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1 Simple random walk

1.1 Nearest neighbour random walk on Z
Pick p ∈ (0, 1), and suppose that (Xn : n ∈ N) is a sequence (family) of
{−1,+1}-valued, identically distributed Bernoulli random variables with P(Xi =
1) = p and P(Xi = −1) = 1− p = q for all i ∈ N. That is, for any n ∈ N and
sequence E = (e1, . . . , en) ∈ {−1, 1}n,

P(X1 = e1, . . . , Xn = en) = pN(E)qn−N(E),

where N(E) = ]{m : em = 1} =
n+

Pn
m=1 em
2

is the number of ”1”s in the
sequence E.

Imagine a walker moving randomly on the integers Z. The walker starts at
a ∈ Z and at every integer time n ∈ N the walker flips a coin and moves one
step to the right if it comes up heads (P({head}) = P(Xn = 1) = p) and moves
one step to the left if it comes up tails. Denote the position of the walker at
time n by Sn. The position Sn is a random variable, it depends on the outcome
of the n flips of the coin. We set

S0 = a and Sn = S0 +
n∑
i=1

Xi. (1.1)

Then S = (Sn)n∈N is often called a nearest neighbour random walk on Z. The
random walk is called symmetric if p = q = 1

2
. We may record the motion of

the walker as the set {(n, Sn) : n ∈ N0} of Cartesian coordinates of points in
the plane (x-axis is the time and y-axis is the position Sn). We write Pa for the
conditional probability P(·|S0 = a) when we set S0 = a implying P(S0 = a) = 1.
It will be clear from the context which deterministic starting point we consider.

Lemma 1.1 (a) The random walk is spatially homogeneous, i.e., Pa(Sn =
j) = Pa+b(Sn = j + b), j, b, a ∈ Z.

(b) The random walk is temporally homogeneous, i.e., P(Sn = j|S0 = a) =
P(Sn+m = j|Sm = a).

(c) Markov property

P(Sm+n = j|S0, S1, . . . , Sm) = P(Sm+n = j|Sm), n ≥ 0.

Proof. (a) Pa(Sn = j) = Pa(
∑n

i=1 Xi = j − a) = Pa+b(
∑n

i=1 Xi = j − a).
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(b)

LHS = P(
n∑
i=1

Xi = j − a) = P(
m+n∑
i=m+1

Xi = j − a) = RHS.

(c) If one knows the value of Sm, then the distribution of Sm+n depends only
on the jumps Xm+1, . . . , Xm+n, and cannot depend on further information con-
cerning the values of S0, S1, . . . , Sm−1. 2

Having that, we get the following stochastic process oriented description
replacing (1.1),

P(S0 = a) = 1 and P(Sn−Sn−1 = e|S0, . . . , Sn−1) =

{
p , if e = 1
q , if e = −1

. (1.2)

Markov property: conditional upon the present, the future does not depend

on the past.

The set of realizations of the walk is the set of sequences S = (s0, s1, . . .) with
s0 = a and si+1 − si = ±1 for all i ∈ N0, and such a sequence may be thought
of as a sample path of the walk, drawn as in figure 1.

Let us assume that S0 = 0 and p = 1
2
. The following question arise.

- How far does the walker go in n steps?
- Does the walker always return to the starting point, or more generally, is every
integer visited infinitely often by the walker?

We easily get that E(Sn) = 0 when p = 1
2
. For the average distance from

the origin we compute the squared position at time n, i.e.,

E(S2
n) = E

(
(X1 + · · ·+Xn)2

)
=

n∑
j=1

E(X2
j ) +

∑
i 6=j

E(XiXj).

Now X2
j = 1 and the independence of the Xi’s gives E(XiXj) = E(Xi)E(Xj) =

0 whenever i 6= j. Hence, E(S2
n) = n, and the expected distance from the origin

is ∼ c
√
n for some constant c > 0.

In order to get more detailed information of the random walk at a given time n
we consider the set of possible sample paths. The probability that the first n
steps of the walk follow a given path S = (s0, s1, . . . , sn) is prql, where
r = ] of steps of S to the right = ]{i : si+1 − si = 1}
l = ] of steps of S to the left = ]{i : si+1 − si = −1}.

Hence, any event for the random walk may be expressed in terms of an
appropriate set of paths.

P(Sn = b) =
∑
r

M r
n(a, b)prqn−r,
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where M r
n(a, b) is the number of paths (s0, s1, . . . , sn) with s0 = a and sn = b

having exactly r rightward steps. Note that r+ l = n and r− l = b− a. Hence,

r =
1

2
(n+ b− a) and l =

1

2
(n− b+ a).

If 1
2
(n+ b− a) ∈ {0, 1, . . . , n}, then

P(Sn = b) =

(
n

1
2
(n+ b− a)

)
p

1
2

(n+b−a)q
1
2

(n−b+a), (1.3)

and P(Sn = b) = 0 otherwise, since there are exactly
(
n
r

)
paths with length n

having r rightward steps and n−r leftward steps. Thus to compute probabilities
of certain random walk events we shall count the corresponding set of paths.
The following result is an important tool for this counting.

Notation: Nn(a, b) = ] of possible paths from (0, a) to (n, b). We denote
by N0

n(a, b) the number of possible paths from (0, a) to (n, b) which touch the
origin, i.e., which contain some point (k, 0), 1 ≤ k < n.

Theorem 1.2 (The reflection principle) If a, b > 0 then

N0
n(a, b) = Nn(−a, b).

Proof. Each path from (0,−a) to (n, b) intersects the x-axis at some earliest
point (k, 0). Reflect the segment of the path with times 0 ≤ m ≤ k in the x-axis
to obtain a path joining (0, a) and (n, b) which intersects/touches the x-axis, see
figure 2. This operation gives a one-one correspondence between the collections
of such paths, and the theorem is proved. 2

Lemma 1.3

Nn(a, b) =

(
n

1
2
(n+ b− a)

)
.

Proof. Choose a path from (0, a) to (n, b) and let α and β be the numbers
of positive and negative steps, respectively, in this path. Then α + β = n and
α − β = b − a, so that α = 1

2
(n + b − a). Now the number of such paths

is exactly the number of ways picking α positive steps out of n available steps.
Hence,

Nn(a, b) =

(
n

α

)
.

2
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Corollary 1.4 (Ballot theorem) If b > 0 then the number of paths from (0, 0)
to (n, b) which do not revisit the x-axis (origin) equals b

n
Nn(0, b).

Proof. The first step of all such paths is to (1, 1), and so the number of such
paths is

Nn−1(1, b)−N0
n−1(1, b) = Nn−1(1, b)−Nn−1(−1, b)

=

(
n− 1

1
2
(n− 1 + b− 1)

)
−
(

n− 1
1
2
(n− 1 + b+ 1)

)
.

Elementary computations give the result. 2

What can be deduced from the reflection principle? We first consider the
probability that the walk does not revisit its starting point in the first n steps.

Theorem 1.5 Let S0 = 0 and p ∈ (0, 1). Then

P(S1S2 · · ·Sn 6= 0, Sn = b) =
|b|
n

P(Sn = b),

implying P(S1S2 · · ·Sn 6= 0) = 1
n
E(|Sn|).

Proof. Pick b > 0. The possible paths do not visit the x-axis in the time
interval [1, n], and the number of such paths is by the Ballot theorem exactly
b
n
Nn(0, b), and each path has 1

2
(n+ b) rightward and 1

2
(n− b) leftward steps.

P(S1S2 · · ·Sn 6= 0, Sn = b) =
b

n
Nn(0, b)p

1
2

(n+b)q
1
2

(n−b) =
b

n
P(Sn = b).

The case for b < 0 follows similar, and b = 0 is obvious. 2

Surprisingly, the last expression can be used to get the probability that the walk
reaches a new maximum at a particular time. Denote by

Mn = max{Si : 0 ≤ i ≤ n}

the maximum value up to time n (S0 = 0).

Theorem 1.6 (Maximum and hitting time theorem) Let S0 = 0 and p ∈
(0, 1).

(a) For r ≥ 1 it follows that

P(Mn ≥ r, Sn = b) =

{
P(Sn = b) if b ≥ r

( q
p
)r−bP(Sn = 2r − b) if b < r

.
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(b) The probability fb(n) that the walk hits b for the first time at the n-th step
is

fb(n) =
|b|
n

P(Sn = b).

Proof. (a) The case b ≥ r is clear. Assume r ≥ 1 and b < r. Let N r
n(0, b)

denote the number of paths from (0, 0) to (n, b) which include some point having
height r (i.e., some point (i, r) with time 0 < i < n). Call such a path π and
(iπ, r) the earliest such hitting point of the height r. Now reflect the segment
with times larger than iπ in the horizontal height axis (x-axis shifted in vertical
direction by r), see figure 3. The reflected path π′ (with his segment up to time
iπ equal to the one of π) is a path joining (0, 0) and (n, 2r− b). Here, 2r− b is
the result of b+ 2(r− b) which is the terminal point of π′. There is again a one-
one correspondence between paths π ↔ π′, and hence N r

n(0, b) = Nn(0, 2r− b).
Thus,

P(Mn−1 ≥ r, Sn = b) = N r
n(0, b)p

1
2

(n+b)q
1
2

(n−b)

= (
q

p
)r−bNn(0, 2r − b)p

1
2

(n+2r−b)q
1
2

(n−2r+b)

= (
q

p
)r−bP(Sn = b).

(b) Pick b > 0 (the case for b < 0 follows similar). Then, using (a) we get

fb(n) = P(Mn−1 = Sn−1 = b− 1, Sn = b)

= p
(
P(Mn−1 ≥ b− 1, Sn−1 = b− 1)− P(Mn−1 ≥ b, Sn−1 = b− 1)

)
= p
(
P(Sn−1 = b− 1)− (

q

p
)P(Sn−1 = b+ 1)

)
=
b

n
P(Sn = b).

2

1.2 How often random walkers return to the origin?

We are going to discuss in an heuristic way the question how often the random
walker returns to the origin. The walker always moves from an even integer to
an odd integer or from an odd integer to an even integer, so we know for sure
the position Sn of the walker is at an even integer if n is even or an at an odd
integer if n is odd.

Example. Symmetric Bernoulli random walk, p = 1
2
, S0 = 0:

P(S2n = 2j) =

(
2n

n+ j

)
2−2n = 2−2n (2n)!

(n+ j)!(n− j)!
, j ∈ Z,

5



and in particular

P(S2n = 0) = 2−2n (2n)!

n!n!
,

and with Stirling’s formula

n! ∼ nne−n
√

2πn,

we finally get

P(S2n = 0) = 2−2n (2n)!

n!n!
∼ 2−2n 22n

√
π
√
n

=
1√
πn

.

This fact is consistent with what we already know. We know that the walker
tends to go a distance about a constant times

√
n, and there are about c

√
n

such integer points that are in distance within
√
n from the origin. Henceforth,

it is very reasonable that a particular one is chosen with probability a constant
times n−1/2.

Consider the following random variable, namely

Rn = ] of visits to the origin up through time 2n

= Y0 + Y1 + · · ·+ Yn,

where Yj are Bernoulli variables defined by Yj = 1 if S2j = 0 and Yj = 0 if
S2j 6= 0. We easily compute E(Yj) = P(Yj = 1) + 0P(Yj = 0) = P(S2j = 0)
and (invoke integral approximation for the sum)

E(Rn) = E(Y0) + · · ·+ E(Yn) =
∑
j=0

P(S2j = 0) ∼ 1 +
n∑
j=1

1√
π
j−

1
2 ∼ 2n

1
2

√
π
.

Hence, the number of expected visits to the origin goes to infinity as n→∞. �

What happens in higher dimensions?

Let’s consider Zd, d ≥ 1, and x ∈ Zd, x = (x1, . . . , xd). We study the simple
random walk on Zd. The walker starts at the origin (i.e. S0 = 0) and at each
integer time n he moves to one of the nearest neighbours with equal probability.

Nearest neighbour refers here to the Euclidean distance, |x| =
(∑d

i=1(xi)2
)1/2

,
and any lattice site in Zd has exactly 2d nearest neighbours. Hence, the walkers
jumps with probability 1

2d
to one of its nearest neighbours. Denote the position

of the walker after n ∈ N time steps by Sn = (S(1)
n , . . . , S

(d)
n ) and write Sn =

X1 + · · · + Xn, where Xi = (X (1)

i , . . . , X
(d)

i ) are independent random vectors
with

P(Xi = y) =
1

2d

6



for all y ∈ Zd with |y| = 1, i.e., for all y ∈ Zd that are in distance one from the
origin. We compute similarly as above

E(|Sn|2) = E((S(1)

n )2 + · · ·+ (S(d)

n )2) = dE((S(1)

n )2),

and

E((S(1)

n )2) =
n∑
j=1

E((X (1)

j )2) +
∑
i 6=j

E(X (1)

i X
(1)

j ).

The probability that the walker moves within the first coordinate (either +1 or
−1) is 1

d
, thus E((X (1)

j )2) = 1
d

and E(|Sn|2) = n. Consider again an even time
2n and take n sufficiently large, then (law of large number, local central limit
theorem) approximately 2n

d
expected steps will be done by the walker in each

of the d component directions. To be at the origin after 2n steps, the walker
will have had to have an even number of steps in each of the d component
directions. Now for n large the probability for this happening is about (1

2
)d−1.

Whether or not an even number of steps have been taken in each of the first
d − 1 component directions are almost independent events; however, we know
that if an even number of steps have been taken in the first d − 1 component
directions then an even number of steps have been taken in the last component
as well since the total number of steps taken is even. 2n

d
steps in each component

direction gives P(S(i)

2n = 0) ∼
√

d
π

1√
2n

, i = 1, . . . , d. Hence,

P(S2n = 0) ∼ 21−d
(√d

π

1√
2n

)d
=
( dd/2

2d−12d/2πd/2
)
n−d/2.

This is again consistent with what we already know. We know that the mean
distance is

√
n from the origin, and there are about nd/2 points in Zd that are

within distance
√
n from the origin. Hence, we expect that the probability of

chosing a particular one would be of order n−d/2). As in d = 1 the expected
number of visits to the origin up to time n is

E(Rn) =
n∑
j=0

P(S2j = 0) ≤ 1 + const

∞∑
j=1

j−d/2 <∞,

and it is finite as n→∞ for dimension d ≥ 3. In the two-dimensional case one
obtains (again integral approximation),

E(Rn) =
n∑
j=0

P(S2n = 0) ∼ 1 + const
n∑
j=1

1

j
∼ log n.

