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1 Simple random walk

1.1 Nearest neighbour random walk on 7Z

Pick p € (0,1), and suppose that (X,,: n € N) is a sequence (family) of
{—1, +1}-valued, identically distributed Bernoulli random variables with P(X; =
l)=pand P(X; = —1)=1—p=gqforalli e N. Thatis, for any n € N and
sequence E = (eq,...,e,) € {—1,1}",

P(Xi=e,....X,=€,) = pN(E)qn—N(E)’

where N(E) = §{m: e, = 1} = %Tﬂem is the number of ”1”s in the
sequence F.

Imagine a walker moving randomly on the integers Z. The walker starts at
a € 7 and at every integer time n € N the walker flips a coin and moves one
step to the right if it comes up heads (P({head}) = P(X,, = 1) = p) and moves
one step to the left if it comes up tails. Denote the position of the walker at
time n by S,. The position S, is a random variable, it depends on the outcome
of the n flips of the coin. We set

So=a and S, =S+ Y X, (1.1)
=1

Then S = (S, )nen is often called a nearest neighbour random walk on Z. The
random walk is called symmetric if p = q = % We may record the motion of
the walker as the set {(n,S,): n € Ny} of Cartesian coordinates of points in
the plane (z-axis is the time and y-axis is the position S,,). We write P, for the
conditional probability P(-|Sy = a) when we set Sy = a implying P(Sy = a) = 1.

It will be clear from the context which deterministic starting point we consider.

Lemma 1.1 (a) The random walk is spatially homogeneous, i.e., P,(S, =
J) =Pus(S,=j+0b),j,ba €Z.

(b) The random walk is temporally homogeneous, i.e., P(S, = j|Sy = a) =
P(Spim = J|Sm = a).

(c) Markov property

]:P)(Sm+n = j|S(),Sl, . 7Sm) = P(Sm—i-n = ]|Sm>,n Z O

Proof. (2) Pa(S, = j) = Po(3", X; = j — a) = Poyn(3", X; = j — a).



(b)

n m-+n
LHS =P} X;=j-a)=P( > X;=j—a)= RHS
i=1 i=m+1
(c) If one knows the value of S,,, then the distribution of S,,, depends only
on the jumps X, 11, ..., X,1n, and cannot depend on further information con-
cerning the values of Sy, S1, ..., Sm_1. O
Having that, we get the following stochastic process oriented description
replacing (1.1),

p,if e=1

q,if e=—-1" (1.2)

]P(SQ = (l) =1 and IP’(Sn—Sn_l = 6|So, e 7Sn—1) = {

Markov property: conditional upon the present, the future does not depend

on the past.

The set of realizations of the walk is the set of sequences S = (sq, s1,...) with
so =a and s;;1 — s; = =1 for all : € Ny, and such a sequence may be thought
of as a sample path of the walk, drawn as in figure 1.

Let us assume that Sy, =0 and p = % The following question arise.
- How far does the walker go in n steps?
- Does the walker always return to the starting point, or more generally, is every
integer visited infinitely often by the walker?

We easily get that E(S,)) = 0 when p = % For the average distance from
the origin we compute the squared position at time n, i.e.,

E(S2) =E((X1+ -+ X,)*) = > _E(X)) + ) E(X,X)).
i=1 i#]
Now X? = 1 and the independence of the X;'s gives E(X;X;) = E(X;)E(X;) =
0 whenever i # j. Hence, E(S?) = n, and the expected distance from the origin
is ~ cy/n for some constant ¢ > 0.

In order to get more detailed information of the random walk at a given time n
we consider the set of possible sample paths. The probability that the first n
steps of the walk follow a given path S = (s, s1,...,8,) is p"¢', where
r = 4 of steps of S to the right = #{i: s;1.1 — s; = 1}
[ =t of steps of S to the left = #{i: s;41 —s; = —1}.

Hence, any event for the random walk may be expressed in terms of an
appropriate set of paths.

P(S, =b) = Z M (a,b)p"q" ",
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where M (a,b) is the number of paths (sg, s1,...,s,) with sy =a and s, =
having exactly r rightward steps. Note that r+{=n and r — = b — a. Hence,

1 1
rzi(n%—b—a) and l:§(n—b+a).

If $(n+b—a) € {0,1,...,n}, then

n 1 1
P Sn — D) = 5 (n+b—a) §(n—b+a)’ 1.3
S =)= (10— g P20 (13

and P(S, = b) = 0 otherwise, since there are exactly (") paths with length n
having r rightward steps and n — r leftward steps. Thus to compute probabilities
of certain random walk events we shall count the corresponding set of paths.
The following result is an important tool for this counting.

Notation: N, (a,b) = § of possible paths from (0,a) to (n,b). We denote
by N?(a,b) the number of possible paths from (0,a) to (n,b) which touch the
origin, i.e., which contain some point (k,0),1 < k <n.

Theorem 1.2 (The reflection principle) /fa,b > 0 then

N%(a,b) = N,(—a,b).

Proof. Each path from (0, —a) to (n,b) intersects the z-axis at some earliest
point (k,0). Reflect the segment of the path with times 0 < m < k in the z-axis
to obtain a path joining (0, a) and (n, b) which intersects/touches the z-axis, see
figure 2. This operation gives a one-one correspondence between the collections
of such paths, and the theorem is proved. O

Lemma 1.3
n
Nn<a7 b) = (%(n—f—b—a))

Proof. Choose a path from (0,a) to (n,b) and let « and [ be the numbers
of positive and negative steps, respectively, in this path. Then o+ 8 = n and
a— 0 =b-—a, sothat a = %(n + b —a). Now the number of such paths
is exactly the number of ways picking « positive steps out of n available steps.

Hence,
n
N,(a,b) = )
(a,b) (a)



Corollary 1.4 (Ballot theorem) Ifb > 0 then the number of paths from (0, 0)
to (n,b) which do not revisit the xz-axis (origin) equals LN, (0,b).

Proof. The first step of all such paths is to (1, 1), and so the number of such
paths is

Np_1(1,6) = N°_(1,b) = Ny_y(1,0) — No_1(—1,0)
B (%m —n1_+1b - 1)) - (%(n —n1_+1b + 1))'

Elementary computations give the result. a
What can be deduced from the reflection principle? We first consider the
probability that the walk does not revisit its starting point in the first n steps.

Theorem 1.5 Let Sy =0 and p € (0,1). Then
b
P(S1S2---S, #0,5, =0b) = %]P’(Sn =b),
implying P(S155 - - - Sy, # 0) = LE(|S,]).

Proof. Pick b > 0. The possible paths do not visit the x-axis in the time
interval [1,n], and the number of such paths is by the Ballot theorem exactly
2 N,(0,b), and each path has 1(n + b) rightward and 1(n — b) leftward steps.

b 1 1 b
P(S1S5 -+ S # 0,50 = b) = — Na 0, b)pz gzt — —P(Sy = b).
The case for b < 0 follows similar, and b = 0 is obvious. O

Surprisingly, the last expression can be used to get the probability that the walk
reaches a new maximum at a particular time. Denote by

M, = max{S;: 0 <i<n}
the maximum value up to time n (Sp = 0).

Theorem 1.6 (Maximum and hitting time theorem) Let Sy = 0 and p €
(0,1).

(a) Forr > 1 it follows that

P(S, =b) if b>r

]P(Mn ZT,Sn:b) :{ (%)T_bP(SnZQr_b) ifb<r -’



(b) The probability f,(n) that the walk hits b for the first time at the n-th step
is
_ Dbl _
fo(n) = —P(S, =b).
n
Proof. (a) The case b > r is clear. Assume r > 1 and b < r. Let N (0,b)
denote the number of paths from (0, 0) to (n, b) which include some point having
height r (i.e., some point (¢,7) with time 0 < i < n). Call such a path 7 and
(ix,7) the earliest such hitting point of the height 7. Now reflect the segment
with times larger than i, in the horizontal height axis (z-axis shifted in vertical
direction by ), see figure 3. The reflected path 7’ (with his segment up to time
i equal to the one of 7) is a path joining (0,0) and (n,2r —b). Here, 2r — b is
the result of b+ 2(r — b) which is the terminal point of ©’. There is again a one-

one correspondence between paths 7 < 7', and hence N} (0,b) = N,,(0,2r —b).
Thus,

P(M,_1 >, S, = b) = N’(0, b)pz(n+b) gz (n-b)
= (%)Tan(O, 2r — b)p%(”+2“b)q$(n—2r+b)

o g r—b —
—(p) P(S, =0).

(b) Pick b > 0 (the case for b < 0 follows similar). Then, using (a) we get

fo(n)

P(M, =S, 1=b—1,5,=0)
(P(Mp—12b—1,8,-1=b—1) =P(M,_1 > b,S,-1 =b—1))

p
p

(P(Sp1=b—1) — (%)P(Snl =b+1)) = %]P’(Sn =b).

1.2 How often random walkers return to the origin?

We are going to discuss in an heuristic way the question how often the random
walker returns to the origin. The walker always moves from an even integer to
an odd integer or from an odd integer to an even integer, so we know for sure
the position S,, of the walker is at an even integer if n is even or an at an odd
integer if n is odd.

Example. Symmetric Bernoulli random walk, p = %, Sp = 0:

Jj €L,

P(Son = 2j) = ( 20 )2‘2” = 2—2n( (2n)!

nt =)

b}



and in particular

P(Sy, = 0) = 22’1%,
and with Stirling's formula
n! ~n"e "V2mn,
we finally get
(2n)! Loy 227 1

—2n
P(Ss, =0) =2 oy ~ 2 NN
This fact is consistent with what we already know. We know that the walker
tends to go a distance about a constant times \/n, and there are about ¢\/n
such integer points that are in distance within \/n from the origin. Henceforth,
it is very reasonable that a particular one is chosen with probability a constant
times n~ /2.

Consider the following random variable, namely

R, =t of visits to the origin up through time 2n
— Yo+ Yt + Y,
where Y are Bernoulli variables defined by Y; = 1 if S3; = 0 and Y; = 0 if

Sy; # 0. We easily compute E(Y;) = P(Y; = 1) + 0P(Y; = 0) = P(Sy; = 0)
and (invoke integral approximation for the sum)

D=

2n

E(R,) =E(Yo) -+ + E(Y,) = Y P(Sy; = 0) ~ 1—|—i%j‘§ ~

R

Hence, the number of expected visits to the origin goes to infinity as n — oco. ¢
What happens in higher dimensions?

Let's consider Z¢,d > 1, and z € Z¢, v = (x',...,2%). We study the simple
random walk on Z?. The walker starts at the origin (i.e. Sy = 0) and at each
integer time n he moves to one of the nearest neighbours with equal probability.
Nearest neighbour refers here to the Euclidean distance, |z| = (Z?Zl(xi)Q)lm,
and any lattice site in Z¢ has exactly 2d nearest neighbours. Hence, the walkers
jumps with probability 2—1d to one of its nearest neighbours. Denote the position
of the walker after n € N time steps by S, = (S{”,...,S%) and write S,, =
X;+ -+ X, where X; = (X/”,..., X;”) are independent random vectors
with



for all y € Z< with |y| =1, i.e., for all y € Z? that are in distance one from the
origin. We compute similarly as above

E(18a%) = E((S,”)" + -+ + (S)")?) = dE((S}")?),

and

((S)? ZIE (X)) + Y EXXD).
i#]

The probability that the walker moves within the first coordinate (either 41 or
—1) is £, thus E((X;")?) = & and E(|S,|?) = n. Consider again an even time
2n and take n sufficiently large, then (law of large number, local central limit
theorem) approximately % 21 expected steps will be done by the walker in each
of the d component dlrectlons. To be at the origin after 2n steps, the walker
will have had to have an even number of steps in each of the d component
directions. Now for n large the probability for this happening is about (5)%".
Whether or not an even number of steps have been taken in each of the flrst
d — 1 component directions are almost independent events; however, we know
that if an even number of steps have been taken in the first d — 1 component
directions then an even number of steps have been taken in the last component
as well since the total number of steps taken is even. 27" steps in each component

direction gives P(S5) = \/7W i=1,...,d. Hence,
/2

ﬂL)d_ L)n—dm

T on 5d—19d/2,d/2 :

This is again consistent with what we already know. We know that the mean
distance is y/n from the origin, and there are about nd/2 points in Z? that are
within distance \/n from the origin. Hence, we expect that the probability of
chosing a particular one would be of order n=%2). As in d = 1 the expected
number of visits to the origin up to time n is

P(Ss,, = 0) ~ 21—d(

= ZIP’(ng =0)<1+ consth*d/Z < 00,

and it is finite as n — oo for dimension d > 3. In the two-dimensional case one
obtains (again integral approximation),

- i]p(g% =0) ~ 1+constz— ~ logn.

j= 1



1.3 Transition function

We study random walks on Z? and connect them to a particular function, the
so-called transition function or transition matrix. For each pair x and y in Z? we
define a real number P(x,y), and this function will be called transition function
or transition matrix.

