and bounded
random variable support on the compact interval [a, b], a < b. Furthermore, let X ′ be an
independent copy of X and let ε be an independent (from both X and X ′) Rademacher func-
tion, that is, ε is a symmetric Bernoulli random variable with P(ε = −1) = P(ε = 1) = 1

2
.

Using Jensen’s inequality for X ′ we obtain

EX[eλX] = EX[eλ(X−EX′ [X′])] ≤ EX,X′[eλ(X−X′)] = EX,X′ [Eε[eλε(X−X′)]] ,

where we write EX,X′ for the expectation with respect to X and X ′, Eε for the expectation
with respect to ε, and where we used that (X −X ′) ∼ ε(X −X ′). Here, ∼ means that both
random variables have equal distribution. Hold α := (X −X ′) fixed and compute

Eε[eλεα] =
1

2
[e−λα + eλα] =

1

2
(
∞∑
k=0

(−λα)k

k!
+
∞∑
k=0

(λα)k

k!

)
=
∞∑
k=0

(λα)2k

(2k)!

≤ 1 +
∞∑
k=1

(λα)2k

2kk!
= eλ

2α2/2 .

Inserting this result in the previous one leads to

EX[eλX] ≤ EX,X′
[
eλ

2(X−X′)2/2
]
≤ eλ

2(b−a)2/2

as |X −X ′| ≤ b− a. ♣

Proposition 2.38 (Sub-exponential tail-bound) LetX be a real-valued sub-exponential ran-
dom variable with parameters (ν, α) and mean µ = E[X]. Then, for every t ≥ 0,

P(X − µ ≥ t) ≤

{
e−

t2

2ν2 for 0 ≤ t < ν2/α,

e−
t
2α for t ≥ ν2/α .

(2.12)

Proof. Recall Definition 2.35 and obtain

P(X − µ ≥ t) ≤ e−λtE[eλ(X−µ)] ≤ exp
(
− λt+

λ2ν2

2

)
for λ ∈ [0, α−1) .

Define g(λ, t) := −λt + λ2ν2/2. We need to determine g∗(t) = infλ∈[0,α−1){g(λ, t)}.
Suppose that t is fixed, then ∂λg(λ, t) = −t + λν2 = 0 if and only if λ = λ∗ = t

ν2
. If

0 ≤ t < ν2/α, then the infimum equals the unconstrained one and g∗(t) = −t2/2ν2

for t ∈ [0, ν2/α). Suppose now that t ≥ ν2/α. As g(·, t) is monotonically decreasing
on [0, λ∗) (derivative is not positive), the constrained infimum is achieved on the
boundary λ∗ = α−1, and hence g∗(t) = −t/2α. 2

Definition 2.39 (Bernstein condition) A real-valued random variableX with mean µ ∈ R
and variance σ2 ∈ (0,∞) satisfies the Bernstein condition with parameter b > 0 if

|E[(X − µ)
k
]| ≤ 1

2
k!σ2bk−2 k = 2, 3, 4, . . . . (2.13)



30 CONCENTRATION INEQUALITIES FOR INDEPENDENT RANDOM VARIABLES

Exercise 2.40 (a) Show that a bounded random variable X with |X − µ| ≤ b with variance
σ2 > 0 satisfies the Bernstein condition (2.13) .

(b) Show that the bounded random variable X in (a) is sub-exponential and derive a bound
on the centred moment generating function

E[exp(λ(X − E[X]))] .

KK

Solution. (a) From our assumption we have E[(X − µ)2] = E[|X − µ|2] = σ2 and
ess sup|X − µ|k−2 ≤ bk−2 ≤ bk−2 1

2
k! for k ∈ N, k ≥ 2. Using Hölder’s inequality we

obtain

E[|X − µ|k−2|X − µ|2] ≤ E[|X − µ|2] ess sup|X − µ|k−2 ≤ σ2bk−2 1

2
k!

for all k ∈ N, k ≥ 2.

(b) By power series expansion we have (using the Bernstein bound from (a),

E[eλ(X−µ)] = 1 +
λ2σ2

2
+
∞∑
k=3

λk
E[(X − µ)k]

k!

≤ 1 +
λ2σ2

2
+
λ2σ2

2

∞∑
k=3

(|λ|b)k−2 ,

and for |λ| < 1/b we can sum the geometric series to obtain

E[eλ(X−µ)] ≤ 1 +
λ2σ2/2

1− b|λ|
≤ exp (

λ2σ2/2

1− b|λ|
)

by using 1 + t ≤ et. Thus X is sub-exponential as we obtain

E[eλ(X−µ)] ≤ exp (λ2(
√

2σ)2/2)

for all |λ| < 1/2b.
2

Exercise 2.41 (general Hoeffding inequality) LetX1, . . . , XN independent mean-zero sub-
Gaussian real-valued random variables, and let a = (a1, . . . , aN ) ∈ RN . Then, for every
t ≥ 0, we have

P
(
|
N∑
i=1

aiXi| ≥ t
)
≤ 2 exp

(
− ct2

K2‖a‖2
2

)
,

where K = max1≤i≤N{‖Xi‖ψ2
}. KK

Hint: Use the fact that Xi sub-Gaussian, i = 1, . . . , N , implies that
∑N

i=1 Xi is sub-
Gaussian with

‖
N∑
i=1

Xi‖2
ψ2
≤ C

N∑
i=1

‖Xi‖2
ψ2
,

see Proposition 2.24.
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Exercise 2.42 Restate property (v) of Proposition 2.17 in terms of the sub-Gaussian norm,
i.e., show that if E[X] = 0 then

E[exp(λX)] ≤ exp(Cλ2‖X‖2
ψ2

) , for all λ ∈ R .

K

The following exercise explores different deviations from the mean.

Exercise 2.43 (Poisson distribution - various deviations) Let X ∼ Poi(λ), λ > 0. Then
the following holds.

(a) For any t > λ, we have

P(X ≥ t) ≤ e−λ
(eλ
t

)t
.

(b) For t ∈ (0, λ], we have

P(|X − λ| ≥ t) ≤ 2 exp
(
− ct2

λ

)
,

for some absolute c > 0.

Hint: Use the Poisson approximation in Theorem 1.36 in conjunction with the corresponding
concentration bounds for Bernoulli random variables. KK

3 Random vectors in High Dimensions

We study random vectors X = (X1, . . . , Xn) ∈ Rn and aim to obtain concentration
properties of the Euclidean norm of random vectors X.

3.1 Concentration of the Euclidean norm

SupposeXi, i = 1, . . . , n, are independent R-valued random variables with E[Xi] = 0
and Var(Xi) = 1. Then

E[‖X‖2
2] = E[

n∑
i=1

X2
i ] =

n∑
i=1

E[X2
i ] = n.

We thus expect that the expectation of the Euclidean norm is approximately
√
n. We

will now see in a special case that the norm ‖X‖2 is indeed very close to
√
n with

high probability.

Theorem 3.1 (Concentration of the norm) LetX = (X1, . . . , Xn) ∈ Rn be a random vec-
tor with independent sub-Gaussian coordinates Xi that satisfy E[X2

i ] = 1. Then

‖‖X‖2 −
√
n‖ψ2

≤ CK2 ,

where K := max1≤i≤n{‖X‖ψ2
} and C > 0 an absolute constant.
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The following two exercises are used in the proof of the theorem.

Exercise 3.2 (Centering for sub-exponential random variables) Show the centering lemma
for sub-exponential random variables. This is an extension of Lemma 2.27 to sub-exponential
random variables: Let X be a real-valued sub-exponential random variable. Then

‖X − E[X]‖ψ1
≤ C‖X‖ψ1

.

K

Exercise 3.3 (Bernstein inequality) LetX1, . . . , XN be independent mean-zero sub-exponential
real-valued random variables. Then, for every t ≥ 0, we have

P
(
| 1
N

N∑
i=1

Xi| ≥ t
)
≤ 2 exp

(
− cmin

{( t2
K2

)
,
( t
K

)}
N
)
,

for some absolute constant c > 0 and where K := max1≤i≤N{‖Xi‖ψ1
}. KK

Solution. SN := 1
N

∑N
i=1Xi. As usual we start with

P(SN ≥ t) ≤ e−λtE[eλSN ] = e−λt
N∏
i=1

E[e(λ/N )Xi ] ,

and (v) in Propostion 2.28 implies that, writing X̃i = Xi/N , there are c̃ > 0 and C > 0
such that

E[eλX̃i ] ≤ exp (Cλ2‖X̃i‖2
ψ1

) for |λ| ≤ c̃

K̃
,

and ‖X̃i‖2
ψ1

= 1/N2‖Xi‖2
ψ1

, K̃ := max1≤i≤N{‖X̃i‖ψ1
}. With σ̃2 =

∑N
i=1 1/N2‖Xi‖2

ψ1
we

thus get

P(SN ≥ t) ≤ exp (− λt+ Cλ2σ̃2) for |λ| ≤ c̃

K̃
.

Define g(λ) := −λt+ Cλ2σ̃2. Then g′(λ) = −t+ 2Cσ̃2λ. The zero of the derivative is
at λ = t

2Cσ̃2 . As long as t ≤ 2Cσ̃2c̃

K̃
, this λ ≤ c̃

K̃
satisfies the constraint. For t > 2Cσ̃2c̃

K̃
we see that g′(λ) ≤ 0, and thus the function is monotonically decreasing and the
infimum will be attained at the upper bound for λ. Hence, optimising over λ one
obtains

λ = min
{( t

2Cσ̃2

)
,
( c̃
K̃

)}
.

Inserting these values into the function g, we obtain

g(t/(2Cσ̃2)) = −t2/(4Cσ̃2) for t ≤ 2Cσ̃2c̃

K̃
,

and for the other value we note that for t > (2Cσ̃2c̃)/K̃ we get

g(
c̃

K̃
) = − c̃

K̃
t+

Cc̃2σ̃2

K̃2
= − c̃t

2K̃
− c̃t

2K̃
+
Cc̃2σ̃2

K̃2
≤ − c̃t

2K̃
,
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which follows from

− c̃t

2K̃
+
Cc̃2σ̃2

K̃2
≤ 0 , for t > (2Cσ̃2c̃)/(K̃) .

Thus

P(SN ≥ t) ≤ exp
(
−min

{( t2

4Cσ̃2

)
,
( c̃t

2K̃

)}
,

and finally, using σ̃2 ≤ 1
N
K2 and K̃ ≤ 1

N
K, there is an absolute constant c > 0 such

that

P(SN ≥ t) ≤ exp
(
− cmin

{( t2
K2

)
,
( t
K

)}
N
)
.

To conclude the proof one needs to derive the complementary bound to derive the
concentration for the absolute value. ©

Remark 3.4 With high probability, e.g., with probability 0.99 (adjust the absolute constants
c > 0 and K > 0 accordingly) X stays within a constant distance from the sphere of radius√
n. Sn := ‖X‖2

2 has mean n and standard deviation O(
√
n):

Var
(
‖X‖2

2

)
= E

[(
‖X‖2

2 − n
)2]

= E
[ n∑
i,j=1

(XiXj)
2
]
− 2n‖X‖2

2 + n2

= E
[ n∑
i,j=1

(XiXj)
2
]
− n2 =

n∑
i=1

E[X4
i ] +

n∑
i,j=1,i 6=j

E[(XiXj)
2
]− n2 .

For any i 6= j we have E[(XiXj)2] = E[X2
i ]E[X2

j ] = 1 (the Xi’s are independent). Further-
more, we get E[X4

i ] = O(1) because from (ii) in Proposition 2.17 we estimate

E[X4
i ] ≤ ‖Xi‖4

L4 ≤ C
√

4
4

= 16C = O(1) .

Thus Var(‖X‖2
2) ≤ 16nC + n(n − 1) − n2 = C ′n = O(1)n, and therefore

√
Var(‖X‖2

2) =

O(
√
n). Hence ‖X‖2 =

√
Sn deviates by O(1) around

√
n. Note that this follows from√

n±O(
√
n) =

√
n

√
1± 1

n
O(
√
n) =

√
n(1±O(

1√
n

))
√
n±O(1) .

�

Proof of Theorem 3.1. We assume again without loss of generality that K ≥ 1.

1

n
‖X‖2

2 − 1 =
1

n

n∑
i=1

(X2
i − 1) .

Xi sub-Gaussian implies that that X2
i − 1 is sub-exponential (Lemma 2.32). The

centering property of Exercise 3.2 shows that there is an absolute constant C > 0
such that

‖X2
i − 1‖ψ1

≤ C‖X2
i ‖ψ1

=
Lemma 2.31

C‖Xi‖2
ψ2
≤ CK2 .
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We now apply the Bernstein inequality in Exercise 3.3 to obtain, for every u ≥ 0,

P
(
| 1
n
‖X‖2

2 − 1| ≥ u
)
≤ 2 exp

(
− cn

K4
min{u2, u}

)
, (3.1)

where we used that K ≥ 1 implies K4 ≥ K2. Note that for z ≥ 0 inequality |z−1| ≥ δ
implies the inequality

|z2 − 1| ≥ max{δ, δ2} .

To see that, consider first z ≥ 1 which implies that z + 1 ≥ z − 1 ≥ δ and thus
|z2 − 1| = |z − 1||z + 1| ≥ δ2. For 0 ≤ z < 1 we have z + 1 ≥ 1 and thus |z2 − 1| ≥ δ.
We apply this finding, (3.1) with u = max{δ, δ2} to obtain

P
(
| 1√
n
‖X‖2 − 1| ≥ δ

)
≤ P

(
| 1
n
‖X‖2

2 − 1| ≥ max{δ, δ2}
)
≤ 2 exp (− cn

K4
δ2) .

We used that v = min{u, u2} = δ2 when u = max{δ, δ2}. To see that, note that δ ≥ δ2

implies δ ≤ 1 and thus u = δ and v = δ2. If δ > 1 we have δ2 > δ and thus u = δ2

and thus v = δ2. Setting t = δ
√
n we finally conclude with

P(|‖X‖2 −
√
n| ≥ t) ≤ 2 exp

(
− ct2

K4

)
,

which shows that |‖X‖2 −
√
n| is sub-Gaussian. 2

Exercise 3.5 (Small ball probabilities) Let X = (X1, . . . , Xn) ∈ Rn be a random vec-
tor with independent coordinates Xi having continuous distribution with probability density
functions fi : R→ R (Radon-Nikodym density with respect to the Lebesgue measure) satis-
fying

|fi(x)| ≤ 1 , i = 1, . . . , n, for all x ∈ R .

Show that, for any ε > 0, we have

P(‖X‖2 ≤ ε
√
n) ≤ (Cε)

n

for some absolute constant C > 0. K

Solution.

P(‖X‖2
2 ≤ ε2n) = P(−‖X‖2

2 ≥ −ε
2n) ≤ eλε

2nE[exp(−λ‖X‖2
2)] = eλε

2n

n∏
i=1

E[exp(−λX2
i )] ,

and inserting

E[exp(−λX2
i )] ≤

∫
R

e−λx
2
i |fi(x)| dx ≤

∫
R

e−λx
2
i dx =

√
π

λ
,

we obtain
P(‖X‖2

2 ≤ ε2n) ≤ exp
(
λε2n− n

2
log (λ/π)

)
≤ (Cε)

n
,

where the last inequality follows by optimising over λ and getting λ = 1
2ε2

. ©
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3.2 The geometry of high dimensions

We collect a few facts about high-dimensional Euclidean vector spaces. We begin
with the volume and the area of balls.

Let R > 0. Then
B(n)
R := {x ∈ Rn : ‖x‖2 ≤ R}

is called the n-dimensional ball with radius R around the origin . If a ∈ Rn, we
denote B (n)

R (a) he ball with radius R around a, B (n)
R (a) = {x ∈ Rn : ‖x − a‖2 ≤ R}. If

R = 1, we write B (n) respectively B (n)(a).

S(n−1)
R := {x ∈ Rn : ‖x‖2 = R}

is called n-dimensional sphere with radius R around the origin , and S(n−1)
R (a) = {x ∈

Rn : ‖x− a‖2 = R}. If R = 1, we write S(n−1) respectively S(n−1)(a).

vol(B(n)
R ) =

πn/2

n
2
Γ(n/2)

Rn ,

area(S(n−1)
R ) =

2πn/2

Γ(n/2)
Rn−1 .

Example 3.6 n = 3, R = 1. Note that Γ(3/2) = 1
2
Γ(1/2) = 1

2

√
π, and thus area(S(2)) = 4 ∈

and vol(B(3)) = 4
3
π. ♣

In n-dimensional polar coordinates, the volume vol(B(n)) of the n-dimensional unit
ball is given by

vol(B(n)) =

∫
S(n−1)

∫ 1

0

rn−1 drdσ =
1

n

∫
S(n−1)

dσ =
area(S(n−1))

n
. (3.2)

It remains to determine the surface area area(S(n−1)), that is, the surface integral
in (3.2) for general n ∈ N. In principle one can use the generalisation of the polar
coordinates from n = 3 to any higher dimensions. This is slightly elaborate, and we
therefore show a different and easier way to compute that area. For any n ∈ N we
have

I(n) :=

∫
R
· · ·
∫
R

e−(x21+···+x2n) dxn · · · dx1 = (
√
π)

n
= πn/2 . (3.3)

Alternatively, we can compute I(n) in (3.3) using polar coordinates with differential
rn−1dr and change t = r2 in the integral,

I(n) =

∫
S(n−1)

dσ
∫ ∞

0

e−r
2

rn−1 dr

= area(S(n−1))

∫ ∞
0

e−r
2

rn−1 dr = area(S(n−1))

∫ ∞
0

e−t t
n−1
2 (1/2t−1/2) dt

= area(S(n−1))

∫ ∞
0

1

2
e−tt

n
2
−1 dt = area(S(n−1))

1

2
Γ(
n

2
) .

(3.4)
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Thus

area(S(n−1)) =
2πn/2

Γ(n/2)
. (3.5)

Notation 3.7 (Landau symbols) Asymptotic analysis is concerned with the behaviour of
function f (n), n ∈ N, as n→∈ ∞. Suppose f, g : N→ R+(or R). We define the following
Landau symbols, called big-O and little-o.

• f (n) is O(g(n)) if there is a constant C > 0 such that f (n) ≤ Cg(n) for all n ∈ N.

• f (n) is o(g(n)) if

lim
n→∞

f (n)
g(n)

= 0 .

• f (n) ∼ g(n) if

lim
n→∞

f (n)
g(n)

= 1 .

We now discuss briefly the fact that most of the volume of high-dimensional ob-
jects (sets with non-vanishing volume) is near the surface of that object. Let A ⊂ Rn

be a set with non-vanishing volume, i.e., vol(A) > 0, and pick ε > 0 small. Now we
shrink A by a small amount ε to produce

(1− ε)A := {(1− ε)x : x ∈ A} .

Then the following holds,

vol((1− ε)A) = (1− ε)nvol(A) . (3.6)

To see (3.6), partition the set A into infinitesimal cubes (for a Riemann sum approxi-
mate of the volume integral). Then, (1−ε)A is the union of the set of cubes obtained
by shrinking the cubes of the partition of A by a factor (1 − ε). If we shrink each of
the 2n sides of an n-dimensional cube Q by (1− ε), its volume vol((1− ε)Q) shrinks
by the factor (1 − ε)n. Using that 1 − x ≤ e−x, we get the following estimate of the
ratio of the volumes:

vol((1− ε)A)

vol(A)
= (1− ε)n ≤ e−nε . (3.7)

Thus nearly all of the volume of A must be in the portion of A that does not belong
to the region (1 − ε)A. For the unit ball B(n) we have at least a (1 − e−εn) fraction of
the volume vol(B(n)) of the unit ball concentrated in B(n) \ (1− ε)B(n), namely in a small
annulus of width ε at the boundary.

