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Abstract.

We consider the ∇ϕ interface model with weak self potential
(one-body potential) under general Dirichlet boundary conditions on
a large bounded domain and establish the large deviation principle
for the macroscopically scaled interface height variables. As its ap-
plication the law of large numbers is proved and the limit profile is
characterized by a variational problem which was studied by Alt-
Caffarelli [1], Alt-Caffarelli-Friedman [2] and others. The minimizers
generate free boundaries inside the domain. We also discuss the ∇ϕ

interface model with δ-pinning potential in one dimension.

§1. Introduction

Interfaces and variational problems.

It is one of the quite general and fundamental principles in physics
that physically realizable phenomena may be characterized by varia-
tional problems. Such principle is expected to hold in the problem
related to the phase coexistence and separation as well. Indeed, un-
der the situation that two distinct pure phases like crystal/vapor co-
exist in space, hypersurfaces called interfaces are formed and separate
these distinct phases at macroscopic level. The shape of the interface in
equilibrium is assumed to minimize the anisotropic total surface energy.
The corresponding solutions may be obtained by the so-called Wulff con-
struction (see [5], [8] and references therein). The underlying variational
problems change depending on the physical situations of interest.

In statistical mechanics, to derive the shape of the macroscopic inter-
face, one need to determine its total surface energy based on statistical
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ensembles at microscopic level, which are formulated as Gibbs measures.
This procedure can be accomplished by analyzing a proper scaling limit
in the ensembles, which connects microscopic and macroscopic levels.

∇ϕ interface model.

The basic microscopic model we study in this article is the ∇ϕ in-
terface model, which is a continuous analogue of SOS type model. In
this model, the interface is already considered as a microscopic object
and described by height variables φ = {φ(x)}, the vertical distance of
the surface measured from the points x on a fixed reference hyperplane
located in the space (see [18], [19] for example). Assuming interfaces
are formed in d+ 1 dimensional space, the variables φ are defined on a
large bounded domain DN in the d-dimensional square lattice Z

d. Here
DN corresponds to the reference hyperplane which is discretized and
N ∈ Z+ is the scaling parameter representing the ratio of the macro-
scopically typical length to the microscopic one.

Given strictly convex symmetric nearest neighbor interactions V :
R → R and boundary conditions ψ = {ψ(x) ∈ R;x ∈ ∂+DN}, an

interface energy Hψ
N (φ) at microscopic level called Hamiltonian is as-

signed to each interface height variable φ = {φ(x) ∈ R;x ∈ DN} on DN

as a sum of V (φ(x) − φ(y)) taken over all pairs of neighboring sites x
and y in the domain DN . Here DN = DN ∪ ∂+DN is the closure of
DN , ∂+DN = {x /∈ DN ; |x − y| = 1 for some y ∈ DN} is the outer
boundary of DN and φ(x) = ψ(x) for x ∈ ∂+DN in the sum; note
that x /∈ DN means x ∈ Z

d \ DN . We shall take DN = ND ∩ Z
d for

a fixed bounded domain D in R
d having piecewise Lipschitz boundary

∂D, where ND = {Nθ ∈ R
d; θ ∈ D}; D is the macroscopic reference

hyperplane while DN is its microscopic correspondence.

Weak self potentials.

We further assume the space is filled by a media changing in the
distances from DN . Such situation can be realized by adding self po-
tentials (one-body potentials) U : D×R → R to the Hamiltonian which
has therefore the following form:

(1.1) Hψ,U
N (φ) =

∑

x,y∈DN ,|x−y|=1

V (φ(x) − φ(y)) +
∑

x∈DN
U(

x

N
, φ(x)).

The first sum here is over all pairs of neighboring sites. Then the statis-
tical ensemble for the height variables φ is defined by the finite volume
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Gibbs measure on DN

(1.2) µψ,UN (dφ) =
1

Zψ,UN

exp{−Hψ,U
N (φ)}

∏

x∈DN
dφ(x),

where Zψ,UN is a normalization factor; note that µψ,UN ∈ P(RDN ), the
family of all probability measures on R

DN . We shall sometimes regard

µψ,UN ∈ P(RDN ) by considering φ(x) = ψ(x) for x ∈ ∂+DN under µψ,UN .
We consider the case that U is represented as U(θ, r) = Q(θ)W (r), where
the function Q : D → [0,∞) is bounded and the basic assumption onW :
R → R is that the limits α = limr→+∞W (r) and β = limr→−∞W (r)
exist, and the values ofW are always between α and β; see the conditions
(Q1), (W1) and (W2) in Section 2. The self potential U is called weak
since it is bounded. A typical example of W we have in mind throughout
this paper is a function of the form

(1.3) W (r) = β1{r<0} + α1{r≥0}, r ∈ R.

This potential describes the situation that the space is filled by two dif-
ferent media above and below the hyperplaneDN . If β < α, the negative
values are more favorable than the positive ones for the interface height
variables φ under the Gibbs measures. In other words the interface is
weakly attracted to the negative side, namely by the media below the
hyperplane DN .

Scaling limit and large deviations.

The aim of the present paper is to study the macroscopic behav-
ior of the microscopic height variables φ under the Gibbs measures

µψ,UN as N → ∞. The scaling connecting microscopic and macro-
scopic levels is introduced by associating the macroscopic height vari-
ables hN = {hN(θ); θ ∈ D} with φ as step functions (or their polilinear
approximations (2.1)) on D, which satisfy

hN (x/N) = N−1φ(x), x ∈ DN .