Definition 1.7 (Transition function/matrix) Let P: Z% x Z? — R be given
such that

(i) 0 < P(z,y) = P(0,y — x) for all z,y € Z¢,
(i) > peza PO, ) = 1.

The function P is called transition function or transition matrix on Z¢.

It will turn out that this function actually determines completely a random walk
on Z®. That is, we are now finished - not in the sense that there is no need for
further definitions, for there is, but in the sense that all further definitions will
be given in terms of P. How is a random walk S = (.S,,)nen, connected with a
transition function (matrix)? We consider random walks which are homogeneous
in time, that is

P(S,11 = 7|S, = 1) = P(S1 = j|So = 1).
This motivates to define
P(z,y) = P(Spi1 = y|S, =), forall z,y € Z° (1.4)

Hence, P(0,x) corresponds to our intuitive notion of the probability of a 'one-
step’ transition from 0 to x. Then it is useful to define P,(z,y) as the 'n-step’
transition probability, i.e., the probability that a random walker (particle) starting
at the origin 0 finds itself at x after n transitions (time steps) governed by P.

Example. Bernoulli random walk: The n-step transition probability is given

as
P, (0, z) = pnte)/2 <n—x>/z< ) )
b ! (n+x)/2

when n is even, |z| < n, and P,(0,z) = 0 otherwise. o

Example. Simple random walk in Z%: Any lattice site in Z? has exactly 2d
nearest neighbours. Hence, the transition function (matrix) reads as

i 1 =
P(O7.CE) :{ 2d If |ZE| 17

0, otherwise.



Notation 1.8 The n-step transition function (matrix) of the a random walk
S = (Sp)nen, fs defined by

Py(z,y) = P(Spin = y|Sm =2), meN,z,yeZ,
and we write Pi(z,y) = P(x,y) and Py(x,y) = 0,,.
The n-step transition function can be written as
P,(x,y) = Z P(x,x1)P(z1,22) - P(xp_1,y), n>2. (1.5)
2, €74 i=1,...,n—1
This is proved in the following statement.
Theorem 1.9 For any pair r, s € Ny satisfying r + s = n € Ny we have
Pu(z,y) = Y Pu(z,2)Ps(2,y), =.y€L"
z€74

Proof. The proof for n = 0,1 is clear. We give a proof for n = 2. Induction
will give the proof for the other cases as well. The event of going from z to y
in two transitions (time steps) can be realised in the mutually exclusive ways of
going to some intermediate lattice site z € Z< in the first transition and then
going from site z € Z to y in the second transition. The Markov property
implies that the probability of the second transition is P(z,y), and that of the
first transition is clearly P(z, z). Using the Markov property and the relation

P(ANC|C)=P(ABNCP(B|C),
we get for any m € N,
PQ(:L':y) = P(Sm—i-Q = y|Sm = IIZ’) = Z ]P)(Sm—i—Q =Y, Sm+1 = z|Sm = [E)

2€Z4
= Z P(Smie = y|Sms1 = 2, Sm = ©)P(Spy1 = 2|Sm = )
2€Z4
= Z P(Smt2 = y|Sm+1 = 2)P(Spy1 = 2[Sm = )
z€74
= P(x,2)P(z,y).
2€7Z4

O

The probability interpretation of P, (z,y) is evident, it represents the probability
that a 'particle’, executing a random walk and starting at the lattice site = at
time 0, will be at the lattice site y € Z? at time n. We now define a function
of a similar type, namely, we are asking for the probability (starting at = at time
0), that the first visit to the lattice site y should occur at time n.

9



Definition 1.10 For all z,y € Z% and n > 2 define

Fo.(z,y) = Z P(z,z1)P(xy,29) - - P(Tp_1,Y).

Important properties of the function F,,,n > 2, are summarised.
Proposition 1.11 For all z,y € Z%:

(a) Fu(z,y) = Fu(0,y — ).

(b) >k Fi(w,y) < 1.

(c) Pa(z,y) =>4y Frl, y) Pai(y, ).

Proof. (a) is clear from the definition and from the known properties of P.
(b) The claim is somehow obvious. However, we shall give a proof. For n € N
put Q, = {w = (zo,71,...,%,): ¥ = x,7; € Z% i = 1,...,n}. Clearly, Q, is
countable, and we define a probability for any 'elementary event’ w € €2,, by

pw) = Pz, 21)P(x1,22) - P(Tp-1,20), w = (T0,T1,...,Tn-1) € Q.

Clearly, Zweﬂ: xn:yp(w) = Pn(x7y)' and EwEQn p(w) = ZyEZd P”('r?y) = 1
The sets Ay,

Ap={weQmn#y,v2a#y,..., e #y,m =y}, 1<k<n,
are disjoint subsets of Q,, and Fy(z,y) = > 4, P(w) implies that
Y Filzy) < Y plw) =1.
k=1 weﬂn

(c) This can be proved in a very similar fashion, or by induction. We skip the
details. O

We come up now with a third (and last) function of the type above. This
time we are after the expected number of visits of a random walk to a given
point within a given time. More precisely, we denote by G, (z,y) the expected
number of visits of the random walk, starting at x, to the point y up to time n.

10



Notation 1.12

n

Gu(2,y) = > _ Pu(x,y), n€Noa,yeZ’,

k=0

One can easily convince oneself that G, (z,y) < G,(0,0) for all n € Ny, z,y €
Z%: it suffices to consider x # 0, using Proposition 1.11(c) we get

Gn(2,0) = Pu(2,0) => > Fi_j(x,0)P;(0,0)

k=1 j=0

- zn:pj(o, 0) nszi(x,O) < zn:Pj(O, 0) = G(0,0).

We are now able to classify the random walks according to whether they are re-
current or transient (non-recurrent). The idea is that ), _, F(0,0) represents
the probability of a return to the origin before or at time n. The sequence of
sums > ;_, F(0,0) is non-decreasing as n increases, and by Proposition 1.11
bounded by one. Call the limit by F < 1. Further, call G the limit of the
monotone sequence (G, (0,0))nen,-

Notation 1.13  (a) G(z,y) = > oo Pu(z,y) < oo forallz,y € Z%, G,(0,0) :=
Gn and G := G(0,0).

(b) F(z,y) = >0 Fu(x,y) < 1 orall z,y € Z¢ F,(0,0) := F, and
F = F(0,0).

Definition 1.14 The random walk (on 7<) defined by the transition function P
is said to be recurrent if F' =1 and transient if ' < 1.

Proposition 1.15

1
G:ﬁ with G = +00 when F =1 and F = 1 when G = +o0.

Proof. (The most convenient way is to prove it is using generating functions).
We sketch a direct method.

P(0,0) =Y FiP,4(0,0), neN. (1.6)
k=0

11



Summing (1.6) over n = 1,...,m, and adding Fy(0,0) = 1 gives

m

Gn(0,0) = > FiGr(0,0)+1, meN. (1.7)

k=0
Letting m — oo we get
m N
G=1+lim > FGpn>1+G> F, forall NeN,
=0 k=0
and thus G > 1+ GF. Now (1.7) gives

k=1

k=0

and henceforth 1 > G(1 — F). O

Example. Bernoulli random walk: P(0,0) = p, and P(0,—1) =¢=1—p,
p € [0,1].

P(S2n = 0) = P2,(0,0) = (pq)" (2:) = (=1)"(4pq)" Cﬁ)

(2:) = (—1)m4" (_n%) (1.8)

Note that the binomial coefficients for general numbers r are defined as

(r) LDk )

where we used that

k k! ’

We prove (1.8) by induction: For n = 1 the LHS= 2 and RHS= (—1)4=—/2,
Assumption the claim for n € N. Then

2(n+1)\ _ 2n)!2n+1)2(n+1)) wonf—1/2

( n+1 >_ (n+ 1)nl(n+ 1)n! = (-1 < n )2X

L (@n+ 1) (Z)n(=1/2)(=1/2 = 1) - (=1/2— n+ 1)(=1)(~1/2 = n)
n—+1 (n+1)!

= (1)t <_1/2>.

n+1

12



Further, using Newton's generalised Binomial theorem, that is,

(x+y) = i (2) "y, (1.9)

k=0
we - noting that 0 < p =1 — ¢ implies that 4pq < 1 - get that

e}

> Pan(0,0) = (1= dpgt) 2, [t < 1.
n=0
Thus
tilﬁ?azot P3,(0,0) Z%P%(0,0) Z%PR(O,O) G < oo,
henceforth
oo (=4pg)™ <00, ifp#q,
n +oo, if p=gq.
The Bernoulli random walk (on Z) is recurrent if and only if p = ¢ = 1. o

Example. Simple random walk in Z<:

The simple random walk is

d =1 recurrent,

d = 2 recurrent,

d > 3 transient. o

1.4 Summary

The simple random walks on Z? (discrete time) are examples of Markov chains
on Z<.

Definition 1.16 Let I be a countable set, A\ € M (I) be a probability measure
(vector) on I, and P = (P(i, j)): jer be a transition function (stochastic matrix).
A sequence X = (X,,)nen, of random variables X,, taking values in I is called a
Markov chain with state space I and transition matrix P and initial distribution
A, if
P(Xn+1 = in+1|X0 = io, e ,Xn = Zn) = P(’er Z.n—f—l) and
P(Xo=1) = \i),i €1,

for every n € Ny and every iy, ..., i,+1 € I with P(Xo =g, ..., X, =1,) > 0.
We call the family X = (X,,)nen, a (A, P)-Markov chain.

13



Note that for every n € Ny, i, ...,7, € I, the probabilities are computed as
P(Xo =10,..., X, =1in) = A(ig)P(ig, 1) P(i1,12) - - P(in_1,1n).

A vector A\ = (\(i))es is called a stationary distribution of the Markov chain if
the following holds:

(@) A(@) >0forallie I, and ) .., A(i) = 1.
(b) A= AP, that is, A(j) = 3., A(i)P(i, j) for all j € I.

Without proof we state the following result which will we prove later in the
continuous time setting.

Theorem 1.17 Let I be a finite set and P: [ x I — R be a transition function
(matrix). Suppose for some i € I that

P.(i,j) = A(j) asn — oo forall j € 1.

Then X\ = (A(j))jer is an invariant distribution.

2 Markov processes

In this chapter we introduce continuous-time Markov processes with a countable
state space I. Throughout the chapter we assume that X = (X});>¢ is a family
of I-valued random variables. The family X = (X;):>o is called a continuous-
time random process. We shall specify the probabilistic behaviour (or law) of
X = (Xi)i>0. However, there are subtleties in this problem not present in the
discrete-time case. They arise because the probability of a countable disjoint
union is the sum of the single probabilities, whereas for a noncountable union
there is no such rule. To avoid these subtleties we shall consider only continous-
time processes which are right continuous. This means that with probability
one, for all t > 0, limy o X;+p, = X;. By a standard result of measure theory
the probability of any event depending on a right-continuous process can be
determined from its finite-dimensional distributions, that is, from the probabilities
P(X,, = ig,..., X, = tn) forn € No,0 < tg < --- < t, and ig, ..., in € I.
Throughout we are using both writings, X; and X (¢) respectively.

Definition 2.1 The process X = (X});>¢ Is said to satisfy the Markov property
if

P(X(tn) = j|X(to) =0, ... X(tn-1) = in—1) = P(X(tn) = j| X (tn-1) = in-1)

for all j,ig,...,1,_1 € I and any sequence to < t; < --- < t,, of times.
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We studied in the first chapter the simplest discrete time Markov process (Markov
chain) having independent, identically distributed increments (Bernoulli random
variables). The simplest continuous time Markov processes are those whose
increments are mutually independent and homogeneous in the sense that the
distribution of an increment depends only on the length of the time interval over
which the increment is taken. More precisely, we are dealing with stochastic
processes X = (X;):>0 having the property that P(X, = zy) = 1 for some
Xo €1 and

P(X ()X (to) = i1, ..., X (ta) =X (tae1) = in) = [ [ P(X(tm) =X (tm—1) = i)

m=1

forn €N, iy,...,i, € I and all times tg <t; < --- < t,.
We introduce in the first subsection the Poisson process on N. Before that we
shall collect some basic facts from probability theory.