7



1.3 Transition function

We study random walks on Zd and connect them to a particular function, the
so-called transition function or transition matrix. For each pair x and y in Zd we
define a real number P (x, y), and this function will be called transition function
or transition matrix.

Definition 1.7 (Transition function/matrix) Let P : Zd × Zd → R be given
such that

(i) 0 ≤ P (x, y) = P (0, y − x) for all x, y ∈ Zd,

(ii)
∑

x∈Zd P (0, x) = 1.

The function P is called transition function or transition matrix on Zd.

It will turn out that this function actually determines completely a random walk
on Zd. That is, we are now finished - not in the sense that there is no need for
further definitions, for there is, but in the sense that all further definitions will
be given in terms of P . How is a random walk S = (Sn)n∈N0 connected with a
transition function (matrix)? We consider random walks which are homogeneous
in time, that is

P(Sn+1 = j|Sn = i) = P(S1 = j|S0 = i).

This motivates to define

P (x, y) = P(Sn+1 = y|Sn = x), for all x, y ∈ Zd. (1.4)

Hence, P (0, x) corresponds to our intuitive notion of the probability of a ’one-
step’ transition from 0 to x. Then it is useful to define Pn(x, y) as the ’n-step’
transition probability, i.e., the probability that a random walker (particle) starting
at the origin 0 finds itself at x after n transitions (time steps) governed by P .

Example. Bernoulli random walk: The n-step transition probability is given
as

Pn(0, x) = p(n+x)/2q(n−x)/2

(
n

(n+ x)/2

)
when n is even, |x| ≤ n, and Pn(0, x) = 0 otherwise. �

Example. Simple random walk in Zd: Any lattice site in Zd has exactly 2d
nearest neighbours. Hence, the transition function (matrix) reads as

P (0, x) =

{
1
2d
, if |x| = 1,

0 , otherwise.

�
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Notation 1.8 The n-step transition function (matrix) of the a random walk
S = (Sn)n∈N0 is defined by

Pn(x, y) = P(Sm+n = y|Sm = x), m ∈ N, x, y ∈ Zd,

and we write P1(x, y) = P (x, y) and P0(x, y) = δx,y.

The n-step transition function can be written as

Pn(x, y) =
∑

xi∈Zd,i=1,...,n−1

P (x, x1)P (x1, x2) · · ·P (xn−1, y), n ≥ 2. (1.5)

This is proved in the following statement.

Theorem 1.9 For any pair r, s ∈ N0 satisfying r + s = n ∈ N0 we have

Pn(x, y) =
∑
z∈Zd

Pr(x, z)Ps(z, y), x, y ∈ Zd.

Proof. The proof for n = 0, 1 is clear. We give a proof for n = 2. Induction
will give the proof for the other cases as well. The event of going from x to y
in two transitions (time steps) can be realised in the mutually exclusive ways of
going to some intermediate lattice site z ∈ Zd in the first transition and then
going from site z ∈ Zd to y in the second transition. The Markov property
implies that the probability of the second transition is P (z, y), and that of the
first transition is clearly P (x, z). Using the Markov property and the relation

P(A ∩ C|C) = P(A|B ∩ C)P(B|C),

we get for any m ∈ N,

P2(x, y) = P(Sm+2 = y|Sm = x) =
∑
z∈Zd

P(Sm+2 = y, Sm+1 = z|Sm = x)

=
∑
z∈Zd

P(Sm+2 = y|Sm+1 = z, Sm = x)P(Sm+1 = z|Sm = x)

=
∑
z∈Zd

P(Sm+2 = y|Sm+1 = z)P(Sm+1 = z|Sm = x)

=
∑
z∈Zd

P (x, z)P (z, y).

2

The probability interpretation of Pn(x, y) is evident, it represents the probability
that a ’particle’, executing a random walk and starting at the lattice site x at
time 0, will be at the lattice site y ∈ Zd at time n. We now define a function
of a similar type, namely, we are asking for the probability (starting at x at time
0), that the first visit to the lattice site y should occur at time n.

9



Definition 1.10 For all x, y ∈ Zd and n ≥ 2 define

F0(x, y) := 0,

F1(x, y) := P (x, y),

Fn(x, y) :=
∑

xi∈Zd\{y}
i=1,...,n−1

P (x, x1)P (x1, x2) · · ·P (xn−1, y).

Important properties of the function Fn, n ≥ 2, are summarised.

Proposition 1.11 For all x, y ∈ Zd:

(a) Fn(x, y) = Fn(0, y − x).

(b)
∑n

k=1 Fk(x, y) ≤ 1.

(c) Pn(x, y) =
∑n

k=1 Fk(x, y)Pn−k(y, y).

Proof. (a) is clear from the definition and from the known properties of P .
(b) The claim is somehow obvious. However, we shall give a proof. For n ∈ N
put Ωn = {ω = (x0, x1, . . . , xn) : x0 = x, xi ∈ Zd, i = 1, . . . , n}. Clearly, Ωn is
countable, and we define a probability for any ’elementary event’ ω ∈ Ωn by

p(ω) := P (x, x1)P (x1, x2) · · ·P (xn−1, xn), ω = (x0, x1, . . . , xn−1) ∈ Ωn.

Clearly,
∑

ω∈Ω: xn=y p(ω) = Pn(x, y), and
∑

ω∈Ωn
p(ω) =

∑
y∈Zd Pn(x, y) = 1.

The sets Ak,

Ak = {ω ∈ Ωn : x1 6= y, x2 6= y, . . . , xk−1 6= y, xk = y}, 1 ≤ k ≤ n,

are disjoint subsets of Ωn and Fk(x, y) =
∑

ω∈Ak p(ω) implies that

n∑
k=1

Fk(x, y) ≤
∑
ω∈Ωn

p(ω) = 1.

(c) This can be proved in a very similar fashion, or by induction. We skip the
details. 2

We come up now with a third (and last) function of the type above. This
time we are after the expected number of visits of a random walk to a given
point within a given time. More precisely, we denote by Gn(x, y) the expected
number of visits of the random walk, starting at x, to the point y up to time n.

10



Notation 1.12

Gn(x, y) =
n∑
k=0

Pk(x, y), n ∈ N0, x, y ∈ Zd.

One can easily convince oneself that Gn(x, y) ≤ Gn(0, 0) for all n ∈ N0, x, y ∈
Zd: it suffices to consider x 6= 0, using Proposition 1.11(c) we get

Gn(x, 0) =
n∑
k=1

Pk(x, 0) =
n∑
k=1

k∑
j=0

Fk−j(x, 0)Pj(0, 0)

=
n∑
j=0

Pj(0, 0)

n−j∑
i=0

Fi(x, 0) ≤
n∑
j=0

Pj(0, 0) = Gn(0, 0).

We are now able to classify the random walks according to whether they are re-
current or transient (non-recurrent). The idea is that

∑n
k=1 Fk(0, 0) represents

the probability of a return to the origin before or at time n. The sequence of
sums

∑n
k=1 Fk(0, 0) is non-decreasing as n increases, and by Proposition 1.11

bounded by one. Call the limit by F ≤ 1. Further, call G the limit of the
monotone sequence (Gn(0, 0))n∈N0 .

Notation 1.13 (a) G(x, y) =
∑∞

n=0 Pn(x, y) ≤ ∞ for all x, y ∈ Zd, Gn(0, 0) :=
Gn and G := G(0, 0).

(b) F (x, y) =
∑∞

n=1 Fn(x, y) ≤ 1 or all x, y ∈ Zd, Fn(0, 0) := Fn and
F := F (0, 0).

Definition 1.14 The random walk (on Zd) defined by the transition function P
is said to be recurrent if F = 1 and transient if F < 1.

Proposition 1.15

G =
1

1− F
with G = +∞ when F = 1 and F = 1 when G = +∞.

Proof. (The most convenient way is to prove it is using generating functions).
We sketch a direct method.

Pn(0, 0) =
n∑
k=0

FkPn−k(0, 0), n ∈ N. (1.6)
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Summing (1.6) over n = 1, . . . ,m, and adding P0(0, 0) = 1 gives

Gm(0, 0) =
m∑
k=0

FkGm−k(0, 0) + 1, m ∈ N. (1.7)

Letting m→∞ we get

G = 1 + lim
m→∞

m∑
k=0

FkGm−k ≥ 1 +G

N∑
k=0

Fk, for all N ∈ N,

and thus G ≥ 1 +GF . Now (1.7) gives

1 = Gm −
m∑
k=0

GkFm−k ≥ Gm −Gm

m∑
k=1

Fm−k ≥ Gm(1− F ),

and henceforth 1 ≥ G(1− F ). 2

Example. Bernoulli random walk: P (0, 0) = p, and P (0,−1) = q = 1 − p,
p ∈ [0, 1].

P(S2n = 0) = P2n(0, 0) = (pq)n
(

2n

n

)
= (−1)n(4pq)n

(
−1

2

n

)
,

where we used that (
2n

n

)
= (−1)n4n

(
−1

2

n

)
. (1.8)

Note that the binomial coefficients for general numbers r are defined as(
r

k

)
=
r(r − 1) · · · (r − k + 1)

k!
, k ∈ N0.

We prove (1.8) by induction: For n = 1 the LHS= 2!
1!1!

and RHS= (−1)4−1/2
1!

.
Assumption the claim for n ∈ N. Then(

2(n+ 1)

n+ 1

)
=

(2n)!(2n+ 1)(2(n+ 1))

(n+ 1)n!(n+ 1)n!
= (−1)n4n

(
−1/2

n

)
2×

× (2n+ 1)

n+ 1

(−1)n4n(−1/2)(−1/2− 1) · · · (−1/2− n+ 1)(−1)(−1/2− n)

(n+ 1)!

= (−1)n+14n+1

(
−1/2

n+ 1

)
.
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Further, using Newton’s generalised Binomial theorem, that is,

(x+ y)r =
∞∑
k=0

(
r

k

)
xr−kyk, (1.9)

we - noting that 0 ≤ p = 1− q implies that 4pq ≤ 1 - get that

∞∑
n=0

tnP2n(0, 0) = (1− 4pqt)−1/2, |t| < 1.

Thus

lim
t→1,t<1

∞∑
n=0

tnP2n(0, 0) =
∞∑
n=0

P2n(0, 0) =
∞∑
n=0

Pn(0, 0) = G ≤ ∞,

henceforth

G =

{
(1− 4pq)−1/2 <∞ , if p 6= q,

+∞ , if p = q.

The Bernoulli random walk (on Z) is recurrent if and only if p = q = 1
2
. �

Example. Simple random walk in Zd:
The simple random walk is
d = 1 recurrent,
d = 2 recurrent,
d ≥ 3 transient. �

1.4 Summary

The simple random walks on Zd (discrete time) are examples of Markov chains
on Zd.

Definition 1.16 Let I be a countable set, λ ∈M1(I) be a probability measure
(vector) on I, and P = (P (i, j))i,j∈I be a transition function (stochastic matrix).
A sequence X = (Xn)n∈N0 of random variables Xn taking values in I is called a
Markov chain with state space I and transition matrix P and initial distribution
λ, if

P(Xn+1 = in+1|X0 = i0, . . . , Xn = in) = P (in, in+1) and

P(X0 = i) = λ(i), i ∈ I,

for every n ∈ N0 and every i0, . . . , in+1 ∈ I with P(X0 = i0, . . . , Xn = in) > 0.
We call the family X = (Xn)n∈N0 a (λ, P )-Markov chain.
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Note that for every n ∈ N0, i0, . . . , in ∈ I, the probabilities are computed as

P(X0 = i0, . . . , Xn = in) = λ(i0)P (i0, i1)P (i1, i2) · · ·P (in−1, in).

A vector λ = (λ(i))i∈I is called a stationary distribution of the Markov chain if
the following holds:

(a) λ(i) ≥ 0 for all i ∈ I, and
∑

i∈I λ(i) = 1.

(b) λ = λP , that is, λ(j) =
∑

i∈I λ(i)P (i, j) for all j ∈ I.

Without proof we state the following result which will we prove later in the
continuous time setting.

Theorem 1.17 Let I be a finite set and P : I×I → R+ be a transition function
(matrix). Suppose for some i ∈ I that

Pn(i, j)→ λ(j) as n→∞ for all j ∈ I.

Then λ = (λ(j))j∈I is an invariant distribution.

2 Markov processes

In this chapter we introduce continuous-time Markov processes with a countable
state space I. Throughout the chapter we assume that X = (Xt)t≥0 is a family
of I-valued random variables. The family X = (Xt)t≥0 is called a continuous-
time random process. We shall specify the probabilistic behaviour (or law) of
X = (Xt)t≥0. However, there are subtleties in this problem not present in the
discrete-time case. They arise because the probability of a countable disjoint
union is the sum of the single probabilities, whereas for a noncountable union
there is no such rule. To avoid these subtleties we shall consider only continous-
time processes which are right continuous. This means that with probability
one, for all t ≥ 0, limh↓0Xt+h = Xt. By a standard result of measure theory
the probability of any event depending on a right-continuous process can be
determined from its finite-dimensional distributions, that is, from the probabilities
P(Xt0 = i0, . . . , Xtn = tn) for n ∈ N0, 0 ≤ t0 ≤ · · · ≤ tn and i0, . . . , in ∈ I.
Throughout we are using both writings, Xt and X(t) respectively.

Definition 2.1 The process X = (Xt)t≥0 is said to satisfy the Markov property
if

P(X(tn) = j|X(t0) = i0, . . . X(tn−1) = in−1) = P(X(tn) = j|X(tn−1) = in−1)

for all j, i0, . . . , in−1 ∈ I and any sequence t0 < t1 < · · · < tn of times.
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We studied in the first chapter the simplest discrete time Markov process (Markov
chain) having independent, identically distributed increments (Bernoulli random
variables). The simplest continuous time Markov processes are those whose
increments are mutually independent and homogeneous in the sense that the
distribution of an increment depends only on the length of the time interval over
which the increment is taken. More precisely, we are dealing with stochastic
processes X = (Xt)t≥0 having the property that P(X0 = x0) = 1 for some
X0 ∈ I and

P(X(t1)−X(t0) = i1, . . . , X(tn)−X(tn−1) = in) =
n∏

m=1

P(X(tm)−X(tm−1) = im)

for n ∈ N, i1, . . . , in ∈ I and all times t0 < t1 < · · · < tn.
We introduce in the first subsection the Poisson process on N. Before that we
shall collect some basic facts from probability theory.