Note that both x- and φ-axis are rescaled by the same factor 1/N , since
the interface is located in the d + 1 dimensional space. The boundary
conditions ψ should be simultaneously scaled to have macroscopic limits
g(θ), θ ∈ ∂D, see the conditions (ψ1), (ψ2) in Section 2. We shall

prove that the law of large numbers holds for hN distributed under µψ,UN
as N → ∞ and the limit h = {h(θ); θ ∈ D} is characterized as the
minimizer of the macroscopic total surface energy

(1.4)

∫

D

σ(∇h(θ)) dθ −A

∫

D

Q(θ)1(h(θ) ≤ 0)dθ
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in the class of h having boundary condition g if the minimizer is unique,
see Corollary 2.1. Here σ = σ(u) ∈ R is the so-called surface tension
of the (macroscopic) surface with tilt u ∈ R

d (see (2.3) or [18]) and we
assume A = α − β ≥ 0. When A < 0, the formula (1.4) should be
slightly modified.

We shall actually establish the large deviation principle (LDP) for

hN under µψ,UN , see Theorem 2.1. As its application, one can prove
the law of large numbers. The variational problem characterizing the
limit generates free boundaries inside D. Such variational problem was
thoroughly studied by Alt and Caffarelli [1] for non-negative macroscopic
boundary data g with A > 0 and by Alt, Caffarelli and Friedman [2] for
general g especially when σ is quadratic: σ(u) = |u|2, and by Weiss [26]
for more general σ.

Bibliographical notes.

Our results are related to those obtained by Pfister and Velenik [24].
They considered the two dimensional Ising model at low temperature on
a large box with attractive wall set at the bottom line. This line segment
corresponds to our hyperplane DN , although it has an effect of hard wall
at the same time, since the interfaces separating ±-phases can not go
down beyond the bottom line in their setting. One of the motivations
of [24] was to understand the so-called wetting or pinning/depinning
transition.

The problem of the wetting transition is recently discussed for the
∇ϕ interface model as well by several authors. We shortly summarize
the known results. The potential

(1.5) U(θ, r) = U(r) = −b1{|r|≤a}, r ∈ R

with a, b > 0 is called of square well type and yields a weak pinning
effect to the interface near DN , i.e. the level φ(x) = 0. The limit as
a ↓ 0 keeping s = 2a(eb − 1) constant is called δ-pinning. Dunlop et
al. [16] first proved the localization of the φ-field, namely the uniform

boundedness in N of the expected height variables Eµ
0,U

N [|φ(x)|] under

the Gibbs measures µ0,U
N with 0-boundary conditions or the existence

of infinite volume limit of µ0,U
N as N → ∞, if the Hamiltonian contains

arbitrarily weak pinning potentials U when d = 2 for quadratic V . This
should be compared with the case without pinning (i.e. U ≡ 0) in which
the localization occurs only when d ≥ 3 and also compared with the case
of strong pinning (or massive) potentials satisfying lim|r|→∞ U(r) = +∞
for which the localization occurs for all dimensions. The result of [16]
is extended for general convex potential V by Deuschel and Velenik [15]
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later. In addition to the localization, the mass generation, namely the
exponential decay of the correlations of the φ-field is shown by Ioffe
and Velenik [20] for d = 2 with δ-pinning. Further precise estimates on
the asymptotic behaviors of the mass and the degree of localization by
means of the variances of the field as the pinning effect becomes smaller
were established by Bolthausen and Velenik [9]. The basic assumption
in our paper (W2) on the potential W (r) unfortunately excludes the
potential U of square well type given in (1.5).

When U(r) = +∞ for r < 0, we say that the hard wall is settled
at the level φ(x) = 0 or at DN . The φ-field can take only non-negative
values. To discuss the wetting transition for the ∇ϕ interface model,
the effects of the hard wall and the pinning near 0-level are introduced
at the same time. Fisher [17] proved the existence of the wetting tran-
sition, namely the qualitative change in the localization/delocalization
of the field depending on which of these two competitive effects dom-
inate the other, when d = 1 for the SOS type discrete model. This
result is extended by Caputo and Velenik [10] for d = 2. The precise
path level behavior is discussed by Isozaki and Yoshida [21] when d = 1.
Bolthausen et al. [7] showed that, contrarily when d ≥ 3, no transition
occurs and the field is always localized, i.e. only the phase of partial
wetting appears. Note that the field on a hard wall is delocalized for all
dimensions d if there is no pinning effect, i.e. U ≡ 0 for r ≥ 0. The lat-
ter property is called entropic repulsion. Bolthausen and Ioffe [8] proved
the law of large numbers in the partial wetting phase in 2-dimension
(i.e. d = 2) under the Gibbs measures with 0-boundary conditions, hard
wall, δ-pinning and quadratic V conditioned that the macroscopic total
volume of the interfaces is kept constant. They derived the so-called
Winterbottom shape in the limit and the variational problem charac-
terizing it. The 1-dimensional case with general V was discussed by De
Coninck et al. [11].

Our model only takes a special class of self potentials, in particular
satisfying the condition (W2), into account and neglects the effect of the
hard wall. Since the field can take negative values and the potential U
has no strong singularity like hard wall, the situation becomes mild in
a sense. On the other hand, this makes us possible to discuss the corre-
sponding dynamics without making much effort, which will be discussed
elsewhere; see also [23] for dynamics with general boundary conditions
when U ≡ 0.

Organization of the paper.