Definition 2.2 (Exponential distribution) A random variable T' having val-
ues in [0,00) has exponential distribution of parameter A € [—0,00) if P(T >
t) = e for all t > 0. The exponential distribution is the probability measure
on [0,00) having the (Lebesgue-) density function

fr(t) = de™1{t > 0}.

We write T' ~ E(\) for short. The mean (expectation) of T' is given by
E(T) —/ P(T > t)dt ="
0

The other important distribution is the so-called Gamma distribution. We
consider random time points in the interval (0,00) (e.g. incoming claims in
an insurance company or phone calls arriving at a telephone switchboard). The
heuristic reasoning is that, for every ¢ > 0, the number of points in (0, t] is Poisson
distributed with parameter A\t, where A > 0 represents the average number of
points per time. We look for a model of the r-th random point. What is the
probability measure P describing the distribution of the r-th random point?
P((0,t]) = probability that the r-th point arrives no later than ¢ (i.e. at least r
points/arrivals in (0,¢]). Denote by P); the Poisson distribution with parameter
At. We get the probability in question using the complementary event as

P((0,]) =1 — Py({0,....r —1})

r—1 k t r
o — At ()\t) o /\ r—1 _—A\x
=1-—e E I —/0 —(r—l)!x e “dx.

k=0
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The last equality can be checked when differentiating with respect to ¢. Recall
the definition of Euler's Gamma function, I'(r) = [“y ‘e ¥dy,r > 0, and
[(r)=(r—1)! forall r € N.

Definition 2.3 (Gamma distribution) Forevery \,r > 0, the probability mea-
sure 'y, on [0,00) with (Lebesgue-) density function

)\7’

r—1_—Ax >0
F(T)x e ,r = U,

%\,r(I) =

is called the Gamma distribution with scale parameter \ and shape parameter r.
Note that Iy ; is the exponential distribution with parameter \.

Lemma 2.4 (Sum of exponential random variables) If X; ~ E(\), i =
1,...,n, independently, and Z = X; +--- + X,, then Z is I'y,, distributed.

Proof. Exercise of example sheet 2. O

2.1 Poisson process

In this Subsection we will introduce a basic intuitive construction of the Poisson
process. The Poisson process is the backbone of the theory of Markov processes
in continuous time having values in a countable state space. We will study later
more general settings. Pick a parameter A > 0 and let (F;);cn be a sequence
of i.i.d. (independent identically distributed) random variables (having values in
R, ) that are exponentially distributed with parameter A (existence of such a
sequence is guaranteed - see measure theory). Now, E; is the time gap (waiting
or holding time) between the (i — 1)-th (time) point and the i-th point. Then

the sum i
Jk - ZEZ
i=1
is the k-th random point in time (see figure). Furthermore, let
Ne=> T Jr)
keEN
be the number of points in the interval (0,¢]. Thus, for s < t, Ny — Nj is the

number of points in (s,t]. Clearly, for t € [Ji, Ji+1) one has N; = k.

Theorem 2.5 (Construction of the Poisson process) The N;,t > 0, are
random variables having values in Ny, and, for 0 = t, < t; < --- < t,, the
increments N;, — N,,_, are independent and Poisson distributed with parameter
Mt —ti1), 1 <i<n.

16



Definition 2.6 A family (N;);>o of Ny-valued random variables satisfying the
properties of Theorem 2.5 with Ny = N(0) = 0 is called a Poisson process
with intensity A > 0.

We can also write J; = inf{t > 0: N; > k}, k > 1, in other words, Jj is
the k-th time point at which the sample path ¢ — N; of the Poisson process
performs a jump of size 1. These times are therefore called jump times of the
Poisson process, and (NV;);>o and (Jg)ren are two manifestations of the same
mathematical object.

Proof of Theorem 2.5. First note that {V; = k} = {Jp <t < Ji1}.
We consider here n = 2 to keep the notation simple. The general case follows
analogously. Pick 0 < s <t and k,l € N. It suffices to show that

P(Ns =k, N;-s =1) = (eAs(%)) (eA(tS)M)' (2.10)

Having (2.10), summing over [ and k, respectively, we conclude that N and N;_
are Poisson distributed (and are independent, see right hand side of (2.10)). The
joint distribution of the (holding) times (£})i<j<k+i+1 has the product density

_ \Ek+HIH1 AT x
flxr, .o pqag1) = A e (@)

where for convenience we write 7,4 1(x) = 214+ - -+ xp441. Using the equality
of the events in the first line above, the left hand side of (2.10) reads as

Ny=Fk Ni—s— Ny =1)=P(J, <5< Jpp1 < St <t < Jiqun)

/ / Aoy - dagers AL =T 141 (2)

X Hrp(z) < s < mpga(x) <t < T (2) }

We integrate step by step starting from the innermost integral and moving out-
wards. Fix xq,...,2x and set z = 7441 (2),

/ dzgppp de A @O n 0 (2) > t) = / dzle™ =™,
0 t

Fix 21, ..., x; and make the substitution y; = 711(2) — S, Y2 = T2, ..., Y =
Tk to obtain

/ / Aoy - dap g s < T () < () < t}
0

(t—S)

/ /dy1 cdy{yp +---+y <t—s}=

17



which can be proved via induction on [. In a similar way one gets

0 0 k
dzy - dap I mp(z) < s} = s
0 0 k!

Combing all our steps above, we obtain finally

l

k
— L) ey S (B s)
PN, =k, Nioy = 1) = e NN 2 me

O

The following statement shows that the Poisson process satisfies the Markov
property.

Theorem 2.7 Let N = (N;):>o be a Poisson process with intensity A > 0, then
P(N,y: — N, = k|N,, 7 € [0,5]) = P(N, = k), k € N.

That is for all s > 0, the past (N;).cjos) is independent of the future (Nyyy —
Ns)i>o. In other words, for all s > 0 the process after time s and counted from
the level N, remains a Poisson process with intensity A\ independent of its past

(NT)TE[OS)'

The proof is deferred for later and the support class.

2.2 Compound Poisson process on Z¢

We can easily construct a rich class of processes which are the continuous time
analogs of the random walks on Z< in Section 1.

Pick a probability vector (probability measure) u = (ug)peze € Mi(Z?) such
that o = 0, i.e., i € [0,1] Vk € Z%and 3~ ;4 pie = 1. The compound Poisson
process on Z? with jump distribution i and rate A € (0,00) is the stochastic
process (X;);>0 which starts at the origin, sits there for an exponential holding
time having mean value A\~!, at which time it jumps by the amount & € Z? with
probability s, sits where it lands for another, independent holding time with
mean A\~!, jumps again and so on.

Ifd=1,A=1, and u; = 1 we say (X;):>¢ is the simple Poisson process, which,
once restricted to the state space Ny, is the Poisson process from the previous
section. The jump distribution allows only jumps by +1, i.e., only jumps to the
right, because i, = 0 for all k£ # 0.

Construction of the compound Poisson process:

18



Choose a family (B,,)nen of mutually independent Z%-valued random variables
with distribution 1 € M;(Z?) with o = 0. This determines a random walk
(Y, )nen, (in discrete time) on Z<.

Yo=0 and Y, =Y By,n>1
m=1

For any rate A € (0,00), a family (X;)i>o of Z9valued random variables is
defined by
X = YN(/\t),t >0,

where (IV;):>o is a simple Poisson process which is independent of the random
variables B,, (simple means intensity one). The following facts are easily seen
from the construction.

Xo = 0 and [0,00) > t — X, is piecewise constant, right continuous Z%-
valued path. The number of jumps during a time interval (s,t] is precisely
N(Mt) — N(Xs) and B, =Y, — Y, _ is the amount of the n-th jump. We let
Jo =0 and J,,n > 1, denote the time of the n-th jump. Then

N()\t):Tl{:}JnS)\t<Jn+1

and X;, — X, _, = By. If (I;);en is the family of unit exponential holding times
(i.e. E; ~ E(1)) of the simple Poisson process (N;);>o, then the holding times
of the process (X;)i>o are given via the jump times as

E,

Jn - Jn—l = Ta

X(t)—X(t—)=0 for t € (Jn_1,Jn).

We call (X});>o the compound Poisson process with jump distribution x and
rate . In the next lemma we shall show that a compound process moves along
in homogeneous, mutually independent increments.

Lemma 2.8
P(X(s+1t)— X(s) = k|X(1),7 €[0,s]) = P(X(t) = k), keZ' (2.11)
Proof. Given A € o({X(7): 7 € [0, s]}) it suffices to show that

P{X(s+1t)—X(s) =k} NA) =P{X(s+1t)— X(s) = k})P(A).

19



W.l.o.g. we assume that, for some m € N, N(As) = m on A. Then the event
A is independent of o({Y,in — Yi: n > 0} U{N(A(s+1t)) — N(Xs)}), and so

P({X(s +1t) — X(s) = k} N A)

—iP({X(S—i-t)—X(S) =k;NA(s+t)— N(As) =n}nA)

S BV — X = kN 1)~ N(As) = n} 1 4)

= P(Y, = k)P(N(\t) = n)P(A)
— iP(Yn = k; N(\t) = n)P(A) = P(X(t) = k)P(A)

O
Finally, we shall compute the distribution of the compound Poisson process
(Xt¢)t>0- Recall that the distribution of the sum of k independent, identically
distributed random variables is the n-fold convolution of their distribution.

Definition 2.9 (Convolution) /If p,v € M;(Z%) are two probability vectors,
the convolution v € My (Z%) of u and v is defined by

pxv(im) = Z LkVmet, m € Z%

kezd
Clearly,
P(Y, = k) = p™ and ;" = dox,
=Dy, n> 1
jEZ
Henceforth,
P(X(t) =k) = f:IP)(Yn =k, N(\t) =n) = f: M;ﬁ*").
n=0 , n=0 7’L' *

Now with Lemma 2.8 we compute for an event A € o(N(7): 7 € [0, s]).

P{X(s+t)=k}NA) = ZIP’({X(S—i—t)zk}ﬂAﬂ{X(s):j})

- ZIP’({X(ert) —X(s) =k —j}nAN{X(s) = j})
=Y P(t);xP(AN{X(s) = j}) = E(P(t)x(s)sA),
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where

= ()™
Pty =e™>" %u;_;, IkeZ

m=0
We have thus proved that (X;);>o is a continuous time Markov process with
transition probability P(¢) in the sense that

P(X(s+t) =FkX(1),7€0,s]) = P(t)x(s)k-

As a consequence of the last equation, we find that (P(t));> is a semigroup.
That is, it satisfies the Chapman-Kolmogorov equation

P(s+1t) = P(s)P(t), s,t€]0,00). (2.12)

This can be seen as follows,

P(s+t)ox = P(X(s+1t)=kX(s)=j) =Y P(t);xP(s)o,

=3 P(s)0yP(t)y0 = (P(s)P(t))o,

where we used that P(t)x; = P(t)o k-

2.3 Markov processes with bounded rates

There are two possible directions in which one can generalise the previous con-
struction of the Poisson respectively the compound Poisson process:

e jump distribution depends on where the process is at the time of the jump.

e holding time depends on the particular state the process occupies.

Assumptions: [ countable state space and II = (7(x,y)), er @ transition
probability matrix such that w(x,2) = 0 forall z € I. A = {\(i):i € I} C
(0,00) a familiy of bounded rates such that sup,.;{\;} < occ.

Proposition 2.10 With the above assumptions, a continuous time Markov pro-
cess on I with rates A and transition probability matrix 11 is an I-valued family
(Xt)t>0 of random variables having the properties that

(a) t — X (t) is piecewise constant and right continuous,
(b) If Jo =0 and, forn > 1, J, is the time of the n-th jump, then

P(J, > Joo1+t: X (o) = j| X (7), 7 €0, J,)) = e PEUn-D)r(X (J,_1), 5)
(2.13)
on {J,—1 < o0}.
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Proof. We have to show two things. First (see step 1 below) we have to show
that Proposition 2.10 together with an initial distribution uniquely determines
the distribution of the family (X}):>o. Secondly (see step 2 below), we have to
show that the family (X;):>o possesses the Markov property.