Proposition 3.8 (Volume near the equator) For c ≥ 1 and n ≥ 3 at least a 1 − 2
c
e−c2/2

fraction of the volume vol(B(n)) of the unit ball has |x1| ≤ c√
n−1

. Here, the coordinate x1

points to the north pole.
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Proof. By symmetry it suffices to prove that at most a 2
c
e−c2/2 fraction of the half

of the ball with x1 ≥ 0 has x1 ≥ c√
n−1

. Let denote H = {x ∈ B(n) : x1 ≥ 0} be the
upper hemisphere (northern hemisphere) and A = {x ∈ B(n) : x1 ≥ c√

n−1
}. We need

to show that the ratio of the volumes is bounded as

vol(A)
vol(H)

≤ 2

c
e−c

2/2 . (3.8)

We prove (3.8) by obtaining an upper bound for vol(A) and a lower bound for vol(H).
To calculate the volume vol(A), integrate an incremental volume that is a disk of
width dx1 and whose face is a ball of dimension n − 1 and radius

√
1− x2

1. The
surface area of the disk is (1− x2

1)(n−1)/2vol(B(n−1)) and the volume above the slice is

vol(A) =

∫ 1

c/
√
n−1

(1− x2
1)

n−1
2 vol(B(n−1)) dx1 .

We obtain an upper bound by using 1 − x ≤ e−x, integrating up to infinity and by
inserting x1

√
n− 1/c ≥ 1 into the integral. Then

vol(A) ≤ vol(B(n−1))

√
n− 1

c

∫ ∞
c/
√
n−1

x1e−
(n−1)

2
x21 dx1

= vol(B(n−1))

√
n− 1

c

( 1

n− 1

)
e−c

2/2 =
vol(B(n−1))

c
√
n− 1

e−c
2/2 .

(3.9)

The volume of the hemisphere below the plane x1 = 1√
n−1

is a lower bound on the
entire volume vol(H), and this volume is at least that of a cylinder of height 1√

n−1
and

radius
√

1− 1
n−1

. The volume of the cylinder is

vol(B(n−1))(1− 1

n− 1
)
n−1
2

1√
n− 1

.

Using the fact that (1 − x)a ≥ 1 − ax for a ≥ 1, the volume of the cylinder is at least
vol(B(n−1))

2
√
n−1

for n ≥ 3. Thus we obtain (3.8) form our bounds.
2

We consider the orthogonality of two random vectors. Draw two points at random
from the unit ball B(n) ⊂ Rn. With high probability their vectors will be nearly orthog-
onal to each other. To understand that, recall from our previous considerations that
most of the volume of the n-dimensional unit ball B(n) is contained in an annulus of
width O(1/n) near the boundary (surface), that is, we pick ε = c

n
, c ≥ 1, and have

from (3.7) that
vol((1− ε)B(n))

vol(B(n))
≤ e−εn .

Thus at least as 1− e−εn fraction of vol(B(n)) is concentrated in the anjulus of width ε
at the boundary. Equivalently, using our result about the volume near the equator in
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Proposition 3.8, if one vector points to the north pole, the other vector has projection
in this direction of only ±O(1/

√
n), and thus their dot/inner/scalar product will be of

order ±O(1/
√
n).

Proposition 3.9 Suppose that we sample N points X (1), . . . , X (N ) uniformly from the unit
ball B(n). Then with probability 1−O(1/N ) the following holds:

(a) ‖X (i)‖2 ≥ 1− 2 logN
n

for i = 1, . . . , N ;

(b)

〈X (i), X (j)〉 ≤ 6 logN√
n− 1

for all i, j = 1, . . . , i 6= j .

Proof. (a) For any i = 1, . . . , N , the probability that ‖X (i)‖2 < 1− ε is less than e−εn.
Thus

P
(
‖X (i)‖2 < 1− 2 logN

n

)
≤ e−( 2 logN

n
)n =

1

N2
.

By the union bound, the probability there exists an i ∈ {1, . . . , N} such that ‖X (i)‖2 <

1− 2 logN
n

is at most 1/N .

(b) From Proposition 3.8 we know that the component X (i)
1 in direction of the north

pole satisfies

P
(
|X (i)

1 | >
c√
n− 1

)
≤ 2

c
e−c

2/2 .

There are
(
N
2

)
pairs i and j, and for each pair we define X (i) as the direction of the

north pole. Then the probability that the projection of the other pair vector X (j) onto

the direction of the north pole is more than
√

6 logN√
n−1

is at most O( exp(−6/2 logN) =

O(1/N3). Thus, the dot product condition is violated with probability at most

O
((N

2

)
N−3

)
= O(1/N) .

2

3.3 Covariance matrices and Principal Component Analysis (PCA)

Definition 3.10 Let X = (X1, . . . , Xn) ∈ Rn be a random vector. Define the random
matrix XXT as the (n× n) matrix

XXT :=


X1

·
·
·
Xn

(X1 · · · Xn

)
=


X2

1 X1X2 · · · X1Xn

X2X1 X2
2 · · · ·

· · · · · ·
· · · · · ·
· · · · · ·

XnX1 · · · · X2
n

 .
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Let X = (X1, . . . , Xn) ∈ Rn be a random vector with mean µ = E[X] and matrix
µµT = (µiµj)i,j=1,...,n. Then the covariance matrix , which is defined as

cov(X) := E
[
(X − µ)(X − µ)

T
]

= E[XXT ]− µµT , (3.10)

is a (n× n) symmetric positive-semidefinite matrix with entries

cov(X)i,j = E[(Xi − µi)(Xj − µj)], i, j = 1, . . . , n . (3.11)

The second moment matrix of a random vector X ∈ Rn is simply

Σ = Σ(X) = E[XXT ] = (E[XiXj])i,j=1,...,n , (3.12)

and Σ(X) is symmetric and positive-semidefinite matrix which can be written as the
spectral decomposition

Σ(X) =
n∑
i=1

siuiu
T
i , (3.13)

where ui ∈ Rn are the eigenvectors of Σ(X) for the eigenvalues si. The second
moment matrix allows the principal component analysis (PCA). We order the eigen-
values of Σ(X) according to their size: s1 ≥ s2 ≥ · · · ≥ sn. For large values of the
dimension n one aims to identify a few principal directions. These directions corre-
spond to the eigenvectors with the largest eigenvalues. For example, suppose that
the first m eigenvalues are significantly larger than the remaining n −m ones. This
allows to reduced the dimension of the given data to Rm by neglecting all contribu-
tions from directions with eigenvalues significantly smaller than the chosen principal
ones.

Definition 3.11 A random vector X = (X1, . . . , Xn) ∈ Rn is called isotropic if

Σ(X) = E[XXT ] = 1ln ,

where 1ln := idn is the identity operator/matrix in Rn.

Exercise 3.12 (a) Let Z be an isotropic mean-zero random vector in Rn, µ ∈ Rn, and Σ be
a (n× n) positive-semidefinite symmetric matrix. Show that then X := µ+ Σ1/2Z has
mean µ and covariance matrix cov(X) = Σ.

(b) Let X ∈ Rn be a random vector with mean µ and invertible covariance matrix Σ =
cov(X). Show that then Z := Σ−1/2(X − µ) is an isotropic mean-zero random vector.

K

Lemma 3.13 (Isotropy) A random vector X ∈ Rn is isotropic if and only if

E[〈X, x〉2] = ‖x‖2
2 for all x ∈ Rn .
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Proof. X is isotropic if and only if (E[XiXj])i,j=1,...,n = (δi,j)i,j=1,...,n = 1ln . For every
x ∈ Rn we have

E[〈X, x〉2] =
n∑

i,j=1

E[xiXixjXj] =
n∑

i,j=1

xiE[XiXj]xj = 〈x,Σ(X)x〉 = ‖x‖2
2

if and only if Σ(X) = 1ln. 2

It suffices to show E[〈X, ei〉2] = 1 for all basis vectors ei, i = 1, . . . , n. Note that
〈X, ei〉 is a one-dimensional marginal of the random vector X. Thus X is isotropic
if and only if all one-dimensional marginals of X have unit variance. An isotropic
distribution is evenly extended in all spatial directions.

Lemma 3.14 Let X be an isotropic random vector in Rn. Then

E[‖X‖2
2] = n .

Moreover, if X and Y are two independent isotropic random vectors in Rn, then

E[〈X, Y 〉2] = n .

Proof. For the first statement we view XTX as a 1× 1 matrix and take advantage
of the cyclic property of the trace operation on matrices:

E[‖X‖2
2] = E[XTX] = E[Trace (XTX)] = E[Trace (XXT )] = Trace (E[XXT ])

= Trace (1ln) = n .

We fix a realisation of Y , that is, we consider the conditional expectation of X
with respect to Y which we denote EX . The law of total expectation says that

E[〈X, Y 〉2] = EY [EX [〈X, Y 〉2|Y ]] ,

where EY denotes the expectation with respect to Y . To compute the innermost
expectation we use Lemma 3.13 with x = Y and obtain using the previous part that

E[〈X, Y 〉2] = EY [‖Y ‖2
2] = n .

2

Suppose X ⊥ Y are isotropic vectors in Rn, and consider the normalised ver-
sions X̄ := X/‖X‖2 and Ȳ := Y/‖Y ‖2. From the concentration results in this chap-
ters we know that with high probability, ‖X‖2 ∼

√
n, ‖Y ‖2 ∼

√
n, and 〈X, Y 〉 ∼

√
n.

Thus, with high probabity,

|〈X̄, Ȳ 〉| ∼ 1√
n
.

Thus, in high dimensions, independent and isotropic random vector are almost or-
thogonal.
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3.4 Examples of High-Dimensional distributions

Definition 3.15 (Spherical distribution) A random vector X is called spherically dis-
tributed if it is uniformly distributed on the Euclidean sphere with radius

√
n and centre

at the origin, i.e.,
X ∼ Unif(

√
nS(n−1)) ,

where

S(n−1) =
{
x = (x1, . . . , xn) ∈ Rn :

n∑
i=1

x2
i = 1

}
= {x ∈ Rn : ‖x‖2 = 1}

is the unit sphere of radius 1 and centre at the origin.

Exercise 3.16 X ∼ Unif(
√
nS(n−1)) is isotropic but the coordinates Xi, i = 1, . . . , n, of X

are not independent due to the condition X2
1 + · · ·+X2

n = n. KK

Solution. We give a solution for n = 2. The solution for higher dimensions is
similar and uses high-dimensional versions of the Polar coordinates. We use Polar
coordinates to represent X as

X =
√
n

(
cos(θ)
sin(θ)

)
, θ ∈ [0, 2π] .

Let e1 and e2 the two unit basis vectors in R2. It suffices to show E[〈X, ei〉2] = 1, i =
1, 2, as any vector can be written as a linear combination of the two basis vectors.
Without loss of generality we pick e1 (the proof for e2 is just analogous):

E[〈X, e1〉2] = E[(
√
n cos(θ))2

] =
n

2π

∫ 2π

0

cos2(θ) dθ =
2

2π

[θ
2

+
sin(2θ)

4

]2π

0
=

2π

2π
= 1 ,

where we used that cos(2x) = 2 cos2(x)− 1.
©

An example of a discrete isotropic distribution in Rn is the symmetric Bernoulli
distribution in Rn . We say that a random vector X = (X1, . . . , Xn) ∈ Rn is symmet-
ric Bernoulli distributed if the coordinates Xi are independent, symmetric, Bernoulli
random variables. A random variable ε is symmetric if P(ε = −1) = P(ε = +1) = 1

2
.

Equivalently, we may say that X is uniformly distributed on the unit cube in Rn:

X ∼ Unif
(
{ − 1,+1}n

)
.

The symmetric Bernoulli distribution is isotropic. This can be easily seen again by
checking E[〈X, ei〉2] = 1 for all i = 1, . . . , n, or for any x ∈ Rn by checking that

E[〈X, x〉2] = E
[ n∑
i=1

X2
i x

2
i

]
+ E

[
2
∑

1≤i<j≤n

XiXjxixj

]
= ‖x‖2

2 ,
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as the second term vanishes because the Xi are independent mean-zero random
variables .

Any random vector X = (X1, . . . , Xn) ∈ Rn with independent mean-zero coordi-
nates Xi with unit variance Var(Xi) = 1 is an isotropic random vector in Rn.

For the following recall the definition of the normal distribution. See also the
appendix sheets distributed at the begin of the lecture for useful Gaussian calculus
formulae.

Definition 3.17 (Multivariate Normal / Gaussian distribution) We say a random vector
Y = (Y1, . . . , Yn) ∈ Rn has standard normal distribution in Rn, denoted

Y ∼ N(0, 1ln) ,

if the coordinates Yi, i = 1, . . . , n, are independent, R-valued standard normally distributed
random variables, i.e., Yi ∼ N(0, 1). The probability density function (pdf) for Y is just the
product

fY (x) =
n∏
i=1

1√
2π

e−x
2
i /2 =

1

(2π)
n/2

e−‖x‖
2
2/2 . (3.14)

It is easy to check that Y is isotropic. Furthermore, as the density (3.14) only
depends on the Euclidean norm, that is, the standard normal distribution in Rn only
depends on the length and not on the direction. In other words, the standard normal
distribution in Rn is rotation invariant. This reasoning is rigorously stated in the next
proposition.

Proposition 3.18 Let Y ∼ N(0, 1ln) and U be a n × n orthogonal matrix (i.e., UTU =
UUT = 1ln, or equivalently, U−1 = UT ). Then

UY ∼ N(0, 1ln) .

Proof. For Z := UY we have

‖Z‖2
2 = ZTZ = Y TUTUY = Y TY = ‖Y ‖2

2 .

Furthermore, |det(U )| = |det(UT )| = 1, and thus for any vector J ∈ Cn (characteristic
functions/Laplace transform), writing z = Ux, x ∈ Rn,

EZ[e〈J,Z〉] =
1

(2π)n/2

∫
Rn

exp
(
− 1

2
〈z, z〉+ 〈J, z〉

) n∏
i=1

dzi

=
1

(2π)n/2

∫
Rn

exp
(
− 1

2
〈x, x〉+ 〈UTJ, x〉

) n∏
i=1

dxi

=
1

(2π)n/2
exp

(1

2
〈UTJ, UTJ〉

)
=

1

(2π)n/2
E[e

1
2
〈J,J〉] = EY [e〈J,Y 〉] .
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Thus we have shown that Z has the same characteristic function/Laplace transform
then Y ∼ N(0, 1lN ) and therefore Z = UY ∼ N(0, 1ln). 2

Let Σ be a symmetric positive-definite n×n matrix and X ∈ Rn random vector with
mean µ = E[X]. Then

X ∼ N(µ,Σ)⇔ Z = Σ−1/2(X − µ) ∼ N(0, 1ln)

⇔ fX(x)
1

(2π)n/2 det(Σ)1/2
exp

(
− 1

2
〈X − µ,Σ−1(X − µ)〉

)
, x ∈ Rn.

For large values of n the standard normal distribution N(0, 1ln) is not concen-
trated around the origin, instead it is concentrated in a thin spherical shell around
the sphere of radius

√
n around the origin (shell with width of order O(1)). From

Theorem 3.1 we obtain for Y ∼ N(0, 1ln),

P(|‖Y ‖2 −
√
n| ≥ t) ≤ 2 exp (− Ct2) , for all t ≥ 0

and an absolute constant C > 0. Therefore with high probability ‖Y ‖2 ≈
√
n, and

thus with high probability,

Y ≈
√
nΘ ∼ Unif(

√
nS(n−1)) ,

with the unit direction vector Θ = Y/‖Y ‖2. Henceforth, with high probability,

N(0, 1ln) ≈ Unif(
√
nS(n−1)) .

3.5 Sub-Gaussian random variables in higher dimensions

Definition 3.19 (Sub-Gaussian random vectors) A random vector X ∈ Rn is sub-
Gaussian if the one-dimensional marginals 〈X, x〉 are sub-Gaussian real-valued random
variables for all x ∈ Rn. Moreover,

‖X‖ψ2
:= sup

x∈S(n−1)
{‖〈X, x〉‖ψ2

} .

Lemma 3.20 Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent mean-zero
sub-Gaussian coordinates Xi. Then X is sub-Gaussian and

‖X‖ψ2
≤ C max

1≤i≤n
{‖Xi‖ψ2

} ,

for some absolute constant C > 0.

Proof. Let x ∈ S(n−1). We are using Proposition 2.24 for the sum of independent
sub-Gaussian random variables:

‖〈X, x〉‖2
ψ2

= ‖
n∑
i=1

xiXi‖2
ψ2

≤
Prop. 2.24

C

n∑
i=1

x2
i ‖Xi‖2

ψ2
≤ C max

1≤i≤n
{‖Xi‖2

ψ2
} ,

where we used that
∑n

i=1 x
2
i = 1, 2
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Theorem 3.21 (Uniform distribution on the sphere) Let X ∈ Rn be a random vector uni-
formly distributed on the Euclidean sphere in Rn with centre at the origin and radius

√
n,

i.e.,
X ∼ Unif(

√
nS(n−1)) .

Then X is sub-Gaussian, and ‖X‖ψ2
≤ C for some absolute constant C > 0.

We will actually present two different proofs of this statement. The first uses
concentration properties whereas the second employs a geometric approach.
Proof of Theorem3.21 - Version I. See [Ver18] page 53-54. 2

Proof of Theorem3.21 - Version II.
 

Et

Hty 7
O O O 2y

Figure 1:

For convenience we will work on the unit sphere, so let us rescale

Z :=
X√
n
∼ Unif(S(n−1)).

It suffices to show that ‖Z‖ψ2
≤ C/

√
n, which by definition means that ‖〈Z, x〉‖ψ2

≤ C
for all unit vectors x. By rotation invariance, all marginals 〈Z, x〉 have the same
distribution, and hence without loss of generality, we may prove our claim for x =
e1 = (1, 0, . . . , 0) ∈ Rn. In other words, we shall show that

P(|Z1| ≥ t) ≤ 2 exp(−ct2n) for all t ≥ 0 .

We use the fact that

P (Z1 ≥ t) = P(Z ∈ Ct) with the spherical cap Ct = {z ∈ S(n−1) : z1 ≥ t}.

Denote by Kt the ”ice-cream” cone when we connect all points in Ct to the origin,
see Figure 1. The fraction of Ct in the unit sphere (in terms of area) is the same as
the fraction of Kt in the unit ball B(0, 1) = {x ∈ Rn : x2

1 + · · ·+ x2
n ≤ 1}. Thus

P(Z ∈ Ct) =
Vol (Kt)

Vol (B(0, 1))
.
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The set Kt is contained in a ball B(0′,
√

1− t2) with radius
√

1− t2 centred at 0′ =
(t, 0, . . . , 0). Using 1− x ≤ e−x for 0 ≤ x < 1, we get

P(Z1 ≥ t) = (
√

1− t2)
n ≤ exp (− t2n/2) for 0 ≤ t ≤ 1/

√
2 ,

and we can easily extend this bound to all t by loosening the absolute constant (note
that for t ≥ 1 the probability is trivially zero). Indeed, in the range 1/

√
2 ≤ t ≤ 1,

P(Z1 ≥ t) ≤ P(Z1 ≥ 1/
√

2) ≤ exp(−n/4) ≤ exp(−t2n/4)

We proved that P(Z1 ≥ t) ≤ exp(−t2n/4). By symmetry, the same inequality holds
for −Z1. Taking the union bound, we obtain the desired sub-Gaussian tail.

2

Remark 3.22 The so-called Projective Central Limit Theorem tells us that marginals of the
uniform distribution on the sphere in Rn become asymptotically normally distributed as the
dimension n increases. Namely, ifX ∼ Unif(

√
nS(n−1)) then for any fixed unit vector u ∈ Rn

we have
〈X, x〉 −→ N(0, 1) in distribution as n→∞ .

�

3.6 Application: Grothendieck’s inequality

See Chapter 3.5 in [Ver18].

4 Random Matrices

4.1 Geometrics concepts

Definition 4.1 Let (T, d) be a metric space, K ⊂ T , and ε > 0.

(a) ε-net: A subset N ⊂ K is an ε-net of K if every point of K is within a distance ε of
some point of N ,

∀x ∈ K ∃x0 ∈ N : d(x, x0) ≤ ε .

(b) Covering number: The smallest possible cardinality of an ε-net of K is the covering
number ofK and is denoted N(K, d, ε). Equivalently, N(K, d, ε) is the smallest number
of closed balls with centres in K and radii ε whose union covers K.

(c) ε-separated sets: A subset N ⊂ T is ε-separated if d(x, y) > ε for all distinct points
x, y ∈ N .