In Section 2, the model is introduced in more precise way and the
main results are stated. The proof of the large deviation principle is
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reduced to the case of U ≡ 0 in Section 3, since the potential U can be
treated as a rather simple perturbation. The large deviation principle
for general boundary conditions without the self potential U is proved in
Sections 4 and 5. The case with 0-boundary conditions without U was
discussed by Deuschel et al. [13]. Our main effort is therefore made for
the treatment of the general boundary conditions. By a simple shift the
problem can be reduced to the 0-boundary case, however with bond-
depending interaction potentials. Finally, in Section 6, we prove the
large deviation principle for δ-pinning case when d = 1 and Gaussian
potential.

§2. Model and Results

Model and basic assumptions.

Recall that a bounded domain D in R
d with piecewise Lipschitz

boundary is given and microscopic regions DN , DN and ∂+DN , N ∈ Z+

in Z
d are defined from D. For a configuration φ = {φ(x);x ∈ DN} ∈

R
DN of the random interface onDN and microscopic boundary condition

ψ = {ψ(x);x ∈ ∂+DN} ∈ R
∂+DN , φ ∨ ψ represents that on DN which

coincides with φ on DN and ψ on ∂+DN . For every Λ ⊂ Z
d, Λ∗ denotes

the set of all directed bonds b = 〈x, y〉 in Λ, which are directed from
y to x. We write xb = x, yb = y for b = 〈x, y〉. For each b ∈ (Zd)∗

and φ = {φ(x);x ∈ Z
d}, define ∇φ(b) = φ(xb) − φ(yb). We also define

∇jφ(x) = φ(x + ej) − φ(x), 1 ≤ j ≤ d for x ∈ Z
d where ej ∈ Z

d is the
j-th unit vector. ∇φ(x) = {∇jφ(x)}1≤j≤d denotes vector field of height
differences of φ.

The Hamiltonian on DN with boundary condition ψ is defined by

Hψ
N (φ) =

1

2

∑

b∈DN∗

V (∇(φ ∨ ψ)(b)), φ ∈ R
DN .

Note that this coincides with the first term of (1.1). For the interaction
potential V , we assume the following conditions:

(V1) V ∈ C2(R),
(V2) V (η) = V (−η) for every η ∈ R,
(V3) there exist c−, c+ > 0 such that c− ≤ V ′′(η) ≤ c+ for every η ∈ R.

Next, let U : D×R → R be a self potential which has an effect attracting
the interface φ to the negative or positive side. We consider the case
that U is decomposed as U(θ, r) = Q(θ)W (r), where Q : D → [0,∞),
W : R → R and assume the following conditions:
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(Q1) Q is non-negative, bounded and piecewise continuous,
(W1) W is measurable,
(W2) there exist α, β ∈ R such that limr→+∞W (r) = α, limr→−∞W (r)

= β and α ∧ β ≤W (r) ≤ α ∨ β for every r ∈ R (in particular, W
is bounded).

Then, Hψ,U
N (φ) = Hψ

N (φ)+
∑

x∈DN U( x
N
, φ(x)) is the Hamiltonian (1.1)

on DN with boundary condition ψ and self potential U . The corre-

sponding finite volume Gibbs measure µψ,UN on DN is defined by (1.2).

We shall denote µψ,0N by µψN . In the Gaussian case i.e. V (η) = 1
2η

2 and

U ≡ 0, we shall denote it by µψ,∗N .
For g ∈ C∞(Rd), define H1

g (D) = {h ∈ H1(D);h − g
∣∣
D
∈ H1

0 (D)}.

The function g
∣∣
∂D

will be the macroscopic boundary condition. We as-
sume the following conditions for the corresponding microscopic bound-

ary condition ψ ∈ R
∂+DN .

(ψ1) max
x∈∂+DN

|ψ(x)| ≤ CN ,

(ψ2)
∑

x∈∂+DN

|ψ(x) −Ng( x
N

)|p0 ≤ CNd for some C > 0 and p0 > 2.

Remark 2.1. Since ∂D is piecewise Lipschitz and g
∣∣
D
∈ C∞(D̄),

by Theorem 8.7 and Theorem 8.9 of [27], there exists a continuous linear

trace operator T0 : H1(D) → H
1
2 (∂D) such that T0u = u

∣∣
∂D

for every

u ∈ C∞(D̄) and it holds that H1
g (D) = {h ∈ H1(D);T0h = g

∣∣
∂D

}.

Scaling and polilinear interpolation.

Our scaled random interface {hN(θ); θ ∈ D} is defined by polilinear
interpolation of the macroscopically scaled height variables i.e. hN (θ) =
1
N
φ(x) for θ = x

N
, x ∈ DN and

hN (θ) =
∑

λ∈{0,1}d

[ d∏

i=1

(
λi{Nθi}(2.1)

+ (1 − λi)(1 − {Nθi})
)]
hN

( [Nθ] + λ

N

)
,

for general θ ∈ D, where [·] and {·} denote the integral and the fractional
parts, respectively, see (1.17) of [13]. We also define the scaled profile
{h̄N(θ); θ ∈ D} by step function i.e. h̄N (θ) = 1

N
φ([Nθ]) for θ ∈ D.