Definition 2.2 (Exponential distribution) A random variable T having val-
ues in [0,∞) has exponential distribution of parameter λ ∈ [−0,∞) if P(T >
t) = e−λt for all t ≥ 0. The exponential distribution is the probability measure
on [0,∞) having the (Lebesgue-) density function

fT (t) = λe−λt1l{t ≥ 0}.

We write T ∼ E(λ) for short. The mean (expectation) of T is given by

E(T ) =

∫ ∞
0

P(T > t) dt = λ−1.

The other important distribution is the so-called Gamma distribution. We
consider random time points in the interval (0,∞) (e.g. incoming claims in
an insurance company or phone calls arriving at a telephone switchboard). The
heuristic reasoning is that, for every t > 0, the number of points in (0, t] is Poisson
distributed with parameter λt, where λ > 0 represents the average number of
points per time. We look for a model of the r-th random point. What is the
probability measure P describing the distribution of the r-th random point?
P ((0, t]) = probability that the r-th point arrives no later than t (i.e. at least r
points/arrivals in (0, t]). Denote by Pλt the Poisson distribution with parameter
λt. We get the probability in question using the complementary event as

P ((0, t]) = 1− Pλt({0, . . . , r − 1})

= 1− e−λt
r−1∑
k=0

(λt)k

k!
=

∫ t

0

λr

(r − 1)!
xr−1e−λx dx.
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The last equality can be checked when differentiating with respect to t. Recall
the definition of Euler’s Gamma function, Γ(r) =

∫∞
0
yr−1e−y dy, r > 0, and

Γ(r) = (r − 1)! for all r ∈ N.

Definition 2.3 (Gamma distribution) For every λ, r > 0, the probability mea-
sure Γλ,r on [0,∞) with (Lebesgue-) density function

γλ,r(x) =
λr

Γ(r)
xr−1e−λx, x ≥ 0,

is called the Gamma distribution with scale parameter λ and shape parameter r.
Note that Γλ,1 is the exponential distribution with parameter λ.

Lemma 2.4 (Sum of exponential random variables) If Xi ∼ E(λ), i =
1, . . . , n, independently, and Z = X1 + · · ·+Xn then Z is Γλ,n distributed.

Proof. Exercise of example sheet 2. 2

2.1 Poisson process

In this Subsection we will introduce a basic intuitive construction of the Poisson
process. The Poisson process is the backbone of the theory of Markov processes
in continuous time having values in a countable state space. We will study later
more general settings. Pick a parameter λ > 0 and let (Ei)i∈N be a sequence
of i.i.d. (independent identically distributed) random variables (having values in
R+) that are exponentially distributed with parameter λ (existence of such a
sequence is guaranteed - see measure theory). Now, Ei is the time gap (waiting
or holding time) between the (i − 1)-th (time) point and the i-th point. Then
the sum

Jk =
k∑
i=1

Ei

is the k-th random point in time (see figure). Furthermore, let

Nt =
∑
k∈N

1l(0,t](Jk)

be the number of points in the interval (0, t]. Thus, for s < t, Nt − Ns is the
number of points in (s, t]. Clearly, for t ∈ [Jk, Jk+1) one has Nt = k.

Theorem 2.5 (Construction of the Poisson process) The Nt, t ≥ 0, are
random variables having values in N0, and, for 0 = t0 < t1 < · · · < tn, the
increments Nti −Nti−1

are independent and Poisson distributed with parameter
λ(ti − ti−1), 1 ≤ i ≤ n.
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Definition 2.6 A family (Nt)t≥0 of N0-valued random variables satisfying the
properties of Theorem 2.5 with N0 = N(0) = 0 is called a Poisson process
with intensity λ > 0.

We can also write Jk = inf{t > 0: Nt ≥ k}, k ≥ 1, in other words, Jk is
the k-th time point at which the sample path t 7→ Nt of the Poisson process
performs a jump of size 1. These times are therefore called jump times of the
Poisson process, and (Nt)t≥0 and (Jk)k∈N are two manifestations of the same
mathematical object.

Proof of Theorem 2.5. First note that {Nt = k} = {Jk ≤ t < Jk+1}.
We consider here n = 2 to keep the notation simple. The general case follows
analogously. Pick 0 < s < t and k, l ∈ N. It suffices to show that

P(Ns = k,Nt−s = l) =
(
e−λs

(λs)k

k!

)(
e−λ(t−s) (λ(t− s))l

l!

)
. (2.10)

Having (2.10), summing over l and k, respectively, we conclude that Ns and Nt−s
are Poisson distributed (and are independent, see right hand side of (2.10)). The
joint distribution of the (holding) times (Ej)1≤j≤k+l+1 has the product density

f(x1, . . . , xk+l+1) = λk+l+1e−λτk+l+1(x),

where for convenience we write τk+l+1(x) = x1 + · · ·+xk+l+1. Using the equality
of the events in the first line above, the left hand side of (2.10) reads as

P(Ns = k,Nt−s −Ns = l) = P(Jk ≤ s < Jk+1 ≤ Jk+l ≤ t < Jk+l+1)

=

∫ ∞
0

· · ·
∫ ∞

0

dx1 · · · dxk+l+1λ
k+l+1e−λτk+l+1(x)

× 1l{τk(x) ≤ s < τk+1(x) ≤ t < τk+l+1(x)}.

We integrate step by step starting from the innermost integral and moving out-
wards. Fix x1, . . . , xk+l and set z = τk+l+1(x),∫ ∞

0

dxk+l+1λe−λτk+l+1(x)1l{τk+l+1(x) > t} =

∫ ∞
t

dzλe−λz = e−λt.

Fix x1, . . . , xk and make the substitution y1 = τk+1(x)− s, y2 = xk+2, . . . , yl =
xk+l to obtain∫ ∞

0

· · ·
∫ ∞

0

dxk+1 · · · dxk+l1l{s < τk+1(x) ≤ τk+l(x) ≤ t}

=

∫ ∞
0

· · ·
∫ ∞

0

dy1 · · · dyl1l{y1 + · · ·+ yl ≤ t− s} =
(t− s)l

l!
,
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which can be proved via induction on l. In a similar way one gets∫ ∞
0

· · ·
∫ ∞

0

dx1 · · · dxk1l{τk(x) ≤ s} =
sk

k!
.

Combing all our steps above, we obtain finally

P(Ns = k,Nt−s = l) = e−λtλk+l s
k

k!

(t− s)l

l!
.

2

The following statement shows that the Poisson process satisfies the Markov
property.

Theorem 2.7 Let N = (Nt)t≥0 be a Poisson process with intensity λ > 0, then

P(Ns+t −Ns = k|Nτ , τ ∈ [0, s]) = P(Nt = k), k ∈ N.

That is for all s > 0, the past (Nτ )τ∈[0s) is independent of the future (Ns+t −
Ns)t≥0. In other words, for all s > 0 the process after time s and counted from
the level Ns remains a Poisson process with intensity λ independent of its past
(Nτ )τ∈[0s).

The proof is deferred for later and the support class.

2.2 Compound Poisson process on Zd

We can easily construct a rich class of processes which are the continuous time
analogs of the random walks on Zd in Section 1.
Pick a probability vector (probability measure) µ = (µk)k∈Zd ∈ M1(Zd) such
that µ0 = 0, i.e., µk ∈ [0, 1] ∀k ∈ Zd and

∑
k∈Zd µk = 1. The compound Poisson

process on Zd with jump distribution µ and rate λ ∈ (0,∞) is the stochastic
process (Xt)t≥0 which starts at the origin, sits there for an exponential holding
time having mean value λ−1, at which time it jumps by the amount k ∈ Zd with
probability µk, sits where it lands for another, independent holding time with
mean λ−1, jumps again and so on.
If d = 1, λ = 1, and µ1 = 1 we say (Xt)t≥0 is the simple Poisson process, which,
once restricted to the state space N0, is the Poisson process from the previous
section. The jump distribution allows only jumps by +1, i.e., only jumps to the
right, because µk = 0 for all k 6= 0.

Construction of the compound Poisson process:
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Choose a family (Bn)n∈N of mutually independent Zd-valued random variables
with distribution µ ∈ M1(Zd) with µ0 = 0. This determines a random walk
(Yn)n∈N0 (in discrete time) on Zd.

Y0 = 0 and Yn =
n∑

m=1

Bm, n ≥ 1.

For any rate λ ∈ (0,∞), a family (Xt)t≥0 of Zd-valued random variables is
defined by

Xt := YN(λt), t ≥ 0,

where (Nt)t≥0 is a simple Poisson process which is independent of the random
variables Bm (simple means intensity one). The following facts are easily seen
from the construction.
X0 = 0 and [0,∞) 3 t 7→ Xt is piecewise constant, right continuous Zd-
valued path. The number of jumps during a time interval (s, t] is precisely
N(λt) − N(λs) and Bn = Yn − Yn−1 is the amount of the n-th jump. We let
J0 = 0 and Jn, n ≥ 1, denote the time of the n-th jump. Then

N(λt) = n⇔ Jn ≤ λt < Jn+1

and XJn−XJn−1 = Bn. If (Ii)i∈N is the family of unit exponential holding times
(i.e. Ei ∼ E(1)) of the simple Poisson process (Nt)t≥0, then the holding times
of the process (Xt)t≥0 are given via the jump times as

Jn − Jn−1 =
En
λ

; X(t)−X(t−) = 0 for t ∈ (Jn−1, Jn).

We call (Xt)t≥0 the compound Poisson process with jump distribution µ and
rate λ. In the next lemma we shall show that a compound process moves along
in homogeneous, mutually independent increments.

Lemma 2.8

P(X(s+ t)−X(s) = k|X(τ), τ ∈ [0, s]) = P(X(t) = k), k ∈ Zd. (2.11)

Proof. Given A ∈ σ({X(τ) : τ ∈ [0, s]}) it suffices to show that

P({X(s+ t)−X(s) = k} ∩ A) = P({X(s+ t)−X(s) = k})P(A).
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W.l.o.g. we assume that, for some m ∈ N, N(λs) = m on A. Then the event
A is independent of σ({Ym+n − Ym : n ≥ 0} ∪ {N(λ(s+ t))−N(λs)}), and so

P({X(s+ t)−X(s) = k} ∩ A)

=
∞∑
n=0

P({X(s+ t)−X(s) = k;N(λ(s+ t)−N(λs) = n} ∩ A)

=
∞∑
n=0

P({Ym+n −Xm = k;N(λ(s+ t)−N(λs) = n} ∩ A)

=
∞∑
n=0

P(Yn = k)P(N(λt) = n)P(A)

=
∞∑
n=0

P(Yn = k;N(λt) = n)P(A) = P(X(t) = k)P(A).

2

Finally, we shall compute the distribution of the compound Poisson process
(Xt)t≥0. Recall that the distribution of the sum of k independent, identically
distributed random variables is the n-fold convolution of their distribution.

Definition 2.9 (Convolution) If µ, ν ∈ M1(Zd) are two probability vectors,
the convolution µ ∗ ν ∈M1(Zd) of µ and ν is defined by

µ ∗ ν(m) =
∑
k∈Zd

µkνm−k, m ∈ Zd.

Clearly,
P(Yn = k) = µ(∗n)

k and µ(∗0)

k = δ0,k,

µ(∗n)

k =
∑
j∈Zd

µ(∗(n−1))

k−j µj, n ≥ 1.

Henceforth,

P(X(t) = k) =
∞∑
n=0

P(Yn = k,N(λt) = n) = e−λt
∞∑
n=0

(λt)n

n!
µ(∗n)

k .

Now with Lemma 2.8 we compute for an event A ∈ σ(N(τ) : τ ∈ [0, s]).

P({X(s+ t) = k} ∩ A) =
∑
j∈Zd

P({X(s+ t) = k} ∩ A ∩ {X(s) = j})

=
∑
j∈Zd

P({X(s+ t)−X(s) = k − j} ∩ A ∩ {X(s) = j})

=
∑
j∈Zd

P (t)j,kP(A ∩ {X(s) = j}) = E
(
P (t)X(s),kA

)
,
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where

P (t)k,l = e−λt
∞∑
m=0

(λt)m

m!
µ(∗m)

l−k , l, k ∈ Zd.

We have thus proved that (Xt)t≥0 is a continuous time Markov process with
transition probability P (t) in the sense that

P(X(s+ t) = k|X(τ), τ ∈ [0, s]) = P (t)X(s),k.

As a consequence of the last equation, we find that (P (t))t≥0 is a semigroup.
That is, it satisfies the Chapman-Kolmogorov equation

P (s+ t) = P (s)P (t), s, t ∈ [0,∞). (2.12)

This can be seen as follows,

P (s+ t)0,k =
∑
j∈Zd

P(X(s+ t) = k;X(s) = j) =
∑
j∈Zd

P (t)j,kP (s)0,j

=
∑
j∈Zd

P (s)0,jP (t)j,k = (P (s)P (t))0,k,

where we used that P (t)k,l = P (t)0,l−k.

2.3 Markov processes with bounded rates

There are two possible directions in which one can generalise the previous con-
struction of the Poisson respectively the compound Poisson process:
• jump distribution depends on where the process is at the time of the jump.
• holding time depends on the particular state the process occupies.

Assumptions: I countable state space and Π = (π(x, y))x,y∈I a transition
probability matrix such that π(x, x) = 0 for all x ∈ I. Λ = {λ(i) : i ∈ I} ⊂
(0,∞) a familiy of bounded rates such that supi∈I{λi} <∞.

Proposition 2.10 With the above assumptions, a continuous time Markov pro-
cess on I with rates Λ and transition probability matrix Π is an I-valued family
(Xt)t≥0 of random variables having the properties that

(a) t 7→ X(t) is piecewise constant and right continuous,

(b) If J0 = 0 and, for n ≥ 1, Jn is the time of the n-th jump, then

P(Jn > Jn−1+t;X(Jn) = j|X(τ), τ ∈ [0, Jn)) = e−tλ(X(Jn−1))π(X(Jn−1), j)
(2.13)

on {Jn−1 <∞}.
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Proof. We have to show two things. First (see step 1 below) we have to show
that Proposition 2.10 together with an initial distribution uniquely determines
the distribution of the family (Xt)t≥0. Secondly (see step 2 below), we have to
show that the family (Xt)t≥0 possesses the Markov property.