(d) Packing numbers: The largest possible cardinality of an ε-separated subset of K is
called the packing number of K and denoted P(K, d, ε).



46 RANDOM MATRICES

Lemma 4.2 Let (T, d) be a metric space. Suppose that N is a maximal ε separated subset
of K ⊂ T . Here maximal means that adding any new point x ∈ K to the set N destroys the
ε-separation property. Then N is an ε-net.

Proof. Let x ∈ K. If x ∈ N ⊂ K, then choosing x0 = x we have d(x0, x0) = 0 ≤ ε.
Suppose x /∈ N .Then the maximality assumption implies that N ∪ {x} is not ε-
separated, thus d(x, x0) ≤ ε for some x0 ∈ N . 2

Lemma 4.3 (Equivalence of packing and covering numbers) Let (T, d) be a metric space.
For any K ⊂ T and any ε > 0, we have

P(K, d, 2ε) ≤ N(K, d, ε) ≤ P(K, d, ε) . (4.1)

Proof. Without loss of generality we consider Euclidean space T = Rn with d =
‖·‖2. For the upper bound one can show that P(K, ‖·‖2, ε) is the largest number of
closed disjoint balls with centres in K and radii ε/2. Furthermore, P(K, ‖·‖2, ε) is
the largest cardinality of an ε-separated subset, any ε-separated set N with #N =
P(K, ‖·‖2, ε) is maximal, and hence an ε-net according to Lemma 4.2. Thus

N(K, ‖·‖2, ε) ≤ #N .

Pick an 2ε-separated subset P = {xi} in K and an ε-net N = {yj} of K. Each
xi ∈ K belongs to some closed ball Bε(yj) with radius ε around some yj. Any such
ball Bε(yj) may contain at most one point of the xi’s. Thus |P| = #P ≤ |N| = #N. 2

In the following we return to the Euclidean space Rn with its Euclidean norm,
d(x, y) = ‖x− y‖2.

Definition 4.4 (Minkowski sum) A,B ⊂ Rn.

A+B := {a+ b : a ∈ A, b ∈ B} .

Proposition 4.5 (Covering numbers of the Euclidean ball) (a) Let K ⊂ Rn and ε > 0.
Denote |K| the volume of K and denote B (n) = {x ∈ Rn : ‖x‖2 ≤ 1} the closed unit
Euclidean ball. Then

|K|
|εB (n)|

≤ N(K, ‖·‖2, ε) ≤ P(K, ‖·‖2, ε) ≤
|(K + ε/2B (n))|
|ε/2B (n)|

.

(b) (1

ε

)n
≤ N(B (n), ‖·‖2, ε) ≤

(2

ε
+ 1
)n
.

Proof.
(a) The centre inequality follows from Lemma 4.3.
Lower bound: Let N := N(K, ‖·‖2, ε). Then we can cover K by N balls with radii ε.
Then |K| ≤ N |εB (n)|. Upper bound: Let N := P(K, ‖·‖2, ε) and construct N closed
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disjoint balls B ε
2
(xi) with centres xi ∈ K and radii ε/2. These balls might not fit

entirely into the set K, but certainly into the extended set K + ε
2
B (n). Thus

N |ε
2
B (n)| ≤ |K +

ε

2
B (n)| .

(b) The statement follows easily with part (a) and is left as an exercise. 2

Remark 4.6 To simplify the bound in Proposition 4.5, note that in the nontrivial range ε ∈
(0, 1] we have (1

ε

)n
≤ N(B (n), ‖·‖2, ε) ≤

(3

ε

)n
.

�

Example 4.7 (Euclidean balls - volume and surface area) SupposeR > 0 and denoteB (n)
R

the ball of radius R around the origin and S(n−1)
R its surface, i.e.,

B(n)
R := {x ∈ Rn : ‖x‖2 ≤ R} and S(n−1)

R := {x ∈ Rn : ‖x‖2 = R} .

Then the volume and surface area is given as

vol(B(n)
R ) = |B(n)

R | =
πn/2

Γ(n/2 + 1)
Rn ,

area(S(n−1)
R ) = |S(n−1)

R | = 2πn/2

Γ(n/2)
Rn−1 ,

(4.2)

where Γ is the Gamma function. ♣

Definition 4.8 (Hamming cube) The Hamming cube His the set of binary strings of length
n, i.e.,

H = {0, 1}n .

Define the Hamming distance dH between two binary strings as the number of bits where
they disagree, i.e.,

dH(x, y) := #{i ∈ {1, . . . , n} : x(i) 6= y(i)} , x, y ∈ {0, 1}n .

Exercise 4.9 Show that dH is a metric on H. K
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4.2 Concentration of the operator norm of random matrices

Definition 4.10 Let A be an m × n matrix with real entries. The matrix A represents a
linear map Rn → Rm.

(a) The operator norm or simply the norm of A is defined as

‖A‖ := max
x∈Rn\{0}

{‖Ax‖2

‖x‖2

}
= max

x∈S(n−1)
{‖Ax‖2} .

Equivalently,
‖A‖ = max

x∈S(n−1),y∈Sm−1
{〈Ax, y〉} .

(b) The singular values si = si(A) of the matrix A are the square roots of the eigenvalues
of both AAT and ATA,

si(A) =
√
λi(AAT ) =

√
λi(ATA) ,

and one orders them s1 ≥ s2 ≥ · · · ≥ sn ≥ 0. If A is symmetric, then si(A) = |λi(A)|.

(c) Suppose r = rank(A). The singular value decomposition of A is

A =
r∑
i=1

siuiv
T
i ,

where si = si(A) are the singular values of A, the vectors ui ∈ Rm are the left singular
vectors, and the vectors vi ∈ Rn are the right singular vectors of A.

Remark 4.11 (a) The extreme singular values s1(A) and sn(A) (sr(A)) are respectively the
smallest number M and the largest number m such that

m‖x‖2 ≤ ‖Ax‖2 ≤M‖x‖2 , for all x ∈ Rn .

Thus

sn(A)‖x− y‖2 ≤ ‖Ax− Ay‖2 ≤ s1(A)‖x− y‖2 for all x ∈ Rn .

(b) In terms of its spectrum, the operator norm of A equals the largest singular value of A,

s1(A) = ‖A‖ .

�

Lemma 4.12 (Operator norm on a net) Let ε ∈ [0, 1) and A be an m × n matrix. Then,
for any ε-net N of S(n−1), we have

sup
x∈N
{‖Ax‖2} ≤ ‖A‖ ≤

1

1− ε
sup
x∈N
{‖Ax‖2} .
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Proof. The lower bound is trivial as N ⊂ S(n−1). For the upper bound pick an x ∈
S(n−1) for which ‖A‖ = ‖Ax‖2 and choose x0 ∈ N for this x such that ‖x − x0‖2 ≤ ε.
Then

‖Ax− Ax0‖2 ≤ ‖A‖‖x− x0‖2 ≤ ε‖A‖ .
The triangle inequality implies that

‖Ax0‖2 ≥ ‖Ax‖2 − ‖Ax− Ax0‖2 ≥ (1− ε)‖A‖ ,

and thus ‖A‖ ≤ ‖Ax0‖2/(1− ε). 2

Exercise 4.13 Let N be an ε-net of S(n−1) and M be an ε-net of S(m−1). Show that for any
m× n matrix A one has

sup
x∈N,y∈M

{〈Ax, y〉} ≤ ‖A‖ ≤ 1

1− 2ε
sup

x∈N,y∈M
{〈Ax, y〉} .

K

Exercise 4.14 (Isometries) Let A be an m × n matrix with m ≥ n. Prove the following
equivalences:

ATA = 1ln ⇔ A isometry, i.e., ‖Ax‖2 = ‖x‖2 for all x ∈ Rn

⇔ sn(A) = s1(A) .

KK

Theorem 4.15 (Norm of sub-Gaussian random matrices) LetA be anm×n random ma-
trix with independent mean-zero sub Gaussian random entriesAij, i = 1, . . . ,m, j = 1, . . . , n.
Then, for every t > 0, we have that

‖A‖ ≤ CK(
√
m+

√
n+ t)

with probability at least 1 − 2 exp ( − t2), where K := max 1≤i≤m,
1≤j≤n

{‖Aij‖ψ2
} and where

C > 0 is an absolute constant.

Proof. We use an ε-net argument for our proof.

Step 1: Using Proposition 4.5 (b) we can find for ε = 1
4

an ε-net N ⊂ S(n−1) and an
ε-net M ⊂ S(m−1) with

|N| ≤ 9n and |M| ≤ 9m .

By Exercise 4.13, the operator norm of A can be bounded using our nets as follows

‖A‖ ≤ 2 max
x∈N,y∈M

{〈Ax, y〉} .

Step 2: Concentration Pick x ∈ N and y ∈M. We compute (using the fact that the
single matrix entries are sub-Gaussian random variables with their norm bounded
by K)

‖〈Ax, y〉‖2
ψ2
≤ C

m∑
i=1

n∑
j=1

‖Aijxiyj‖2
ψ2
≤ CK2

m∑
i=1

n∑
j=1

y2
jx

2
i = CK2 ,
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for some absolute constant C > 0. We therefore obtain a tail bound for 〈Ax, y〉, i.e.,
for every u ≥ 0,

P(〈Ax, y〉 ≥ u) ≤ 2 exp (− cu2/K2) ,

for some absolute constant c > 0.

Step 3: Union bound We unfix the choice of x and y in Step 2 by a union bound.

P
(

max
x∈N,y∈M

{〈Ax, y〉} ≥ u
)
≤

∑
x∈N,y∈M

P(〈Ax, y〉 ≥ u) ≤ 9n+m 2 exp (− cu2/K2) .

We continue the estimate by choosing u = CK(
√
n+
√
m+ t) which leads to a lower

bound u2 ≥ C2K2(n+m+ t2), and furthermore, adjust the constant C > 0 such that
cu2/K2 ≥ 3(n+m) + t2. Inserting these choices we get

P
(

max
x∈N,y∈M

{〈Ax, y〉} ≥ u
)
≤ 9n+m 2 exp (− 3(n+m)− t2) ≤ 2 exp (− t2) ,

and thus
P(‖A‖ ≥ 2u) ≤ 2 exp (− t2) .

2

Corollary 4.16 Let A be an n× n random matrix whose entries on and above the diagonal
are independent mean-zero sub-Gaussian random variables. Then, for every t > 0, we have

‖A‖ ≤ CK(
√
n+ t)

with probability at least 1− 4 exp(−t2) and K := max1≤i,j≤n{‖Aij‖ψ2
}.

Proof. Exercise. Decompose the matrix into an upper-triangular part and a lower-
triangular part and use the proof of the previous theorem. 2

We can actually improve the statement in Theorem 4.15 in two ways. First we
obtain a two-sided bound, and, secondly, we can relax the independence assump-
tion. As this is a refinement of our previous statement we only state the result and
omit its proof. The statement is used in covariance estimation below.

Theorem 4.17 Let A be an m × n matrix whose rows Ai, i = 1, . . . ,m, are independent
mean-zero sub-Gaussian isotropic random vectors in Rn.

(a) Then, for every t > 0, we have
√
m− CK2(

√
n+ t) ≤ sn(A) ≤ s1(A) ≤

√
m+ CK2(

√
n+ t) , (4.3)

with probability at least 1 − 2 exp(−t2) and K := max1≤i≤m{‖Ai‖ψ2
}. Furthermore,

with probability at least 1− 2 exp(−t2),∥∥∥ 1

m
ATA− 1ln

∥∥∥ ≤ K2 max{δ, δ2} where δ = C
(√ n

m
+

t√
m

)
. (4.4)
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(b) Property (4.4) implies that

E
[∥∥∥ 1

m
ATA− 1ln

∥∥∥] ≤ CK2
(√ n

m
+
n

m

)
.

Proof. (a) The proof follows similarly to the proof of Theorem 4.15 and is thus left
as an exercise. To show that (4.4) indeed implies (4.3) we use Lemma 4.18 below.

(b) To obtain the bound for the expected operator norm of the difference of 1
m
ATA

to the identity, we use the integral identity (1.9) for the real valued random variable
‖ 1
m
ATA− 1ln‖ . This calculation is quite long and requires some computational work

for the different cases and is omitted.
2

Lemma 4.18 Let A be an (m× n) - matrix and δ > 0. Suppose that

‖ATA− 1ln‖ ≤ max{δ, δ2} .

Then

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 for all x ∈ Rn . (4.5)

In particular, this means that all singular values of A lie between 1− δ and 1 + δ,

1− δ ≤ sn(A) ≤ s1(A) ≤ 1 + δ .

Proof. We first assume without loss of generality that ‖x‖2 = 1. Then our assump-
tions give

max{δ, δ2} ≥ |〈(ATA− 1ln)x, x〉| = |‖Ax‖2
2 − 1| .

For every z ≥ 0 the following elementary inequality holds:

max{|z − 1|, |z − 1|2} ≤ |z2 − 1| . (4.6)

To show (4.6) use that for z ≥ 1 we have |z−1|2 = |z2−2z+1| ≤ |z2−2+1| = |z2−1|,
and for z ∈ [0, 1), use |z − 1| ≤ |z2 − 1| as z2 ≤ z for z ∈ [0, 1). Then use (4.6) with
‖Ax‖2 to conclude that

|‖Ax‖2 − 1| ≤ δ .

This implies both statements of the lemma. 2

4.3 Application: Community Detection in Networks

See Chapter 4.5 in [Ver18].
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4.4 Application: Covariance Estimation and Clustering

Suppose that X (1), . . . , X (N ) are empirical samples (random outcomes) of a random
vector X ∈ Rn. We do not have access to the full distribution, only to the empirical
measure

LN =
1

N

N∑
i=1

δX (i) ,

which is a random (depending on the N random outcomes X (i)) probability mea-
sure on Rn. Here, the symbol δX is the Kronecker-delta measure or point measure
defined as

δX(y) =

{
1 if X = y,

0 if y 6= X ,
y ∈ Rn .

We assume for simplicity that E[X] = 0 and recall Σ = Σ(X) = E[XXT ].

Definition 4.19 Let X ∈ Rn with N random outcomes/random samples X (1), . . . , X (N ).

(a) The empirical measure of X (1), . . . , X (N ) is the probability measure on Rn,

LN :=
1

N

N∑
i=1

δX (i) .

(b) The empirical covariance of X (1), . . . , X (N ) is the random matrix

ΣN :=
1

N

N∑
i=1

(X (i))(X (i))
T
.

Note that Xi ∼ X implies that E[ΣN ] = Σ. The law of large numbers yields

ΣN → Σ almost surely as N →∞ .

Theorem 4.20 (Covariance estimation) Let X be a sub-Gaussian random vector in Rn,
and assume that there exist K ≥ 1 such that

‖〈X, x〉‖ψ2
≤ K‖〈X, x〉‖L2 , for all x ∈ Rn .

Then, for every N ∈ N,

E
[
‖ΣN −Σ‖

]
≤ CK2

(√ n

N
+
n

N

)
‖Σ‖ .

Proof. First note that

‖〈X, x〉‖2
L2 = E[|〈X, x〉|2] = E[〈X, x〉2] = 〈Σx, x〉 .
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We bring X,X (1), . . . , X (N ) all into isotropic position. That is, there exist independent
isotropic random vectors Z,Z (1), . . . , Z (N ) such that

X = Σ1/2Z and X (i) = Σ1/2Z (i) .

We have from our assumptions that

‖Z‖ψ2
≤ K and ‖Z (i)‖ψ2

≤ K .

Then
‖ΣN −Σ‖ = ‖Σ1/2RNΣ

1/2‖ ≤ ‖RN‖‖Σ‖ ,
where

RN =
1

N

N∑
i=1

(Z (i))(Z (i))
T − 1ln .

Suppose now that A is the N × n matrix whose rows are (Z (i))T , that is,
1

N
ATA− 1ln = RN ,

and Theorem 4.17 for A implies that

E[‖RN‖] ≤ CK2
(√ n

N
+
n

N

)
,

and we conclude with our statement. 2

Remark 4.21 For all ε ∈ (0, 1) we have

E[‖ΣN −Σ‖] ≤ ε‖Σ‖ ,

if we take a sample of size N ∼ ε−2n. �

5 Concentration of measure - general case

We study now general concentration of measure phenomena and aim in particular
to include cases where the random variables are not necessarily independent. The
independence assumption made our concentration results relatively easy to develop.
In the first section we summarise concentration results by entropy techniques before
studying dependent random variables in the remaining sections.

5.1 Concentration by entropic techniques

In the following assume that ϕ : R→ R is a convex function, X an R-valued random
variable such that E[X] and E[ϕ(X)] are finite unless otherwise stated. The ran-
dom variable is a measurable map from some probability space (Ω,F ,P) to R and
distributed with law PX = P ◦X−1 ∈M1(R).

Definition 5.1 (Entropy) The entropy of the random variable X for the convex function ϕ
is

Hϕ(X) = E[ϕ(X)]− ϕ(E[X]).
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Corollary 5.2 By Jensen’s inequality, ϕ([E[X]) ≤ E[ϕ(X)], we see that Hϕ(X) ≥ 0.

Example 5.3 (a) ϕ(u) = u2, u ∈ R, then the entropy of X ,

Hϕ(X) = E[X2]− E[X]
2

= Var(X)

is the variance of X .

(b) ϕ(u) = − logu, u > 0, and for X real-valued random variable we have that Z := eλX >
0 is a strictly positive real-valued random variable.

Hϕ(Z) = −λE[X] + logE[eλX ] = logE[eλ(X−E[X])].

(c) ϕ(u) = u logu, u > 0, and ϕ(0) := 0. The function ϕ is convex function on R+ and
continuous when we set 0 log 0 = 0. For any non-negative random variable Z ≥ 0, the
ϕ-entropy is

Hϕ(Z) = E[Z logZ]− E[Z] logE[Z].

♣

In the following we will drop the index ϕ for the entropy whenever we take ϕ(u) =
u logu as in Example 5.3 (c). There are several reasons why this choice is particular
useful. In the next remark we show some connection of that entropy to other entropy
concepts in probability theory.

Remark 5.4 Suppose that Ω is a finite sample space, and let p, q ∈M1(Ω) be two probabil-
ity measures (vectors) such that q(ω) = 0 implies p(ω) = 0. Define

X : Ω→ R, ω 7→ X(ω) =

{
p(ω)
q(ω) if q(ω) > 0,

0 if q(ω) = p(ω) = 0 ,

with distribution q ∈M1(Ω). Then X ≥ 0 with

E[X] =
∑
ω∈Ω

X(ω)q(ω) =
∑
ω∈Ω

p(ω) = 1.

H(X) =
∑
ω∈Ω

X(ω)q(ω) logX(ω)− E[X] logE[X] =
∑
ω∈Ω

p(ω) log
p(ω)
q(ω)

=: H(p|q) =: D(p‖q),

where H(p|q) is the relative entropy of p with respect to q , a widely used function proba-
bility theory (e.g. large deviation theory) and information theory, and where D(p‖q) is the
Kullback-Leibler divergence of p and q used in information theory.

�
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Definition 5.5 Let Ω be a finite (respectively discrete) sample space and denoteM1(Ω) the
set of probability measures (vectors).

(a) The relative entropy with respect to q ∈M1(Ω) is defined as the mapping

H(·|q) : M1(Ω)→ [0,∞]; p 7→ H(p|q) =

{∑
ω∈Ω p(ω) log p(ω)

q(ω) if q(ω)⇒ p(ω) = 0 ,

+∞ otherwise .

(b) The Shannon entropy of a Ω-valued random variable X with probability density (dis-
tribution) p ∈M1(Ω) is defined as

H(X) ≡ H(p) = −
∑
ω∈Ω

p(ω) log p(ω) .

Lemma 5.6 Let Ω be a finite sample space and denoteM1(Ω) the set of probability mea-
sures (vectors). Let q ∈ M1(Ω). Then the relative H(·|q) is strictly convex, continuous
and

H(p|q) = 0⇔ p = q .