Similarly, for each scalar lattice field {u( x
N

);x ∈ DN}, we will define

{uN(θ); θ ∈ D} by uN (θ) = u( x
N

) for θ = x
N

, x ∈ DN and by (2.1) for

general θ ∈ D and {ūN(θ); θ ∈ D} by ūN (θ) = u( [Nθ]
N

) for θ ∈ D. Also,
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given a continuous function f(θ) of θ ∈ D, we will define {fN(θ); θ ∈ D}
and {f̄N(θ); θ ∈ D} from scalar lattice field {f( x

N
);x ∈ DN} as above.

Using Jensen’s inequality and elementary estimates, we can see that for
each p > 1, there exists a constant C0 = C0(d, p) > 0 such that

(2.2) C0‖ū
N‖Lp(D) ≤ ‖uN‖Lp(D) ≤ ‖ūN‖Lp(D),

for every scalar lattice field {u( x
N

);x ∈ DN}.

LDP in the case with weak self potentials.

Now we are in the position to state the main result of this paper.
The (normalized) surface tension with tilt u ∈ R

d is defined by

(2.3) σ(u) = − lim
N→∞

1

Nd
log

ZψuΛN

Z0
ΛN

,

where ZψΛN is a partition function for µψΛN (= µψ,0ΛN
) on ΛN = [1, N−1]d∩

Z
d and ψu(x) = u ·x, x ∈ ΛN represents the u-tilted boundary condition

(cf. [13], [18]). For h ∈ H1(D), define surface free energy (integrated
surface tension)

Σ(h) =

∫

D

σ(∇h(θ))dθ.

Theorem 2.1. The family of random surfaces {hN (θ); θ ∈ D}

distributed under µψ,UN satisfies the large deviation principle (LDP) on
L

2(D) with speed Nd and the rate functional IU (h), that is, for every
closed set C and open set O of L

2(D) we have that

lim sup
N→∞

1

Nd
logµψ,UN (hN ∈ C) ≤ − inf

h∈C
IU (h),(2.4)

lim inf
N→∞

1

Nd
logµψ,UN (hN ∈ O) ≥ − inf

h∈O
IU (h).(2.5)

The functional IU (h) is given by

IU (h) =





ΣU (h) − inf
H1
g (D)

ΣU if h ∈ H1
g (D),

+∞ otherwise,

where inf
H1
g (D)

ΣU = inf{ΣU (h);h ∈ H1
g (D)} and

ΣU (h) = Σ(h)+α

∫

D

Q(θ)1(h(θ) > 0)dθ + β

∫

D

Q(θ)1(h(θ) < 0)dθ

+ (α ∧ β)

∫

D

Q(θ)1(h(θ) = 0)dθ.
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Remark 2.2. By the proof of Theorem 2.1 (see (3.8) below), if U is
given by U(θ, r) = QW (r) for some constant Q ≥ 0 and W (r) satisfies
the condition (W2) with (α, β) = (0,−A) or (−A, 0) for some A ≥ 0 so
that −A ≤W (r) ≤ 0 for every r ∈ R, then it holds that

(2.6) −AQ = − lim
N→∞

1

Nd
log

Z0,U
ΛN

Z0
ΛN

,

where the right hand side represents the difference of the free energies
of the interface in the case with self potential and in the case without
self potential. In this sense, ΣU (h) above represents macroscopic total
surface energy of the profile h; see also Remark 3.1 below.

As a corollary of the upper bound (2.4) in Theorem 2.1, we obtain

the following law of large numbers for {hN (θ); θ ∈ D} under µψ,UN .

Corollary 2.1. If ΣU has a unique minimizer h̄ in H1
g (D), then

the law of large numbers holds under µψ,UN , namely,

lim
N→∞

µψ,UN (‖hN − h̄‖L2(D) > δ) = 0,

for every δ > 0.

Remark 2.3. (Free boundary problems) If σ = σ(u) is smooth
enough (i.e. σ ∈ C2,γ(Rd), γ > 0) and if the free boundary ∂{h >
0} of the minimizer h of ΣU is locally C2, then h satisfies the Eu-
ler equation div {∇σ(∇h)} = 0 in D \ ∂{h > 0} and the condition
Ψ(∇h+) − Ψ(∇h−) = AQ on the free boundary D ∩ ∂{h > 0}, where
Ψ(u) = u · ∇σ(u)− σ(u) and A = (α ∨ β)− (α ∧ β). The Lipschitz con-
tinuity of the minimizer h and the regularity of its free boundary were
studied by [1], [2], [26] and others. In our case, for the regularity of the
surface tension, σ ∈ C1,1(Rd) is only known in general, see [18].

LDP for δ-pinning in one dimension.

The Gibbs measure with δ-pinning corresponds to the weak limit

of the square-well pinning measure µψ,WN with W (r) = −b1{|r|≤a} as

a ↓ 0, b→ ∞ by keeping 2a(eb−1) = eJ for J ∈ R and has the following
representation:

µψ,JN (dφ) =
1

Zψ,JN

exp{−Hψ
N(φ)}

∏

x∈DN
(eJδ0(dφ(x)) + dφ(x)).

We regard µψ,JN ∈ P(RDN ) by considering φ(x) = ψ(x) for x ∈ ∂+DN

as before.
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We study the large deviation principle for {hN(θ); θ ∈ D} under

µψ,JN when d = 1 and with Gaussian potential i.e. V (η) = 1
2η

2. Let D =
(0, 1), DN = [1, N − 1]∩Z and take the boundary condition ψ(0) = aN

and ψ(N) = bN, a, b ∈ R. We shall denote µψ,JN , Zψ,JN , µψN and ZψN as

µa,b,JN , Za,b,JN , µa,bN and Za,bN , respectively. Define

Wa,b(D) = {h ∈ C([0, 1]; R);h(0) = a, h(1) = b},

H1
a,b(D) = {h ∈Wa,b(D);h is absolutely continuous and h′ ∈ L

2(D)}.