Step 1: The assumption on the rates ensures that P(Jn < ∞) = 1 for all
n ∈ N0, henceforth we assume that Jn < ∞ for all n ∈ N0. We now set
Yn = X(Jn) and En = Jn−Jn−1

λ(Yn−1)
for n ∈ N. Then (2.13) shows that

P(En > t, Yn = j|{E1, . . . , En−1} ∪ {Y0, . . . , Yn−1}) = e−tπ(Yn−1, j).

Hence, (Yn)n∈N0 is a Markov chain with transition probability matrix Π and
the same initial distribution as (Xt)t≥0. Furthermore, (En)n∈N is a family of
mutually independent, unit exponential random variables, and σ({Yn : n ∈ N0})
is independent of σ({En : n ∈ N}). Thus, the joint distribution of {Yn : n ∈ N0}
and {En : n ∈ N} is uniquely determined. We can recover the process (Xt)t≥0

from the Markov chain (Yn)n∈N0 and the family (En)n∈N in the following way.
Given (e1, e2, . . .) ∈ (0,∞)N and (j0, j1, . . .) ∈ IN, define

Φ(Λ,Π)(t; (e1, e2, . . .), (j0, j1, . . .)) = jn for ξn ≤ t < ξn+1,

where we put ξ0 = 0 and ξn =
∑n

m=1 λjm−1em. Then

X(t) = Φ(Λ,Π)(t; (E1, . . .), (Y0, Y1, . . .)) for 0 ≤ t ≤
∞∑
m=1

λ−1
jm−1

Em.

Now, the distribution of (Xt)t≥0 is uniquely determined once we check that∑∞
m=1 λ

−1(jm−1)Em = ∞ with probability one. At this stage our assumptions
on the rates come into play. Namely, by the Strong Law of Large Numbers we
know that

∑∞
m=1Em =∞ with probability one.

Step 2: We show that the family (Xt)t≥0 possesses the Markov property:

P(X(s+ t) = j|X(τ), τ ∈ [0, s]) = P (t)X(s),j, (2.14)

where P (t)i,j := P(X(t) = j|X(0) = i). To show this property we shall
make use of the Markov chain (Yn)n∈N0 again. For that purpose we are us-
ing the abstract function Φ(Λ,Π) defined above. Recall from the definition above
that ξn+m ≤ t + s < ξn+m+1 corresponds to the state jn+m of the process
at time t. If we are ahead of m time steps (for the Markov chain), that is

ξ̃n =
∑n

l=1 λ(jm+l−1)em+l−s+ξm = −s+ξn+m, we observe that x̃n ≤ t < ξ̃n+1
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corresponds to the state jn+m as well because of −s+ξn+m+1 ≥ t ≥ −s+ξn+m.
This leads us to the following observation for ξm ≤ t < ξm+1,

Φ(Λ,Π)(s+ t; (e1, . . .), (j0, . . .))

= Φ(Λ,Π)(t; (em+1 − λjm(s− ξm), em+2, . . .), (jm, . . .)).
(2.15)

Pick an event A ∈ σ({X(τ) : τ ∈ [0, s]}) and assume that X(s) = j on A. To
prove (2.14) it suffices to show that

P({X(s+ t) = j} ∩ A) = P (t)i,jP(A).

For this end, set Am = A ∩ {X(s) = m} = {Em+1 > λ(i)(s − Jm)} ∩ Bm

where Bm is an event depending on {E1, . . . , Em} ∪ {Y0, . . . , Ym}. Clearly,
Bm ⊂ {Jm ≤ s}. We get

P({X(s+ t) = j} ∩ A) =
∞∑
m=0

P({X(s+ t) = j} ∩ Am)

=
∞∑
m=0

P({X(s+ t) = j;Em+1 > λi(s− Jm)} ∩Bm).

By the memoryless property, (2.13), and our observation (2.15) we get

∞∑
m=0

P({X(s+ t) = j;Em+1 > λi(s− Jm)} ∩Bm)

= P
(
{Φ(Λ,Π)(t; (Em+1 − λi(s− Jm), Em+2, . . . , Em+n, . . .),

(i, Ym+1, . . . , Ym+n, . . .)) = j} ∩ {Em+1 > λi(s− Jm)} ∩Bm

)
= P(X(t) = j|X(0) = i)E(e−λi(s−Jm), Bm) = P (t)i,jP(Am),

from which we finally get the Markov property. 2

The Markov property immediately shows that the family P (t)t≥0 is a semigroup
because of

P (t)i,j =
∑
k∈I

P(X(s+ t) = j;X(s) = k|X(0) = i)

=
∑
k∈I

P (t)k,jP(X(s) = k) =
∑
k∈I

P (t)k,jP (s)i,k = P (s)P (t)i,j.
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2.4 The Q-matrix and Kolmogorov’s backward equa-
tions

In this Subsection we learn how to construct a process X = (Xt)t≥0 taking values
in some countable state space I satisfying the Markov property in Definition 2.1.
We will do this in several steps. First, we proceed like for Markov chains (discrete
time, countable state space). In continuous time we do not have a unit length of
time and hence no exact analogue of the transition function P : I × I → [0, 1].

Notation 2.11 (Transition probability) Let X = (Xt)t≥0 be a Markov pro-
cess on a countable state space I.

(a) The transition probability Ps,t(i, j) of the Markov process X is defined
as

Ps,t(i, j) = P(Xt = j|Xs = i) for s ≤ t; i, j ∈ I.

(b) The Markov process X is called homogeneous if

Ps,t(i, j) = P0,t−s(i, j) for all i, j ∈ I; t ≥ s ≥ 0.

We consider solely homogeneous Markov processes in the following, hence we
write Pt for P0,t. We write Pt for the |I| × |I|-matrix. The family P = (Pt)t≥0

is called transition semigroup of the Markov process. For continuous time
processes it can happen that rows of the transition matrix Pt do not sum up to
one. This motivates the following definition for families of matrices on the state
space I.

Definition 2.12 ((Sub-) stochastic semigroup) A family P = (Pt)t≥0 of
matrices on the countable set I is called (Sub-) stochastic semigroup on I if
the following conditions hold.

(a) Pt(i, j) ≥ 0 for all i, j ∈ I.

(b)
∑

j∈I Pt(i, j) = 1 (respectively
∑

j∈I Pt(i, j) ≤ 1).

(c) Chapman-Kolmogorov equations

Pt+s(i, j) =
∑
k∈I

Pt(i, k)Ps(k, j), t, s ≥ 0.

We call the family P = (Pt)t≥0 standard if in addition to (a)-(c)

lim
t↓0

Pt(i, j) = δi,j for all i, j ∈ I

holds.
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As we saw at the end of the preceding section, apart from its initial distribution,
the distribution of a Markov process is completely determined by the semigroup
(P (t))t≥0. (Note that we dealt only with bounded rates in that section - how-
ever, one can extend the results easily to unbounded rates. We skip any details
of this.) Thus, it is important to develop methods for calculating the transition
probabilities P (t) directly from the data contained in the rates Λ and the tran-
sition probability Π. The Chapman-Kolmogorov equations (semigroup property)
leads one to suspect that P (t) must be expressible as etQ for some Q. In fact,
Q should be derived by differentiation of the semigroup at t = 0. To prove these
speculations, we shall first show that

P (t)i,j = δi,je
−tλi + λi

∫ t

0

e−τλi(ΠP (t− τ))i,j dτ. (2.16)

To prove (2.16) note that

P (t)i,j = δi,jP(E1 > tλi|X(0) = i) + P(E1 ≤ tλi;X(t) = j|X(0) = i).

Using our map Φ(Λ,Π) and our previous observation (2.15) we can write the second
term on the right hand side as

P(E1 ≤ tλi;X(t) = j|X(0) = i)

= P(Φ(Λ,Π)(t− λ−1
i E1, (E2, . . .), (Y1, . . .)) = j;E1 ≤ tλi|Y0 = i)

= E
((
P (t− λ−1

i E1)
)
Y1,j

;E1 ≤ λit|Y0 = i)

= λi

∫ t

0

e−τλi
∑
k∈I

πi,kP (t− τ)k,j dτ,

and we conclude with (2.16). (2.16) is an integrated version of a renowned
equation due to Kolmogorov. If we differentiate (2.16) with respect to t (hint:
make a change of variable in the integral), we arrive at Kolmogorov’s backward
equation:

d

dt
P (t)i,j = −λiP (t)i,j + λi(ΠP (t))i,j. (2.17)

We can rewrite this equation in matrix notation

d

dt
P (t) = QP (t) witth P (0) = 1l when Q = Λ(Π− 1l), (2.18)

where Λ is the diagonal matrix whose ith entry is λi. The reason for the ad-
jective ’backward’ is that Kolmogorov’s backward equation (KBE) describes the
evolution of t 7→ P (t)i,j in terms of its backward variable i (i.e., as a function
of the rates at state i from which the process is jumping to j). One can derive
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in a similar but more elaborative way the corresponding Kolmogorov’s forward
equation (KFE),

d

dt
P (t) = P (t)Q witth P (0) = 1l when Q = Λ(Π− 1l). (2.19)

Our construction and derivations of KBE motivates the following definition.

Definition 2.13 A Q -matrix or generator on a countable state space I is a
matrix Q = (qi,j)i,j∈I satisfying the following conditions:

(a) 0 ≤ −qi,i <∞ for all i ∈ I.

(b) qi,j ≥ 0 for all i 6= j, i, j ∈ I.

(c)
∑

j∈I qi,j = 0 for all i ∈ I.

The positive entries qi,j are called transition rates if i 6= j, and qi = −qi,i
is called the rate leaving state i. A Q-matrix is also called generator because
it provides a continuous time parameter semigroup of stochastic matrices and
henceforth a Markov process. In this way a Q-matrix or generator is the most
convenient way in construction a Markov process in particular as the non-diagonal
entries are interpreted as transition rates. Unfortunately, there is some technical
difficulty in defining this connection properly when the state space is infinite.
However, if the state space is finite we get the following nice results. Before that
recall the definition of an exponential of a finite dimensional matrix.

Theorem 2.14 Let I be a finite state space and Q = (qi,j)i,j∈I a generator or
Q-matrix. Define Pt = P (t) := etQ for all t ≥ 0. Then the following holds:

(a) P (s+ t) = P (s)P (t) for all s, t ≥ 0.

(b) (P (t))t≥0 is the unique solution to the forward equation

d

dt
P (t) = P (t)Q and P (0) = 1l.

(c) (P (t))t≥0 is the unique solution to the backward equation

d

dt
P (t) = QP (t) and P (0) = 1l.

(d) For k ∈ N0

dk

dtk

∣∣∣
t=0
P (t) = Qk.
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Proof. We only give a sketch of the proof as it basically amounts to well-known
basic matrix algebra. For all s, t ∈ R+, the matrices sQ and tQ commute, hence
esQetQ = e(s+t)Q, proving the semigroup property. The matrix-valued power
series

P (t) =
∞∑
k=0

(tQ)k

k!

has a radius of convergence which is infinite. Hence, one can justify a term by
term differentiation (we skip that) to get

P ′(t) =
∞∑
k=1

tk−1Qk

(k − 1)!
= P (t)Q = QP (t).

We are left to show that the solution to both the forward and backward equa-
tion are unique. For that let (M(t))t≥0 satisfy the forward equations (case for
backward equations follows similar).

d

dt

(
M(t)e−tQ

)
=
( d

dt
M(t)

)
e−tQ +M(t)

( d

dt
e−tQ

)
= M(t)Qe−tQ

+M(t)(−Q)e−tQ = 0,

henceforth M(t)e−tQ is constant and so M(t) = P (t). 2

Proposition 2.15 Let Q = (qi,j)i,j∈I be a matrix on a finite set I. Then the
following equivalence holds.

Q is a Q-matrix ⇔ P (t) = etQ is a stochastic matrix for all t ≥ 0.

Proof. Let Q be a Q-matrix. As t ↓ 0 we have P (t) = 1l + tQ + O(t2).
Hence, for sufficiently small times t the positivity of Pt(i, j), i 6= j, follows from
the positivity of qi,j ≥ 0. For larger times t we can easily use that P (t) = P (t/n)n

for any n ∈ N, and henceforth

qi,j ≥ 0, i 6= j ⇔ Pt(i, j) ≥ 0, i 6= j for all t ≥ 0.

Furthermore, if Q has zero row sums then so does Qn = (q(n)

i,j )i,j∈I for every
n ∈ N, ∑

k∈I

q(n)

i,j =
∑
k∈I

∑
j∈I

q(n−1)

i,j qj,k =
∑
j∈I

q(n−1)

i,j

∑
k∈I

qj,k = 0.

Thus ∑
j∈I

Pt(i, j) = 1 +
∞∑
n=1

tn

n!

∑
j∈I

q(n)

i,j = 1,
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and henceforth Pt is a stochastic matrix for all t ≥ 0. Conversely, assuming that∑
j∈I Pt(i, j) = 1 for all t ≥ 0 gives that

∑
j∈I

qi,j =
d

dt

∣∣∣
t=0

∑
j∈I

Pt(i, j) = 0.

2

Example. Consider I = {0, 1, . . . , N}, λ > 0, and the following Q-matrix
Q = (qi,j)i,j∈I with qi,i+1 = λ and qi,i = −λ for i ∈ {0, 1, . . . , N − 1} and all
other entries being zero. Clearly, Q is an upper-triangular matrix and so is any
exponential of it. Hence, Pt(i, j) = 0 for i < j and t ≥ 0. The forward equation
P ′(t) = P (t)Q reads as

P ′t(i, i) = −λPt(i, i);P0(i, i) = 0, i ∈ {0, 1, . . . , N − 1}
P ′t(i, j) = −λPt(i, j) + λPt(i, j − 1);P0(i, j) = 0, 0 ≤ i < j < N,

P ′t(i, N) = λPt(i, N − 1);P0(i, N) = 0, i < N.