Step 1: The assumption on the rates ensures that P(J, < oo) = 1 for all
n € Ny, henceforth we assume that J, < oo for all n € Ny. We now set

Y, = X(J,) and E, = {\”&ZZLS for n € N. Then (2.13) shows that

P(En > t7Yn = j|{E1, e En—l} U {Yb, c. aYn—l}) = e_tﬂ'(Yn_l,j).

Hence, (Y, )nen, is @ Markov chain with transition probability matrix II and
the same initial distribution as (X;);>o. Furthermore, (E,)nen is a family of
mutually independent, unit exponential random variables, and o({Y,,: n € Ny})
is independent of o({ £,,: n € N}). Thus, the joint distribution of {Y,,: n € Ny}
and {E,: n € N} is uniquely determined. We can recover the process (X;):>o
from the Markov chain (Y},)nen, and the family (E,),en in the following way.
Given (e, eg,...) € (0,00)N and (jo, j1,...) € IV, define

q)(A’H)(t; (ela €2, .. ')7 (jOajlv . )) = ]n for fn S t < £n+1a

where we put §g =0and &, => " _ A\ €n. Then

m=1

X(t) = N0 (t; (B, ), (Yo, Ya,..)  for0<t< Y AL By
m=1
Now, the distribution of (X;);>o is uniquely determined once we check that
> A (Jm—1)Ey, = oo with probability one. At this stage our assumptions
on the rates come into play. Namely, by the Strong Law of Large Numbers we
know that >~ | E,, = co with probability one.

Step 2: We show that the family (X;);>o possesses the Markov property:
P(X(s+1t) = j|X(7),7 €[0,5]) = P(t)x(s),5- (2.14)

where P(t);; = P(X(t) = j|X(0) = 4). To show this property we shall
make use of the Markov chain (Y,),en, again. For that purpose we are us-
ing the abstract function ®“™ defined above. Recall from the definition above
that &0 < t+ s < &,1ma1 corresponds to the state j,.,, of the process
at time t. If we are ahead of m time steps (for the Markov chain), that is

gn =Y g Amai—1)emt — S+E&n = —S+Ertm, we observe that 7, < ¢ < &,
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corresponds to the state j,, ., as well because of —s+ &, i1 >t > —s+&,0m.
This leads us to the following observation for &, <t < &,,41,

SN (s +t; (eq,...), (Jo,--.))
= ®<A'H>(t; <€m+1 — )\jm<8 — fm), Em42, - - .), (]m, .. ))

Pick an event A € o({X(7): 7 € [0, s]}) and assume that X (s) = j on A. To
prove (2.14) it suffices to show that

(2.15)

PUX(s+1) =7} NA) = P(t);;P(A).

For this end, set A,, = AN{X(s) = m} = {Epny1 > A0)(s — Jn)} N By,
where B, is an event depending on {Ey,..., E,} U{Yy,..., Y, }. Clearly,
B C {Jn < s}. We get

P({X(s+1) = j}NA) = 3 B({X(s +) = j} N A,)

m=

8

=D PHX(s+1) =j; Emsr > Ai(s — Jin)} N Buy).

m

Il
o

By the memoryless property, (2.13), and our observation (2.15) we get

i]P’({X(s +1) = J; Emy1 > Ai(s — Jm) } 0 Br)

m=0

= P({@mﬂ) (t, (Eerl - )\1(8 - Jm)7 EerQ, ceey Em+n7 .. .),
(’i, Ym+17 C 7Ym+n7 .. )) = j} N {Em+1 > )\1(8 — Jm)} N Bm)
= P(X(t) = j|X(0) = )E(e™ ™), B,y) = P(t); /P(An),

from which we finally get the Markov property. O

The Markov property immediately shows that the family P(t);> is a semigroup
because of

=Y P(X(s+1t)=j; X(s) = k| X(0) = i)

kel
= P(t)r;P(X = Pk P(s)i = P(s)P(t)s .
kel kel
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2.4 The (-matrix and Kolmogorov’s backward equa-
tions

In this Subsection we learn how to construct a process X = (X});>o taking values

in some countable state space [ satisfying the Markov property in Definition 2.1.

We will do this in several steps. First, we proceed like for Markov chains (discrete

time, countable state space). In continuous time we do not have a unit length of
time and hence no exact analogue of the transition function P: I x I — [0, 1].

Notation 2.11 (Transition probability) Let X = (X;);>0 be a Markov pro-
cess on a countable state space 1.

(a) The transition probability P (i, j) of the Markov process X is defined
as
Pou(i,7) =P(Xy = j| Xy =1)  fors<tyi,jel

(b) The Markov process X is called homogeneous if

Pi(1,7) = Po1—s(i,j) foralli,jel;t>s>0.
We consider solely homogeneous Markov processes in the following, hence we
write P, for Py;. We write P, for the || x |I|-matrix. The family P = (P,)i>o
is called transition semigroup of the Markov process. For continuous time
processes it can happen that rows of the transition matrix F; do not sum up to

one. This motivates the following definition for families of matrices on the state
space [.

Definition 2.12 ((Sub-) stochastic semigroup) A family P = (P.);>o of
matrices on the countable set I is called (Sub-) stochastic semigroup on I if
the following conditions hold.

(a) P(i,j) >0 foralli,jel.
(b) z]‘e[ Pt(ZL]) =1 (respective/y Zje] Pt(la.]) S ]-)

(c) Chapman-Kolmogorov equations

Prys(i,5) = Pui, k) Pi(k, 5), t,s > 0.

kel
We call the family P = (P,):>o standard if in addition to (a)-(c)
ltil%l Py(i,j) =0,; foralli,jel
holds.
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As we saw at the end of the preceding section, apart from its initial distribution,
the distribution of a Markov process is completely determined by the semigroup
(P(t))t>0. (Note that we dealt only with bounded rates in that section - how-
ever, one can extend the results easily to unbounded rates. We skip any details
of this.) Thus, it is important to develop methods for calculating the transition
probabilities P(t) directly from the data contained in the rates A and the tran-
sition probability IT. The Chapman-Kolmogorov equations (semigroup property)
leads one to suspect that P(t) must be expressible as ¢'® for some Q. In fact,
( should be derived by differentiation of the semigroup at ¢t = 0. To prove these
speculations, we shall first show that

t
P(t>z’,j = 6i,je_t’\i + )\2/ e_”‘i(HP(t - T))i,j dr. (216)
0
To prove (2.16) note that
P(t)i; = 0i;P(Ey > tAi] X (0) = i) + P(Ey < tA; X () = j|X(0) =14).

Using our map ®“™ and our previous observation (2.15) we can write the second
term on the right hand side as

P(Ey < thi; X(t) = j[X(0) =)
— POt — ATEy (By, ), (Y, ) = §: By <t Yo = 4)
—E((P(t= A" E))y, i By < AdlYo = i)
t
= )\z/ eiTAi Zﬂ'i,kp(t — T)k,j dT,
0

kel

and we conclude with (2.16). (2.16) is an integrated version of a renowned
equation due to Kolmogorov. If we differentiate (2.16) with respect to ¢ (hint:
make a change of variable in the integral), we arrive at Kolmogorov’s backward
equation:

d
ap(t)m‘ = =NP(t)i; + N(ILP(1))s ;- (2.17)
We can rewrite this equation in matrix notation
d
&P(t) =QP(t) witth P(0) =1 when @ = A(IT — 1), (2.18)

where A is the diagonal matrix whose ith entry is A;. The reason for the ad-
jective 'backward’ is that Kolmogorov's backward equation (KBE) describes the
evolution of ¢ — P(t);; in terms of its backward variable i (i.e., as a function
of the rates at state i from which the process is jumping to j). One can derive
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in a similar but more elaborative way the corresponding Kolmogorov’s forward
equation (KFE),
d

SP(H) =P()Q  witth P(0) = 1 when Q = A(IT - 1). (2.19)

Our construction and derivations of KBE motivates the following definition.
Definition 2.13 A QQ -matrix or generator on a countable state space I is a
matrix () = (q; ;)i jer satisfying the following conditions:

(a) 0 < —q;; < oo foralliel.

(b) qi; >0 foralli# j,i,jel.

(c) >jertij =0 foralliel.

The positive entries g; ; are called transition rates if 7 # j, and ¢; = —¢;;
is called the rate leaving state 7. A ()-matrix is also called generator because
it provides a continuous time parameter semigroup of stochastic matrices and
henceforth a Markov process. In this way a ()-matrix or generator is the most
convenient way in construction a Markov process in particular as the non-diagonal
entries are interpreted as transition rates. Unfortunately, there is some technical
difficulty in defining this connection properly when the state space is infinite.
However, if the state space is finite we get the following nice results. Before that
recall the definition of an exponential of a finite dimensional matrix.

Theorem 2.14 Let I be a finite state space and () = (q; j)i jcr @ generator or
Q-matrix. Define P, = P(t) := !9 for allt > 0. Then the following holds:

(a) P(s+t)= P(s)P(t) for all s,t > 0.
(b) (P(t))i>0 is the unique solution to the forward equation

d
ZP(t) = P(H)Q and P(0) = 1.

(c) (P(t))t>0 is the unique solution to the backward equation

d
&P(t) = QP(t) and P(0) = 1.

(d) For k € Ny



Proof. We only give a sketch of the proof as it basically amounts to well-known
basic matrix algebra. For all s, € R, the matrices s() and t() commute, hence
e*Qe!Q = e(t)Q  proving the semigroup property. The matrix-valued power

series .
Q)
=39
k=0
has a radius of convergence which is infinite. Hence, one can justify a term by
term differentiation (we skip that) to get

-y 1Qk P()Q = QP().

i (k=

We are left to show that the solution to both the forward and backward equa-
tion are unique. For that let (M(t));>o satisfy the forward equations (case for
backward equations follows similar).

d d
A 010r) = (o o) =
M(t)(-Q)e™? =
henceforth M (t)e~'? is constant and so M (t) = P(t). O

Proposition 2.15 Let Q = (¢;;)ijer be a matrix on a finite set I. Then the
following equivalence holds.

Q is a Q-matrix < P(t) = e'? is a stochastic matrix for all t > 0.

Proof. Let ) be a Q-matrix. As ¢ | 0 we have P(t) = 1+ tQ + O(t?).
Hence, for sufficiently small times ¢ the positivity of P;(7,j),i # j, follows from
the positivity of ¢; ; > 0. For larger times ¢ we can easily use that P(t) = P(t/n)"
for any n € N, and henceforth

¢; > 0,i# 75 Pi(i,j) > 0,7 j forall t > 0.

Furthermore, if () has zero row sums then so does Q" = (qgr}))z‘,ja for every

neN,
quy = Z Z a5 ik = Zq(" Y Z%,k = 0.
kel kel jeI el el
Thus
Zptlj _1+Z 'qu)
J€eI jer
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and henceforth P, is a stochastic matrix for all t > 0. Conversely, assuming that
> ier Pi(i,j) = 1 for all t > 0 gives that

S g = %LO N Pi.j) =o.

jel jel

O

Example. Consider I = {0,1,...,N}, A > 0, and the following @Q-matrix
Q= (Qi,j)i,jel with Giit1 = A and Qi = —Afori e {0, 1,...,N — 1} and all
other entries being zero. Clearly, ) is an upper-triangular matrix and so is any
exponential of it. Hence, P,(i,7) = 0 for i < j and ¢ > 0. The forward equation
P'(t) = P(t)Q reads as

P/ (i) :—AB(' ')'Po(z' i) =0 ie{O,l,...,N—l}

Pl(i,N) = /\Pt(z,N - 1),P0(Z,N) = O,i < N.

To solve these equations we first note that P;(i,i) = e * fori € {0,1,..., N —
/

1}. Using that we get for 0 < i < j < N that (e”B(i,j)) =eMP(i,j — 1),

and henceforth by induction

At)I—t
P(i,5) = ’\t(( ) ,for1<i<j<N-—-1,
J—
N—i—
P , for 0 <@ < N,
1=0
P,(N,N) = 1.
If i =0, these are the Poisson probabilities of parameter At. o

Example. A virus exists in N + 1 strains 0,1,..., N. It keeps its strain for a
random time which is exponential distributed with parameter A > 0, then mutates
to one of the remaining strains equiprobably. Find the probability that the strain
at time ¢ is the same as the initial strain. Due to symmetry, ¢; = q” =
and ¢;; = 4 for 1 <4,j < N+ 1,7 # j. We shall compute P,(i,i) = (e’ ) i
Clearly, B(z,@) P,(1,1) for all i,t > 0, again by symmetry. A reduced (2 x )
matrix, over states 0 and 1 is

Q= (A_/JAV —)\)\/N> '
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The matrix Q has eigenvalues 0 and 1 = —A(N +1) /N with its row eigenvectors
being (1,1) and (IV, —1). Hence, we get the ansatz

ANA1)

Pt(171):A+Be N t.