The space Wa,b(D) is endowed with the topology determined by the
sup-norm ‖ · ‖∞. Then, we have the following LDP.

Theorem 2.2. Assume that d = 1 and V (η) = 1
2η

2. Then the

family of random surfaces {hN (θ); θ ∈ D} distributed under µa,b,JN sat-
isfies the large deviation principle on Wa,b(D) (i.e. the upper and lower
bounds for closed and open subsets of Wa,b(D), respectively) with speed
N and the rate functional given by

IJ (h) =





ΣJ(h) − inf
H1
a,b

(D)
ΣJ if h ∈ H1

a,b(D),

+∞ otherwise,

where

ΣJ(h) =
1

2

∫ 1

0

(h′)2(θ)dθ + τ(J)|{θ ∈ D;h(θ) = 0}|,

and

(2.7) τ(J) = − lim
N→∞

1

N
log

Z0,0,J
N

Z0,0
N

,

note that | · | stands for the Lebesgue measure.

Remark 2.4. The function τ(J) is the so-called pinning free energy.
By the proof of Theorem 2.2 and Remark 6.1 below, one can see that the
limit exists and τ(J) < 0 for every J ∈ R.

§3. Proof of Theorem 2.1: LDP with Self Potentials

LDP without self potentials.

This section reduces the proof of Theorem 2.1 to the LDP for µψN (=

µψ,0N ), i.e. the Gibbs measure without self potential. The case where the
boundary condition ψ ≡ 0 was studied in [13].
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Proposition 3.1. The family of random surfaces {hN(θ); θ ∈ D}

distributed under µψN satisfies the large deviation principle on L
2(D) with

speed Nd and the rate functional given by

I(h) =





Σ(h) − inf
H1
g (D)

Σ if h ∈ H1
g (D),

+∞ otherwise.

Treatment of boundary conditions.

One of the key observations for the proof of Proposition 3.1 is the
following trivial identity:

(3.1) ∇(φ ∨ ψ)(b) = ∇((φ − ξ) ∨ 0)(b) + ∇(ξ ∨ ψ)(b),

for every ξ = {ξ(x);x ∈ DN} and b ∈ DN
∗
. Now take ξ as ξ(x) =

Ng( x
N

) for x ∈ DN (and for x ∈ DN ; recall g ∈ C∞(Rd)) and define

H̃ψ
N (φ) =

1

2

∑

b∈DN∗

V (∇(φ ∨ 0)(b) + ∇(ξ ∨ ψ)(b)).

Consider the finite volume Gibbs measure with Hamiltonian H̃ψ
N (φ) and

0-boundary condition:

µ̃ψN (dφ) =
1

Z̃ψN
exp{−H̃ψ

N(φ)}
∏

x∈DN
dφ(x).

Then the following LDP holds for µ̃ψN .

Proposition 3.2. The family of random surfaces {hN(θ); θ ∈ D}

distributed under µ̃ψN satisfies the large deviation principle on L
2(D) with

speed Nd and the rate functional given by

Ĩ(h) =





Σ̃(h) − inf
H1

0 (D)
Σ̃ if h ∈ H1

0 (D),

+∞ otherwise,

where

Σ̃(h) =

∫

D

σ(∇h(θ) + ∇g(θ))dθ.

We shall prove this proposition in Sections 4 and 5.
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Proof of Proposition 3.1. Consider the continuous map Φg : L
2(D)

→ L
2(D) given by Φg(h) = h+ g. It is easy to see that

I(h) = inf{Ĩ(h̃); h̃ ∈ L
2(D),Φg(h̃) = h}.

Then by definitions of µψN , µ̃ψN and (3.1), Proposition 3.1 follows from
the contraction principle (cf. [25], [14] and [12, Theorem 4.2.1]) and
Proposition 3.2. Q.E.D.

Deduction of Theorem 2.1 from Proposition 3.1.

We shall prove Theorem 2.1 assuming that Proposition 3.2 and
therefore Proposition 3.1 are shown. We only consider the case where
α ≥ β. The case where α ≤ β can be proved completely in an analogous
manner or by turning the interfaces upside down by the map φ 7→ −φ
and ψ 7→ −ψ. The pinning potential U(θ, r) = Q(θ)W (r) which sat-
isfies the conditions (W1) and (W2) with α ≥ β can be rewritten as

U(θ, r) = Q(θ)α+Q(θ)W̃ (r) and W̃ (r) satisfies conditions (W1) and

(W2)′ there exists A ≥ 0 such that limr→+∞W (r) = 0, limr→−∞W (r)
= −A and −A ≤W (r) ≤ 0 for every r ∈ R,

with A = α − β. Since the contribution of the first term Q(θ)α in

exp{−Hψ,U
N (φ)} of µψ,UN cancels with the normalization factor, we only

have to consider the case thatW satisfies the conditions (W1) and (W2)
′
.

The following lemma allows us to replace the self potential part
of the Hamiltonian by the integration of −AQ on the domain where
g ∈ L

2(D) is non-positive when the macroscopically scaled profile hN

is close enough to g. Note that g here represents a general function in
L

2(D) and not the macroscopic boundary condition.