To solve these equations we first note that Pt(i, i) = e−λt for i ∈ {0, 1, . . . , N −
1}. Using that we get for 0 ≤ i < j < N that

(
eλtPt(i, j)

)′
= eλtPt(i, j − 1),

and henceforth by induction

Pt(i, j) = e−λt
(λt)j−i

(j − i)!
, for 1 ≤ i < j < N − 1,

Pt(i, N) = 1−
N−i−1∑
l=0

(λt)l

l!
, for 0 ≤ i < N,

Pt(N,N) = 1.

If i = 0, these are the Poisson probabilities of parameter λt. �

Example. A virus exists in N + 1 strains 0, 1, . . . , N . It keeps its strain for a
random time which is exponential distributed with parameter λ > 0, then mutates
to one of the remaining strains equiprobably. Find the probability that the strain
at time t is the same as the initial strain. Due to symmetry, qi = −qi,i = λ
and qi,j = λ

N
for 1 ≤ i, j ≤ N + 1, i 6= j. We shall compute Pt(i, i) =

(
etQ
)
i,i

.

Clearly, Pt(i, i) = Pt(1, 1) for all i,t ≥ 0, again by symmetry. A reduced (2× 2)-
matrix, over states 0 and 1 is

Q̃ =

(
−λ λ
λ/N −λ/N

)
.
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The matrix Q̃ has eigenvalues 0 and µ = −λ(N+1)/N with its row eigenvectors
being (1, 1) and (N,−1). Hence, we get the ansatz

Pt(1, 1) = A+Be−
λ(N+1)
N

t.

We seek solutions of the form A + Beµt, and we obtain A = 1/(N + 1) and
B = n/(N + 1) and

Pt(1, 1) =
1

N + 1
+
( N

N + 1

)
e−

λ(N+1)
N

t = Pt(i, i).

By symmetry,

Pt(i, j) =
1

N + 1
−
( 1

N + 1

)
e−

λ(N+1)
N

t, i 6= j,

and we conclude

Pt(i, j)→
1

N + 1
as t→∞.

�

Recall the definition of the Poisson process and in particular the characterisation
in Theorem 2.5. A right continuous process (Nt)t≥0 with values in N0 is a
Poisson process of rate λ ∈ (0,∞) if its holding times E1, E2, . . . are independent
exponential random variables of parameter λ, its increments are independent,
and its jump chain is given by Yn = n, n ∈ N0. To obtain the corresponding
Q-matrix we recall that the off-diagonal entries are the jump rates. Jump rates
are jumps/per unit time. We ’wait’ an expected time 1

λ
, then we jump by one,

hence the jump rate is 1
1
λ

= λ and the Q-matrix

Q =


−λ λ 0 0 0 · · · · · ·
0 −λ λ 0 0 · · · · · ·
0 0 −λ λ 0 · · · · · ·
0 · · · · · · −λ λ · · · · · ·
· · · · · · · · · · · · −λ λ · · ·
· · · · · · · · ·

 .

The following Theorem gives a complete characterisation of the Poisson process.

Theorem 2.16 (Poisson process) The Poisson process for parameter (inten-
sity) λ ∈ (0,∞) can be characterised in three equivalent ways: a process (Nt)t≥0

(right continuous) taking values in N0 with N0 = 0 and:
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(a) and for all 0 < t1 < t2 < · · · < tn, n ∈ N, and i1, . . . , in ∈ N0

P(Nt1 = i1, . . . , Ntn = in) = Pt1(0, i1)Pt2−t1(i1, i2) · · ·Ptn−tn−1(in−1, in),

where the matrix Pt is defined as Pt = etQ (to be justified as the state
space is not finite).

(b) with independent increments N(t1)−N(t0), . . . , N(tn)−N(tn−1), for all
0 = t0 < t1 < · · · < tn, and the infinitesimal probabilities for all t ≥ as
h ↓ 0

P(N(t+ h)−N(t) = 0) = 1− λh+ o(h)

P(N(t+ h)−N(t) = 1) = λh+ o(h)

P(N(t+ h)−N(t) ≥ 2) = o(h),

where the terms o(h) do not depend on t.

(c) spending a random time Ek ∼ E(λ) in each state k ∈ N0 independently,
and then jumping to k + 1.

Proof. We need to justify the operation Pt = etQ as the state space N0 is
not finite. We are using the fact that Q is upper triangular and so is Qk for
any k ∈ N and therefore Pt is upper triangular. In order to find the entries
Pt(i, i + l) for any l ∈ N0 we use the forward or backward equation both with
initial condition P (0) = 1l. This gives d

dt
Pt(i, i) = −λPt(i, i) and P0(i, i) = 1

and thus Pt(i, i) = e−λt for all i ∈ N0 and all t ≥ 0. Put l = 1, that is consider
one step above the main diagonal. Then

(forward)
d

dt
Pt(i, i+ 1) = −λPt(i, i+ 1) + λPt(i, i),

(backward)
d

dt
Pt(i, i+ 1) = −λPt(i, i+ 1) + λPt(i+ 1, i+ 1)

gives Pt(i, i + 1) = λte−λt for all i ∈ N0 and t ≥ 0. The general case (i.e.
l ∈ N0) follows in the same way and henceforth

Pt(i, i+ l) =
(λt)l

l!
e−λt, i ∈ N0, t ≥ 0.

(a) ⇒ (b): We get for l = 0, 1

P(N(t+ h)−N(t) = l) =
(λh)l

l!
e−λh =

{
e−λh = 1− λ+ o(h) if l = 0

λhe−λh = λh+ o(h) if l = 1,
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and P(N(t+ h)−N(t) ≥ 2) = 1− P(N(t+ h)−N(t) = 0 or 1) = 1− (1−
λh+ λh+ o(h)) = o(h).

(b) ⇒ (c): This step is more involved. We need to get around the infinitesimal
probabilities, that is small times h. This is done as follows. We first check that
no double jumps exists, i.e.

P(no jumps of size ≥ 2 in (0, t])

= P
(

no such jumps in (
k − 1

m
t,
k

m
t]∀ k = 1, . . . ,m

)
=

m∏
k=1

P
(

no such jumps in (
k − 1

m
t,
k

m
t]
)

≥
m∏
k=1

P
(

no jump at all or single jump of size in (
k − 1

m
t,
k

m
t]
)

=
(
1− λ t

m
+ λ

t

m
+ o(

t

m
)
)m

= (1 + o(
t

m
))m → 1 as m→∞.

This is true for all t ≥ 0 and henceforth P(no jumps of size ≥ 2 ever) = 1. Pick
t, s > 0 and obtain

P(N(t+ s)) = P(no jumps in (s, s+ t])

= P
(

no jumps in (s+
k − 1

m
t, s+

k

m
t]∀ k = 1, . . . ,m

)
=

m∏
k=1

P
(

no jumps in (s+
k − 1

m
t, s+

k

m
t]
)

=
(
1− λ t

m
+ o(

t

m
)
)m → e−λt as m→∞.

With some slight abuse we introduce the holding times with index starting at
zero (before we started here with one):

E0 = sup{t ≥ 0: N(t) = 0},

E1 = sup{t ≥ 0: N(E0 + t) = 1}, . . . , En =

{
Jn − Jn−1 if Jn−1 <∞
∞ otherwise.

Note that the jump time Jk is also the hitting time of the state k ∈ N0. We need
to show that these holding times are independent and exponential distributed with
parameter λ. In order to do so we compute the probability for some given time
intervals and show that it is given as a product of the corresponding densities.
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Pick positive t1, . . . , tn and positive h1, . . . , hn such that 0 < t1 < t1 + h1 <
· · · < tn−1 + hn−1 < tn. We get

P(t1 < J1 ≤ t1 + h1, . . . , tn < Jn ≤ tn + hn)

=P(N(t1) = 0;N(t1 + h1)−N(t1) = 1; . . . ;N(tn)−N(tn−1 + hn−1) = 0;

N(tn + hn)−N(tn) = 1)

= P(N(t1) = 0)P(N(t1 + h1)−N(t1) = 1) · · ·
= e−λt1(λh1 + o(h1))e−λ(t2−t1−h1) × · · · × e−λ(tn−tn−1−hn−1)(λhn + o(hn)),

and dividing by h1 × · · ·hn and taking the limit hi ↓ 0, i = 1, . . . , n, gives that
the left hand side is the joint probability density function of the n jump times
and the right hand side is the product

(
e−λt1λ

)(
e−λ(t2−t1)λ

)
· · ·
(
e−λ(tn−tn−1)λ

)
.

Thus the joint density function reads as

fJ1,...,Jn(t1, . . . , tn) =
n∏
k=1

(
λe−λ(tk−tk−1)

)
1l{0 < t1 < · · · < tn}

= λne−λtn1l{0 < t1 < · · · < tn}.
Recall E0 = J0, E1 = J0 + J1 = J1, . . ., hence we make a change of variables
(for the n times) e0 = t1, e1 = t2 − t1, e3 = t3 − t2, . . . , en−1 = tn − tn−1. The
determinant of the Jacobi matrix for this transformation is one and therefore

fE0,...,En−1(e0, e1, . . . , en−1) = fJ1,...,Jn(e0, e0 + e1, . . . , e0 + · · ·+ en−1)

=
n−1∏
k=0

(
λe−λek1l{ek > 0}

)
,

and henceforth E0, . . . are independent and exponential distributed with param-
eter λ.

(c) ⇒ (a): This is already proved in Theorem 2.5. 2

We finish our discussion of the Poisson process with a final result concerning
the uniform distribution of a single jump in some times interval.

Proposition 2.17 Let (Nt)t≥0 be a Poisson process. Then, conditional on
(Nt)t≥0 having exactly one jump in the interval [s, s + t], the time at which
that jump occurs is uniformly distributed in [s, s+ t].

Proof. Pick 0 ≤ u ≤ t.

P(J1 ≤ u|Nt = 1) = P(J1 ≤ u and Nt = 1)/P(Nt = 1)

= P(Nu = 1 and Nt −Nu = 0)/P(nt = 1)

= λue−λue−λ(t+u)/(λte−λt) =
u

t
.

2
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2.5 Jump chain and holding times

We introduce the jump chain of a Markov process, the holding times given a
Q-matrix and the explosion time. Given a Markov process X = (Xt)t≥0 on a
countable state space there are the following cases:

(A) The process has infinitely many jumps but only finitely many in any interval
[0, t], t ≥ 0.

(B) The process has only finitely many jumps, that is, there exists a k ∈ N such
that the k-th waiting/holding time Ek =∞.

(C) The process has infinitely many jumps in a finite time interval. After the
explosion time ζ (to be defined later, see below) has passed the process starts
up again.

J0, J1, . . . are called the jump times and (Ek)k∈N are called the holding/waiting
times of the Markov process X = (Xt)t≥0.

J0 := 0, Jn+1 = inf{t ≥ Jn : Xt 6= XJn}, n ∈ N0,

where we put inf{∅} =∞, and for k ∈ N

Ek =

{
Jk − Jk−1 if Jk−1 <∞
∞ otherwise

.

The (first) explosion time ζ is defined by

ζ = sup
n∈N0

{Jn} =
∞∑
k=1

Ek.

The discrete-time process (Yn)n∈N0 given by Yn = XJn is called the jump pro-
cess or the jump chain of the Markov process. Whenever a Markov process
is satisfying that Xt = ∂ if t ≥ ζ we call this process (realization) minimal.
Having a Q-matrix one can compute the transition matrix for the corresponding
jump chain of the process.

Notation 2.18 (Jump matrix Π) The jump matrix Π = (πi,j)i,j∈I of a Q-
matrix Q = (qi,j)i,j∈I is given by

πi,j =

{
qi,j
qi

if qi 6= 0

0 if qi = 0,
if i 6= j;

and

πi,i =

{
0 if qi 6= 0

1 if qi = 0.
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Proposition 2.19 Let (Ek)k∈N be a sequence of independent random variables
with Ek ∼ E(λk) and 0 < λk <∞ for all k ∈ N.

(a) If
∑∞

k=1
1
λk
<∞, then P(ζ =

∑∞
k=1 Ek <∞) = 1.

(b) If
∑∞

k=1
1
λk

=∞, then P(ζ =
∑∞

k=1 Ek =∞) = 1.

Proof. The proof follows easily using the Monotone Convergence Theorem
and independence. 2

In a continuous time process it can happen that there are infinitely many jumps
in a finite time interval. This phenomenon is called explosion. If explosion
occurs one cannot bookmark properly the states the process visits, somehow the
process is stuck. A convenient mathematical way is to add a special state, called
cemetery, written as ∂, to the given state space I, i.e. to consider a new state
space I∪{∂}. This is exactly the situation where the sub-stochastic semigroup in
Definition 2.12 comes into play. Recall that if X = (Xt)t≥0 is a Markov process
with initial distribution ν, where ν is a probability measure on the state space
I, and semigroup (Pt)t≥0 the probability for times 0 = t0 < t1 < · · · < tn and
states i0, . . . , in ∈ I is given as

P(X(t0) = i0, . . . , X(tn) = in) = ν(i0)Pt1−t0(i0, i1) · · ·Ptn−tn−1(in−1, in).

Definition 2.20 (Markov process with explosion) Let P = (Pt)t≥0 be a sub-
stocastic semigroup on a countable state space I. Further let {∂} /∈ I and let
ν be a probability measure on the augmented state space I ∪ {∂}. A I ∪ {∂}-
valued family X = (Xt)t≥0 is a Markov process with initial distribution ν and
semigroup (Pt)t≥0 if for n ∈ N and any 0 ≤ t1 < t2 < · · · < tn < t and states
i1, . . . , in ∈ I the following holds:

(a) P(X(t)|X(t1) = i1, . . . , X(tn) = in) = Pt−tn(in|i) if the left hand side is
defined.

(b) P(X0| = i) = ν(i) for all i ∈ I ∪ {∂}.

(c) P(X(t) = ∂|X(t1) = i1, . . . , X(tn−1) = in−1, X(tn) = ∂) = 1.

Recall that qi is the rate of leaving the state i ∈ I and that qi,j is the rate of
going from state i to state j. Hence, we shall get a criterion not having explosion
of a process in terms of the qi’s.

Proposition 2.21 (Explosion) Let (Xt)t≥0 be a (λ,Q)-Markov process on some
countable state space I. Then the process does not explode if any one of the
following conditions holds:
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(a) I is finite.

(b) supi∈I{qi} <∞.