Proof. Exercise. 2

Exercise 5.7 Let Ω be a finite sample space and denoteM1(Ω) the set of probability mea-
sures (vectors). Let X be a Ω-valued random variable with distribution p ∈ M1(Ω). Its
Shannon entropy is then H(X) = −

∑
ω∈Ω p(ω) log p(ω). We shall explore the connection

between the entropy functional Hϕ with ϕ(u) = u logu and the Shannon entropy:

(a) Consider the random variable Z := p(U ), where U ∼ Unif(Ω) is uniformly distributed
over Ω. Show that

Hϕ(Z) =
1

|Ω|
( log|Ω| − H(X)) .

(b) Use part (a) and Lemma 5.6 to show that Shannon entropy for a discrete random variable
is maximised by a uniform distribution.

K

The following example motivates the definition of Shannon entropy and can be
skipped for the following.

Example 5.8 (Shannon entropy) Let Ω be a finite sample space. Let X (i), i = 1, . . . , N , be
independent identically distributed Ω-valued random variables and writeX = (X (1), . . . , X (N )).
The empirical measure of the sample vector X ∈ ΩN is then

LXN =
1

N

N∑
i=1

δX (i) .
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For a given µ ∈M1(Ω) with Nµ(x) ∈ N0, x ∈ Ω, we define the number

NN (µ) = ]{ω ∈ ΩN : LωN = µ} =
N !∏

x∈Ω(Nµ(x))!
,

where the second equality follows from multinomial distribution. For any µ ∈ M1(Ω) pick
µN ∈ M1(Ω) with NµN (x) ∈ N0, x ∈ Ω, such that µN → µ as N → ∞. Then, using
Stirling’s formula, one can show that

H(µ) = lim
N→∞

1

N
logNN (µN ) . (5.1)

♣

For any real-valued random variable X, Z = exp(λX), λ ∈ R, is a positive random
variable and the entropy can be written with the moment generating function of X,
recall the definition of the moment generating function (MGF) in (1.4) (we assume
again that the expectations are finite for all λ ∈ R),

H(eλX) = λM ′
X(λ)−MX(λ) logMX(λ). (5.2)

Example 5.9 (Entropy - Gaussian random variable) SupposeX ∼ N(0, σ2), σ > 0. Then
MX(λ) = exp(λ2σ2/2), and M ′

X(λ) = λσ2MX(λ), and therefore

H(eλX) = λ2σ2MX(λ)− λ2σ2/2MX(λ) =
1

2
λ2σ2MX(λ).

♣

A bound on the entropy leads to a bound of the centred moment generating
function Φ, see (2.3), this is the content of the so-called Herbst argument .

Proposition 5.10 (Herbst argument) LetX be a real-valued random variable and suppose
that, for σ > 0,

H(eλX) ≤ 1

2
σ2λ2MX(λ)

for λ ∈ I with interval I being either [0,∞) or R. Then

logE[ exp (λ(X − E[X]))] ≤ 1

2
λ2σ2 for all λ ∈ I. (5.3)

Remark 5.11 (a) If I = R, then the bound (5.3) is equivalent to asserting that the centred
random variable X − E[X] is sub-Gaussian with parameter σ > 0.

(b) For I = [0,∞), the bound (5.3) leads immediately to the one-sided tail estimate

P(X ≥ E[X] + t) ≤ exp(−t2/2σ2) , t ≥ 0,

and I = R provides the corresponding two-sided estimate.
�
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Proof of Proposition 5.10. Suppose that I = [0,∞). Using (5.2), our assumption
turns into a differential inequality for the moment generating function,

λM ′
X(λ)−MX(λ) logMX(λ) ≤ 1

2
σ2λ2MX(λ) for all λ ≥ 0 . (5.4)

Define now a function G(λ) := 1
λ

logMX(λ) for λ 6= 0, and then extend the function to
0 by continuity (L’Hospital rule)

G(0) := lim
λ→0

G(λ) =
d

dλ

∣∣∣
λ=0

logMX(λ) = E[X] .

Our assumptions on the existence of the MGF imply differentiability with respect to
the parameter λ. Hence

G′(λ) =
1

λ

M ′
X(λ)

MX(λ)
− 1

λ2
logMX(λ) ,

and thus we can rewrite our differential inequality (5.4) as

G′(λ) ≤ 1

2
σ2 for all λ ∈ I = [0,∞) .

For any λ0 > 0 we can integrate both sides of the previous inequality to arrive at

G(λ)−G(λ0) ≤ 1

2
σ2(λ− λ0) .

Now, letting λ0 ↓ 0 and using the above definition of G(0), we get

G(λ)− E[X] =
1

λ

(
logMX(λ)− log eλE[X]

)
≤ 1

2
σ2λ ,

and we conclude with the statement in (5.3). 2

Proposition 5.12 (Bernstein entropy bound) Suppose there exist B > 0 and σ > 0 such
that the real-valued random variable X satisfies the following entropy bound

H(eλX) ≤ λ2(BM ′
X(λ) +MX(λ)(σ2 −BE[X])) for all λ ∈ [0, B−1) .

Then
logE[eλ(X−E[X])] ≤ σ2λ2(1−Bλ)

−1 for all λ ∈ [0, B−1) . (5.5)

Remark 5.13 As a consequence of the Chernoff argument, Proposition 5.12 implies that X
satisfies the upper tail bound

P(X ≥ E[X] + δ) ≤ exp
( δ

4σ2 + 2Bδ

)
, for all δ ≥ 0 . (5.6)

�

Exercise 5.14 Prove the tail bound (5.6). K
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Proof of Proposition 5.12. We skip the proof of this statement as it employs similar
techniques as in the proof of Proposition 5.10.

2

So far, the entropic method has not provided substantial new insight as all con-
centration results are done via the usual Chernoff bound. We shall now study con-
centration for functions of many random variables.

Definition 5.15 (a) A function f : Rn → R is separately convex if, for every index k ∈
{1, . . . , n}, the univariate function

fk : R→ R ,
yk 7→ fk(yk) := f (x1, . . . , xk−1, yk, xk+1, . . . , xn) ,

is convex for each vector (x1, . . . , xk−1, xk+1, . . . , xn) ∈ Rn−1.

(b) A function f : X → Y for metric spaces (X, dX) and (Y, dY ) is Lipschitz continuous
(sometimes called locally Lipschitz continuous ) if for every x ∈ X there exists a
neighbourhood U ⊂ X such that f |U is globally Lipschitz continuous. Here f |U : U →
Y is the restriction of f to U .

(c) A function f : X → Y for metric spaces (X, dX) and (Y, dY ) is L-Lipschitz continuous
(sometimes called globally Lipschitz continuous) if there exists L ∈ R such that

dY (f (x), f (y)) ≤ LdX(x, y) for all x, y ∈ X . (5.7)

The smallest constant L > 0 satisfying (5.7) is denoted ‖f‖Lip. In the following some
statements hold for global Lipschitz continuity and some only for local Lipschitz con-
tinuity.

Theorem 5.16 (Tail-bound for Lipschitz functions) Let X = (X1, . . . , Xn) ∈ Rn be a
random vector with independent random coordinatesXi supported on the interval [a, b], a <
b, and let f : Rn → R be separately convex and L-Lipschitz continuous with respect to the
Euclidean norm ‖·‖2. Then, for every t ≥ 0,

P(f (X) ≥ E[f (X)] + t) ≤ exp
(
− t2

4L2(b− a)2

)
. (5.8)

Example 5.17 (Operator norm of a random matrix) Let M ∈ Rn×d be a n × d matrix
with independent identically distributed mean-zero random entries Mij, i ∈ {1, . . . , n}, j ∈
{1, . . . , d} supported on the interval [−1, 1].

‖M‖ = max
ν∈Rd : ‖ν‖2=1

{‖Mν‖2} = max
ν∈Rd :
‖ν‖2=1

max
u∈Rn :
‖u‖2=1

{〈u,Mν〉} .

M 7→ ‖M‖ is a function f : Rn×d → R, f (M ) = ‖M‖. To apply Theorem 5.16 above
we shall show that f is Lipschitz and separately convex. The operator norm is the max-
imin/supremum of functions that are linear in the entries of the matrix M , and thus any such
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function is convex and as such separately convex. Moreover, for M,M ′ ∈ Rn×d,

|‖M‖ − ‖M ′‖| ≤ ‖M −M ′‖ ≤ ‖M −M ′‖F ,

where ‖M‖F :=
√∑n

i=1

∑d
j=1 M

2
ij is the Euclidean norm of all entries of the matrix, called

the Frobenius norm of the matrix M . The first inequality shows that f := ‖·‖ is 1-Lipschitz
continuous. Thus Theorem 5.16 implies that, for every t ≥ 0,

P(‖M‖ ≥ E[‖M‖] + t) ≤ e−t
2/16 .

♣

Key ingredients for the proof of Theorem 5.16 are the following two lemmas.

Lemma 5.18 (Entropy bound for univariate functions) LetX and Y two independent, iden-
tically distributed R-valued random variables. Denote by EX,Y the expectation with respect
to X and Y . For any function g : R→ R the following statements hold:

(a)

H(eλg(X)) ≤ λ2EX,Y
[(
g(X)− g(Y )

)2

eλg(X)1l
{
g(X) ≥ g(Y )

}]
, for all λ > 0 .

(b) If in addition the random variable X is supported on [a, b], a < b, and the function g is
convex and Lipschitz continuous, then

H(eλg(X)) ≤ λ2(b− a)2E
[
(g′(X))2eλg(X)

]
, for all λ > 0 .

Lemma 5.19 (Tensorisation of the entropy) Let X1, . . . , Xn be independent real-valued
random variables and f : Rn → R a given function. Then

H(eλf (X1,...,Xn)) ≤ E
[ n∑
k=1

H
(

eλfk(Xk)|X̄k
)]
, for all λ > 0 , (5.9)

where fk is the function introduced in Definition 5.15 and

X̄k = (X1, . . . , Xk−1, Xk+1, . . . , Xn) .

The entropy on the right hand side is computed with respect to Xk for k = 1, . . . , n, by
holding the remaining X̄k fixed. That is,

H
(

eλfk(Xk)
∣∣∣X̄k

)
= EXk [e

λfk(Xk)λfk(Xk)]− EXk [ exp (λfk(Xk))] logEXk [ exp (λfk(Xk))]

is still a function of X̄k and is integrated with respect to E on the right hand side of (5.9).
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We first finish the proof of theorem 5.16.
Proof of Theorem 5.16. For k ∈ {1, . . . , n} and every vector (fixed) X̄k ∈ Rn−1 the
function fk is convex, and hence Lemma 5.18 implies for all λ > 0 that for every fixed
vector X̄k we have

H
(

eλfk(Xk)
∣∣∣X̄k

)
≤ λ2(b− a)2EXk

[
(f ′k(Xk))2eλfk(Xk)

∣∣∣X̄k
]

λ2(b− a)2EXk
[(∂f (X1, . . . , Xk, . . . , Xn)

∂xk

)2

exp (λf(X1, . . . , Xk, . . . , Xn))
∣∣∣X̄k

]
.

With Lemma 5.19 one obtains, writing X = (X1, . . . , Xn),

H
(

eλf (X)
)
≤ λ2(b− a)2E

[ n∑
k=1

EXk
[(∂f (X)

∂xk

)2

exp (λf(X))
∣∣∣X̄k

]
= E

[ n∑
k=1

(∂f (X)
∂xk

)2

exp (λf(X))
]

≤ λ2(b− a)2L2E[eλf (X)] ,

where the equality follows from the fact that the single coordinates Xi, i = 1, . . . , n,
are independent and thus E = EX1 ⊗ · · · ⊗ EXn and where we used the Lipschitz
continuity of f leading to

‖∇f (X)‖2
2 =

n∑
k=1

(∂f (X)
∂xk

)2

≤ L2 almost surely .

The tail bound then follows from the Herbst argument in Proposition 5.10. 2

Proof of Lemma 5.18. Using the fact that X and Y are independent and identical
distributed we have

H(eλg(X)) = EX [λg(X)eλg(X)]− EX [eλg(X)] logEY [eλg(Y )] .

By Jensen’s inequality,
logEY [eλg(Y )] ≥ EY [λg(Y )] ,

and thus, using the symmetry between X and Y , we obtain (we write EX,Y for the
expectation with respect to both, X and Y , when we want to distinguish expectations
with respect to the single random variables. Note that we can easily replace EX,Y by
E),

H(eλg(X)) ≤ EX
[
λg(X)eλg(X)

]
− EX,Y

[
eλg(X)λg(Y )

]
=

1

2
EX,Y

[
λ(g(X)− g(Y ))(eλg(X) − eλg(Y ))

]
=

Symmetry
λE
[
(g(X)− g(Y ))(eλg(X) − eλg(Y )){g(X) ≥ g(Y )}

] (5.10)
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For all s, t ∈ R we have es − et ≤ es(s − t). To see that, assume without loss of
generality that s ≥ t and recall that ex ≥ 1 + x, to see that

es(1− et−s) ≤ es(1− (1 + (t− s))) = es(s− t) .

For s ≥ t, we obtain therefore

(s− t)(es − et)1l{s ≥ t} ≤ (s− t)2es1l{s ≥ t} .

Applying this bound with s = λg(X) and t = λg(Y ) to the inequality (5.10) yields

H(eλg(X)) ≤ λ2E[(g(X)− g(Y ))2eλg(X)1l{g(X) ≥ g(Y )}] .

If in addition the function g is convex, then we have the upper bound

g(x)− g(y) ≤ g′(x)(x− y) ,

and hence, for g(x) ≥ g(y),

(g(x)− g(y))2 ≤ (g′(x))2(x− y)2

which finishes the proof of the statement in Lemma 5.18. 2

Proof of Lemma 5.19. They key ingredient is the variational representation of the
entropy (5.14), see Proposition 5.20 and Remark 5.21 below:

H(eλf (X)) = sup
g∈G
{E[g(X)eλf (X)]} , (5.11)

where G = {g : Ω→ R : eg ≤ 1}. The proof now amounts to some computation once
the following notations are introduced.

For each j ∈ {1, . . . , n} define X̄j = (Xj, . . . , Xn), and for any g ∈ G define the
functions gi, i = 1, . . . , n, as follows using X = (X1, . . . , Xn) and E[ · |X̄j] denote
expectation with respect to X conditions on fixing X̄j:

g1(X1, . . . , Xn) := g(X)− logE[eg(X)|X̄2] ,

gk(Xk, . . . , Xn) := log
E[eg(X)|X̄k]

E[eg(X)|X̄k+1]
, for k = 2, . . . , n .

It is easy to see that by construction we have,

n∑
k=1

gk(Xk, . . . , Xn) = g(X)− logE[eg(X)] ≥ g(X) , (5.12)

and
E[ exp (gk(Xk, . . . , Xn)|Xk+1] = 1 .
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We use this decomposition within the variational representation (5.11) leading to the
following chain of upper bounds:

E[g(X)eλf (X)] ≤
(5.12)

n∑
k=1

E[gk(Xk, . . . , Xn)eλf (X)]

=
n∑
k=1

EX̄k [EXk [g
k(Xk, . . . , Xn)eλf (X)|X̄k]]

≤
(5.11)

n∑
k=1

EX̄k [H(eλfk(Xk)|X̄k)]] .

We conclude with the statement by optimising over the function g ∈ G. 2

Proposition 5.20 (Duality formula of the Entropy) Let Y be a non-negative R-valued ran-
dom variable defined on a probability space (Ω,F , P ) such that E[ϕ(Y )] < ∞, where
ϕ(u) = u logu for u ≥ 0. Then

H(Y ) = sup
g∈U
{E[gY ]} , (5.13)

where U = {g : Ω→ R measurable with E[eg] = 1}.

Proof. Denote Q = egP the probability measure with Radon-Nikodym denisty dQ
dP =

eg with respect to P for some g ∈ U . Denote E the expectation with respect to P
and EQ the expectation with respect to Q, and we write HQ when we compute the
entropy with respect to the probability measure Q. Then

HQ(Y e−g) = EQ[Y e−g( logY − g)]− EQ[Y e−g] logEQ[Y e−g]
= E[Y logY ]− E[Y g]− E[Y ] logE[Y ]

= H(Y )− E[Y g] ,

and as HQ(Y e−g) ≥ 0 (entropy is positive due to Corollary 5.2) we get that

H(Y ) ≥ E[Y g] .

The equality in (5.13) follows by setting eg = Y/E[Y ], i.e., g = logY − logE[Y ]. 2

Remark 5.21 (Variational representation of the entropy) One can easily extend the vari-
ational formula (5.13) in Proposition to the set G = {g : Ω→ R : eg ≤ 1}, namely

H(Y ) = sup
g∈G
{E[gY ]} . (5.14)

�
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5.2 Concentration via Isoperimetric Inequalities

We will see that Lipschitz functions concentrate well on S(n−1). In the following, when
we consider the sphere S(n−1) or

√
nS(n−1) we use the Euclidean metric in Rn instead

of the geodesic metric of the spheres.

Theorem 5.22 (Concentration of Lipschitz functions on the sphere) Let f :
√
nS(n−1) →

R be a Lipschitz function and
X ∼ Unif(

√
nS(n−1)) .

Then
‖f (X)− E[f (X)]‖ψ2

≤ C‖f‖Lip ,

for some absolute constant C > 0.

The statement of Theorem 5.22 amounts to the following concentration result, for
every t ≥ 0,

P
(
|f (X)− E[f (X)]| ≥ t

)
≤ 2 exp

(
− Ct2

‖f‖2
Lip

)
, (5.15)

for some absolute constant C > 0. We already know this statement for linear func-
tions, see Theorem 3.21 saying that when X ∼

√
n(S(n−1)) we have that X (or any

linear map) is sub-Gaussian. To prove the extension to any nonlinear Lipschitz func-
tion we need two fundamental results, the so-called isoperimetric inequalities, which
we can only state in order not to overload the lecture.

Definition 5.23 Suppose f : Rn → R is some function. It’s level-sets (or sub-level sets)
are

Lf (c) := {x ∈ Rn : f (x) ≤ c} , c ∈ R .

Theorem 5.24 (Isoperimetric inequality on Rn) Among all subsets A ⊂ Rn with given
volume, Euclidean balls have minimal surface area. Moreover, for any ε > 0, Euclidean
balls minimise the volume of the ε-neighbourhood of A,

Aε := {x ∈ Rn : ∃ y ∈ A : ‖x− y‖2 ≤ ε} = A+ εB (n) ,

where B (n) is the unit ball in Rn.

Theorem 5.25 (Isoperimetric inequality on the sphere) Let ε > 0. Then, among all A ⊂
S(n−1) with given area σn−1(A), the spherical caps minimise the area of the ε-neighbourhood
σn−1(Aε),

Aε := {x ∈ S(n−1) : ∃ y ∈ A : ‖x− y‖2 ≤ ε} .

A spherical cap C(a, ε) centred at a point a ∈ S(n−1) is the set

C(a, ε) := {x ∈ S(n−1) : ‖x− a‖2 ≤ ε} .

The following lemma is a crucial step in the proof of Theorem 5.22.
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Lemma 5.26 (Blow-up) For anyA ⊂
√
nS(n−1), denote σ the normalised area on the sphere.

if σ(A) ≥ 1
2
, then, for every t ≥ 0,

σ(At) ≥ 1− 2 exp(−ct2)

for some absolute constant c > 0.

Proof. For the hemisphere H = {x ∈
√
nS(n−1) : x1 ≤ 0}, we have σ(A) ≥ 1

2
=

σ(H). The t-neighbourhood Ht of the hemisphere H is a spherical cap, and the
isoperimetric inequality in Theorem 5.25 gives

σ(At) ≥ σ(Ht) .

We continue as in our proof of Theorem 3.21 noting that the normalised measure σ
is the uniform probability measure on the sphere such that

σ(Ht) = P(X ∈ Ht) .

Recall that in that context, X ∼ Unif(
√
nS(n−1)), and thus X is Sub-Gaussian accord-

ing to Theorem 3.21. Because of

Ht ⊃
{
x ∈
√
nS(n−1) : x1 ≤

t√
2

}
we have

σ(Ht) ≥ P(X1 ≤ t/
√

2) = 1− P(X1 > t/
√

2) ≥ 1− 2 exp (− ct2) ,

for some absolute constant c > 0. 2

Proof of Theorem 5.22. Without loss of generality we assume that ‖f‖Lip = 1. Let
M denote the median of f (X), that is,

P(f (X) ≤M ) ≥ 1

2
and P(f (X) ≥M ) ≥ 1

2
.