Lemma 3.1. Assume the conditions (Q1), (W1) and (W2)
′

on
U(θ, r) = Q(θ)W (r). Let g ∈ L

2(D) and 0 < δ < 1 be fixed. If
hN ∈ B2(g, δ) = {h ∈ L

2(D); ‖h − g‖L2(D) < δ} for N large enough,
then there exists some constant C > 0 such that

∑

x∈DN
U(

x

N
, φ(x)) +NdA

∫

D

Q(θ)1(g(θ) ≤ −δ
1
2 )dθ ≤ CNdδ,

for every N large enough.

Proof. There exists an approximating sequence {gk}k≥1 ⊂ C(D) of
g ∈ L

2(D) such that ‖gk − g‖L2(D) → 0 as k → ∞. Recall that one can
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define gNk (polilinear functions) and ḡNk (step functions) for gk ∈ C(D).
Now, by (2.2), it holds that

‖h̄N − g‖L2(D) ≤ C‖hN − g‖L2(D) + aN,k,

for every k ≥ 1, where

aN,k = (C + 1)‖g − gk‖L2(D) + C‖gk − gNk ‖L2(D) + ‖gk − ḡNk ‖L2(D),

which goes to 0 as N → ∞ and k → ∞. Hence,

(3.2) ‖h̄N − g‖L2(D) < Cδ + aN,k,

if hN ∈ B2(g, δ). The positive constants C in the estimates may change
from line to line in the paper.

Now, for γ > 0, we rewrite

∑

x∈DN
U(

x

N
, φ(x)) +NdA

∫

D

Q(θ)1(g(θ) ≤ −γ)dθ

= Nd

∫

D

(
W (Nh̄N(θ)) +A1(g(θ) ≤ −γ)

)
Q(θ)dθ

+
{ ∑

x∈DN
Q(

x

N
)W (Nh̄N (

x

N
)) −Nd

∫

D

W (Nh̄N (θ))Q(θ)dθ
}

≡ S1 + S2.

For S1, we divide the integration on D into the sum of those on three
domains {g > −γ}(≡ {θ ∈ D; g(θ) > −γ}), {g ≤ −γ} ∩ CcN,γ and

{g ≤ −γ}∩CN,γ, where CN,γ = {|h̄N −g| < γ/2} and CcN,γ = D \CN,γ.

The integration on {g > −γ} is non-positive, because Q ≥ 0, W ≤ 0
and A1(g(θ) ≤ −γ) = 0 on this domain. Next, since (3.2) implies
|CcN,γ | <

4
γ2 (Cδ + aN,k)

2, we obtain

∫

{g≤−γ}∩Cc
N,γ

∣∣W (Nh̄N (θ)) +A1(g(θ) ≤ 0)
∣∣ dθ ≤ K

γ2
(Cδ + aN,k)

2,

where K = 4(‖W‖∞ + A). On {g ≤ −γ} ∩ CN,γ , we have h̄N (θ) <

−γ/2. By this fact and the assumption (W2)
′
,
∣∣W (Nh̄N (θ))+A1(g(θ) ≤

−γ)
∣∣≤ δ holds for N large enough and we see that

∫

{g≤−γ}∩CN,γ

∣∣W (Nh̄N (θ)) +A1(g(θ) ≤ −γ)
∣∣ dθ ≤ δ|D|.
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Therefore, we obtain

S1 ≤ Nd‖Q‖∞
(K
γ2

(Cδ + aN,k)
2 + δ|D|

)
,

for N large enough, every k ≥ 1 and γ > 0. For S2, we have

|S2| ≤ Nd‖W‖∞

∫

D

∣∣Q(
[Nθ]

N
) −Q(θ)

∣∣ dθ +O(Nd−1),

where O(Nd−1) is the boundary term. Finally, taking γ = δ
1
2 and N, k

large enough, we complete the proof. Q.E.D.

Under the condition (W2)
′
, the rate functional ΣU (h) has the form

(3.3) ΣU (h) = Σ(h) −A

∫

D

Q(θ)1(h(θ) ≤ 0)dθ,

which coincides with (1.4), and enjoys the following properties.

Lemma 3.2. (1) The functional ΣU (h) is lower semi-continuous
on L

2(D).
(2) Let ΣU−(h) be the functional defined by (3.3) with 1(h(θ) ≤ 0) replaced

by 1(h(θ) < 0). Then, for every open set O of L
2(D), we have that

inf
h∈O

ΣU (h) = inf
h∈O

ΣU−(h).

Proof. (1) Decomposing D into two domains Cγ = {|h − g| < γ}
and Ccγ , in a similar way to the proof of Lemma 3.1, one can prove that

∫

D

Q(θ)1(h(θ) ≤ 0)dθ ≤

∫

D

Q(θ)1(g(θ) ≤ γ)dθ + ‖Q‖∞
δ2

γ2
,

for every γ > 0 if h ∈ B2(g, δ). By this inequality and the property
(strict convexity) of the surface tension (cf. [13, Lemma 3.6]):

(3.4)
1

2
c−|v − u|2 ≤ σ(v) − σ(u) − (v − u) · (∇σ)(u) ≤

1

2
c+|v − u|2,

for every u, v ∈ R
d, it is easy to see the lower semi-continuity of ΣU (h)

on L
2(D).