(c) X0 = i and the state i is recurrent for the jump chain (a state i is recurrent
if Pi(Yn = i for infinitely many n) = 1).

Proof. Put Tn := q(Yn−1)En, then Tn ∼ E(1) and (Tn)n∈N is independent
of (Yn)n∈N0 . (a),(b): We have q := supi∈I{qi} <∞, and hence

qζ ≥
∞∑
n=1

Tn =∞ with probability 1.

(c) If (Yn)n∈N0 visits the state i infinitely often at times N1, . . ., then

qiζ ≥
∞∑
n=1

TNn+1 =∞ with probability 1.

2

We say a Q-matrix Q is explosive if Pi(ζ <∞) > 0 for some state i ∈ I.

2.6 Summary - Markov processes

Let I be a countable state space. The basic data for a Markov process on I is
given by the Q-matrix. A right continuous process X = (Xt)t≥0 is a Markov
process with initial distribution λ (probability measure on I) and Q-matrix (gen-
erator) if its jump chain (Yn)n∈N0 is a discrete time Markov chain with initial
distribution λ and transition matrix Π (given in Notation (2.18)) and if for all
n ∈ N, conditional on Y0, . . . , Yn−1, its holding (waiting) times are independent
exponential random variables of parameters q(Y0), . . . , q(Yn−1) (negative diago-
nal entries of the Q-matrix at states given by the jump chain) respectively. How
we can construct a Markov process given a discrete time Markov chain? Pick a
Q-matrix respectively a jump matrix Π and consider the discrete time Markov
chain (Yn)n∈N0 having initial distribution λ and transition matrix Π. Further-
more, let T1, T2, . . . be a family of independent random variables exponential
distributed with parameter 1, independent of (Yn)n∈N0 . Put

En =
Tn

q(Yn−1)
and Jn = E1 + · · ·+ En, n ∈ N,

Xt :=

{
Yn if Jn ≤ t < Jn+1 for some n,

∞(∂) otherwise.
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Then (Xt)t≥0 has the required properties of a Markov process.
If the state space is not finite we have the following characterisation of the

semigroup of transition probabilities.

Proposition 2.22 (Backward/forward equation) Let Q be a Q-matrix on a
countable state space I.

(a) Then the backward equation

P ′(t) = QP (t), P (0) = 1l,

has a minimal non-negative solution (P (t))t≥0. This solution forms a ma-
trix semigroup P (s)P (t) = P (s+ t) for all s, t ≥ 0.

(b) The minimal non-negative solution of the backward equation is also the
minimal non-negative solution of the forward equation

P ′(t) = P (t)Q, P (0) = 1l.

Proof. The proof is rather long, and we skip it here as it goes beyond the
level of the course. 2

Here is now our key result for Markov processes with infinite (countable) state
space I. There are just two alternative definitions left now as the infinitesimal
characterisation becomes problematic for infinite state space.

Theorem 2.23 (Markov process, final characterisation) Let X = (Xt)t≥0

be a minimal right continuous process having values in a countable state space
I. Furthermore, let Q be a Q-matrix on I with jump matrix Π and semigroup
(solution-see Proposition 2.22) (Pt)t≥0. Then the following conditions are equiv-
alent:

(a) Conditional on X0 = i, the jump chain (Yn)n∈N0 of (Xt)t≥0 is a dis-
crete time Markov chain with initial distribution δi and transition matrix
Π and for each n ≥ 1, conditional on Y0, . . . , Yn−1, the holding (wait-
ing) times E1, . . . , En are independent exponential random variables of
paramters q(Y0). . . . , q(Yn−1) respectively;

(b) for all n ∈ N0, all times 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn+1 and all states
i0, . . . , in+1 ∈ I

P(Xtn = in+1|Xt0 = i0, . . . , Xtn = in) = Ptn+1−tn(in, in+1).

If (Xt)t≥0 satisfies any of these conditions then it is called a Markov process
with generator matrix Q. If λ is the distribution of X0 it is called the initial
distribution of the Markov process.
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3 Examples, hitting times, and long-time be-

haviour

We study the birth-and-death process, introduce hitting times and probabilities,
and discuss recurrence and transience. The last Subsection is devoted to a brief
introduction to queueing models.

3.1 Birth-and-death process

Birth process: This is a Markov process X = (Xt)t≥0 with state space I = N0

which models growth of populations. We provide two alternative definitions:

Definition via ’holding times’: Let a sequence (λj)j∈N0 of positive numbers
be given. Conditional on X(0) = j, j ∈ N0, the successive holding times are
independent exponential random variables with parameters λj, λj+1, . . .. The
sequence (λj)j∈N0 is thus the sequence of the birth rates of the process.

Definition via ’infinitesimal probabilities’: Pick s, t ≥ 0, t > s, conditional
on X(s), the increment X(t)−X(s) is positive and independent of (X(u))0≤u≤s.
Furthermore, as h ↓ 0 uniformly in t ≥ 0, it holds for j,m ∈ N0 that

P(X(t+ h) = j +m|X(t) = j) =


λjh+ o(h) if m = 1,

o(h) if m > 1,

1− λjh+ o(h) if m = 0.

From the latter definition we get the difference of the transition probabilities as

Pt+h(j, k)− Pt(j, k) = Pt(j, k − 1)λk−1h− Pt(j, k)λkh+ o(h), j ∈ N0, k ∈ N
Pt(j, j − 1) = 0,

hence the forward equations read as

P ′t(j, k) = λk−1Pt(j, k − 1)− λkPt(j, k), j ∈ N0, k ∈ N, k ≥ j.

Alternatively, conditioning on the time of the first jump yields the following
relation

Pt(j, k) = δj,ke
−λjt +

∫ t

0

λje
−λjsPt−s(j + 1, k) ds,

and the backward equations read

P ′t(j, k) = λjPt(j + 1, k)− λjPt(j, k).
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Theorem 3.1 (Birth process) (a) With the initial condition P0(j, k) = δj,k
the forward equation has a unique solution which satisfies the backward
equation.

(b) If (Pt)t≥0 is a unique solution to the forward equation and (Bt)t≥0 any
solution of the backward equation, then Pt(j, k) ≤ Bt(j, k) for all j, k ∈
N0.

Proof. We give only a brief sketch. We get easily from the definition

Pt(j, k) = 0, k < j,

Pt(j, j) = e−λjt,

Pt(j, j + 1) = e−λj+1t

∫ t

0

λje
−(λj−λj+1)s ds

=
λj

λj − λj+1

(
e−λj+1t − e−λjt

)
.

2

Examples. (a) Simple birth process where the birth rates are linear, i.e. λj =
λj, λ > 0, j ∈ N0. (b) Simple birth process with immigration where λj =
λj + ν, ν ∈ R. �
Birth-and-death process Let two sequences (λk)k∈N0 and (µk)k∈N0 of positive
numbers be given. At state k ∈ N0 we have a birth rate λk and a death rate
µk, and we only allow 1-step transitions, that is either one birth or one death.
The Q-matrix reads as

Q =


λ0 −λ0 0 0 0 0 0 . . .
µ1 −(λ1 + µ1) λ1 0 0 0 0 . . .
0 µ2 −(λ2 + µ2) λ2 0 0 0 . . .
0 0 . . . . . . . . . . . . . . . . . .
0 0 0 . . . . . . . . . . . . . . . . . .

 .

We obtain the infinitesimal probabilities

P(exactly 1 birth in (t, t+ h]|k) = λkh+ o(h),

P(exactly 1 death in (t, t+ h]|k) = µkh+ o(h),

P(no birth in(t, t+ h]|k) = 1− λkh+ o(h),

P(no death in(t, t+ h]|k) = 1− µkh+ o(h).

In the following figure (see) we have three potential transitions to the state k at
time t + h, namely if we have at time t the state k + 1 we have one death, if
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we have k − 1 at time t we do have exactly one birth, and if at time t we have
already state k then we do not have a birth or a death. This is expressed in the
following relation for the transition probabilities.

Pt+h(0, k) = Pt(0, k)Ph(k, k) + Pt(0, k − 1)Pt(k − 1, k)

+ Pt(0, k + 1)Ph(k + 1, k)

Pt+h(0, 0) = Pt(0, 0)Ph(0, 0) + Pt(0, 1)Ph(1, 0).

Combining these facts yields

dPt(0, k)

dt
= −(λk + µk)Pt(0, k) + λk+1Pt(0, k − 1) + µk+1Pt(0, k + 1)

dPt(0, 0)

dt
= −λ0Pt(0, 0) + µ1Pt(0, 1).

This can be seen as a probability flow. Pick a state k, then the probability flow
rate into state k is given as λk−1Pt(0, k − 1) + µk+1Pt(0, k + 1), whereas the
probability flow rate out of the state k is given as (λk + µk)Pt(0, k), henceforth
the probability flow rate is the difference of the flow into and out of a state.

3.2 Hitting times and probabilities. Recurrence and
transience

In this section we study properties of the single states of a continuous time Markov
process. Let a countable state space I and a Markov process X = (Xt)t≥0 with
state space I be given. If i, j ∈ I we say that i leads to j and write i −→ j
if Pi(Xt = j for some t ≥ 0) > 0. We say i communicates with j and write
i←→ if both i −→ j and j −→ i hold.

Theorem 3.2 Let X = (Xt)t≥0 be a Markov process with state space I and Q-
matrix Q = (qi,j)i,j∈I and jump matrix Π = (πi,j)i,j∈I . The following statements
for i, j ∈ I, i 6= j are equivalent.

(a) i −→ j.

(b) i −→ j for the corresponding jump chain (Yn)n∈N0 .

(c) qi0,i1qi1,i2 · · · qin−1,in > 0 for some states i0, . . . , in ∈ I with i0 = i and
in = j.

(d) Pt(i, j) > 0 for all t > 0.

(e) Pt(i, j) > 0 for some t > 0.
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Proof. All implications are clear, we only show (c) ⇒ (d). If qi,j > 0, then

Pt(i, j) ≥ Pi(J1 ≤ t, Y1 = j, E2 > t) = (1− e−qit)πi,je
−qjt > 0,

because qi,j > 0 implies pii,j > 0. 2

Let a subset A ⊂ I be given. The hitting time of the set A is the random
variable DA defined by

DA = inf{t ≥ 0: Xt ∈ A}.

Note that this random time can be infinite. It is therefore of great interest if the
probability of ever hitting the set A is strictly positive, that is the probability that
DA is finite. The hitting probability hAi of the set A for the Markov process
(Xt)t≥0 starting from state i ∈ I is defined as

hAi := Pi(DA <∞).

Before we state and prove general properties let us study the following ex-
ample concerning the expectations of hitting probabilities. The average time,
starting from state i, for the Markov process (Xt)t≥0 to reach the set A is given
by kAi := Ei(D

A).

Example. Let be given four states 1, 2, 3, 4 with the following transition rates
(see figure). 1 → 2 = 1; 1 → 3 = 1; 2 → 1 = 2; 2 → 3 = 2; 2 → 4 = 2; 3 →
1 = 3; 3 → 2 = 3; 3 → 4 = 3. How long does it take to get from state 1 to
state 4? Note that once the process arrives in state 4 he will be trapped. Write
ki := Ei(time to get to state 4). Starting in state 1 we spend an average time
q−1

1 = 1
2

in state 1, then we jump with equal probability to state 2 or state 3, i.e.

k1 =
1

2
+

1

2
k2 +

1

2
k3,

and similarly

k2 =
1

6
+

1

3
k1 +

1

3
k3,

k3 =
1

9
+

1

3
k1 +

1

3
k2.

Solving these linear equations gives k1 = 17
12

. �

Proposition 3.3 Let X = (Xt)t≥0 be a Markov process with state space I and
Q-matrix Q = (qi,j)i,j∈I and A ⊂ I.
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(a) The vector hA = (hAi )i∈I is the minimal non-negative solution to the
system of linear equations{

hAi = 1 if i ∈ A,∑
j∈I qi,jh

A
j = 0 if i /∈ A.

(b) Assume that qi > 0 for all i /∈ A. The vector kA = (kAi )i∈I of the expected
hitting times is the minimal non-negative solution to the system of linear
equations {

kAi = 0 if i ∈ A,
−
∑

j∈I qi,jk
A
j = 1 if i /∈ A.

Proof. (a) is left as an exercise. (b) X0 = i ∈ A implies DA = 0, so kAi = 0
for i ∈ A. If X0 = i /∈ A we get that DA ≥ J1. By the Markov property of the
corresponding jump chain (Yn)n∈N0 it follows that

Ei(D
A − J1|J1 = j) = Ej(D

A).

Using this we get

kAi = Ei(D
A) = Ei(J1) +

∑
j∈I\{i}

Ei(D
A − J1|Y1 = j)Pi(Y1 = j)

= q−1
i +

∑
j∈I\{i}

πi,jk
A
j ,

and therefore −
∑

j∈I qi,jk
A
j = 1. We skip the details for proving that this is the

minimal non-negative solution. 2

Example. Birth-and-death process: Recall that a birth-and-death process with
birth rates (λk)k∈N0 and death rates (µk)k∈N0 with µ0 = 0 has the Q-matrix
Q = (qi,j)i,j∈N0 given by

qj,j+1 = λj, qj,j−1 = µj, j > 0, qj = λj + µj.

Let kj,j+1 be the expected time it takes to reach state j + 1 when starting in
state j. The holding (waiting) time in state j > 0 has mean (expectation) 1

λj+µj
.

Hence,

Ej(D
{j+1}) = kj,j+1 = (λj + µj)

−1 +
µj

λj + µj

(
kj−1,j + kj,j+1

)
,

and therefore kj,j+1 = λ−1
j +

(µj
λj

)
kj−1,j for j ≥ 1 and k0,1 = λ−1

0 . The solution

follows by iteration. �
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Let a Markov process (Xt)t≥0 on a countable state space I be given. A state
i ∈ I is called recurrent if Pi({t ≥ 0: Xt = i} is unbounded) = 1, and the
state i ∈ I is called transient if Pi({t ≥ 0: Xt = i} is unbounded) = 0. The
first passage (or hitting) time of the process to the state i ∈ I when starting in
state k is defined as

Tk,i = inf{t ≥ J1 : Xt = i}.

(we write Ti if X0 = k is clear from the context). The Q-matrix of the process
(Xt)t≥0 is called irreducible if the whole state space I is a single class with
respect to the ←→ - equivalence relation defined above.