The set A = {x ∈
√
nS(n−1) : f (x) ≤M} is a level (sub-level) set of f with P(X ∈ A) ≥

1
2
. Then Lemma 5.26 implies that P(X ∈ At) ≥ 1 − 2 exp(−Ct2) for some absolute

constant C > 0. We claim that, for every t ≥ 0,

P(X ∈ At) ≤ P(f (X) ≤M + t) . (5.16)

To see (5.16), note that X ∈ At implies ‖X − y‖2 ≤ t for some point y ∈ A. By our
definition of the set A, f (y) ≤M . As ‖f‖Lip = 1, we have

f (X)− f (y) ≤ |f (X)− f (y)| ≤ ‖X − y‖2

and thus
f (X) ≤ f (y) + ‖X − y‖2 ≤M + t ,
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which implies (5.16). Hence

P(f (X) ≤M + t) ≥ 1− 2 exp(−Ct2) .

We now repeat our argument for −f : We define Ã = {x ∈
√
nS(n−1) : − f (x) ≤ M}.

Then P(X ∈ Ã) ≥ 1/2 and thus P(X ∈ Ãt) ≥ 1 − 2 exp(−Ct2). Now X ∈ Ã implies
‖X − y‖2 ≤ t for some y ∈ Ã, and f (y) ≥M by definition of Ã.

−f (X)− (−f (y)) ≤ ‖X − y‖2 ≤ t⇒ f (X) ≥ f (y)− t ≥M − t ,

and thus P(f (X) ≥ M − t) ≥ 1 − 2 exp(−C̃t2) for some absolute constant C̃ > 0.
Combining our two estimates we obtain

P(|f (X)−M | ≤ t) ≥ 1− 2 exp (− Ĉt2)

for some absolute constant Ĉ > 0, and thus the immediate tail estimate shows that

‖f (X)−M‖ψ2
≤ C

for some absolute constant C > 0. To replace the median M by the expectation
E[f (X)] note that although the median is not unique it is a fixed real number deter-
mined by the distribution of the random variable X and the function f . We use the
centering Lemma 2.27 to get

|‖f (X)‖ψ2
− ‖M‖ψ2

| ≤ ‖f (X)−M‖ψ2
≤ C

‖M‖ψ2
≤ C̃ ⇒ −C̃ + ‖f (X)‖ψ2

≤ C

⇒ ‖f (X)‖ψ2
≤ C̃ + C

⇒ ‖f (X)− E[f (X)]‖ψ2
≤ C .

2

Definition 5.27 (Isoperimetric problem) Let (E, d) be a metric space and B(E) its Borel-
σ-algebra, and P ∈ M1(E,B(E)) some given probability measure and X an E-valued
random variable.

Isoperimteric problem: Given p ∈ (0, 1) and t > 0, find the sets A with P (X ∈ A) ≥ p
for which P (d(X,A) ≥ t) is maximal, where

d(X,A) := inf
y∈A
{d(X, y)} .

Concentration function:

α(t) := sup
A⊂E :
P (A)≥1/2

{P (d(X,A) ≥ t)} = sup
A⊂E :
P (A)≥1/2

{P (Ac
t) ,

where At is the t-blow-up of the set A, At = {x ∈ E : d(x,A) < t}. For a given function
f : E → R denote the median of f (X) by Mf (X).
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There are many isoperimetric inequalities, we only mention the Gaussian isoperi-
metric inequality as it is widely used. Recall that the Gaussian (standard normal
distribution) is given by the probability measure γn ∈M1(Rn,B(Rn)),

γn(A) =

∫
A

(2π)−n/2e−‖x‖
2/2 dx1 · · · dxn , A ⊂ B(Rn) .

The concentration function for the one-dimensional Gaussian (n = 1) is just α(t) =
1− Φ(t) with Φ(t) = 1√

2π

∫∞
t

eu2/2 du. In the following statement half-spaces are sets
of the form

A = {x ∈ Rn : 〈x, u〉 < λ} , u ∈ Rn, λ ∈ R , or A = {x ∈ Rn : x1 ≤ z}, z ∈ R .

Theorem 5.28 (Gaussian isoperimetric inequality) Let ε > 0 be given. Among all A ⊂
Rn with fixed Gaussian measure γn(A), the half-spaces minimise the Gaussian measure
γn(Aε) of the ε-neighbourhood Aε.

From this we can obtain the following concentration result. The proof is using
similar steps as done above, and we leave the details as exercise for the reader.

Theorem 5.29 (Gaussian concentration) Suppose X ∼ N(0, 1ln), and let f : Rn → R be a
Lipschitz continuous function. Then

‖f (X)− E[f (X)]‖ψ2
≤ C‖f‖Lip

for some absolute constant C > 0.

5.3 Some matrix calculus and covariance estimation

In this section we are generalising our concentration to random matrices. The main
focus is the following Bernstein type result for random matrices

Theorem 5.30 (Matrix Bernstein inequality) Let X1, . . . , XN be independent mean-zero
random n × n symmetric matrices such that ‖Xi‖ ≤ K almost surely for all i = 1, . . . , N .
Then, for every t ≥ 0, we have

P
(
‖
N∑
i=1

Xi‖ ≥ t
)
≤ 2n exp

(
− t2/2

σ2 +Kt/3

)
,

where σ2 =
∥∥∥∑N

i=1 E[X2
i ]
∥∥∥ is the norm of the matrix variance of the sum.

For the proof we shall introduce a few well-known facts about matrix calculus.
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Definition 5.31 (a) For any symmetric n × n matrix X with eigenvalues λi = λi(X) and
corresponding eigenvectors ui the function of a matrix for any given f : R → R is
defined as the n× n matrix

f (X) :=
n∑
i=1

f (λi)uiuTi .

(b) Suppose X is a n × n matrix. We write X < 0 if X is positive-semidefinite. Equiva-
lently, X < 0 if all eigenvalues of X are positive, i.e., λi ≥ 0. For Y ∈ Rn×n, we set
X < Y and Y 4 X if X − Y < 0.

We borrow the following trace inequalities from linear algebra. Recall the notion
of the trace of a matrix.

Golden-Thompson inequality: For any n×n symmetric matrices A and B we have

Trace (eA+B) ≤ Trace (eAeB) .

Lieb’s inequality: Suppose H is a n × n symmetric matrix and define the function
on matrices

f (X) := Trace ( exp (H + logX)) .

Then f is concave on the space of positive-definite n× n matrices.

In principle one can prove the Matrix Bernstein inequality in Theorem 5.30 with these
two results from matrix analysis. If X is a random positive-definite matrix then Lieb’s
and Jensen’s inequality imply that

E[f (X)] ≤ f(E[X]) .

We now apply this with X = eZ for some n× n symmetric matrix Z:

Lemma 5.32 (Lieb’s inequality for random matrices) Let H be a fixed n × n symmetric
matrix and Z be a random n× n symmetric matrix. Then

E[Trace ( exp (H + Z))] ≤ Trace ( exp (H + logE[eZ])) . (5.17)

The proof of Theorem 5.30 follows below and is based on the following bound of
the moment generating function (MGF).

Lemma 5.33 (Bound on MGF) Let X be an n × n symmetric mean-zero random matrix
such that ‖X‖ ≤ K almost surely. Then

E[ exp (λX)] ≤ exp (g(λ)E[X2]) , where g(λ) =
λ2/2

1− |λ|K/3
, for |λ| < 3/K .

Proof of Lemma 5.33. For z ∈ C we can easily obtain the following estimate

ez ≤ 1 + z +
1

1− |z|/3
z2

2
for |z| < 3 .
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This can can easily derived from the Taylor series of the exponential function in
conjunction with the lower bound p! ≥ 2× 3p−2 and the geometric series. Details are
left to the reader. Now with z = λx, |x| ≤ K, |λ| < 3/K, we then obtain

eλx ≤ 1 + λx+ g(λ)x2 .

Now we transfer this inequality from scalar to matrices:

eλX 4 1ln + λX + g(λ)X2 ,

and then, after taking the expectation and using E[X] = 0, to arrive at

E[eλX ] ≤ 1 + g(λ)E[X2] .

To finish, use the inequality 1 + z ≤ ez to conclude with

E[eλX ] ≤ exp (g(λ)E[X2]) .

2

Proposition 5.34 (Expectation bound via the Bernstein Theorem) Under all the assump-
tions in Theorem 5.30 we have the tail bound

P
(
‖
N∑
i=1

Xi‖ ≥ t
)
≤ 2n exp

(
− t2/2

σ2 +Kt/3

)
.

Then

E
[∥∥∥ N∑

i=1

Xi

∥∥∥] ≤ 2σ
(√2π

2
+
√

log(2n)
)

+
4

3
K
(

1 + log(2n)
)
. (5.18)

Proof. Define b := K
3

. Then the right hand side in Theorem 5.30 reads as

2n exp
(
− t2

2(σ2 + bt)

)
.

We will use a crude union-type bound on the tail probability itself by observing that
either σ2 ≤ bt or σ2 ≥ bt. Define Z :=

∑N
i=1Xi. For every t ≥ 0,

P(‖Z‖ ≥ t) ≤ 2n exp
(
− t2

2(σ2 + bt)

)
≤ 2nmax

{
exp

(
− t

4b

)
, exp

(
− t2

4σ2

)}
≤ 2n exp

(
− t

4b

)
+ 2n exp

(
− t2

4σ2

)
.

We shall combine this with the trivial inequality P(‖Z‖ ≥ t) ≤ 1. Thus

P(‖Z‖ ≥ t) ≤ 1 ∧ 2n exp
(
− t

4b

)
+ 1 ∧ 2n exp

(
− t2

4σ2

)
,



CONCENTRATION OF MEASURE - GENERAL CASE 69

and
E[‖Z‖] =

∫ ∞
0

P(‖Z‖ ≥ t) dt =: I1 + I2 ,

with I1 =
∫∞

0
1 ∧ 2n exp(−t/(4b)) dt and I2 =

∫∞
0

1 ∧ 2n exp(−t2/(4σ2)) dt. Solve
2n exp(−t1/(4b)) = 1 to obtain t1 = 4b log(2n), and then

I1 =

∫ t1

0

1 dt+

∫ ∞
t1

(2n) exp(−t/(4b)) dt = t1 + 4b = 4b(1 + log(2n)) .

Solve 2n exp(−t2/(4σ2)) = 1 to obtain t2 = 2σ
√

log(2n), and then

I2 =

∫ t2

0

1 dt+

∫ ∞
t2

(2n) exp(−t2/(4σ2)) dt =
t̃=t/2σ

t2 + 2σ

∫ ∞
√

log(2n)
(2n)e−t̃

2/2 dt̃

≤ 2σ(
√

log(2n) +
√
π) ,

where we used another transformation for the inequality, namely, x = t̃ −
√

log(2n).
Equivalently, we may use 2ne−t̃2/2 ≤ e−x2 for all t ≥

√
log(2n). We arrive at

E[‖Z‖] ≤ 2σ
(√π

2
+
√

log(2n)
)

+ 4b
(

1 + log(2n)
)
.

2

Proof of Theorem 5.30.
Step 1: Define S :=

∑N
i=1Xi and λm(S) := max1≤i≤n λi(S) the largest eigenvalue of

S. Then ‖S‖ = max{λm(S), λm(−S)}.

P(λm(S) ≥ t) = P(eλλm(S) ≥ eλt) ≤ e−λtE[eλλm(S)] .

The eigenvalues of eλS are eλλi(S), and thus

E := E[eλλm(S)] = E[λm(eλS)] .

All eigenvalues of eλS are positive, hence the maximal eigenvalue of eλS is bounded
by the sum of all eigenvalues, that is, by the trace of eλS. Henceforth

E ≤ E[Trace (eλS)] . (5.19)

Step 2: We now turn to bound the expectation of the trace using Lieb’s inequality, in
particular Lemma 5.32. We write the exponent of eλS separately, namely splitting off
the last term of the sum, writing

Trace (e
∑N−1
i=1 λXi+λXN ) . (5.20)

When we take the expectation of (5.20) we condition on X1, . . . , XN−1 and apply
Lieb’s inequality (Lemma 5.32 for the fixed matrix H :=

∑N−1
i=1 λXi), and obtain

E ≤ E
[
Trace

(
eH+λXN

)]
= EX1,...,XN1

⊗ EXN
[
Trace

(
eH+λXN

)∣∣∣X1, . . . , XN−1

]
≤ EX1,...,XN1

[
Trace

(
exp

(N−1∑
i=1

λXi + log ÊXN [ exp(λXN )]
))]

,
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where Ê is the conditional expectation with respect toXN conditioned onX1, . . . , XN−1.
We repeat this application of Lemma 5.32 successively for λXN−1, . . . , λX1, to arrive
at

E ≤ Trace
(

exp
( N∑
i=1

logEXi
[
eλXi

]))
.

Step 3: We use Lemma 5.33 to bound E[eλXi] for each Xi, i = 1, . . . , N ,

EXi [eλXi ] ≤ exp
(
g(λ)E[X2

i ]
)
, i = 1, . . . , N .

Step 4: With Step 3 we get

E ≤ Trace ( exp (g(λ)Z)) ,

where Z :=
∑N

i=1 E[X2
i ]. The trace of exp(g(λ)Z) is a sum of n positive eigenvalues,

E ≤ nλm(exp(g(λ)Z)) = n exp(g(λ)λm(Z)) = n exp(g(λ)‖Z‖) = n exp(g(λ)σ2) .

Thus, with Step 1 and Lemma 5.33,

P(λm(S) ≥ t) ≤ n exp(−λt+ g(λ)σ2) for |λ| < 3/K .

The minimum in the exponent is attained for λ = t/(σ2 + 2Kt/3). We finally conclude
with

P(λm(S) ≥ t) ≤ n exp
(
− t2/2

σ2 +Kt/3

)
,

and repeating our steps for λm(−S) we conclude with the statement of the theorem.
2

5.4 Application - Johnson-Lindenstrauss Lemma

Before we study an application of our results in the previous sections we recall our
basic results. In Theorem 5.16 we have a concentration result for Lipschitz im-
ages of random vector with independent coordinates using entropy methods. Using
isoperimetric inequalities in the Euclidean space we show in Theorem 5.22 a con-
centration result for X ∼

√
nS(n−1). Note that such a random vector does not have

independent coordinates. In the following exercise it is easy to extend this result to
the unit sphere.

Exercise 5.35 (Concentration for the unit sphere) Let f be a Lipschitz function on the
unit sphere S(n−1). Show that for X ∼ Unif(S(n−1)) one has

‖f (X)− E[f (X)]‖ψ2
≤
C‖f‖Lip√

n
.

Equivalently, for every t ≥ 0, we have

P(|f (X)− E[f (X)]| ≥ t) ≤ 2 exp
(
− cnt2

‖f‖2
Lip

)
.

KK
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In Theorem 5.29 we have a concentration result for Lipschitz images of normally
distributed random vectors using the Gaussian isoperimetric inequality. One can
find similar concentration results for other metric spaces. recall the Hamming cube
and its metric dH in Definition 4.8. We can define the uniform distribution on the
Hamming cube H as the probability measure P (A) := |A|/2 for any subset A ⊂ H.
IfX ∼ Unif(H), then the coordinatesXi ofX are Bernoulli distributed with parameter
1/2. Then one can obtain the following concentration result.

Theorem 5.36 (Concentration for the Hamming cube) SupposeX ∼ Unif(H) and f : H→
R. Then

‖f (X)− E[f (X)]‖ψ2
≤
C‖f‖Lip√

n
.

We now want to discuss an important application of our concentration result
for the Euclidean sphere. Suppose we have N data points in Rn, i.e., a sample
Xi ∈ Rn, i = 1, . . . , N . We would like to reduce the dimension of the data without
sacrificing too much of its geometry. Consider a subspace E ⊂ Rn with dimension
dim(E) = m � n. Denote Gn,m the set (manifold) consisting of all m-dimensional
subspaces of Rn. If we choose m = 1 we can identify Gn,1 with the unit sphere S(n−1).
To see this recall that any 1-dimensional subspace of Rn can be generated by a
direction vector u ∈ S(n−1), i.e.,

E = {αu : α ∈ R} .

Then the set on the right hand side generate the subspaceE with dimension dim(E) =
1. So any concentration result for Gn,m includes the concentration for the sphere as
a special case. We need a metric and a probability measure for Gn,m. The distance
(metric) between subspaces E and F can be defined as the operator norm

d(E,F ) := ‖PE − PF‖ ,

where PE(PF ) is the orthogonal projection onto E, i.e., PE : Rn → E, PE(Rn) = E. If
we define P to be the uniform (Haar) measure then we expect concentration results
for X ∼ Unif(Gn,m) in the metric space (Gn,m, d, P ).

Theorem 5.37 Suppose that X ∼ Unif(Gn,m) and let f : Gn,m → R some function. Then

‖f (X)− E[f (X)]‖ψ2
≤
C‖f‖Lip√

n
.

The proof of that theorem goes beyond what we can do in this lecture. It is based
on concentration results for the special orthogonal group and the fact that Gn,m can
be written as quotient of orthogonal groups.
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We now present the Johnson-Lindenstrauss Lemma for the N data points and prove
the statement that the geometry of the given data is well preserved if we choose E
to be a random subspace of dimension dim(E) = m ∼ logN , where ∼ means that in
the limitN →∞ the quotient of both sides converges to 1. Thus we consider random
subspaces E ∼ Unif(Gn,m) and the space (Gn,m, d, P ) with P being the uniform (Haar)
measure. Note that we have the following invariance.

P (E ∈ E) = P (U (E) ∈ E) , for any subset E ⊂ Gn.m and any orthogonal matrix U .

Theorem 5.38 (Johnson-Lindenstrauss-Lemma) Let H = {X1, . . . , XN}, Xi ∈ Rn, i =
1, . . . , N , be a set of N points in Rn and pick ε > 0 and assume that m ≥ C/ε2 logN
for some absolute constant C > 0. Suppose E ∼ Unif(Gn,m) and denote P the orthogonal
projection onto E. Then, with probability at least 1 − 2 exp(−cε2m) the scaled projection
Q :=

√
n
m
P is an approximate isometry on the set H, that is,

(1− ε)‖x− y‖2 ≤ ‖Qx−Qy‖2 ≤ (1 + ε)‖x− y‖2 , for all x, y ∈ H .

We base the proof of the theorem on the concentration of Lipschitz functions
for the sphere in Theorem 5.22 respectively its version on the unit sphere in Exer-
cise 5.35. We consider first random projections P acting on a fixed vector x− y, and
then we take the union bound over all N2 differences x − y, x, y ∈ H. For any fixed
vector the next lemma gives the desired properties.

Lemma 5.39 Let P be an orthogonal projection from Rn onto a random m-dimensional
subspace uniformly distributed in Gn,m. Let z ∈ Rn be a fixed point and choose ε > 0. Then
the following holds.

(a)

(E[‖Pz‖2
2)

1/2
=

√
m

n
‖z‖2 .

(b) With probability at least 1− 2 exp(−cε2m), we have

(1− ε)
√
m

n
‖z‖2 ≤ ‖Pz‖2 ≤ (1 + ε)

√
m

n
‖z‖2 .

Proof. (a) Without loss of generality we can assume that ‖z‖2 = 1.This is possible
as for z = 0 the statement holds trivially and for z 6= 0 we can simply multiply by
1/‖z‖2. Instead of a random projection P we can fix a projection and consider z ∼
Unif(S(n−1)). According to the above mentioned invariance we can assume without
loss of generality that P is the coordinate projection onto the first m coordinates in
Rn. Thus

E[‖Pz‖2
2] = E

[ m∑
i=1

z2
i

]
=

m∑
i=1

E[z2
i ] = mE[z2

1 ] ,
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where the last equality follows from the fact that the coordinates zi are identically
distributed. As z ∼ Unif(S(n−1)) we have

1 =
n∑
i=1

E[z2
i ] = nE[z2

1 ] ,

and thus E[z2
1] = 1/n and therefore we get the statement that

E[‖Pz‖2
2] =

m

n
,

and thus (a).