(2) Since ΣU (h) ≤ ΣU−(h) is obvious for every h ∈ L
2(D), the conclusion

follows once we can show that

(3.5) inf
h∈O

ΣU (h) ≥ inf
h∈O

ΣU−(h).
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To this end, for every ε > 0, take h ∈ O such that ΣU (h) ≤ infO ΣU + ε.
We approximate such h by a sequence {hn}n≥1 defined by hn(θ) =
h(θ) − fn(θ), where fn ∈ C∞

0 (D) are functions such that fn(θ) ≡ 1
n

on Dn = {θ ∈ D; dist (θ, ∂D) ≥ 1
n
} and |∇fn(θ)| ≤ C with C > 0.

Note that hn satisfy the same boundary condition as h. Then, since
limn→∞ Σ(hn) = Σ(h) (recall h ∈ H1

g (D)) and

−A

∫

D

Q(θ)1(hn(θ) < 0)dθ ≤ −A

∫

Dn

Q(θ)1(h(θ) <
1

n
)dθ

≤ −A

∫

D

Q(θ)1(h(θ) ≤ 0)dθ +A‖Q‖∞|D \Dn|,

we obtain lim supn→∞ ΣU−(hn) ≤ ΣU (h). However, O is an open set of
L

2(D), so that hn ∈ O for n large enough and thus (3.5) is shown.
Q.E.D.

Proof of Theorem 2.1. Step1 (lower bound). Let g ∈ L
2(D) and

δ > 0. Then, by Lemma 3.1 and the LDP lower bound for µψN (Propo-
sition 3.1), we have

lim inf
N→∞

1

Nd
log

Zψ,UN

ZψN
µψ,UN (hN ∈ B2(g, δ))

≥ − inf
h∈B2(g,δ)

I(h) +A

∫

D

Q(θ)1(g(θ) ≤ −δ
1
2 )dθ − Cδ

≥ −
{
I(g) −A

∫

D

Q(θ)1(g(θ) ≤ −δ
1
2 )dθ

}
− Cδ.

Take now an arbitrary open set O of L
2(D). Then,

lim inf
N→∞

1

Nd
log

Zψ,UN

ZψN
µψ,UN (hN ∈ O)

≥ −
{
I(h) −A

∫

D

Q(θ)1(h(θ) ≤ −δ
1
2 )dθ

}
− Cδ.

for every h ∈ O and δ > 0 such that B2(h, δ) ⊂ O. Letting δ ↓ 0, since
h ∈ O is arbitrary, we have

lim inf
N→∞

1

Nd
log

Zψ,UN

ZψN
µψ,UN (hN ∈ O)(3.6)

≥ − inf
h∈O

{
I(h) −A

∫

D

Q(θ)1(h(θ) < 0)dθ
}
.
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However, by Lemma 3.2-(2), one can replace 1(h(θ) < 0) with 1(h(θ) ≤
0) in the right hand side of (3.6).
Step2 (upper bound). Let g ∈ L

2(D) and δ > 0 be fixed. We define

L+
N = N{θ ∈ D; g(θ) > δ

1
2 } ∩ Z

d,

L−
N = N{θ ∈ D; g(θ) < −δ

1
2 } ∩ Z

d,

IN = N{θ ∈ D; |g(θ)| ≤ δ
1
2 } ∩ Z

d.

By the assumption (W2)
′
on W , for every ε > 0 there existsK = Kε > 0

such that W (r) ≥ −(A − ε)1{r≤K} − ε for every r ∈ R. Therefore, we
have

exp
{
−

∑

x∈DN
U(

x

N
, φ(x))

}

≤ exp
{
(A− ε)

∑

x∈DN
Q(

x

N
)1(φ(x) ≤ K) + ε

∑

x∈DN
Q(

x

N
)
}

= exp
{
ε

∑

x∈DN
Q(

x

N
)
} ∑

Λ⊂DN

∏

x∈Λ

(
e(A−ε)Q( x

N
) − 1

)
1(φ(x) ≤ K).

Now, if φ(x) ≤ K for x ∈ L+
N , then 1

N
φ(x) − g( x

N
) < − 1

2δ
1
2 for N large

enough. Thus, if φ(x) ≤ K for every x ∈ Λ ⊂ L+
N on {hN ∈ B2(g, δ)},

since ‖h̄N − ḡN‖L2(D) <
1
C0

(δ + ‖g − gN‖L2(D)), we have for N large
enough

2δ2

C0
>

1

Nd

∑

x∈DN
(

1

N
φ(x) − g(

x

N
))2 >

|Λ|δ

4Nd
,

namely, |Λ| < 8C−1
0 δNd, where C0 > 0 is the constant appeared in (2.2).

Combining these facts

exp
{
−ε

∑

x∈DN
Q(

x

N
)
}Zψ,UN

ZψN
µψ,UN (hN ∈ B2(g, δ))

≤
∑

Λ⊂L+

N

|Λ|<8C−1
0 δNd

∏

x∈Λ

(
e(A−ε)Q( x

N
) − 1

) ∑

Λ′⊂IN∪L−
N

∏

x∈Λ′

(
e(A−ε)Q( x

N
) − 1

)

×
1

ZψN

∫
1(hN ∈ B2(g, δ))1(φ(x) ≤ K for every x ∈ Λ ∪ Λ′)

× exp
{
−Hψ

N(φ)
} ∏

x∈DN
dφ(x)

≤
(
e(A−ε)‖Q‖∞ − 1

)8C−1
0 δNd ∣∣{Λ ⊂ L+

N ; |Λ| < 8C−1
0 δNd}

∣∣
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× exp
{
(A− ε)

∑

x∈IN∪L−
N

Q(
x

N
)
}
µψN (hN ∈ B2(g, δ)).