Notation 3.4 (Invariant distribution) Let (Xt)t≥0 be a Markov process on a
countable state space I.

(a) A vector λ = (λ(i))i∈I , λ ∈ M1(I) (set of probability measures on I),
is called an invariant distribution, or a stationary, or an equilibrium
probability measure if for all t ≥ 0 and for all states j ∈ I it holds that

P(Xt = j) = λ(j), i.e. λPt = λ.

(b) A vector (λ(j))j∈I with λ(j) ≥ −0,
∑

j∈I λ 6= 1, and λPt = λ for all t ≥ 0
is called an invariant measure. If in addition

∑
j∈I λ(j) < ∞ holds, an

invariant distribution (equilibrium probability measure) is given via

λ̃(j) = λj
(∑
i∈I

λ(i)
)−1

.

Proposition 3.5 Assume that (Xt)t≥0 is a non-explosive Markov process on a
countable state space I with Q-matrix Q = (qi,j)i,j∈I .

(a) Then λ = (λ(i))i∈I is an invariant measure for the process (Xt)t≥0 if and
only if for all states j ∈ I∑

i∈I

λ(i)qi,j = 0, i.e. λQ = 0.

(b) Assume in addition that qi > 0 for all i ∈ I and let Π be the transition
matrix of the jump chain (Yn)n∈N0 and λ = (λ(i))i∈I . Then

λ invariant measure for (Xt)t≥0 ⇔ µΠ = µ with µ(i) = λ(i)qi, i ∈ I.
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Proof. (a) λ is an invariant measure if P(Xt = j) = λ(j) for all t ≥ 0 and all
j ∈ I, i.e. λPt = λ. Thus the row vector λ is annihilated by the matrix Q:

0 =
d

dt
λPt = λ

d

dt
Pt = λPtQ,

0 = λPtQ
∣∣
t=0

= λQ.

This argument cannot work for an explosive chain as in this case one cannot
guarantee that d

dt
(λPt) = 0.

(b) Write µΠ = µ as µΠ− µ1l = 0, or

(µΠ− µ1l)j =
∑

i∈I\{j}

µi
qi,j
qi
− µj =

∑
i∈I

µi

((
1− δi,j

)qi,j
qi
− δi,j

)
=
∑
i∈I

(qi,j
qi
− δi,j

(
1 +

qi,j
qi

))
=
∑
i∈I

λ(i)qi,j = (λQ)j.

Now the LHS is zero if and only if the RHS is. 2

Example. Birth-and-death process: Assume that λn > for all n ∈ N0 and
µn > 0 for all n ∈ N,µ0 = 0, that is all states communicate. The corresponding
jump chain (Yn)n∈N0 has transition matrix Π defined as

πn,n−1 =
µn

λn + µn
, πn,n+1 =

λn
λn + µn

.

It is easy to show that the following equivalence holds:

(Xt)t≥0 recurrent ⇔ (Yn)n∈N0 recurrent.

�

Example. Irreducible Birth-and-death process (BDP): Assume that λn > for all
n ∈ N0 and µn > 0 for all n ∈ N,µ0 = 0, that is all states communicate, i.e. the
Q-matrix is irreducible. The corresponding jump chain (Yn)n∈N0 has transition
matrix Π defined as

πn,n−1 =
µn

λn + µn
, πn,n+1 =

λn
λn + µn

.

If the jump chain (Yn)n∈N0 is transient then

p(n) = Pn(chain ever reaches 0)→ 0 as n→∞.
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Clearly,
p(0) = 1,

p(n)(µn + λn) = p(n− 1)µn + p(n+ 1)λn.

We shall find the function p(n). We get by iteration

p(n)− p(n+ 1) =
µn
λn

(
p(n− 1)− p(n)

)
, n ≥ 1,

p(n)− p(n+ 1) =
µ1 · · ·µn
λ1 · · ·λn

(
p(0)− p(1)

)
,

and thus

p(n+ 1) =
(
p(n+ 1)− p(0)

)
+ p(0)

=
n∑
j=0

(
p(j + 1)− p(j)

)
+ 1 =

(
p(1)− 1

) n∑
j=0

µ1 · · ·µj
λ1 · · ·λj

+ 1,

where by convention the term for j = 0 is equal to one. We can find a nontrivial
solution for the function p(n) if the sum converges. Hence, we can derive the
following fact:

Fact I: BDP is transient ⇔
∑∞

n=1
µ1···µn
λ1···λn <∞. �

Recall that a state i ∈ I is recurrent if Pi(Ti <∞) = 1, so this state is visited
for indefinitely large times. As in the previous example consider a Markov chain
(Yn)n∈N0 on a countable state space I such that a limiting probability measure
ν ∈M1(I) exists, that is

lim
n→∞

Pn(x, y) = ν(x) for all x, y ∈ I,

where Pn is the n-step transition function (entry of the n-th power of the tran-
sition matrix Π). However, if the chain (Yn)n∈N0 is transient then we have seen
that limn→∞ Pn(x, y) = 0 for all x, y ∈ I. Hence, in this case no limiting prob-
ability measure exists. However, limn→∞ Pn(x, y) = 0 can hold for a recurrent
chain. This shows the example of the simple random walk for which we proved
that P2n(0, 0)→ 0 as n→∞. This motivates to define two types of recurrence:

null-recurrent is recurrent but limn→∞ Pn(x, y) = 0 for all x, y ∈ I, otherwise
positive recurrent.

Definition 3.6 A state i ∈ I is called positive recurrent (PR) if mi :=
Ei(Ti) < ∞, and it is called null-recurrent (NR) if Pi(Ti < ∞) = 1 but
mi =∞.
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It turns out that positive recurrent processes behave very similar to Markov
chains with finite state spaces. The following Theorem is important as it connects
the mean return time mi to an invariant distribution.

Theorem 3.7 Let (Xt)t≥0 be an irreducible and recurrent Markov process on a
countable state space I and Q-matrix Q = (qi,j)i,j∈I . Then:

(a) either every state i ∈ I is PR or every state i ∈ I is NR;

(b) or Q is PR if and only if it has a (unique) invariant distribution π =
(π(i))i∈I , in which case

π(i) > 0 and mi =
1

π(i)qi
for all i ∈ I.

Proof. We give a brief sketch.

mi = mean return time to i

= mean holding time at i+
∑

j∈I\{i}

(mean time spent at j before return to i).

The first term on the right hand side is clearly q−1
i =: γi and for j 6= i we write

γj = Ei(mean time spent at j before return to i)

= Ei

(∫ Ti

J1

1l{X(t) = j} dt
)

=

∫ ∞
0

Ei

(
1l{X(t) = j, J1 < t < Ti}

)
dt.

Then

mi =
∑
j∈I

γj =
1

qi
+
∑

j∈I\{i}

γj

{
<∞ if state i is PR,

=∞ if state i is NR.

This defines the vector γ(i) = (γ(i)

j )j∈I where we put the index to stress the
dependence on the state i ∈ I. If T Yi is the return time to state i of the jump
chain (Yn)n∈N0 then we get

γ(i)

j = Ei

( ∑
n∈N0

(Jn+1 − Jn)1l{Yn = j, n < T Yi }
)

=
∑
n∈N0

Ei

(
(Jn+1 − Jn)|Yn = j

)
Pi(Yn = j, 1 ≤ n < T Yi )

=
1

qj
Ei

( Y Yi −1∑
n=1

1l{Yn = j}
)

=:
γ̃(i)

j

qj
,
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where we set γ̃(i)

i = 1, and for j 6= i,

γ̃(i)

i = Ei

( TYi −1∑
n=1

1l{Yn = j}
)

= Ei

(
time spent at j in (Yn)n∈N)

before returning to i
)

= Ei

(
number of visits to j before returning to i

)
.

If the process (Xt)t≥0 is recurrent then so does the jump chain (Yn)n∈N0 . Then
the vector γ̃(i) gives an invariant measure with γ̃(i)

j <∞, and all invariant mea-

sures are proportional to γ̃(i). Then the vector γ(i) with γ(i)

j = 1
qj
γ̃(i)

j gives an

invariant measure for the process (Xt)t≥0. Furthermore, all invariant measures
are proportional to γ(i). If the state i is positive recurrent, then

mi =
∑
j∈I

γ(j)

j <∞.

But then mk =
∑

j∈I γ
(k)

j <∞, for all k, i.e. all states become positive recurrent.
Similarly, if i is null-recurrent, then that applies to all states as well. Hence (a).
If Q is PR, then

πj =
γ(i)

j∑
j∈I γ

(i)

j

=
1

qimi

, j ∈ I,

yields a (unique) invariant distribution π. Clearly, πi > 0 and

Ek(time spent at j before returning to k) =
πj
πkqk

.

Conversely, if (Xt)t≥0 has an invariant distribution π then all invariant measures
have finite sum. This implies that mi =

∑
j∈I γ

(i)

j <∞, henceforth i is positive
recurrent. 2

Let us give some summary:

(I) Irreducible Markov processes (Xt)t≥0 with |I| > 1 have rates qi > 0 for all
i ∈ I.

(II) Non-explosive Markov processes can be transient or recurrent.

(III) Irreducible Markov processes can be

(a) null-recurrent, i.e. mi =∞, no invariant measure λ with
∑

i∈I λ(i) <
∞ exists.
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(b) positive recurrent, i.e. mi < ∞, unique invariant distribution λ =
(λ(i)i∈I with Ei(Ti) = 1

λ(i)qi
.

(IV) Explosive Markov processes are always transient.

We state the following large time results without proof as this goes beyond the
level of the course. It is, however, important to realise how this is linked to
invariant distributions.

Theorem 3.8 Let (Xt)t≥0 be a Markov process on a countable state space I
with initial distribution λ ∈ M1(I) and Q-matrix Q = (qii,j)i,j∈I and with
invariant distribution π = (π(i))i∈I . Then for all states i ∈ we get, as t→∞,

(I)
1

t

∫ t

0

1l{Xs = i} ds = fraction of time at i in (0, t) −→ πi

=
1

miqi
=

mean holding time at i

mean return time to i
.

(II)
1

t
E
(∫ t

0

1l{Xs = i} ds
)

=
1

t

∫ t

0

P(Xs = i) ds −→ πi.

Proposition 3.9 (Convergence to quilibrium) Let Q be an irreducible and
non-explosive Q-matrix with semigroup (Pt)t≥0 and invariant distribution π =
(π(i))i∈I . Then for all i, j ∈ I

Pt(i, j) −→ π(j) as t→∞.

Example. Recurrent BDP: Assume that λn > for all n ∈ N0 and µn > 0 for all
n ∈ N,µ0 = 0, that is all states communicate. Positive recurrence of the BDP
implies that limt→∞ P(Xt = n|X0 = m) = π(n) for all m ∈ N0. If the process
is in the limiting probability, i.e., if P(Xt = n) = π(n), then P ′t(n) = 0. Recall
that Pt(n) = P(Xt = n) and that

P ′t(n) = µn+1Pt(n+ 1) + λn−1Pt(n− 1)− (µn + λn)Pt(n).

Then the limiting probability π = (π(n))n∈N0 should solve

0 = λn+1π)n− 1) + µn+1π(n+ 1)− (λn + µn)π(n).
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We solve this directly: n = 0 gives π(1) = λ0

µ1
π(0) and for n ≥ 1 we get

µn+1π(n+ 1)− λnπ(n) = µnπ(n)− λn−1π(n− 1). Iterating this yields

µn+1π(n+ 1)− λnπ(n) = µ1π(1)− λ0π(0).

Hence, π(n+ 1) =
(

λn
µn+1

)
π(n) and thus π(n) = λ0···λn−1

µ1···µn π(0).

Fact II: BDP

positive recurrent ⇔ q :=
∞∑
n=0

λ0 · · ·λn−1

µ1 · · ·µn
<∞,

in which case π(n) = λ0···λn−1

µ1···µn q−1.

Definition 3.10 (Reversible process) A non-explosive Markov process (Xt)t≥0

with state space I and Q-matrix Q is called reversible if for all i0, . . . in ∈ I, n ∈
N, and times 0 = t0 < t1 < · · · < tn = T, T > 0,

P(X0 = i0, . . . , XT = in) = P(X0 = in, . . . , XT−t1 = i1, XT = i0).

Equivalently,

(Xt : 0 ≤ t ≤ T ) ∼ (XT−t : 0 ≤ t ≤ T ) for all T > 0,

where ∼ stands for equal in distribution. Note that in order to define the reversed
process one has to fix a time T > 0.

Theorem 3.11 (Detailed balance equations) A non-explosive Markov pro-
cess (Xt)t≥0 with state space I and Q-matrix Q = (qi,j)i,j∈I and initial distribu-
tion λ = (λ(i))i∈I is reversible if and only if the detailed balance equations
(DBEs)

λ(i)qi,j = λ(j)qj,i for all i, j ∈ I, i 6= j,

hold.

Proof. Suppose the detailed balance equations hold. Hence,

(λQ)j =
∑
i∈I

λ(i)qi,j =
∑
i∈I

λjqj,i = 0.

By induction, the DBEs hold for all powers of Q,

λ(i)q(k)

i,j = λ(i)
∑
l∈I

qi,lq
(k−1)

l,j =
∑
l∈I

ql,iλ(l)q(k−1)

l,j =
∑
l∈I

q(k−1)

j,l ql,iλ(j) = λ(j)q(k)

j,i .
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Henceforth
λ(i)Pt(i, j) = λ(j)Pt(j, i), t ≥ 0. (3.20)

We shall check that

P(Xtk = ik, 0 ≤ k ≤ n) = P(XT−tk = ik, 0 ≤ k ≤ n). (3.21)

Using (3.20) several times we get

L.H.S. of (3.21) = λ(i0)Pt1−t0(i0, i1) · · ·Ptn−tn−1(in−1, in)

= Pt1−t0(i1, i0)λ(i1)Pt2−t1(i1, i2) · · ·Ptn−tn−1(in−1, in)

= · · ·
= Pt1−t0(i0, i1)Pt2−t1(i1, i2) · · ·Ptn−tn−1(in, in−1)λ(in).

We rearrange this to obtain the right hand side of (3.21) as

λ(in)Ptn−tn−1(in, in−1) · · · = P(XT−tk = ik, 0 ≤ k ≤ n).