We seek solutions of the form A + Bet*, and we obtain A = 1/(N + 1) and
B=n/(N+1) and

1 N A(N+1)
D= (e g
Pt(17 ) N+1 + N—|—1 € N t<Z7Z)

By symmetry,

. 1 1 _AN+D) . .
Pt(z,J):N—i_l_(N—’_].)e N t? ?’#]7
and we conclude
P(i,j) — as t — oo.

N+1
o

Recall the definition of the Poisson process and in particular the characterisation
in Theorem 2.5. A right continuous process (N;);>o with values in Ny is a
Poisson process of rate A € (0, o0) if its holding times E}, Es, . .. are independent
exponential random variables of parameter ), its increments are independent,
and its jump chain is given by Y, = n,n € Nj. To obtain the corresponding
(Q-matrix we recall that the off-diagonal entries are the jump rates. Jump rates
are jumps/per unit time. We 'wait’ an expected time % then we jump by one,

hence the jump rate is + = X and the Q-matrix
A

.. 0 0 0

0O =X X 0 0

0 0O =X A 0
Q= (T U W
- A

The following Theorem gives a complete characterisation of the Poisson process.
Theorem 2.16 (Poisson process) The Poisson process for parameter (inten-

sity) A € (0, 00) can be characterised in three equivalent ways: a process (N;):>o
(right continuous) taking values in Ny with Ny = 0 and:
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(a) and for all 0 < t; <ty <---<t,, neN,andiy,... i, €Ny
]P)(Ntl - 7;17 s 7Ntn - Zn) - Pt1 (Oail)Ptz—tl(ilaiQ) e Ptn—tn_l(in—hin)a

where the matrix P, is defined as P, = e? (to be justified as the state
space is not finite).

(b) with independent increments N (t1) — N (to), ..., N(t,) — N(t,_1), for all
0=ty <ty <---<t, and the infinitesimal probabilities for all t > as

hl0
P(N(t+h)—N(t)=0)=1— A+ o(h)
P(N(t+h) — N(t) =1) = A+ o(h)
P(N(t+h) — N(t) > 2) = o(h),

where the terms o(h) do not depend on t.

(c) spending a random time E}y ~ E()) in each state k € Ny independently,
and then jumping to k + 1.

Proof. We need to justify the operation P, = ¢'@ as the state space Nj is
not finite. We are using the fact that Q is upper triangular and so is Q¥ for
any k € N and therefore P, is upper triangular. In order to find the entries
P,(i,i+ 1) for any | € Ny we use the forward or backward equation both with
initial condition P(0) = 1. This gives L P,(i,i) = —AP;(4,4) and Py(i,i) = 1
and thus P;(i,i) = e ™ for all i € Ny and all t > 0. Put [ = 1, that is consider
one step above the main diagonal. Then

%Pt(i,i +1) = =AP,(i,i + 1) + A\P.(i, 1),

(backward) %Pt(i,i +1)==AR(i,i + 1)+ AP (i + 1,i+ 1)

(forward)

gives Pi(i,i + 1) = Me M for all i € Ny and t > 0. The general case (i.e.
[ € Ny) follows in the same way and henceforth

At)!
Pii+1) = (l—,)e”, i € No,t > 0.

(a) = (b): We get for [ = 0,1

P(N(t+h)—N(t)=1) = R o _ {e_”‘ =1—=A+o(h) fl=0

Ahe ™ = Ah +o(h)  ifl =1,



and P(N(t+h) = N(t)>2)=1—-P(N(t+h)—N@Et)=0o0r 1)=1—(1—
A+ Ah 4+ o(h)) = o(h).

(b) = (c): This step is more involved. We need to get around the infinitesimal
probabilities, that is small times h. This is done as follows. We first check that
no double jumps exists, i.e.

P(no jumps of size > 2 in (0,¢])

¢ Et]Vk=1,...,m)

k—
= IP’(no such jumps in (
m

k—1 k
IP’(no such jumps in ( t, —t})
m m

—:

B
Il

1

v
3

k—1 k
]P’(no jump at all or single jump of size in ( t, —t])
. m m

t t t \m t
l-A—+A—+0o(—)) =Q+o(—))" —1 — 00.
m m 0<m>) ( O(m)> asm

Il
—_

This is true for all t > 0 and henceforth P(no jumps of size > 2 ever) = 1. Pick
t,s > 0 and obtain

P(N(t+ s)) = P(no jumps in (s,s + t])

k—1 k
= P(no jumps in (s+—t,s+—t]sz=1,...,m>
m m

o k—1 k
| | IP’(nOJumps in (s+ t,s+ —t])
m m
k=1
t

1— )\ +o(—))" — e asm — oo.
m

With some slight abuse we introduce the holding times with index starting at
zero (before we started here with one):

Ey =sup{t > 0: N(t) = 0},

Ey =sup{t >0: N(Ey+1t)=1},...,E, =

Jn - Jnfl if Jn,1 < o0
00 otherwise.

Note that the jump time Jj is also the hitting time of the state £ € Ny. We need
to show that these holding times are independent and exponential distributed with
parameter \. In order to do so we compute the probability for some given time
intervals and show that it is given as a product of the corresponding densities.
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Pick positive t1,...,t, and positive hq,...,h, such that 0 < t; < t;1 + h; <
<tp.1+ hyp1 <t, We get
]P)(tl < Ji §t1+h1,...,tn< Jngtn‘i‘hn)
N(t, + h,) — N(t,) =1)
=P(N(t1) =0)P(N(t; + hy) — N(ty) =1) -~
_ —)\t1<>\h1 +0(h1)) “Ata—ti=h1) o ... e—)\(tn—tnfl—hn—l)()\hn +0(hn)),
and dividing by Ay X ---h, and taking the limit h; | 0, 2 = 1,...,n, gives that
the left hand side is the joint probability density function of the n jump times

and the right hand side is the product (e™*1)) (e7*f2711)}) ... (e AIn=tn-1) }),
Thus the joint density function reads as

n
fr o (t, .. H e Mkt 1) ]1{0 <ty < e <tp}

k=1
= \Ne M I{0 <ty <--- <t}

Recall £y = Jy, By = Jo+ J1 = Jp, ..., hence we make a change of variables

(fOF the n times) €y = t1,€1 = tQ — tl, €3 = t3 — tQ, e, B = tn — tn—l- The

determinant of the Jacobi matrix for this transformation is one and therefore
fEo,.Bn i (€0s€1,- - s€n_1) = fr.  g.(€0€0+e€1,....,e04 -+ ep_1)

n—1
= H (Ae* 1{e; > 0}),
k=0

and henceforth £y, ... are independent and exponential distributed with param-
eter \.
(c) = (a): This is already proved in Theorem 2.5. O

We finish our discussion of the Poisson process with a final result concerning
the uniform distribution of a single jump in some times interval.

Proposition 2.17 Let (N;);>o be a Poisson process. Then, conditional on
(Ni)i>0 having exactly one jump in the interval [s,s + t|, the time at which
that jump occurs is uniformly distributed in [s, s + t].

Proof. Pick 0 <u <t
P(J; <ulNy=1)=P(J; <wand Ny =1)/P(N; = 1)

= due e MY /(N M) = %
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2.5 Jump chain and holding times

We introduce the jump chain of a Markov process, the holding times given a
()-matrix and the explosion time. Given a Markov process X = (X;)i>o on a
countable state space there are the following cases:

(A) The process has infinitely many jumps but only finitely many in any interval
[0,], t > 0.

(B) The process has only finitely many jumps, that is, there exists a k € N such
that the k-th waiting/holding time Ej = oco.

(C) The process has infinitely many jumps in a finite time interval. After the
explosion time ¢ (to be defined later, see below) has passed the process starts
up again.

Jo, J1, . . . are called the jump times and (E}) ey are called the holding /waiting
times of the Markov process X = (X}):>o.

JO = O, Jn+l = lnf{t Z Jn: Xt 7é Xjn},n € NO,
where we put inf{()} = oo, and for k € N

Ek:{#—ngiﬂk1<m'

00 otherwise

The (first) explosion time ( is defined by

n€Ng

¢ =sup{J,} = ZE"’
k=1

The discrete-time process (Y}, )nen, given by Y,, = X, is called the jump pro-
cess or the jump chain of the Markov process. Whenever a Markov process
is satisfying that X; = 0 if t > ¢ we call this process (realization) minimal.
Having a ()-matrix one can compute the transition matrix for the corresponding
jump chain of the process.

Notation 2.18 (Jump matrix II) The jump matrix I1 = (m;;); jer of a Q-
matrix () = (q; ;)i jer Is given by

Li g, 40
7 {o ifg; =0, 7

and

Mg = .
’ 1 ifqg;=0.
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Proposition 2.19 Let (Ey)ren be a sequence of independent random variables
with Ey, ~ E(\;) and 0 < A\, < oo for all k € N.

(a) If> 77, i < 00, then P(¢ = 7 | B < 00) = 1.

(b) If>77, A—lk =00, then P(( =) 7 Ey =00) = L.

Proof. The proof follows easily using the Monotone Convergence Theorem
and independence. a
In a continuous time process it can happen that there are infinitely many jumps
in a finite time interval. This phenomenon is called explosion. If explosion
occurs one cannot bookmark properly the states the process visits, somehow the
process is stuck. A convenient mathematical way is to add a special state, called
cemetery, written as 0, to the given state space I, i.e. to consider a new state
space [U{0}. This is exactly the situation where the sub-stochastic semigroup in
Definition 2.12 comes into play. Recall that if X = (X;);>¢ is a Markov process
with initial distribution v, where v is a probability measure on the state space
I, and semigroup (P;);>o the probability for times 0 = tg < t; < --- < t,, and
states g, ...,%, € I is given as

]P(X(to) = io, Ce ,X(tn> = Zn) = V@O)Ptlftg(i(]; 21) s Ptnftn,l(infly ’ln)

Definition 2.20 (Markov process with explosion) Let P = (P;);>¢ be a sub-
stocastic semigroup on a countable state space I. Further let {0} ¢ I and let
v be a probability measure on the augmented state space I U {0}. A 1U{0}-
valued family X = (Xi)i>0 is @ Markov process with initial distribution v and
semigroup (P;)>o if forn € N and any 0 < t; <ty < --- <t, <t and states
i1,...,1, € I the following holds:

(a) P(X ()| X (t1) = i1,..., X (tn) = in) = Pi—s, (in]0) if the left hand side is
defined.

(b) P(Xo| = i) = v(i) for all i € T U {}.
(c) B(X(t) = DX () = i, .., X(tn) = in_1, X (t,) = 0) = 1.

Recall that ¢, is the rate of leaving the state ¢ € I and that g; ; is the rate of
going from state i to state j. Hence, we shall get a criterion not having explosion
of a process in terms of the ¢;'s.

Proposition 2.21 (Explosion) Let (X}):>0 be a (A, Q)-Markov process on some
countable state space I. Then the process does not explode if any one of the
following conditions holds:
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(a) I is finite.

(b) sup;e{gi} < oo.

(c) Xo =i and the state i is recurrent for the jump chain (a state i is recurrent
if P;(Y,, =1 for infinitely many n) = 1).