(b) Define the function f : S(n−1) → R by f (x) := ‖Px‖2. Then f is a Lipschitz function
with ‖f‖Lip = 1:

|f (x)− f (y)| = |‖Px‖2 − ‖Py‖2| ≤ ‖Px− Py‖2 ≤ ‖P‖‖x− y‖2 = ‖x− y‖2

as ‖P‖ = 1. Thus Exercise 5.35 (Theorem 5.22) give the concentration result

P(|F (X)− E[F (X)]| ≥ t) ≤ 2 exp (− C̃nt2) . (5.21)

Statement (5.21) is not quite (b) but we can replace the expectation E[f (X)] by√
m/n as follows. First note that due to Jensen

E[F (X)] ≤
√
m

n
= E[f (X)2]

1/2
.

Then −t ≤ f (X)− E[f (X)] ≤ t is equivalent to

−t+ E[f (X)]−
√
m

n
≤ f (X)−

√
m

n
≤ t+ E[f (X)]−

√
m

n
.

With a suitable constant c > 0 to accommodate the change in t we arrive at state-
ment (b) by choosing t = ε

√
m/n.. 2

Proof of Theorem 5.38. We consider the difference set

H −H = {x− y : x, y ∈ H} .

We shall show, with the required minimal probability, that

(1− ε)‖z‖2 ≤ ‖Q‖2 ≤ (1 + ε)‖z‖2

holds for all differences z ∈ H−H. Setting Q :=
√

n
m
P , this is equivalent to showing

that

(1− ε)
√
m

n
‖z‖2 ≤ ‖Pz‖2 ≤ (1 + ε)

√
m

n
‖z‖2 . (5.22)

For any fixed z, Lemma 5.39 states that (5.22) holds with probability at least 1 −
2 exp(−cε2m). All what remains is to take a union bound. First note that (5.22) holds
simultaneously for all z ∈ H −H. with probability at least

1− |H −H|2 exp(−cε2m) ≥ 1−N22 exp(−cε2m) .

If we choose m ≥ (2/cε2) logN + 1, then we conclude with the statement of the
theorem. 2
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6 Basic tools in high-dimensional probability

6.1 Decoupling

Definition 6.1 Let X1, . . . , Xn be independent real-valued random variables and aij ∈
R, i, j = 1, . . . , n. The random quadratic form

n∑
i,j=1

aijXiXj = XTAX = 〈X,AX〉 , X = (X1, . . . , Xn) ∈ Rn, A = (aij) ,

is called chaos in probability theory.

For simplicity, we assume in the following that the random variables Xi have
mean-zero and unit variances,

E[Xi] = 0 , Var(Xi) = 1 , i = 1, . . . , n .

Then

E[〈X,AX〉] =
n∑

i,j=1

aijE[XiXj] =
m∑
i=1

aii = Trace (A) .

We shall study concentration properties for chaos. This time we need to develop
tools to overcome the fact that we have sums of not necessarily independent random
variables. The idea is to use the decoupling technique . The idea is to study the
following random quadratic form,

n∑
i,j=1

aijXiX
′
j = XTAX ′ = 〈X,AX ′〉 , (6.1)

where X ′ = (X ′1, . . . , X
′
n) is a random vector independent of X but with the same

distribution as X. Obviously, the bilinear form in (6.1) is easier to study, e.g., when
we condition on X ′ we simply obtain a linear form for the random vector X. The
vector X ′ is called an independent copy of X, and conditioning on X ′,

〈X,AX ′〉 =
n∑
i=1

ciXi with ci =
n∑
j=1

aijX
′
j ,

is a random linear form for X depending on the condition of the independent copy
X ′.

Lemma 6.2 Let Y andZ be independent random vectors in Rn such that EY [Y ] = EZ[Z] =
0 (we write indices when we want to stress the expectation for a certain random variable).
Then, for every convex function F : Rn → R, one has

E[F (Y )] ≤ E[F (Y + Z)] .
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Proof. Fix y ∈ Rn and use EZ[Z] = 0 and the convexity to get

F (y) = F (y + EZ[Z]) ≤ EZ[F (y + Z)] .

We choose y = Y and take expectation with respect to Y ,

EY [F (Y )] = EY [F (Y + EZ[Z])] = EY [F (EZ[Y + Z])] ≤ EY ⊗ EZ[F (Y + Z)] .

2

Theorem 6.3 (Decoupling) Let A be an n× n diagonal-free (i.e., diagonal entries vanish)
and X = (X1, . . . , Xn) ∈ Rn be a random vector with independent mean-zero coordinates
Xi, and X ′ an independent copy of X . Then, for every convex function F : R→ R, one has

E[F (〈X,AX〉)] ≤ E[F (4〈X,AX ′〉)] . (6.2)

Proof. The idea is to study partial chaos∑
(i,j)∈I×Ic

aijXiXj

with a randomly chosen subset I ⊂ {1, . . . , n}. Let δ1, . . . , δn be independent Bernoulli
random variables with P(δi = 0) = P(δi = 1) = 1

2
. Then define the random set

I = {i : δi = 1}. We condition on the random variable X and obtain for i 6= j using
aii = 0 and E[δi(1− δj)] = 1/4,

〈X,AX〉 =
∑
i 6=j

aijXiXj = 4Eδ
[∑
i 6=j

δi(1− δj)aijXiXj

]
= 4EI

[ ∑
(i,j)∈I×Ic

aijXiXj

]
,

where Eδ is expectation with respect to the Bernoulli random variables and EI is
expectation with respect to the Bernoulli random variables for I = {i : δi = 1}. Apply
F on both sides and use Jensen (w.r.t. to EI) and and take the expectation w.r.t. to
EX in conjunction with Fubini to get

EX [F (〈X,AX〉)] ≤ EIEX
[
F
(

4
∑

(i,j)∈I×Ic

aijXiXj

)]
.

There is a realisation of a random set I such that

EX [F (〈X,AX〉)] ≤ EX
[
F
(

4
∑

(i,j)∈I×Ic

aijXiXj

)]
. (6.3)

We fix such an realisation of I until the end. The random variables (Xi)i∈I and
(Xj)j∈Ic are independent and thus the distribution of the sum on the right hand side
will not change if we replace Xj by X ′j. Hence we replace Xj, j ∈ Ic, by X ′j on the
right hand side of (6.3) to get

EX [F (〈X,AX〉)] ≤ E
[
F
(

4
∑

(i,j)∈I×Ic

aijXiX
′
j

)]
. (6.4)
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It the remains to show that

R.H.S. of (6.4) ≤ E
[
F
(

4
∑

(i,j)∈[n]×[n]

aijXiX
′
j

)]
, (6.5)

where [n] = {1, . . . , n}. We now split the argument of the function F on the right
hand side of (6.5) into three terms,∑

(i,j)∈[n]×[n]

aijXiX
′
j =: Y + Z1 + Z2 ,

with

Y :=
∑

(i,j)∈I×Ic

aijXiX
′
j , Z1 :=

∑
(i,j)∈I×I

aijXiX
′
j , Z2 :=

∑
(i,j)∈Ic×[n]

aijXiX
′
j .

We now condition on all random variables except (X ′j)j∈I and (Xi)i∈Ic. We denote
the corresponding conditional expectation by Ẽ. The conditioning already fixes Y .
Furthermore, Z1 and Z2 have zero expectation. Applications of Lemma 6.2 leads to

F (4Y ) ≤ Ẽ[F (4Y + 4Z1 + 4Z2)] ,

and thus
E[F (4Y )] ≤ E[F (4Y + 4Z1 + 4Z2)] .

This proves (6.5) and finishes the argument by taking the final expectation with re-
spect to I. 2

Theorem 6.4 (Hanson-Wright inequality) Let X = (X1, . . . , Xn) ∈ Rn be a random vec-
tor with independent mean-zero sub-Gaussian coordinates and A be an n× n matrix. Then,
for every t ≥ 0,

P
(
|〈X,AX〉 − E[〈X,AX〉]| ≥ t

)
≤ 2 exp

(
− cmin

{( t2

K4‖A‖2
F

)
,
( t

K2‖A‖

)})
,

where K := max1≤i≤n{‖Xi‖ψ2
}.

We prepare the proof with the following two lemmas.

Lemma 6.5 (MGF of Gaussian chaos) Let X,X ′ ∼ N(0, 1ln), X and X ′ be independent,
and let A be an n× n matrix. Then

E[ exp (λ〈X,AX ′〉)] ≤ exp (Cλ2‖A‖F) , for all |λ| ≤ C/‖A‖ ,

for some absolute constant C > 0.
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Proof. We use the singular value decomposition of the matrixA, see Definition 4.10:

A =
n∑
i=1

siuiv
T
i

〈X,AX ′〉 =
n∑
i=1

si〈ui, X〉〈vi, X ′〉

〈X,AX ′〉 =
n∑
i=1

siYiY
′
i ,

where Y = (〈u1, X〉, . . . , 〈un, X〉) ∼ N(0, 1ln) and Y ′ = (〈v1, X
′〉, . . . , 〈vn, X ′〉) ∼

N(0, 1ln). Independence yields

E[ exp (λ〈X,AX ′〉)] =
n∏
i=1

E[ exp (λsiYiY
′
i )] .

For each i ∈ {1, . . . , n} we compute taking the expectation with respect to Y ′, i.e.,
the conditional expectation holding the Yi ’s fixed,

E[ exp (λsiYiY
′
i )|Y ] = E[ exp (λ2s2

iY
2
i /2)] ≤ exp (Cλ2s2

i ) , provided λ2s2
i ≤ C ,

where the first equality follows from the fact the MGF of X ∼ N(0, 1) is E[exp(λX)] =
exp(λ2/2), and the inequality follows from the fact that Yi are Gaussian and thus sub-
Gaussian and therefore the square Y 2

i is sub-exponential and thus property (v) in
Proposition 2.28 gives the bound.

E[ exp (λ〈X,AX ′〉)] ≤ exp
(
Cλ2

n∑
i=1

s2
i

)
, provided λ ≤ C

max1≤i≤n{s2
i }
.

We conclude with
∑n

i=1 s
2
i = ‖A‖2

F and max1≤i≤n{si} = ‖A‖. 2

Lemma 6.6 (Comparison) Let X and X ′ be independent mean-zero sub-Gaussian random
vectors in Rn with ‖X‖ψ2

≤ K and ‖X ′‖ψ2
≤ K. Furthermore, let Y, Y ′ be independent

normally distributed random vectors Y, Y ′ ∼ N(0, 1ln), and A be an n× n matrix. Then

E[ exp (λ〈X,AX ′〉)] ≤ E[ exp (CK2λ〈Y,AY ′〉)] .

Proof. We condition on X ′ and take the expectation with respect to X (denoted by
EX). Then 〈X,AX ′〉 is conditionally sub-Gaussian and

EX [ exp (λ〈X,AX ′〉)] ≤ exp (Cλ2K2‖AX ′‖2
2)] , λ ∈ R .

We now replace X by Y but still conditioning on X ′ (we replace one at a time),

EY [ exp (µ〈Y,AX ′〉)] = exp (µ2‖AX ′‖2
2/2) , µ ∈ R .
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Choosing µ =
√

2CλK, we can match our estimates to get

EX [ exp (λ〈X,AX ′〉)] ≤ EY [ exp (µ〈Y,AX ′〉)] = exp (Cλ2K2λ‖AX ′‖2
2)] .

We can now take the expectation with respect to X ′ on both sides and see that we
have successfully replaced X by Y . We can now repeat the same procedure for X ′

and Y ′ to obtain our statement. 2

Proof of Theorem 6.4. Without loss of generality, K = 1. It suffices to show the
one-sided tail estimate. Denote

p = P(〈X,AX〉 − E[〈X,AX〉] ≥ t) .

Write

〈X,AX〉 − E[〈X,AX〉] =
n∑
i=1

aii(X
2
i − E[X2

i ]) +
∑

i,j : i 6=j

aijXiXj ,

and thus the problem reduces to estimating diagonal and off-diagonal sums:

p ≤ P
( n∑
i=1

aii(X
2
i − E[X2

i ]) ≥ t/2
)

+ P
( ∑
i,j : i 6=j

aijXiXj ≥ t/2
)

=: p1 + p2 .

Diagonal sum: X2
i −E[X2

i ] are independent mean-zero sub-exponential random
variables. Thus, using centering (see Exercise 3.2) and Lemma 2.31 we have

‖X2
i − E[X2

i ]‖ψ1
≤ C‖X2

i ‖ψ1
≤ C‖Xi‖2

ψ2
≤ C .

Then Bernstein’s inequality (see Exercise 3.3 using it with 1/N replaced by Aii))
implies that

p1 ≤ exp
(
− C min

{( t2∑n
i=1 a

2
ii

)
,
( t

max1≤i≤n{|aii|}

)}
.

Off-diagonal sum: S :=
∑

i 6=j aijXiXj and λ > 0. Then

E[exp(λS)] ≤ E[exp(4λ〈X,AX ′〉)] ; Decoupling - Theorem 6.3
≤ E[exp(C1λ〈Y,AY ′〉)] ; Comparison - Lemma 6.6

≤ exp(Cλ2‖A‖2
F) provided |λ| ≤ C̄/‖A‖ ; Gaussian chaos - Lemma 6.5 .

Thus
p2 ≤ exp(−λt/2)E[exp(λS)] ≤ exp(−λt/2 + Cλt2‖A‖2

F) .

Optimising over 0 ≤ λ ≤ C̄/‖A‖, we get a solution λ = t
4C‖A‖2F

as long as t ≤ C̄4C‖A‖2F
‖A‖ .

Inserting this solution gives the exponent −t2/(16C‖A‖2
F). For t > C̄4C‖A‖2F

‖A‖ we have
λ = C̄

‖A‖ and obtain the other exponent which is linear in t. Thus we have some
absolute constant C > 0 such that

p2 ≤ exp
(
− C min

{( t2

‖A‖2
F

)
,
( t

‖A‖

)
}
)
.

2
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6.2 Concentration for Anisotropic random vectors

We now study anisotropic random vectors, which have the form BX where B is a
fixed matrix and where X is an isotropic random vector.

Exercise 6.7 Let B be an m × n matrix and X be an isotropic random vector in Rb. Show
that

E[‖BX‖2
2] = ‖B‖2

F .

K

Theorem 6.8 (Concentration for random vectors) Let B be an m × n matrix and X =
(X1, . . . , Xn) ∈ Rn a random vector with independent mean-zero unit variance sub-Gaussian
coordinates. Then

‖‖BX‖2 − ‖B‖F‖ψ2
≤ CK2‖B‖ , K := max

1≤i≤n
{‖Xi‖ψ2

} ,

for some absolute constant C > 0.

Remark 6.9 (a) We have, according to Exercise 6.7,

E[‖BX‖2
2] = ‖B‖2

F .

(b) Recall that we have already proved a version with B = 1ln in Theorem 3.1, namely,

‖‖X‖2 −
√
n‖ψ2

≤ CK2 .

�

Proof of Theorem 6.8. Without loss of generality we assume that K ≥ 1 and we
writeA = BTB and apply Hanson-Wright inequality (Theorem 6.4) with the following.

〈X,AX〉 = ‖BX‖2
2,

E[〈X,AX〉] = ‖B‖2
F; ‖A‖ = ‖B‖2,

‖BTB‖F ≤ ‖B
T‖‖B‖F = ‖B‖‖B‖F .

Thus, for every u ≥ 0,

P
(
|‖BX‖2

2 − ‖B‖
2
F| ≥ u

)
≤ 2 exp

(
− C

K4
min

{( u2

‖B‖2‖B‖2
F

)
,
( u

‖B‖2

)})
.

Setting u = ε‖B‖2
F with ε ≥ 0, we obtain

P
(
|‖BX‖2

2 − ‖B‖
2
F| ≥ ε‖B‖2

F

)
≤ 2 exp

(
− C min{ε2, ε} ‖B‖

2
F

K4‖B‖2

)
.

We now set δ2 = min{ε2, ε}, or, equivalently ε = max{δ, δ2}, and we recall our rea-
soning in the proof of Theorem 3.1, namely, that for z ≥ 0, the bound |z − 1| ≥ δ
implies |z2 − 1| ≥ max{δ, δ2}.

|‖BX‖2 − ‖B‖F| ≥ δ‖B‖F ⇒ |‖BX‖
2
2 − ‖B‖

2
F| ≥ ε‖B‖2

F .
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Thus

P
(
|‖BX‖2 − ‖B‖F| ≥ δ‖B‖F

)
≤ 2 exp

(
− Cδ2 ‖B‖

2
F

K4‖B‖2

)
,

and setting t = δ‖B‖F, we obtain the tail-estimate

P
(
|‖BX‖2 − ‖B‖F| ≥ t

)
≤ 2 exp

(
− Ct2

K4‖B‖2

)
.

2

6.3 Symmetrisation

Definition 6.10 (symmetric random variables) A real-valued random variable X is
called symmetric if X and −X have the same distribution.

Exercise 6.11 Let X be a real-valued random variable independent of some symmetric
Bernoulli random variable ε, i.e., P(ε = −1) = P(ε = 1) = 1

2
. Show the following state-

ments.

(a) εX and ε|X| are symmetric random variables and εX and ε|X| have the same distribu-
tion.

(b) X symmetric⇒ distribution of εX and ε|X| equal the distribution of X .

(c) Suppose X ′ is an independent copy of X , then X −X ′ is a symmetric random variable.

Lemma 6.12 (Symmetrisation) Let X1, . . . , XN be independent mean-zero random vec-
tors in a normed space (E, ‖·‖) and let ε1, . . . , εN be independent symmetric Bernoulli
random variables (that is, they are not only independent of each other but also of any
Xi, i = 1, . . . , N ). Show that

1

2
E
[
‖
N∑
i=1

εiXi‖
]
≤ E

[
‖
N∑
i=1

Xi‖
]
≤ 2E

[
‖
N∑
i=1

εiXi‖
]
.

Proof.
Upper bound: Let (X ′i) be an independent copy of the random vector (Xi). Since∑N

i=1 X
′
i has zero mean,

p := E
[
‖
N∑
i=1

Xi‖
]
≤ E

[
‖
N∑
i=1

Xi −
N∑
i=1

X ′i‖
]

= E
[
‖
N∑
i=1

(Xi −X ′i)‖
]
,

where the inequality stems from an application of Lemma 6.2), namely, if E[Z] = 0
then E[‖Y ‖] ≤ E[‖Y + Z‖].
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Since all (Xi−X ′i) are symmetric random vectors, they have the same distribution
as εi(Xi − X ′i), see Exercise 6.11. Application of the triangle inequality and our
assumptions conclude the upper bound

p ≤ E
[
‖
N∑
i=1

εi(Xi −X ′i)‖
]
≤ E

[
‖
N∑
i=1

εiXi‖
]

+ E
[
‖
N∑
i=1

εiX
′
i‖
]

= 2E
[
‖
N∑
i=1

εiXi‖
]

Lower bound: By conditioning on εi and the triangle inequality,

E
[
‖
N∑
i=1

εiXi‖
]
≤ E

[
‖
N∑
i=1

εi(Xi −X ′i)‖
]

= E
[
‖
N∑
i=1

(Xi −X ′i)‖
]

≤ E
[
‖
N∑
i=1

Xi‖
]

+ E
[
‖
N∑
i=1

X ′i‖
]

= 2E
[
‖
N∑
i=1

Xi‖
]
.

2

7 Random Processes

7.1 Basic concepts and examples

Definition 7.1 A random process is a collection of random variables X := (Xt)t∈T of ran-
dom variables Xt defined on the same probability space, which are indexed by the elements
t of some set T .

Example 7.2 (a) T = {1, . . . , n}, then X = (X1, . . . , Xn) ∈ Rn random vector.

(b) T = N, then X = (Xn)n∈N with

Xn =
n∑
i=1

Zi , with Zi are R− valued and independent identically distributed ,

is the discrete time random walk.

(c) When the dimension of the index set is greater than one, e.g., T ⊂ Rn or T ⊂ Zn, we
often call the process a random field (Xt)t∈T .

(d) The most well-known continuous-time process is the standard Brownian motion X =
(Xt)t≥0, also called the Wiener process. We can characterise it as follows:

(i) The process has continuous paths, i.e., X : [0,∞) → R, t 7→ Xt is almost surely
continuous.