Conversely, suppose now that the process is reversible and put n = 1, i0 = i ∈
I, j0 = j ∈ I and let T > 0. Then reversibility gives

λ(i)PT (i, j) = λ(j)Pt(j, i).

We differentiate this with respect to the parameter T and set T = 0 to obtain
the DBEs using that d

dt
Pt(i, j) = qi,j. 2

Notation 3.12 (Time reversed process) We denote the time reversed pro-
cess (reversed about T > 0) by (X (tr)

t )0≤t≤T which is defined by

P(X (tr)

0 = i0, . . . , X
(tr)

T = in) = P(X0 = in, . . . , XT−t1 = i1, XT = i0).

4 Percolation theory

We give a brief introduction in percolation theory in Section 4.1, provide im-
portant basic tools in Section 4.2, and study and prove the important Kesten
Theorem for bond percolation in Section 4.3.

4.1 Introduction

Percolation theory was founded by Broadbent and Hammersley 1957, in order to
model the flow of a fluid in a porous medium with randomly blocked channels.
Percolation is a simple probabilistic model which exhibits a phase transition (as we
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explain below). The simplest version takes place on Z2, which we view as a graph
with edges between neighboring vertices. All edges of Z2 are, independently of
each other, chosen to be open with probability p and closed with probability 1−p.
A basic question in this model is ”What is the probability that there exists an
open path, i.e., a path all of whose edges are open, from the origin to the exterior
of the square Λn := [−n, n]2?” This question was raised by Broadbent in 1954 at
a symposium on Monte Carlo methods. It was then taken up by Broadbent and
Hammersley, who regarded percolation as a model for a random medium. They
interpreted the edges of Z2 as channels through which fluid or gas could flow if the
channel was wide enough (an open edge) and not if the channel was too narrow
(a closed edge). It was assumed that the fluid would move wherever it could go,
so that there is no randomness in the behavior of the fluid, but all randomness in
this model is associated with the medium. We shall use 0 to denote the origin. A
limit as n→∞ of the question raised above is ”What is the probability that there
exists an open path from 0 to infinity?” This probability is called the percolation
probability and denoted by θ(p). Clearly θ(0) = 0 and θ(1) = 1, since there are
no open edges at all when p = 0 and all edges are open when p = 1. It is also
intuitively clear that the function p 7→ θ(p) is nondecreasing. Thus the graph of
θ as a function of p should have the form indicated in Figure (XX), and one can
define the critical probability by pc = sup{p ∈ [0, 1] : θ(p) = 0}. Why is this
model interesting? In order to answer this we define the (open) cluster C(x) of
the vertex x ∈ Z2 as the collection of points connected to x by an open path.
The clusters C(x) are the maximal connected components of the collection of
open edges of Z2, and θ(p) is the probability that C(0) is infinite. If p < pc,
then θ(p) = 0 by definition, so that C(0) is finite with probability 1. It is not
hard to see that in this case all open clusters are finite. If p > pc, then θ(p) > 0
and there is a strictly positive probability that C(0) is infinite. An application
of Kolmogorov’s zero-one law shows that there is then with probability 1 some
infinite cluster. In fact, it turns out that there is a unique infinite cluster. Thus,
the global behavior of the system is quite different for p < pc and for p > pc.
Such a sharp transition in global behavior of a system at some parameter value
is called a phase transition or a critical phenomenon by statistical physicists,
and the parameter value at which the transition takes place is called a critical
value. There is an extensive physics literature on such phenomena. Broadbent
and Hammersley proved that 0 < pc < 1 for percolation on Z2, so that there is
indeed a nontrivial phase transition. Much of the interest in percolation comes
from the hope that one will be better able to analyze the behavior of various
functions near the critical point for the simple model of percolation, with all its
built-in independence properties, than for other, more complicated models for
disordered media. Indeed, percolation is the simplest one in the family of the
so-called random cluster or Fortuin-Kasteleyn models, which also includes the
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celebrated Ising model for magnetism. The studies of percolation and random
cluster models have influenced each other.

Let us begin and collect some obvious notations. Zd, d ≥ 1, is the set of all vec-
tors x = (x1, . . . , xd) with integral coordinates. The (graph-theoretic) distance
δ(x, y) from x to y is defined by

δ(x, y) =
d∑
i=1

|xi − yi|,

and we write |x| for δ(0, x). We turn Zd into a graph, called the d-dimensional
cubic lattice, by adding edges between all pairs x, y of points of Zd with δ(x, y) =
1. We write for this graph Ld = (Zd,Ed) where Ed is the set of edges. If
δ(x, y) = 1 we say that x and y are adjacent, and we write in this case x ∼ y
and represent the edges from x to y as 〈x, y〉. We shall introduce now some
probability. Denote by

Ω =
∏
e∈Ed
{0, 1} = {0, 1}Zd = {ω : Ed → {0, 1}}

the set of configurations ω = (ω(e))e∈Ed (set of all mappings Ed → {0, 1})with
the interpretation that the edge e ∈ Ed is closed for the configuration ω if
ω(e) = 0 and the edge e is open for the configuration ω if ω(e) = 1. The set
Ω will be our sample or probability space. We need further a σ-algebra and a
measure for this sample space. An obvious choice for the σ-algebra of events
is the one which is generated by all cyclinder events {ω ∈ Ω: ω(e) = ae, ae ∈
{0, 1}, e ∈ ∆,∆ ⊂ Ed finite }, and we call it F . For every e ∈ Ed let µe be the
Bernoulli (probability) measure on {0, 1} defined by

µe(ω(e) = 0) = 1− p and µe(ω(e) = 1) = p, p ∈ [0, 1].

Then the product of these measures defines a probability measure on the space
of configurations Ω, denoted by

Pp =
∏
e∈Ed

µe.

In the following we are going to consider only the measure Pp ∈ M1(Ω) for
different parameters p ∈ [0, 1]. As the probability measure Pp is a product
measure (over all edges) it is a model for the situation where each edges is open
(or closed) independently of all other edges with probability p (respectively with
probability 1 − p). If one considers a probability measure on Ω which is not a
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product of probability measures on the single edges, one calls the corresponding
percolation model dependent. In this course we only study independent (hence
the product measure Pp) percolation models.

A path in Ld is an alternating sequence x0, e0, x1, e1, . . . , en−1, xn of distinct
vertices xi and edges ei = 〈xi, xi+1〉; such a path has length n and is said to
connect x0 to xn. A circuit is a closed path. Consider the random subgraph of
Ld containing the vertex set Zd and the open edges (bonds) only. The connected
components of the graph are called open clusters. We write C(x) for the open
cluster containing the vertex x. If A and B are set of vertices we write A←→ B
if there exists an open path joining some vertex in A to some vertex in B. Hence,

C(x) = {y ∈ Zd : x←→ y},

and we denote by |C(x)| the number of vertices in C(x). As above we write
C = C(0) for the open cluster containing the origin.

θ(p) = Pp(|C| =∞) = 1−
∞∑
n=1

Pp(|C| = n).

It is fundamental to percolation theory that there exists a critical value pc = pc(d)
of p such that

θ(p)

{
= 0 if p < pc,

> 0 if p > pc;

pc(d) is called the critical probability. As above pc(d) = sup{p ∈ [0, 1] : θ(p) =
0}. In dimension d = 1 for any p < 1 there exist infinitely many closed edges to
the left and to the right of the origin almost surely, implying θ(p) = 0 for p < 1,
and thus pc(1) = 1. The situation is quite different for higher dimensions. Note
that the d-dimensional lattice Ld may be embedded in Ld+1 in a natural way as
the projection of Ld+1 onto the subspace generated by the first d coordinates;
with this embedding, the origin of Ld+1 belongs to an infinite open cluster for
a particular value of p whenever it belongs to an infinite open cluster of the
sublattice Ld. Thus

pc(d+ 1) ≤ pc(d), d ≥ 1.

Theorem 4.1 If d ≥ 2 the 0 < pc(d) < 1.

This means that in two or more dimension there are two phases of the process.
In the subcritical phase p < pc(d), every vertex is almost surely in a finite open
cluster. In the supercritical phase when p > pc(d), each vertex has a strictly
positive probability of being in an infinite open cluster.
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Theorem 4.2 The probability Ψ(p) that there exists an infinite open cluster
satisfies

Ψ(p) =

{
0 if θ(p) = 0,

1 if θ(p) > 0.

We shall prove both theorems in the following. For that we derive the following
non-trivial upper and lower bounds for pc(d) when d ≥ 2.

1

λ(2)
≤ pc(2) ≤ 1− 1

λ(2)
, (4.22)

and
1

λ(d)
≤ pc(d) for d ≥ 3; (4.23)

where λ(d) is the connective constant of Ld, defined as

λ(d) = lim
n→∞

n
√
σ(n),

with σ(n) being the number of paths (or ’self-avoiding walks’) of Ld having
length n and beginning at the origin. It is obvious that λ(d) ≤ 2d − 1; to see
this, note that each new step in a self-avoiding walk has at most 2d− 1 choices
since it must avoid the current position. Henceforth σ(n) ≤ 2d(2d − 1)n−1.
Inequality (4.23) implies that (2d − 1)pc(d) ≥ 1, and it is known that further
pc(d) ∼ (2d)−1 as d→∞.

Proof of Theorem 4.1 and (4.22). As pc(d+1) ≤ pc(d) it suffices to show
that pc(d) > 0 for d ≥ 2 and that pc(2) < 1.
We show that pc(d) > 0 for d ≥ 2: We consider bond percolation on Ld when
d ≥ 2. It suffices to show that θ(p) = 0 whenever p is sufficiently close to 0.
As above denote by σ(n) the number of paths (’self-avoiding walks’) of length
n starting at the origin and denote by N(n) the number of those paths which
are open. Clearly, Ep(N(n)) = pnσ(n). If the origin belongs to an infinite open
cluster then there exist open paths of all lengths beginning at the origin, so that

θ(p) ≤ Pp(N(n) ≥ 1) ≤ Ep(N(n)) = pnσ(n) for all n.

We have that σ(n) = (λ(d) + o(1))n as n→∞, hence,

θ(p) ≤
(
pλ(d) + o(1)

)n → 0 as n→∞ if pλ(d) < 1.

Thus we have shown that pc(d) ≥ λ(d)−1 where λ(d) ≤ 2d − 1 < ∞ and
henceforth pc(d) > 0.
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Figure Dual lattice

Figure 1: Dual lattice

We show that pc(2) < 1: We use the famous ’Peierls argument’ in honour
of Rudolf Peierls and his 1936 article on the Ising model. We consider bond
percolation on L2. We shall show that θ(p) > 0 if p is sufficiently close to 1.
Let (Z2)∗ be the dual lattice, i.e. (Z2)∗ = Z2 + (−1/2, 1/2), see Figure 1 where
the dotted edges are the ones for the dual lattice.

There is a one-one correspondence between the edges of L2 and the edges
of the dual, since each edge of L2 is crossed by a unique edge of the dual.
We declare an edge of the dual to be open or closed depending respectively
on whether it crosses an open or closed edge of L2. We thus obtain a bond
percolation process on the dual with the same edge-probability. Suppose that
the open cluster at the origin of L2 is finite, see Figure 2. We see that the origin
is surrounded by a necklace of closed edges which are blocking off all possible
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routes from the origin to infinity. Clearly, this is satisfied when the corresponding
edges of the dual contain a closed circuit in the dual having the origin of L2 in
its interior. If the origin is in the interior of a closed circuit in the dual then the
open cluster at the origin is finite

|C| <∞⇔ 0 ∈ interior of a closed circuit in dual.

Similarly to the first part we now count the number of such closed circuits
in the dual. Let ρ(n) be the number of circuits of length n in the dual which
contain the origin of L2. We get an upper bound for this number as follows.
Each circuits passes through some vertex (lattice site) of the form (k+1/2, 1/2)
for some integer 0 ≤ k < n. Furthermore, a circuit contains a self-avoiding walk
of length from a vertex of the form (k + 1/2, 1/2) for some integer 0 ≤ k < n.
The number of such self-avoiding walks is at most nσ(n− 1). Hence, the upper
bound follows

ρ(n) ≤ nσ(n− 1).

In the following denote by C∗0 the set of circuits in the dual containing the origin
of L2. We estimate (we write |γ| for the length of any path/circuit), recalling
that q = 1− p is the probability of an edge to be closed,

∑
γ∈C∗0

Pp(γ is closed) =
∞∑
n=1

∑
γ∈C∗0,|γ|=n

Pp(γ is closed) ≤
∞∑
n=1

qnσ(n− 1)

≤
∞∑
n=1

qn
(
qλ(2) + o(1)

)n−1
<∞,

if qλ(2) < 1. Furthermore,
∑

γ∈C∗0
Pp(γ is closed) → 0 as q = 1 − p → 0.

Hence, there exists p̃ ∈ (0, 1) such that∑
γ∈C∗0

Pp(γ is closed) ≤ 1

2
for p > p̃.

Let M(n) be the number of circuits of C∗0 having length n. Then

Pp(|C| =∞) = Pp(M(n) = 0 for all n) = 1− Pp(M(n) ≥ 1 for some n)

≥ 1−
∑
γ∈C∗0

Pp(γ is closed) ≥ 1

2

if we pick p > p̃. This gives pc(2) ≤ p̃ < 1. We need to improve the estimates
to obtain that pc(2) ≤ 1− λ(2)−1. We skip these details and refer to the book
by Grimmett for example. 2
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Figure 2: Closed circuit in dual lattice
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Proof of Theorem 4.2. The event{
Ld contains an infinite open cluster

}
does not depend upon the states of any finite collection of edges. Hence, we
know by the Zero-one law (Kolmogorov) that the probability Ψ(p) can only take
the values 0 or 1. If θ(p) = 0 then

Ψ(p) ≤
∑
x∈Zd

Pp(|C(x)| =∞) = 0.

If θ(p) > 0 then
Ψ(p) ≥ Pp(|C) =∞) > 0,

so that Ψ(p) by the zero-one law. 2

Another ’macroscopic’ quantity such as θ(p) and Ψ(p) is the mean (or expected)
size of the open cluster at the origin, χp = Ep(|C|).

χp =∞Pp(|C| =∞) +
∞∑
n=1

nPp(|C| = n).

Clearly, χp =∞ if p > pc(d).

4.2 Some basic techniques

4.3 Bond percolation in Z2
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