Proof. Put T, := q(Y,_1)E,, then T,, ~ E(1) and (7T},)nen is independent
of (Y)nen,- (2),(b): We have ¢ := sup,;c;{¢;} < oo, and hence

q¢ > ZTn =00 with probability 1.
n=1
(c) If (Yy)nen, Visits the state i infinitely often at times Ny, ..., then

q;¢ > ZTNnH =00 with probability 1.
n=1

O
We say a -matrix @ is explosive if P;({ < 0o) > 0 for some state i € I,

2.6 Summary - Markov processes

Let I be a countable state space. The basic data for a Markov process on [ is
given by the @)-matrix. A right continuous process X = (X;):>o is a Markov
process with initial distribution A (probability measure on I') and Q-matrix (gen-
erator) if its jump chain (Y},),en, is a discrete time Markov chain with initial
distribution A\ and transition matrix II (given in Notation (2.18)) and if for all
n € N, conditional on Y, ..., Y1, its holding (waiting) times are independent
exponential random variables of parameters ¢(Yp),...,q(Y,_1) (negative diago-
nal entries of the ()-matrix at states given by the jump chain) respectively. How
we can construct a Markov process given a discrete time Markov chain? Pick a
(Q-matrix respectively a jump matrix II and consider the discrete time Markov
chain (Y},)nen, having initial distribution A and transition matrix IT. Further-
more, let T7,T2,... be a family of independent random variables exponential
distributed with parameter 1, independent of (Y},),en,. Put

T,
E, = and J,=FE1+---+ E,,n €N,
Q(Ynfl) !
X Y, if J, <t < J,;1 for some n,
b oo(0)  otherwise.
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Then (X}):>0 has the required properties of a Markov process.
If the state space is not finite we have the following characterisation of the
semigroup of transition probabilities.

Proposition 2.22 (Backward/forward equation) Let () be a QQ-matrix on a
countable state space 1.

(a) Then the backward equation
P'(t) = QP(t), P(0)=1,

has a minimal non-negative solution (P(t)):>o. This solution forms a ma-
trix semigroup P(s)P(t) = P(s+t) for all s,t > 0.

(b) The minimal non-negative solution of the backward equation is also the
minimal non-negative solution of the forward equation

P'(t) = P(t)Q, P(0)=1.

Proof. The proof is rather long, and we skip it here as it goes beyond the
level of the course. 0

Here is now our key result for Markov processes with infinite (countable) state
space I. There are just two alternative definitions left now as the infinitesimal
characterisation becomes problematic for infinite state space.

Theorem 2.23 (Markov process, final characterisation) Let X = (X});>0
be a minimal right continuous process having values in a countable state space
I. Furthermore, let () be a (Q-matrix on I with jump matrix II and semigroup
(solution-see Proposition 2.22) (P;):>o. Then the following conditions are equiv-
alent:

(a) Conditional on Xy = i, the jump chain (Y,)nen, of (Xi)i>0 is a dis-
crete time Markov chain with initial distribution ; and transition matrix
IT and for each n > 1, conditional on Yy,...,Y, 1, the holding (wait-
ing) times F, ..., E, are independent exponential random variables of
paramters q(Yp). ..., q(Y,_1) respectively;

b) for all n € Ny, all times 0 < ty < t; < ... < t,41 and all states
( T
10y -y lpe1 €1

]P)(th — ’in+1|Xt0 - io, [P ,Xt — ’Ln) — an+1*tn (Zn, in+1).

n

If (X:)i>o satisfies any of these conditions then it is called a Markov process
with generator matrix (). If \ is the distribution of X, it is called the initial
distribution of the Markov process.
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3 Examples, hitting times, and long-time be-
haviour
We study the birth-and-death process, introduce hitting times and probabilities,

and discuss recurrence and transience. The last Subsection is devoted to a brief
introduction to queueing models.

3.1 Birth-and-death process

Birth process: This is a Markov process X = (X;);>¢ with state space I = N
which models growth of populations. We provide two alternative definitions:

Definition via "holding times’: Let a sequence (\;);en, of positive numbers
be given. Conditional on X (0) = j,j € Ny, the successive holding times are
independent exponential random variables with parameters A\;, A\j11,.... The
sequence (Aj);en, is thus the sequence of the birth rates of the process.

Definition via ’infinitesimal probabilities’: Pick s,¢ > 0,¢t > s, conditional
on X (s), the increment X (t) — X (s) is positive and independent of (X (u))o<u<s-
Furthermore, as h | 0 uniformly in ¢t > 0, it holds for j,m € Ny that

A+ o(h) ifm =1,
P(X(t+h)=j+m|X(t)=j) =< o(h) if m>1,
1~ Mhto(h)  ifm=0.

From the latter definition we get the difference of the transition probabilities as

PG, k) — B, k) = Po(j, k — DA—1h — Bi(j, k)Aeh + o(h),  j € No,k €N
Pi(j,7—1) =0,

hence the forward equations read as
Pt/(ja k) = )\kflpt(.ju k— 1) - Ath(j? k)a .] S N(bk S N7 k > .]

Alternatively, conditioning on the time of the first jump yields the following
relation

t
_Pt(]7 k?) = j7ke_/\jt + / )\je_AjSPt_s(j + 1, k) dS,
0
and the backward equations read

Pt/(jv k) = )‘JPt(j =+ 17k> - /\JPt(j7 k)
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Theorem 3.1 (Birth process) (a) With the initial condition Py(j, k) = 0,
the forward equation has a unique solution which satisfies the backward
equation.

(b) If (P,)t>0 is a unique solution to the forward equation and (B;);>o any
solution of the backward equation, then P,(j, k) < By(j, k) for all j, k €
No.

Proof. We give only a brief sketch. We get easily from the definition
Fi(j,k) =0, k<j,

Pi(j,j) = e ™",
Py(j,J+1) :e—mlt/ Ajem i hies g
0
)\,

(o),
Aj = Aj+1

J

Examples. (a) Simple birth process where the birth rates are linear, i.e. \; =
Aj,A > 0,5 € Ny. (b) Simple birth process with immigration where \; =
Aj+rv,veR. o

Birth-and-death process Let two sequences (\g)ren, and (g )ken, of positive
numbers be given. At state £ € Ny we have a birth rate )\, and a death rate
ik, and we only allow 1-step transitions, that is either one birth or one death.
The )-matrix reads as

Ao —Ao 0 0 0 0 O

Jo51 —()\1 + ,Uq) )\1 0 0 0 0
Q = 0 J75) —<)\2 + ,UQ) )\2 0 0 0

0 0 :

0 0 0

We obtain the infinitesimal probabilities

P(exactly 1 birth in (¢,¢+ h]|k) = Axh + o(h),

P(exactly 1 death in (¢,t + h]|k) = ukh +o(h),
P(no birth in(t,t + h]|k) = Aeh + o(h),
P(no death in(t,t + hl|k) = 1 — ugh + o(h).

In the following figure (see) we have three potential transitions to the state k at
time t + h, namely if we have at time t the state k + 1 we have one death, if
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we have k — 1 at time ¢ we do have exactly one birth, and if at time ¢ we have
already state k then we do not have a birth or a death. This is expressed in the
following relation for the transition probabilities.

P n(0,k) = P(0,k)Py(k, k) + P(0,k — 1) P,(k — 1,k)
+ P(0,k 4+ 1)Py(k + 1,k)
P,11(0,0) = P,(0,0)P,(0,0) + P,(0,1)Py(1,0).
Combining these facts yields

dP(0, k

tét7 ) = — (Mo + 1) Pe(0, k) + XNer1 P(0, k — 1) + pu1 P(0, k + 1)
dP(0,0
% = —A£:(0,0) + p1 £(0, 1)

This can be seen as a probability flow. Pick a state &, then the probability flow
rate into state k is given as A1 P:(0,k — 1) + px1P:(0,k + 1), whereas the
probability flow rate out of the state k is given as (A\y + ) P;(0, k), henceforth
the probability flow rate is the difference of the flow into and out of a state.

3.2 Hitting times and probabilities. Recurrence and
transience

In this section we study properties of the single states of a continuous time Markov
process. Let a countable state space I and a Markov process X = (X;);>0 with
state space I be given. If 7,5 € I we say that i leads to j and write i — j
if P;(X; = j for somet > 0) > 0. We say i communicates with j and write
1 «— if both ¢ — j and j — ¢ hold.

Theorem 3.2 Let X = (X;);>0 be a Markov process with state space I and Q-
matrix Q) = (¢ ;)i jer and jump matrix I1 = (m; ;); jer. The following statements
fori,j € 1,1 # j are equivalent.

(a) i — j.
(b) i — j for the corresponding jump chain (Yy,)nen, -

(¢) GiyirQiris -~ Uiy, 14, > O for some states i, ...,i, € I with iz = i and
i =7

(d) Pi(i,j) >0 for all t > 0.

(e) Pi(i,j) > 0 for somet > 0.
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Proof. All implications are clear, we only show (c) = (d). If ¢;; > 0, then
Pt(’l,j) > ]P)l(Jl < t,Yi = j, EQ > t) = (1 — eiqit)ﬂ'i’jeiqjt > 0,

because ¢; ; > 0 implies pi; ; > 0. O

Let a subset A C I be given. The hitting time of the set A is the random
variable D4 defined by

DA =inf{t > 0: X, € A}.

Note that this random time can be infinite. It is therefore of great interest if the
probability of ever hitting the set A is strictly positive, that is the probability that
D4 is finite. The hitting probability 7' of the set A for the Markov process
(Xt)e>0 starting from state i € [ is defined as

hit .= Py(D? < 0).

Before we state and prove general properties let us study the following ex-
ample concerning the expectations of hitting probabilities. The average time,
starting from state ¢, for the Markov process (X;);>o to reach the set A is given
by k# := E;(D4).

Example. Let be given four states 1,2, 3,4 with the following transition rates
(see figure). 1 - 2=1;1—-3=12—>1=22—-3=22>4=2,3—
1=3;3—2=23;3—4=3. How long does it take to get from state 1 to
state 47 Note that once the process arrives in state 4 he will be trapped. Write
k; := E;(time to get to state 4). Starting in state 1 we spend an average time

= % in state 1, then we jump with equal probability to state 2 or state 3, i.e.

1 1 1
ki==+4+ ko + =k
175 + 52 + 53
and similarly
1 1 1
ko ==+ -ki+ -k
2= 5 + 3 + 37
1 1 1
ks = =+ =k + —ks.
1Tyt
Solving these linear equations gives k; = ]i_; o

Proposition 3.3 Let X = (X;);>0 be a Markov process with state space I and
Q-matrix QQ = (¢;;)ijer and A C I.
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(a) The vector h* = (hi!)ic; is the minimal non-negative solution to the
system of linear equations

hit =1 ifi €A,
Zje[ Qz,jh? = 0 IfZ ¢ A

(b) Assume that q; > 0 for alli ¢ A. The vector k* = (k*);c; of the expected
hitting times is the minimal non-negative solution to the system of linear
equations

{wzo ifi € A,

_Zjelq@jk}q: 1 IfZ¢A

Proof. (a) is left as an exercise. (b) Xy =i € A implies DA =0, so k! =0
fori € A. If Xo =i ¢ A we get that D4 > J;. By the Markov property of the
corresponding jump chain (Y},),en, it follows that

E((D* = 11|y = j) = E;(D*).
Using this we get

kP =E(DY) =Ei(J)+ > E(D*— LYy = j)Pi(Vs = j)
Jei}

=q '+ Z Wi,jk;l;

JeI\{i}

and therefore — Zje[ quf = 1. We skip the details for proving that this is the
minimal non-negative solution. a
Example. Birth-and-death process: Recall that a birth-and-death process with
birth rates (A;)ren, and death rates (ux)ren, With o = 0 has the @Q-matrix

Q = (i;)ijen, given by
G+ = Ajs Gj—1 = K5, 7 > 0,q5 = Aj + pj.

Let k; ;11 be the expected time it takes to reach state j + 1 when starting in
state j. The holding (waiting) time in state j > 0 has mean (expectation) /\iu,.

J J
Hence,

By (DU = kjjn = (N + )™+ 3= (ki + ki),
it H

and therefore k; ;1 = \;* + (§2)kj-1, for j > 1 and ko1 = Ag". The solution

follows by iteration. o
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Let a Markov process (X;);>o on a countable state space [ be given. A state
i € I is called recurrent if P;({t > 0: X; = i} is unbounded) = 1, and the
state i € [ is called transient if P;({t > 0: X; = i} is unbounded) = 0. The
first passage (or hitting) time of the process to the state ¢ € I when starting in
state k is defined as
Tkﬂ' = mf{t 2 Jli Xt = ’l}

(we write T; if Xog = k is clear from the context). The ()-matrix of the process
(X¢)i>0 is called irreducible if the whole state space [ is a single class with
respect to the «— - equivalence relation defined above.

Notation 3.4 (Invariant distribution) Let (X;);>¢ be a Markov process on a
countable state space 1.