(ii) The increments are independent and satisfy Xt −Xs ∼ N(0, t− s) for al t ≥ s.

♣
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Definition 7.3 Let (Xt)t∈T be a random process with E[Xt] = 0 for all t ∈ T . The covari-
ance function of the process is defined as

Σ(t, s) := cov(Xt, Xs) , t, s ∈ T .

The increments of the process are defined as

d(t, s) := ‖Xt −Xs‖L2 = (E[(Xt −Xs)
2
])

1/2
, t, s ∈ T .

Note that Σ(t, s) = E[XtXs], t, s ∈ T , when the process X = (Xt)t∈T has zero mean,
i.e., E[Xt] = 0 for all t ∈ T .

Example 7.4 (Increments of random walks) The increments of the discrete time random
in Example [(b)]7.2 with E[Z2

i ] = 1, i ∈ N, are d(n,m) =
√
n−m for all n,m ∈ N0, n ≥

m. To see that, we compute

d(n,m)2 = ‖Xn −Xm‖2
L2 = E[(Xn −Xm)

2
] = E[(

n∑
k=m+1

Zk)
2
] =

n∑
k,j=m+1

E[ZkZj]

=
n∑

k=m+1

E[Z2
k ] = n−m,

where we used the fact that the Zi’s are independent with zero mean, i.e., E[ZkZj] = δk,j ,
and our assumption E[Z2

k ] = 1 for all k ∈ N. ♣

Definition 7.5 (Gaussian process) (a) A random process (Xt)t∈T is called a Gaussian
process if, for any finite subset T0 ⊂ T , the random vector (Xt)t∈T0 has normal dis-
tribution. Equivalently, (Xt)t∈T is called a Gaussian process if every finite linear com-
bination ∑

t∈T0

atXt , at ∈ R ,

is a normally distributed random variable.

(b) Suppose T ⊂ Rn and let Y ∼ N(0, 1ln), and define

Xt := 〈Y, t〉 , t ∈ T ⊂ Rn .

We call the random process (Xt)t∈T the canonical Gaussian process in Rn .

To compute the increments of a canonical Gaussian process, recall that 〈Y, t〉 ∼
N(0, ‖t‖2

2) for any t ∈ Rn. Then one show that (easy exercise) the increments are

d(t, s) = ‖Xt −Xs‖L2 = ‖t− s‖2 t, s ∈ Rn ,

where ‖·‖2 denotes the Euclidean norm in Rn.
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Lemma 7.6 Let X ∈ Rn be a mean-zero Gaussian random vector. Then there exist points
t1, . . . , tn ∈ Rn such that

X := (〈Y, ti〉)i=1,...,n ∈ Rn , with Y ∼ N(0, 1ln) .

Proof. Let Σ be the covariance matrix of X. Then

X = Σ1/2Y where Y ∼ N(0, 1ln) , (7.1)

which follows from from X ∼ N(0,Σ) if and only if Σ−1/2X ∼ N(0, 1ln) . This in turn
can be seen by direct computation (change of variables) by recalling the probability
density function of X, i.e.,

fX(x) =
1

(2π)n/2 det(Σ)1/2
exp (− 1

2
〈x,Σ−1x〉) , x ∈ Rn .

The coordinates of Σ1/2Y are 〈si, Y 〉, where the si denote the rows of the matrix
Σ1/2.

2

7.2 Slepian’s inequality and Gaussian interpolation

In many applications a uniform control of a stochastic process X = (Xt)t∈T is useful,
i.e., to have a bound on

E[ sup
t∈T

Xt] .

For general processes, even if they are Gaussian, obtaining such bounds is highly
nontrivial. In this section we learn first how the expectation of the supremum of two
processes compare to each other. In Section 7.3 below we obtain a lower and upper
bound for expected supremum of a process.

Theorem 7.7 (Slepian’s inequality) Let (Xt)t∈T and (Yt)t∈T be two mean-zero Gaussian
processes. Assume that, for all t, s ∈ T , we have

(i) E[X2
t ] = E[Y 2

t ] (ii) E[(Xt −Xs)
2
] ≤ E[(Yt − Ys)2

] . (7.2)

Then, for every τ ∈ R, we have

P
(

sup
t∈T
{Xt} ≥ τ

)
≤ P

(
sup
t∈T
{Yt} ≥ τ

)
, (7.3)

and, consequently,
E[ sup

t∈T
{Xt}] ≤ E[ sup

t∈T
{Yt}] .

Whenever (7.3) holds, we say that the process (Xt)t∈T is stochastically domi-
nated by the process (Yt)t∈T . The proof of Theorem 7.7 follows by combining the
two versions of Slepian’s inequality which we will discuss below. To prepare these
statements we introduce the method of Gaussian interpolation first.
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Suppose T is finite, e.g., |T | = n. Let X = (Xt)t∈T and Y = (Yt)t∈T be two
Gaussian random vectors (without loss of generality we may assume that they X
and Y are independent). We define the Gaussian interpolation as the following
random vector in Rn,

Z(u) :=
√
uX +

√
1− uY , u ∈ [0, 1] . (7.4)

It is easy to see (following exercise) that the covariance matrix of the interpolation
interpolates linearly between the covariance matrices of X and Y .

Exercise 7.8 Show that

Σ(Z(u)) = uΣ(X) + (1− u)Σ(Y ) t ∈ [0, 1] .

K

For a function f : Rn → R, we shall study how the expectation E[f (Z(u))] varies
with u ∈ [0, 1]. Suppose, for example, that f (x) := 1l{max1≤i≤n{xi} ≤ u}, x ∈ Rn.
Then one can easily show that E[f (Z(u))] increases with u leading to

E[f(Z(1))] ≥ E[f(Z(0))] ,

and henceforth
P( max

1≤i≤n
{Xi} < τ) ≥ P( max

1≤i≤n
{Yi} < τ) ,

leading to
P
(

sup
t∈T
{Xt} ≥ τ

)
≤ P

(
sup
t∈T
{Yt} ≥ τ

)
. (7.5)

The following three lemmas collect basic facts about Gaussian random variables
and their proofs will be left as an exercise (homework).

Lemma 7.9 (Gaussian integration by parts) Suppose X ∼ N(0, 1). Then, for any differ-
entiable function f : R→ R,

E[f ′(X)] = E[Xf(X)] .

Proof. Exercise for the reader. Solution see Lemma 7.2.3 in [Ver18]. 2

Similarly, X ∼ N(0, σ2), σ > 0 implies E[Xf (X)] = σ2E[f ′(X)].

Lemma 7.10 (Gaussian integration by parts) SupposeX ∼ N(0,Σ),X ∈ Rn, Σ an n×n
symmetric positive semi-definite matrix. Then, for any differentiable function f : Rn → R,

E[Xf(X)] = ΣE[∇f (X)] .

Proof. Exercise for the reader (homework - Example Sheet 4). 2
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Lemma 7.11 (Gaussian interpolation) Consider two independent Gaussian random vec-
tors X ∼ N(0,ΣX) and Y ∼ N(0,ΣY ) in Rn. Define the interpolation Gaussian random
vector as

Z(u) :=
√
uX +

√
1− uY , u ∈ [0, 1] . (7.6)

Then for any twice-differentiable function f : Rn → R, we have

d
du

E[f(Z(u))] =
1

2

n∑
i,j=1

(ΣX
ij −ΣY

ij)E
[ ∂2f

∂xi∂xj
(Z(u))

]
. (7.7)

Proof. Exercise for the reader (homework - Example Sheet 4). Solution see Lemma 7.2.7
in [Ver18].

2

We now prove a first version of Slepian’s inequality (Theorem 7.7).

Lemma 7.12 (Slepian’s inequality, functional form) Let X, Y ∈ Rn be two mean-zero
Gaussian random vectors. Assume that for all i, j = 1, . . . , n,

(i) E[X2
i ] = E[Y 2

i ] , (ii) E[(Xi −Xj)
2
] ≤ E[(Yi − Yj)2

] , (7.8)

and let f : Rn → R be twice-differentiable such that

∂2f

∂xi∂xj
(x) ≥ 0 for all i 6= j .

Then
E[f(X)] ≥ E[f(Y )] .

Proof. We have, using (7.8) and our assumptions, that ΣX
ii = ΣY

ii and E[XiXj] ≥
E[YiYj]. Thus ΣX

ij ≥ ΣY
ij, We assume without loss of generality that X and Y are

independent. Then Lemma 7.11 shows that

d
du

E[f(Z(u))] ≥ 0 ,

and hence that E[f (Z(u))] increases in u. Thus E[f (Z(1))] = E[f (X)] ≥ E[f (Y )] =
E[f (Z(0))]. 2

We can now prove Theorem 7.7 with the following results for Gaussian vectors.

Theorem 7.13 LetX and Y be two mean-zero Gaussian random vectors in Rn as in Lemma 7.12.
Then, for every τ ∈ R, we have

P
(

max
1≤i≤n

{Xi} ≥ τ
)
≥ P

(
max

1≤i≤n
{Yi} ≥ τ

)
.

Consequently,
E[ max

1≤i≤n
{Xi}] ≤ E[ max

1≤i≤n
{Yi}] .
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Proof. The key idea is to use Lemma 7.12 for some appropriate approximation of
the maximum. For that to work, let h : R→ [0, 1] be a twice-differentiable approxima-
tion of the indicator function of the interval (−∞, τ ), that is, h(t) ≈ 1l(−∞,τ )(t), t ∈ R,
and h′(t) ≤ 0 (h is smooth non increasing function). Define f (x) := h(x1) · · ·h(xn) for
x = (x1, . . . , xn) ∈ Rn. The second partial derivatives

∂2f

∂xi∂xj
(x) = h′(xi)h′(xj)

∏
k 6=i,j

h(xk)

are positive. It follows that E[f (X)] = E[f (Z(1))] ≥ E[f (Y )] = E[f (Z(0))]. Thus, by
the above approximations, according to Lemma 7.12,

P
(

max
1≤i≤n

{Xi} < τ
)
≥ P

(
max

1≤i≤n
{Yi} < τ

)
,

and thus, using the integral identity 1.9,

E[ max
1≤i≤n

{Xi}] ≤ E[ max
1≤i≤n

{Yi}] ,

and the statement. 2

The following theorem improves Slepian’s inequality by using a different approx-
imation in the proof.

Theorem 7.14 (Sudakov-Fernique inequality) Let (Xt)t∈T and (Yt)t∈T be two mean-zero
Gaussian processes. Assume that, for all t, s ∈ T , we have

(i) E[(Xt −Xs)
2
] ≤ E[(Yt − Ys)2

] .

Then
E[ sup

t∈T
{Xt}] ≤ E[ sup

t∈T
{Yt}] .

Proof. We shall prove the statement for Gaussian random vectors X, Y ∈ Rn with
the help of Theorem 7.13. The idea this time is to use an approximation of the
maximum itself and not for the indicator function. For β > 0, define

f (x) :=
1

β
log

n∑
i=1

eβxi x ∈ Rn .

One can easily show that
f (x) −→

β→∞
max

1≤i≤n
{xi} .

Inserting the function into the Gaussian interpolation formula (7.7) we can obtain
after some tedious calculation that

d
du

E[f(Z(u))] ≤ 0 ,

and conclude with our statement. 2
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Exercise 7.15 For β > 0, define

f (x) :=
1

β
log

n∑
i=1

eβxi x ∈ Rn .

Show that
f (x) −→

β→∞
max

1≤i≤n
{xi} .

K

Solution. Without loss of generality let exp(βxk) = max1≤i≤n{exp(βxi)}, Then
n∑
i=1

eβxi = eβxk
(

1 +
n∑
i 6=k

exp(β(xi − xk))
)
,

and observing that
n∑
i 6=k

exp(β(xi − xk)) ≤ n

we obtain that

0 ≤ lim
β→∞

1

β
log
(

1 +
n∑
i 6=k

exp(β(xi − xk))
)
≤ lim

β→∞

1

β
log (1 + n) = 0 ,

and thus the statement, ©

7.3 The supremum of a process

We now combine features of the index space with the random process and obtain
bounds for E[supt∈T Xt].

Definition 7.16 (Canonical metric) SupposeX = (Xt)t∈T is a random process with index
set T . We define the canonical metric of the process by

d(t, s) := ‖Xt −Xs‖L2 =
(
E
[(
Xt −Xs

)2])1/2

t, s ∈ T .

We can now study the question if we can evaluate the expectation E[supt∈T{Xt}]
by using properties of the geometry, in particular using covering numbers of the
index metric space (T, d) equipped with the canonical metric of the process. Via this
approach we obtain a lower bound of the expectation of the supremum.

Theorem 7.17 (Sudakov’s minorisation inequality) LetX = (Xt)t∈T be a mean-zero Gaus-
sian process. Then, for any ε ≥ 0, we have

E[ sup
t∈T
{Xt}] ≥ Cε

√
logN(T, d, ε) ,

where d is the canonical metric of the process, C > 0 an absolute constant and N(T, d, ε)
the covering number for T (recall Definition 4.1).



88 RANDOM PROCESSES

Proof. Assume that N(T, d, ε) = N <∞ is finite. When T is not compact, one can
show that the expectation of the supremum is infinite (we skip this step). Let M be a
maximal ε-separated subset of T . Then M is an ε-net according to Lemma 4.2, and
thus |M| ≥ N . It suffices to show

E[ sup
t∈M
{Xt}] ≥ Cε

√
logN . (7.9)

To show (7.9), we compare the process (Xt)t∈M with a simpler process (Yt)t∈M.

Yt :=
ε√
2
Gt , Gt ∼ N(0, 1), Gt independent of Gs for all t 6= s .

For t, s ∈M fixed we have

E[(Xt −Xs)
2
] = d(t, s)2 ≥ ε2 ,

while

E[(Yt − Ys)2
] =

ε2

2
E[(Gt −Gs)

2
] = ε2 .

Thus
E[(Xt −Xs)

2
] ≥ E[(Yt − Ys)2

] for all t, s ∈M .

We now obtain with Theorem 7.14,

E[ sup
t∈M
{Xt}] ≥ E[ sup

t∈M
{Yt}] =

ε√
2
E[ max

i∈M
{Gi}] ≥ Cε

√
logN ,

where we used Proposition 7.18below. 2

Proposition 7.18 (Maximum of normally distributed random variables) Let Yi ∼ N(0, 1),
i = 1, . . . , N , be independent normally distributed real-valued random variables. Then the
following holds.

(a)
E
[

max
1≤i≤N

{Yi}
]
≤
√

2 logN .

(b)
E
[

max
1≤i≤N

{|Yi|}
]
≤
√

2 log(2N ) .

(c)
E
[

max
1≤i≤N

{Yi}
]
≥ C

√
2 logN for some absolute constant C > 0 .

Proof. (a) Let β > 0. Using Jensen’s inequality, we obtain

E[ max
1≤i≤n

Yi] =
1

β
E[ log eβmax1≤i≤N{Yi}] ≤ 1

β
E[ log

N∑
i=1

eβYi ] ≤ 1

β
log

N∑
i=1

E[eβYi ]

=
1

β
log
(
Neβ

2/2
)

=
β

2
+

logN
β

.
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The claim is proved by taking β =
√

2 logN .

(b) We repeat the steps in (a),

E[ max
1≤i≤n

{|Y |i}] = . . . ≤ 1

β
log

N∑
i=1

E
[
eβYi + e−βYi

]
=
β

2
+

log(2N )
β

.

Taking β =
√

2 log(2N ), we conclude with the statement.

(c) The lower bound is slightly more involved and needs some preparation:

(i) The Yi’s are symmetric (Gaussian), and hence, by symmetry,

E[ max
1≤i,j≤N

{|Yi − Yj|}] = E[ max
1≤i,j≤N

{(Yi − Yj)}] = 2E[ max
1≤i≤N

{Yi}] .

(ii) For every k ∈ {1, . . . , N}, using (i),

E[ max
1≤i≤N

{Yi}] ≤ E[ max
1≤i≤N

{|Yi|}] ≤ E[|Yk|] + E[ max
1≤i,j≤N

{|Yi − Yj|]

= E[|Yk|] + 2E[ max
1≤i≤N

{Yi}] .

To obtain a lower bound we exploit the fact that our Gaussian random variables
Yi are independent and identically distributed. Then, for every δ > 0, noting that
1− (1− P(|Y1| > t))

N is the probability that one of the random variables |Y | = i, i =
1, . . . , N , is larger then t,

E[ max
1≤i≤N

{|Yi|}] ≥
∫ δ

0

[1− (1− P(|Y1| > t))
N

] dt ≥ δ[1− (1− P(|Y1| > δ))
N

] ,

where the first inequality follows from the integral identity for the expectation and
the second inequality is just the interval length times the minimal value of the in-
tegrand. Now, we obtain with the lower tail bound of the normal distribution (see
Proposition 2.1),

P(|Y1| > δ) =

√
2

π

∫ ∞
δ

exp (− t2/2) dt ≥ 1

π
(
1

δ
− 1

δ3
) exp (− δ2/2) .

Now we choose δ =
√

logN with N large enough so that

P(|Y1| > δ) ≥ 1

N
,

and hence
E[ max

1≤i≤N
{|Yi|}] ≥ δ[1− (1− 1

N
)
N

] ≥ δ(1− 1

e
) .

We conclude with statement (c) using

E[ max
1≤i≤N

{|Yi|}] ≤ E[|Y1|] + 2E[ max
1≤i≤N

{Yi}] .
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2

We have seen that the expected supremum of the canonical Gaussian process
on some set T ⊂ Rn,

E[ sup
t∈T
〈Y, t〉] ,

where Y ∼ N(0, 1ln) plays an important role. In many application this geometric
quantity is an important parameter. This leads to the following definition.

Definition 7.19 The Gaussian width of a subset T ⊂ Rn is defined

W(T ) := E
[

sup
x∈T
〈Y, x〉

]
with Y ∼ N(0, 1ln) .

Exercise 7.20 Suppose Xi, i = 1, . . . , N , are sub-Gaussian random variables, and K =
max1≤i≤N‖Xi‖ψ2

. Show that, for any N ≥ 2,

E[ max
1≤i≤N

{|Xi|}] ≤ CK
√

logN .

KKK

We summarise a few simple properties of the Gaussian width. We skip the proof
as it involves mostly elementary properties of the norm and the Minkowski sum.
Recall that the diameter of a set T ⊂ Rn with respect to the Euclidean norm is

diam (T ) = sup
x,y∈T
‖x− y‖2 .

Proposition 7.21 (Properties of Gaussian width) (a) W(T ) is finite⇔ T is bounded.

(b) W(T ) = W(UT ) for any orthogonal n× n matrix U .

(c) W(T + S) = W(T ) + W(S) S, T ⊂ Rn and W(aT ) = |a|W(T ) for every a ∈ R.

(d)

W(T ) =
1

2
W(T − T ) =

1

2
E[ sup

x,y∈T
〈Y, x− y〉] .

(e)
1√
2π

diam (T ) ≤ W(T ) ≤
√
n

2
diam (T ) .
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Proof.
(a) Cauchy-Schwarz inequality gives

|〈Y, x〉| ≤ ‖Y ‖2‖x‖2 for all x ∈ T .

If W(T ) < ∞, then this implies that ‖x‖2 < ∞ for all x ∈ T , and henceforth T is
bounded. Conversely, if T is a bounded set we have that ‖x‖2 ≤ C for all x ∈ T and
some C > 0. Thus

E[〈Y, x〉] ≤ E[‖Y ‖2]C ≤
√
nC <∞

implies that W(T ) <∞.

(b) We simply use the rotation invariance of the normal distribution, i.e., Y ∼ N(0, 1ln)
implies that UY ∼ N(0, 1ln) for any orthogonal matrix U .

(c) Recalling the definition of the Minkowski sum of two sets we get

W(T + S) = E[ sup
x∈T,y∈S

〈Y, x+ y〉] = E[ sup
x∈T
〈Y, x〉] + E[ sup

y∈S
〈Y, y〉] = W(T ) + W(S) .

If a ≥ 0 we have a = |a| and 〈Y, ax〉 = |a|〈Y, x〉. If a < 0 we have |a| = −a and using
the fact that Y is symmetric, i.e., −Y has same distribution as Y , we get

|a|〈Y, x〉 = −a〈Y, x〉 = 〈−Y, ax〉 ∼ 〈Y, ax〉 ,

and thus the statement.