(a) A vector A\ = (\(i))icr, A € My(I) (set of probability measures on I),
is called an invariant distribution, or a stationary, or an equilibrium
probability measure if for allt > 0 and for all states j € I it holds that

P(X, = j) = A(j), ie. AP = A

(b) A vector (A(j))jer with A(j) > =0, > ;A # 1, and AP, = A forallt > 0
is called an invariant measure. If in addition 3, ; A(j) < oo holds, an
invariant distribution (equilibrium probability measure) is given via

M) =MD aa6)

il

Proposition 3.5 Assume that (X;);>o is a non-explosive Markov process on a
countable state space I with Q-matrix Q = (i ;)i jer-

(a) Then X\ = (A(¢))ier is an invariant measure for the process (X;)i>o if and
only if for all states j € I

> Ai)giy; =0, ie AQ=0.

i€l

(b) Assume in addition that q; > 0 for all i € I and let 11 be the transition
matrix of the jump chain (Y,)nen, and X = (A(2))ies. Then

A invariant measure for (Xi)i>0 < pll = p with p(i) = \(i)g;, i € I.
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Proof. (a) Ais an invariant measure if P(X, = j) = A(j) for all t > 0 and all
j€l,ie. AP, = A. Thus the row vector A is annihilated by the matrix ):

d d
0= dt)\P )\dtf)t = \PQ,

0=APQ|,_, = Q.
This argument cannot work for an explosive chain as in this case one cannot
guarantee that <(AP;) = 0.
(b) Write ull = pas pll — pll =0, or

(pIl — p1); Z ,uZ Ty = ZMi((l - 5zg)q;—j - 5i,j>

’L K3

€I\{j} el
_Z(qz_]_ y ( QZ])> Z}\ )iy = )
Now the LHS is zero if and only if the RHS is. a

Example. Birth-and-death process: Assume that A\, > for all n € Ny and
tn > 0 for all n € N,pg = 0, that is all states communicate. The corresponding
jump chain (Y},)nen, has transition matrix IT defined as

P, An
U Th,n - .
)\n + fin et /\n + fn

Tpn—1 =

It is easy to show that the following equivalence holds:
(X¢)i>0 recurrent < (Y),),en, recurrent.
S

Example. Irreducible Birth-and-death process (BDP): Assume that A, > for all
n € Ny and p, > 0 for all n € N,ug = 0, that is all states communicate, i.e. the
()-matrix is irreducible. The corresponding jump chain (Y},),en, has transition
matrix II defined as

Hn An
5 Th,n = .
An + fin AR W

Tnn—1 =

If the jump chain (Y,,)nen, is transient then

p(n) = P, (chain ever reaches 0) — 0 as n — 0.
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Clearly,
p(0) =1,
p(n) (o + An) = p(n = Dpin + p(n + 1) An.
We shall find the function p(n). We get by iteration

p(n) —p(n+1) = L2 (pln =1) —p(n) ), n>1,

>\n
p(n) = pln -+ 1) = - (p(0) — p(1)),

and thus

p(n+1) = (p(n+1) = p(0)) +p(0)

_Z< (7+1) = (])>+1=(p(1)—1> /;1 /;JH,

]_

where by convention the term for j = 0 is equal to one. We can find a nontrivial
solution for the function p(n) if the sum converges. Hence, we can derive the
following fact:

Fact I: BDP is transient < > % | &b < oo o

Recall that a state ¢ € [ is recurrent if P;(7; < oo) = 1, so this state is visited
for indefinitely large times. As in the previous example consider a Markov chain
(Y, )nen, on a countable state space I such that a limiting probability measure
v € My(I) exists, that is

nh—>nolo P,(x,y) =v(z) forall z,y €I,
where P, is the n-step transition function (entry of the n-th power of the tran-
sition matrix IT). However, if the chain (Y},)nen, is transient then we have seen
that lim,, .., P,(x,y) = 0 for all z,y € I. Hence, in this case no limiting prob-
ability measure exists. However, lim,, ., P,(z,y) = 0 can hold for a recurrent
chain. This shows the example of the simple random walk for which we proved
that P»,(0,0) — 0 as n — oo. This motivates to define two types of recurrence:

null-recurrent is recurrent but lim,,_.., P,(z,y) = 0 for all z,y € I, otherwise

positive recurrent.

Definition 3.6 A state i € [ is called positive recurrent (PR) if m; :=
E;(T;) < oo, and it is called null-recurrent (NR) if P;(T; < oo) = 1 but
m; = OQ.
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It turns out that positive recurrent processes behave very similar to Markov
chains with finite state spaces. The following Theorem is important as it connects
the mean return time m; to an invariant distribution.

Theorem 3.7 Let (X;):>o be an irreducible and recurrent Markov process on a
countable state space I and Q-matrix Q) = (q; j)ijer. Then:

(a) either every statei € I is PR or every state i € I is NR;

(b) or Q is PR if and only if it has a (unique) invariant distribution © =
(m(2))ier, in which case

1
m(i) >0 and m; = ——— for alli € I.
7(@)qi

Proof. We give a brief sketch.

m; = mean return time to ¢

= mean holding time at ¢ + Z (mean time spent at j before return to 7).
JeN{i}
The first term on the right hand side is clearly ¢; ' =: 7; and for j # i we write

7; = E;(mean time spent at j before return to i)

— Ei(/JTi 1{ X (¢) :j}dt>

- / Ei<ﬂ{X(t) — . <t< n}) dt.
0
Then
1 < oo if state i is PR,
Z% i Z K {:oo if state 7 is NR.
Jel JEN\{3}

This defines the vector v = (V;i))jef where we put the index to stress the

dependence on the state i € I. If T} is the return time to state i of the jump
chain (Y},)nen, then we get

3 =B 3D s = )0V, = m < T7Y)

neNy
= 3 Bt = J)lVa = )Pi(Ya = j1 <0 < T)
neNg
1 Y -1 R
_ —Ei< 3y, :j}> =
4; m—t 4;
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where we set 5.” = 1, and for j # i,

Y
TY —1

=B Y 1. =)

n=1

E; (time spent at j in (Yn)neN) before returning to 2)

= (number of visits to j before returning to z>

If the process (X¢):>0 is recurrent then so does the jump chain (Y;,)nen,. Then
the vector 7 gives an invariant measure with i;‘) < o0, and all invariant mea-
sures are proportional to 3. Then the vector 4 with ~’ = qiﬁ;” gives an
invariant measure for the process (X;);>o. Furthermore, all invariant measures
are proportional to v®. If the state 7 is positive recurrent, then

m; = E ’}/](-j) < OQ.
jel

But then m;, = ZjeI 7;-’” < oo, forall k, i.e. all states become positive recurrent.

Similarly, if 4 is null-recurrent, then that applies to all states as well. Hence (a).

If @ is PR, then
©)
v 1 .
T = = = , jJ€el,
! Ejel 7;) qimi

yields a (unique) invariant distribution 7. Clearly, 7; > 0 and

T
Tkqk

Ey(time spent at j before returning to k) =

Conversely, if (X¢):>0 has an invariant distribution 7 then all invariant measures

have finite sum. This implies that m; = Zjel 7](-” < 00, henceforth 7 is positive

recurrent. O
Let us give some summary:

(1) lrreducible Markov processes (X;);>0 with || > 1 have rates ¢; > 0 for all
el

(1) Non-explosive Markov processes can be transient or recurrent.
(I11) Irreducible Markov processes can be

(a) null-recurrent, i.e. m; = 0o, no invariant measure A with >, _, A(i) <
00 exists.
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(b) positive recurrent, i.e. m; < 0o, unique invariant distribution A\ =

(IV) Explosive Markov processes are always transient.

We state the following large time results without proof as this goes beyond the
level of the course. It is, however, important to realise how this is linked to
invariant distributions.

Theorem 3.8 Let (X;);>o be a Markov process on a countable state space |
with initial distribution X € M;(I) and Q-matrix Q = (g ;)ijer and with
invariant distribution m = (m(i));cr. Then for all states i € we get, ast — oo,

(1)

I : , .
;/ 1{ X, =i} ds = fraction of time at i in (0,t) — m;
0
1 mean holding time at i
N m;q; "~ mean return time to i

(1)
%E(/O I{X, = i} ds) :%/0 B(X, = i)ds —

Proposition 3.9 (Convergence to quilibrium) Let Q) be an irreducible and
non-explosive Q-matrix with semigroup (P;):>o and invariant distribution m =
(w(7))ier. Then for alli,j € I

Pyi, j) — (j) ast — oo.
Example. Recurrent BDP: Assume that \,, > for all n € Ny and p,, > 0 for all
n € N,uo = 0, that is all states communicate. Positive recurrence of the BDP
implies that lim; .., P(X; = n|X, = m) = 7(n) for all m € Ny. If the process
is in the limiting probability, i.e., if P(X; = n) = 7(n), then P/(n) = 0. Recall
that P;(n) = P(X; = n) and that

P/(n) = pn1Pi(n+ 1)+ N1 Pi(n — 1) — (i + \) Bi(n).

Then the limiting probability 7 = (7(n)),en, should solve

0=Xp1m)n — 1) + ppam(n + 1) — (A, + pn)w(n).
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We solve this directly: n = 0 gives 7(1) = %W(O) and for n > 1 we get
fni1m(n+ 1) — \ym(n) = ppm(n) — Ay_1m(n — 1). lterating this yields
pns1m(n + 1) = Aym(n) = (1) — Aom(0).
Hence, m(n+ 1) = (ﬁ)w(n) and thus 7(n) = %W(O)
Fact Il: BDP
oAy
positive recurrent < q := Z 29 el o 00,
nzo /’l‘l o .. /,l/n

Ao An—1 1

in which case 7(n) = prEST

Definition 3.10 (Reversible process) A non-explosive Markov process (X})>o
with state space I and (Q-matrix () is called reversible if for all iy, ...i, € I,n €
N, and timesO =ty <ty <---<t,=T1,T >0,

]P)(Xo = io, e ,XT - Zn) = ]P(XO == ?:n, e ,XT,tl == il,XT - Zo)
Equivalently,
(Xi:0<t<T)~(Xp_:0<t<T) forall T >0,

where ~ stands for equal in distribution. Note that in order to define the reversed
process one has to fix a time T > 0.

Theorem 3.11 (Detailed balance equations) A non-explosive Markov pro-
cess (X¢)i>o with state space I and ()-matrix () = (¢, j)i jer and initial distribu-
tion X\ = (\(7)):er is reversible if and only if the detailed balance equations
(DBEs)

Ni)gij = A(j)gja  foralli,jel,ij,
hold.

Proof. Suppose the detailed balance equations hold. Hence,
=Y AD)ai; =D Xigji =0
iel i€l

By induction, the DBEs hold for all powers of @,

Mg = A0 auals =)@ Dal T = al P aA) = Mgy

lel lel lel
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Henceforth

We shall check that
P(X;, =i, 0 <k <n)=P(Xp_ =i, 0 <k <n). (3.21)
Using (3.20) several times we get

LH.S. of (3.21) = A(ig) Pr_so(ioyi1) -+ Pt 1 (in_1in)
- -Ptl—to (7:17 /L.O))\(il)-PtQ—tl (ila 22) T Ptn—tnfl(in—la Zn)

= Bii—t (0, 11) Pry—t, (i1, 82) - - - Pryy—t,, (in, in—1) Alin).
We rearrange this to obtain the right hand side of (3.21) as
A@n)Bn—tn_l(in;in—l) = ]P)(XT—tk = ik’a 0 < k S n)

Conversely, suppose now that the process is reversible and put n = 1,ig =i €
1,50 =7 € I and let T > 0. Then reversibility gives

A@) Pr(i, j) = AMJ)Fi(d, 1)

We differentiate this with respect to the parameter 7" and set 7' = 0 to obtain
the DBEs using that . P,(, ) = ¢. O

Notation 3.12 (Time reversed process) We denote the time reversed pro-
cess (reversed about T > 0) by (X;")o<i<r which is defined by

P(X{" =g, ..., X =ip) =P(Xg =tn, ..., X7t = i1, X7 = ).

4 Percolation theory

We give a brief introduction in percolation theory in Section 4.1, provide im-
portant basic tools in Section 4.2, and study and prove the important Kesten
Theorem for bond percolation in Section 4.3.

4.1 Introduction

Percolation theory was founded by Broadbent and Hammersley 1957, in order to
model the flow of a fluid in a porous medium with randomly blocked channels.
Percolation is a simple probabilistic model which exhibits a phase transition (as we
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explain below). The simplest version takes place on Z?, which we view as a graph
with edges between neighboring vertices. All edges of Z? are, independently of
each other, chosen to be open with probability p and closed with probability 1—p.
A basic question in this model is "What is the probability that there exists an
open path, i.e., a path all of whose edges are open, from the origin to the exterior
of the square A,, := [—n, n|*?" This question was raised by Broadbent in 1954 at
a symposium on Monte Carlo methods. It was then taken up by Broadbent and
Hammersley, who regarded percolation as a model for a random medium. They
interpreted the edges of Z? as channels through which fluid or gas could flow if the
channel was wide enough (an open edge) and not if the channel was too narrow
(a closed edge). It was assumed that the fluid would move wherever it could go,
so that there is no randomness in the behavior of the fluid, but all randomness in
this model is associated with the medium. We shall use 0 to denote the origin. A
limit as n — oo of the question raised above is " What is the probability that there
exists an open path from 0 to infinity?" This probability is called the percolation
probability and denoted by 6(p). Clearly (0) = 0 and 6(1) = 1, since there are
no open edges at all when p = 0 and all edges are open when p = 1. It is also
intuitively clear that the function p — 6(p) is nondecreasing. Thus the graph of
6 as a function of p should have the form indicated in Figure (XX), and one can
define the critical probability by p. = sup{p € [0,1]: 6(p) = 0}. Why is this
model interesting? In order to answer this we define the (open) cluster C'(x) of
the vertex x € Z? as the collection of points connected to = by an open path.
The clusters C'(z) are the maximal connected components of the collection of
open edges of Z?%, and 0(p) is the probability that C'(0) is infinite. If p < p,
then 0(p) = 0 by definition, so that C(0) is finite with probability 1. It is not
hard to see that in this case all open clusters are finite. If p > p,, then 6(p) > 0
and there is a strictly positive probability that C(0) is infinite. An application
of Kolmogorov's zero-one law shows that there is then with probability 1 some
infinite cluster. In fact, it turns out that there is a unique infinite cluster. Thus,
the global behavior of the system is quite different for p < p. and for p > p..
Such a sharp transition in global behavior of a system at some parameter value
is called a phase transition or a critical phenomenon by statistical physicists,
and the parameter value at which the transition takes place is called a critical
value. There is an extensive physics literature on such phenomena. Broadbent
and Hammersley proved that 0 < p. < 1 for percolation on Z2, so that there is
indeed a nontrivial phase transition. Much of the interest in percolation comes
from the hope that one will be better able to analyze the behavior of various
functions near the critical point for the simple model of percolation, with all its
built-in independence properties, than for other, more complicated models for
disordered media. Indeed, percolation is the simplest one in the family of the
so-called random cluster or Fortuin-Kasteleyn models, which also includes the
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celebrated Ising model for magnetism. The studies of percolation and random
cluster models have influenced each other.

Let us begin and collect some obvious notations. Z% d > 1, is the set of all vec-
tors x = (x1,...,x4) with integral coordinates. The (graph-theoretic) distance
d(z,y) from x to y is defined by

d
o(z,y) = Z |z — uil,
i=1

and we write |x| for §(0,z). We turn Z% into a graph, called the d-dimensional
cubic lattice, by adding edges between all pairs z, i of points of Z with 6(z,y) =
1. We write for this graph LY = (Z% E?) where E? is the set of edges. If
d(z,y) = 1 we say that = and y are adjacent, and we write in this case x ~ y
and represent the edges from z to y as (z,y). We shall introduce now some
probability. Denote by

Q= J]{0.1} = {0,1}* = {w: B! — {0,1}}

ecEd

the set of configurations w = (w(e)).cge (set of all mappings E? — {0, 1})with
the interpretation that the edge e € E“ is closed for the configuration w if
w(e) = 0 and the edge e is open for the configuration w if w(e) = 1. The set
Q will be our sample or probability space. We need further a o-algebra and a
measure for this sample space. An obvious choice for the o-algebra of events
is the one which is generated by all cyclinder events {w € Q: w(e) = a.,a. €
{0,1},e € A, A C E finite }, and we call it F. For every e € E? let 1. be the
Bernoulli (probability) measure on {0, 1} defined by

pe(w(e) =0) =1—pand p.(w(e) =1)=p, pel0,1].

Then the product of these measures defines a probability measure on the space
of configurations €, denoted by

P, = H fhe-

eckd

In the following we are going to consider only the measure P, € M;(Q2) for
different parameters p € [0,1]. As the probability measure P, is a product
measure (over all edges) it is a model for the situation where each edges is open
(or closed) independently of all other edges with probability p (respectively with
probability 1 — p). If one considers a probability measure on € which is not a
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product of probability measures on the single edges, one calls the corresponding
percolation model dependent. In this course we only study independent (hence
the product measure IP,,) percolation models.

A path in L7 is an alternating sequence x, €y, 1, €1, . . . , €n_1, T Of distinct
vertices x; and edges e; = (x;,x;11); such a path has length n and is said to
connect xy to z,,. A circuit is a closed path. Consider the random subgraph of
L4 containing the vertex set Z? and the open edges (bonds) only. The connected
components of the graph are called open clusters. We write C'(x) for the open
cluster containing the vertex x. If A and B are set of vertices we write A «—— B
if there exists an open path joining some vertex in A to some vertex in B. Hence,

Clz) ={y € Z: x =y},

and we denote by |C'(z)| the number of vertices in C(x). As above we write
C' = C(0) for the open cluster containing the origin.

6(p) =B,(|C| = 00) =1 =Y P,(|C] = n).

It is fundamental to percolation theory that there exists a critical value p. = p.(d)

of p such that
=0 if p<pe,
9(19){ .
>0 ifp>pe;

pe(d) is called the critical probability. As above p.(d) = sup{p € [0, 1]: 6(p) =
0}. In dimension d = 1 for any p < 1 there exist infinitely many closed edges to
the left and to the right of the origin almost surely, implying 6(p) = 0 for p < 1,
and thus p.(1) = 1. The situation is quite different for higher dimensions. Note
that the d-dimensional lattice LY may be embedded in 4! in a natural way as
the projection of L' onto the subspace generated by the first d coordinates;
with this embedding, the origin of LL*! belongs to an infinite open cluster for
a particular value of p whenever it belongs to an infinite open cluster of the
sublattice L. Thus
pe(d+1) <pe(d), d=>1.

Theorem 4.1 Ifd > 2 the 0 < p.(d) < 1.

This means that in two or more dimension there are two phases of the process.
In the subcritical phase p < p.(d), every vertex is almost surely in a finite open
cluster. In the supercritical phase when p > p.(d), each vertex has a strictly
positive probability of being in an infinite open cluster.
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Theorem 4.2 The probability ¥ (p) that there exists an infinite open cluster

satisfies
0 ifd(p) =0,
U(p) = . (»)
1 ifé(p) > 0.

We shall prove both theorems in the following. For that we derive the following
non-trivial upper and lower bounds for p.(d) when d > 2.

1

@ S S g (4.22)
and 1
Nd) < pc(d) ford > 3; (4.23)

where \(d) is the connective constant of L%, defined as

Ad) = lim {/a(n),
with o(n) being the number of paths (or 'self-avoiding walks’) of IL? having
length n and beginning at the origin. It is obvious that A(d) < 2d — 1; to see
this, note that each new step in a self-avoiding walk has at most 2d — 1 choices
since it must avoid the current position. Henceforth o(n) < 2d(2d — 1)"!.
Inequality (4.23) implies that (2d — 1)p.(d) > 1, and it is known that further
pe(d) ~ (2d)™! as d — cc.

Proof of Theorem 4.1 and (4.22). As p.(d+1) < p.(d) it suffices to show
that p.(d) > 0 for d > 2 and that p.(2) < 1.

We show that p.(d) > 0 for d > 2: We consider bond percolation on L.¢ when
d > 2. It suffices to show that 6(p) = 0 whenever p is sufficiently close to 0.
As above denote by o(n) the number of paths ('self-avoiding walks') of length
n starting at the origin and denote by N(n) the number of those paths which
are open. Clearly, E,(N(n)) = p"o(n). If the origin belongs to an infinite open
cluster then there exist open paths of all lengths beginning at the origin, so that

0(p) <P,(N(n)>1) <E,(N(n)) =p"c(n) for all n.
We have that o(n) = (A(d) + o(1))™ as n — oo, hence,
0(p) < (PA(d) +0(1))" — 0 as n — oo if pA(d) < 1.

Thus we have shown that p.(d) > A(d)™! where A\(d) < 2d — 1 < oo and
henceforth p.(d) > 0.
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Figure Dual lattice

Figure 1: Dual lattice

We show that p.(2) < 1: We use the famous 'Peierls argument’ in honour
of Rudolf Peierls and his 1936 article on the Ising model. We consider bond
percolation on IL?. We shall show that 6(p) > 0 if p is sufficiently close to 1.
Let (Z*)* be the dual lattice, i.e. (Z*)* = Z*+ (—1/2,1/2), see Figure 1 where
the dotted edges are the ones for the dual lattice.

There is a one-one correspondence between the edges of L2 and the edges
of the dual, since each edge of IL? is crossed by a unique edge of the dual.
We declare an edge of the dual to be open or closed depending respectively
on whether it crosses an open or closed edge of I.2. We thus obtain a bond
percolation process on the dual with the same edge-probability. Suppose that
the open cluster at the origin of I.? is finite, see Figure 2. We see that the origin
is surrounded by a necklace of closed edges which are blocking off all possible
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routes from the origin to infinity. Clearly, this is satisfied when the corresponding
edges of the dual contain a closed circuit in the dual having the origin of 1.2 in
its interior. If the origin is in the interior of a closed circuit in the dual then the
open cluster at the origin is finite

|C| < 00 < 0 € interior of a closed circuit in dual.

Similarly to the first part we now count the number of such closed circuits
in the dual. Let p(n) be the number of circuits of length n in the dual which
contain the origin of IL.2. We get an upper bound for this number as follows.
Each circuits passes through some vertex (lattice site) of the form (k+1/2,1/2)
for some integer 0 < k < n. Furthermore, a circuit contains a self-avoiding walk
of length from a vertex of the form (k + 1/2,1/2) for some integer 0 < k < n.
The number of such self-avoiding walks is at most no(n — 1). Hence, the upper
bound follows

p(n) <no(n—1).
In the following denote by Cj the set of circuits in the dual containing the origin
of 2. We estimate (we write || for the length of any path/circuit), recalling
that ¢ = 1 — p is the probability of an edge to be closed,

Z P, (7 is closed) = f: Z P, (7 is closed) < iq”a(n - 1)

€€ n=1 y€€g,|v|=n n=1

<D an(gA2) +0(1)" < oo,

if ¢A(2) < 1. Furthermore, Zyeeg P,(visclosed) - 0as g =1—p — 0.
Hence, there exists p € (0,1) such that

1 ~
Z P, (7 is closed) < 5 for p > p.
v€C;
Let M (n) be the number of circuits of Cf having length n. Then
P,(|C] = 00) =P,(M(n) =0 foralln) =1—P,(M(n) > 1 for some n)

1
>1- Z P, (7 is closed) >

-2
v€C]

if we pick p > p. This gives p.(2) < p < 1. We need to improve the estimates
to obtain that p.(2) <1 — X(2)~!. We skip these details and refer to the book
by Grimmett for example. O
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Figure 2: Closed circuit in dual lattice



Proof of Theorem 4.2. The event
{]Ld contains an infinite open cIuster}

does not depend upon the states of any finite collection of edges. Hence, we
know by the Zero-one law (Kolmogorov) that the probability ¥(p) can only take
the values 0 or 1. If 8(p) = 0 then

U(p) < ) Py(IC(2)] = 00) = 0.

x€Z4

If 6(p) > 0 then
Y(p) 2 P,(|C) = 00) > 0,

so that ¥(p) by the zero-one law. O

Another "'macroscopic’ quantity such as #(p) and ¥(p) is the mean (or expected)
size of the open cluster at the origin, x, = E,(|C]).

Xp = 0P, (0] = 00) + Y nPy(|C] = n).
n=1
Clearly, x, = oo if p > p.(d).

4.2 Some basic techniques

4.3 Bond percolation in Z?
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