(d) Using (c) we get

W(T ) =
1

2
(W(T ) + W(T )) =

1

2
(W(T ) + W(−T )) =

1

2
W(T − T ) .

(e) Fix a pair x, y ∈ T . Then by definition x− y, y − x ∈ T − T . With part (d) we get
a lower bound

W(T ) ≥ 1

2
E[ max{〈Y, x− y〉, 〈Y, y − x〉}] =

1

2
E[|〈Y, x− y〉|] =

1

2

√
2

π
‖x− y‖2 ,

where the inequality follows from taking one pair x, y ∈ T and the first equality follows
from max{a,−a} = |a| for a ∈ R. The second equality can be seen as follows. Recall
that 〈Y, x− y〉 ∼ N(0, ‖x− y‖2) and therefore

〈Y, x− y
‖x− y‖2

〉 ∼ N(0, 1) , and E[|〈Y, x− y
‖x− y‖2

〉|] =

√
2

π

follows from the caalculation for any X ∼ N(0, 1),

E[|X|] =
1√
2π

∫ ∞
∞
|x|e−x2/2 dx =

2√
2π

∫ ∞
0

x e−x
2/2 dx =

2√
2π

[− e−x
2/2]
∞
0 =

√
2

π
.
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Taking now the supremum of all pairs x, y ∈ T we obtain the lower bound. For the
corresponding upper bound we use (d) and Cauchy-Schwarz inequality again.

W(T ) =
1

2
E[ sup

x,y∈T
〈Y, x− y〉] ≤ 1

2
E[ sup

x,y∈T
‖Y ‖2‖x− y‖2] ≤ 1

2
E[‖Y ‖2]diam (T )

≤ 1

2

√
ndiam (T ) ,

where we used E[‖Y ‖2] ≤
√
n which follows from E[‖Y ‖2] ≤ (E[‖Y ‖2

2])1/2 =
√
n and

E[‖Y ‖2
2] = n. 2

We discuss a few examples to obtain some understanding of the Gaussian width.

Example 7.22 (Gaussian width) (a) The Gaussian width of the unit sphere in n dimen-
sions is

W(S(n−1)) = E[‖Y ‖2] =
√
n± C ,

where the second equality follows from Exercise 6 - Example sheet 2 with some absolute
constant C > 0 as an immediate consequence of our concentration of norm result in
Theorem 3.1. To see the first equality, apply first Cauchy-Schwarz inequality to obtain
an upper bound for any x ∈ S(n−1),

E[〈Y, x〉] ≤ E[‖Y ‖2] .

Pick

xi =
Yi
‖Y ‖2

, i = 1, . . . , N ,

then x = (x1, . . . , xn) ∈ S(n−1).

(b) The Gaussian width for the cube Bn
∞ = [−1, 1]n with respect to the `∞ norm is

W(Bn
∞) = E[‖Y ‖1] = nE[|Y1|] = n

√
2

π
,

where the second equality follows from the isotropy of Y and the definition of the norm
‖Y ‖1 =

∑n
i=1|Y |i. The third equality is just calculation, i.e.,

E[|Y1|] =
1√
2π

∫ ∞
∞
|y|e−y2/2 dy =

2√
2π

∫ ∞
0

y e−y
2/2 dy =

2√
2π

[− e−y
2/2]
∞
0 =

√
2

π
.

The first equality follows from Cauchy-Schwarz for an upper bound, i.e.,

E[〈Y, x〉] ≤ E[‖Y ‖1‖x‖∞] = E[‖Y ‖1] ,

and setting x = (sign(Y1), . . . , sign(Yn)) ∈ Bn
∞ we obtain a lower bound and thus the

equality.
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(c) The unit ball Bn
1 in Rn with respect to the `1 norm is Bn

1 = {x ∈ Rn : ‖x‖1 ≤ 1}, and
its Gaussian width is

W(Bn
1 ) = E[‖Y ‖∞] = E[ max

1≤i≤n
|Yi|] ,

where the second equality is just the definition of the supremum norm and the first equal-
ity follows from Cauchy-Schwarz inequality. With Proposition 7.18 we get two absolute
constants c, C > 0 such that

c
√

logn ≤ W(Bn
1 ) ≤ C

√
logn .

♣

We finally present an upper bound for the expected supremum of a process
in Theorem 7.24 below. The proof of that statement uses multi-scale approach in
conjunction with the ε-net arguments, i.e., varying the threshold ε in a systematic
and controlled way. This technique is called chaining and is a widely used tool in
data science and high-dimensional probability. The whole proof goes beyond what
we can do in this third year course, and we therefore only present the statement.
The statement and its proof use the notion of Sub-Gaussian increments which we
define first.

Definition 7.23 (Sub-Gaussian increments) Let X = (Xt)t∈T be a stochastic process on
some metric space (T, d). We say that the process X has Sub-Gaussian increments if there
exists K ≥ 0 such that

‖Xt −Xs‖ψ2
≤ K d(t, s) , for all t, s ∈ T .

Theorem 7.24 (Dudley’s inequality) Let X = (Xt)t∈T be a mean-zero stochastic process
on a metric space (T, d) with Sub-Gaussian increments. Then

E[ sup
t∈T

Xt] ≤ CK

∫ ∞
0

√
N(T, d, ε) dε

for some absolute constant C > 0.

Proof. The interested reader may check Chapter 8 in [Ver18]. 2

7.4 Uniform law of large numbers

Definition 7.25 Let (Ω,B(Ω), µ) be a probability space and denote F = {f : Ω → R} a
class of real-valued functions. Let X be a Ω-valued random variable with law µ ∈ M1(Ω)
and X1, . . . , XN be independent copies of X . The random process X = (Xf )f∈F defined
by

Xf :=
1

N

N∑
i=1

f (Xi)− E[f (X)] (7.10)

is called an empirical process indexed by F .
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Theorem 7.26 (Uniform law of large numbers) Denote

F = {f : [0, 1]→ R : ‖f‖Lip ≤ L}

the class of Lipschitz function on [0, 1], where L > 0 is a fixed number. Let X,X1, . . . , XN

be independent identically distributed [0, 1]-valued random variables. Then

E
[

sup
f∈F

∣∣∣ 1

N

N∑
i=1

f (Xi)− E[f (X)]
∣∣∣] ≤ CL√

N
(7.11)

for some absolute constant C > 0.

The proof of the theorem needs some bounds on the covering number of the class of
Lipschitz function. We explore this in the next exercise before proving the theorem.

Exercise 7.27 Let F = {f : [0, 1]→ [0, 1] : ‖f‖Lip ≤ 1}. Show that

N(F, ‖·‖∞, ε) ≤ (2/ε)
2/ε for any ε > 0 .

KK

Solution. Recall the definition of the supremum norm ‖f‖∞ = supx∈[0,1]|f (x)| and
consider the square Λ = [0, 1]2. We put a mesh of step (size) ε on Λ such that we get
(1/ε)2 squares of side length 1/ε. Mesh-following functions f0 are steps functions on
the mesh taking one of 1/ε possible values on each interval of length 1/ε. For every
f ∈ F there is a mesh-following function f0 such that ‖f − f0‖∞ ≤ ε. The number of
all mesh-following functions is bounded by (1/ε)1/ε. Recall that the covering number
N(K, d, ε) is the smallest cardinality of closed ε-balls with centre in K whose union
covers the set K. If we relax the assumption that the centres are in K we obtain the
external covering number Next(K, d, ε). As we have done earlier, one can show that

N(K, d, ε) ≤ Next(K, d, ε/2) ,

which we need for our case as the centres of our balls might not be element of F.
Thus

N(F, ‖·‖∞, ε) ≤ (2/ε)
2/ε
.

©

Proof of Theorem 7.26. Without loss of generality we put L = 1.

Step 1: We show that the empirical process has Sub-Gaussian increments. Fix a
pair f, g ∈ F and consider

‖Xf −Xg‖ψ2
=

1

N
‖

N∑
i=1

Zi‖ψ2 ,
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where
Zi := (f − g)(Xi)− E[(f − g)(X)] , i = 1, . . . , N .

In the following we write . whenever we have ≤ with some absolute constant C > 0
to avoid adapting the absolute constant in each single step. The Zi’s are indepen-
dent and man-zero random numbers and thus Proposition 2.24 gives

‖Xf −Xg‖ψ2
.

1

N

( N∑
i=1

‖Zi‖2
ψ2

)1/2

.

Using the centering Lemma 2.27 we have

‖Zi‖ψ2
. ‖(f − g)(Xi)‖ψ2

. ‖f − g‖∞ ,

and therefore

‖Xf −Xg‖ψ2
.

1

N
N1/2‖f − g‖∞ =

1√
N
‖f − g‖∞ .

Step 2: Application of Dudley’s inequality. According to Step 1 the empirical process
has Sub-Gaussian increments. The diameter of F is one, that is,

diam (F) = sup
f,g∈F
‖f − g‖∞ = sup

f,g∈F
sup
x∈[0,1]

|f (x)− g(x)| = 1 .

Application of Theorem 7.24 gives the upper bound for the expected supremum
where the integral runs between zero and the diameter. For the integral we use the
bound on the covering number in Exercise 7.27. Thus we get

E[ sup
f∈F
|Xf |] .

1√
N

∫ 1

0

√
logN(F, ‖·‖∞, ε) dε .

1√
N

∫ 1

0

√
c

ε
log

c

ε
dε .

1√
N
,

for some absolute constant c > 0. 2

We finally introduce the VC dimension, which plays a major role in statistical
learning theory as we see in Section 8 below. One can relate the VC dimension to
covering numbers and via Dudley’s inequality a uniform laws of large numbers in-
volving the VC dimension follows. We can only give the definition and state the cor-
responding uniform law of large numbers with out proof. The Vapnik-Chervonenkis
(VC) dimension is a difficult concept and takes time to comprehend, roughly speak-
ing, it is a measure of complexity for classes of Boolean functions f : Ω → {0, 1} on
some common domain Ω.

Definition 7.28 Suppose F is a class of Boolean functions on some domain Ω. A subset
Λ ⊂ Ω is shattered by F if any Boolean function g : Λ → {0, 1} can be obtained by
restricting some function f ∈ F on Λ. The VC dimension of F, denoted VC(F), is the
largest cardinality of a subset Λ ⊂ Ω shattered by F. If the largest cardinality does not
exist, VC(F) ≡ ∞.
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We state just for information a uniform law of large numbers involving the VC
dimension. It goes beyond the scope of this lecture to actually provide all details
about the relationship between the covering numbers for Boolean functions and their
VC dimension. We need the following result to appreciate the application example
in Section 8.

Theorem 7.29 (Empirical processes via VC dimension) Let (Ω,B(Ω), µ a probability space
and F = {f : Ω→ {0, 1}} a class of Boolean functions with VC(F) ∈ [1,∞). Consider the
i.i.d. samples X,X1, . . . , XN with law µ ∈M1(Ω). Then

E
[

sup
f∈F

∣∣∣ 1

N

N∑
i=1

f (Xi)− E[f (X)]
∣∣∣] ≤ C

√
VC(F)
N

for some absolute constant C > 0.
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8 Application: Statistical Learning theory

In statistical learning theory we are concerned with learning a target function T : Ω→
R from empirical data X1, . . . , XN , where the Xi’s are independent and identical
distributed according to some law µ ∈M1(Ω). We call the N pairs (Xi, T (Xi))i=1,...,N

the training data . Our task is then to seek a good prediction of T (X) for any data
X /∈ {X1, . . . , XN}. We focus in so-called classification problems where the target
function T : Ω → {0, 1} is a Boolean function. This target function classifies the
data points in Ω into two classes depending on the label, i.e., the value of the target
function.

Example 8.1 (Health study) We examine N patients and determine n health parameter,
e.g., blood pressure heart rate, weight, etc. We then obtain the samples Xi ∈ Rn, i =
1, . . . , N . Suppose we know whether each patient has a certain illness or not, e.g. diabetes.
That is, we know T (Xi) ∈ {0, 1}, i = 1, . . . , N with T (Xi) = 1 being sick and T (Xi) = 0
being healthy. We want to learn from the given training sample to diagnose diabetes, i.e., we
want to learn the target function T : Ω→ {0, 1}. This target function would output diagnosis
for any person based on the n health parameter. ♣

A solution to the learning problem can be a function f : Ω → {0, 1} which is as
close as possible to the target function T : Ω→ {0, 1}. We like to choose the function
f which minimises the so-called risk.

Definition 8.2 Let (Ω,B(Ω), µ) be a probability space. The risk of a function f : Ω→ R in
a learning problem with the target function T : Ω → R and class F of functions is defined
as

R(f ) := E[(f (X) = T (X))2
] , (8.1)

where the expectation is with respect to the probability measure µ ∈ M1(Ω). The min-
imiser f ∗ of the risk is defined as

f ∗ := argmin f∈F{R(f )} . (8.2)

For our classification problem, i.e., learning of a Boolean target function T : Ω→
{0, 1} with F a class of Boolean functions, we see that

R(f ) = E[f 2(X)− 2f (X)T (X) + T 2(X)] = P(f (X) 6= T (X))

as f 2(X)− 2f (X)T (X) + T 2(X) is zero when f (X) = T (X) and 1 otherwise.

In any learning problem the choice of the class of functions is crucial. In this context
we call the class of functions F the hypothesis space. If we choose F to be a class
of simple functions like linear functions or Lipschitz function we might get easily
calculations and estimates but we can be still off the real function, this is called
under fitting. Conversely, if we consider too many different function types in F we
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end up with challenges in computing the VC dimension and obtaining estimates. In
addition we might over fit the sample which happens if any normal fluctuation (noise)
is reflected. If T ∈ F, we get clearly R(f ) = 0 as f ∗ = T in that case. However, note
that in general we cannot compute the risk R(f ) and thus f ∗ from the given empirical
training data. Instead we can only approximate the risk R(f ) and its minimiser f ∗

given the empirical data.

Definition 8.3 (Empirical risk) Let (Ω,B(Ω), µ) be a probability space and f : Ω→ R an
element of the hypothesis class F of a learning problem with target function T : Ω → R.
Let X1, . . . , XN be Ω-valued i.i.d. samples with law µ ∈ M1(Ω). The empirical risk of f
given the sample is defined as

RN (f ) :=
1

N

N∑
i=1

(f (Xi)− T (Xi))
2
, (8.3)

and the minimiser f ∗N ∈ F of the empirical risk is

f ∗N := argmin f∈F{RN (f )} .

The excess risk is defined as the difference

RN (f ∗N )−R(f ∗) .

Lemma 8.4 Let (Ω,B(Ω), µ) be a probability space and f : Ω → R an element of the hy-
pothesis class F of a learning problem with target function T : Ω → R. Let X1, . . . , XN be
Ω-valued i.i.d. samples with law µ ∈M1(Ω). Then

R(f ∗N )−R(f ∗) ≤ 2 sup
f∈F
|RN (f )−R(f )| .

Proof. Define ε := supf∈F |RN (f )−R(f )|, Then

R(f ∗N ) ≤ RN (f ∗N ) + ε (since f ∗N ∈ F by definition)
≤ RN (f ∗) + ε (as f ∗N minimises RN in F)
≤ R(f ∗) + 2ε (as f ∗ ∈ F by definition) .

Subtracting R(f ∗) on both sides, we get the statement of the lemma. 2

Theorem 8.5 (Excess risk via VC dimension) Let (Ω,B(Ω), µ) be a probability space and
F be a class of functions of a learning problem with target function T : Ω→ R and VC(F) ≥
1. Let X1, . . . , XN be Ω-valued i.i.d. samples with law µ ∈M1(Ω). Then

E[R(f ∗N )] ≤ R(f ∗) + C

√
VC(F)
N

for some absolute constant C > 0.
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Proof. According to Lemma 8.4 it suffices to show that

E[ sup
f∈F
|RN (f )−R(f )|] .

√
VC(F)
N

. (8.4)

We insert our definition for RN and R and obtain

L.H.S. of (8.4) = E[ sup
`∈L
| 1
N

N∑
i=1

`(Xi)− E[`(X)]|] .

where L = {(f − T )2 : f ∈ F}. Furthermore, an application of Theorem 7.29 and its
proof gives

L.H.S. of (8.4) .
1√
N
E
[ ∫ 1

0

√
logN(L, L2(µN ), ε) dε

]
,

where L2(µN ) is the L2 metric with respect to the empirical measure µN = 1
N

∑N
i=1 δXi.

To proceed we need to relate the covering of L and F, that is, we show that

N(L, L2(µN ), ε) ≤ N(F, L2(µN ), ε/4) , for all ε ∈ (0, 1) . (8.5)

To see (8.5) pick an ε-net {fj}j=1,...,J of F. For all ` ∈ L there exist `j := (fj − T )2

such that

‖`− `j‖L2(µN ) = ‖f 2 − 2T (f − fj)− f 2
j ‖L2(µN ) = ‖(f + fj)(f − fj)− 2T (f − fj)‖L2(µN )

≤ 2‖f − fj‖L2(µN ) + 2‖f − fj‖L2(µN ) ≤ ε

whenever ‖f − fj‖L2(µN ) ≤ ε/4. This shows our claim (8.5). Now we replace L by F

and use Theorem 7.29 and its proof to see that

logN(F, L2(µN ), ε) . VC(F) log(2/ε)

to conclude with our statement. 2

If we want to bound the expected excess risk in our health study Example 8.1 by
ε > 0, all we need to do is to take a sample of size

N ∼ ε−2VC(F) .
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empirical risk, 98
essential supremum, 5
excess risk, 98
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Gaussian interpolation, 83
Gaussian process, 82
Gaussian width, 90
global Lipschitz continuity, 58

Hamming cube, 47
Hamming distance, 47
Herbst argument, 56

increments, 82
isotropic, 39

Jensen’s inequality, 4
Johnson-Lindenstrauss Lemma, 72

Kullback-Leibler divergence, 54

Landau symbols, 36
level sets, 63
Lipschitz continuous, 58

Minkowski sum, 46
moment generation function, 3
Multivariate Normal / Gaussian distri-

bution, 42

normal distribution, 9

operator norm, 48

packing number, 45

Rademacher function, 29
random field, 81
random process, 81
relative entropy, 54

second moment matrix, 39
separately convex, 58
Shannon entropy, 55
singular values, 48
spherically distributed, 41
standard Brownian motion, 81
Stirling’s formula, 20
stochastically dominated, 83
Sub-exponential random variable, 26
Sub-exponential random variable, sec-

ond definition, 28
Sub-exponential random variables, first

definition, 26
Sub-Gaussian - first definition, 21
Sub-Gaussian - second definition, 23
Sub-Gaussian increments, 93
Sub-Gaussian properties, 18
sub-level sets, 63
symmetric, 80
symmetric Bernoulli distribution in Rn,

41

tails of the normal distribution, 11
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target function, 97
training data, 97

unit sphere, 41

VC dimension, 95

Young’s inequality, 27


	Prelimaries on Probability Theory
	Random variables
	Classical Inequalities
	Lp-spaces
	Limit Theorems

	Concentration inequalities for independent random variables
	Why concentration inequalities
	Hoeffding's Inequality
	Chernoff's Inequality
	Sub-Gaussian random variables
	Sub-Exponential random variables

	Random vectors in High Dimensions
	Concentration of the Euclidean norm
	The geometry of high dimensions
	Covariance matrices and Principal Component Analysis (PCA)
	Examples of High-Dimensional distributions
	Sub-Gaussian random variables in higher dimensions
	Application: Grothendieck's inequality

	Random Matrices
	Geometrics concepts
	Concentration of the operator norm of random matrices
	Application: Community Detection in Networks
	Application: Covariance Estimation and Clustering

	Concentration of measure - general case
	Concentration by entropic techniques
	Concentration via Isoperimetric Inequalities
	Some matrix calculus and covariance estimation
	Application - Johnson-Lindenstrauss Lemma

	Basic tools in high-dimensional probability
	Decoupling
	Concentration for Anisotropic random vectors
	Symmetrisation

	Random Processes
	Basic concepts and examples
	Slepian's inequality and Gaussian interpolation
	The supremum of a process
	Uniform law of large numbers

	Application: Statistical Learning theory