By using Stirling’s formula, we see that

∣∣{Λ ⊂ L+
N ; |Λ| < 8C−1

0 δNd}
∣∣ ≤ (CNd)8C

−1
0 δNd

(8C−1
0 δNd)!

≤
C

δ
Nd(

C

δ
)CδN

d

(1 + o(1))

as N → ∞, for some constant C > 0 independent of N and δ. Hence, by

the LDP upper bound for the measure µψN (Proposition 3.1), we obtain

lim sup
N→∞

1

Nd
log

Zψ,UN

ZψN
µψ,UN (hN ∈ B2(g, δ))

≤ (A− ε)

∫

D

Q(θ)1(g(θ) ≤ δ
1
2 )dθ

− inf
h∈B̄2(g,δ)

I(h) + C(δ) + ε

∫

D

Q(θ)dθ,

where C(δ) is a constant independent ofN and goes to 0 as δ → 0. Then,
by using the lower semi-continuity of I(h) and the right-continuity of∫
D
Q(θ)1(g(θ) ≤ δ

1
2 )dθ in δ, we see that for every g ∈ L

2(D) and ε > 0,
there exists δ > 0 small enough such that

lim sup
N→∞

1

Nd
log

Zψ,UN

ZψN
µψ,UN (hN ∈ B2(g, δ))

≤ −
{
I(g) −A

∫

D

Q(θ)1(g(θ) ≤ 0)dθ
}

+ ε.

Therefore, the standard argument in the theory of LDP yields

lim sup
N→∞

1

Nd
log

Zψ,UN

ZψN
µψ,UN (hN ∈ C)(3.7)

≤ − inf
h∈C

{
I(h) −A

∫

D

Q(θ)1(h(θ) ≤ 0)dθ
}
,

for every compact set C of L
2(D). Since U is bounded, exponential

tightness for µψ,UN can be proved in a similar way to those for µψN which
will be proved in Section 4 (see Remark 4.1 below). Thus, (3.7) holds
for every closed set C of L

2(D).



188 T. Funaki and H. Sakagawa

Finally, taking O = C = L
2(D) in (3.6) (recall the remark subse-

quent to the estimate) and (3.7), we see that

(3.8) lim
N→∞

1

Nd
log

Zψ,UN

ZψN
= − inf

H1
g (D)

ΣU + inf
H1
g (D)

Σ,

and this concludes the proof. Q.E.D.

Remark 3.1. As we mentioned in Remark 2.2, if U is given by
U(θ, r) = QW (r) for some constant Q ≥ 0 and W (r) (or W (−r)) satis-
fying the condition (W2)

′
, then (3.8) with DN = ΛN yields the difference

of the free energies of the interface in the case with and without self po-
tentials, see (2.6). This can also be proved in the following way under

the condition (W2)
′
: for every ε ∈ (0, A) there exists K = Kε > 0 such

that W (r) ≤ −(A− ε)1{r≤−K} for every r ∈ R. Therefore, we have

Z0,U
ΛN

Z0
ΛN

= Eµ
0
ΛN

[
exp

{
−Q

∑

x∈ΛN

W (φ(x))
}]

≥ Eµ
0
ΛN

[
exp

{
(A− ε)Q

∑

x∈ΛN,ε

1(φ(x) ≤ −K)
}]

= Eµ
0
ΛN

[ ∑

Γ⊂ΛN,ε

(e(A−ε)Q − 1)|Γ|1(φ(x) ≤ −K for every x ∈ Γ)
]

≥ e(A−ε)Q|ΛN,ε|µ0
ΛN (φ(x) ≤ −K for every x ∈ ΛN,ε),

where ΛN,ε = {x ∈ ΛN ; dist(x,ΛcN ) ≥ εN}. However, [6, Proposition
2.1] shows that the probability in the last line is bounded below by

exp
{
−CNd−2 logN(1 + o(1))

}
,

as N → ∞ for some constant C > 0 independent of N . This implies

lim inf
N→∞

1

Nd
log

Z0,U
ΛN

Z0
ΛN

≥ AQ.

The opposite inequality is obvious, since W (r) ≥ −A.

§4. Proof of Proposition 3.2: LDP without Self Potentials

Convergence of average profiles.

In this section, the proof of Proposition 3.2 will be given assuming
the convergence of average profiles (Lemma 4.1). We shall follow the
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strategy of [13]. The only difference is that the Dirichlet boundary data
g
∣∣
∂D

is given from g ∈ C∞(Rd) in our case, while [13] treated the case
of g ≡ 0. For f ∈ C∞

0 (D), set

Hψ
N,f (φ) = Hψ

N (φ) −
1

N

∑

x∈DN
f(
x

N
)φ(x),

H̃ψ
N,f (φ) = H̃ψ

N (φ) −
1

N

∑

x∈DN
f(
x

N
)φ(x),

and consider the following two Gibbs probability measures:

µψN,f (dφ) =
1

ZψN,f
exp{−Hψ

N,f(φ)}
∏

x∈DN
dφ(x),

µ̃ψN,f (dφ) =
1

Z̃ψN,f
exp{−H̃ψ

N,f(φ)}
∏

x∈DN
dφ(x),

having the different boundary conditions φ(x) = ψ(x) and φ(x) = 0 for
x ∈ ∂+DN , respectively; recall that ψ and g satisfy the conditions (ψ1),
(ψ2). We write the averages of the profile hN defined by (2.1) under

µψN,f and µ̃ψN,f as h̄ψN,f (θ) = Eµ
ψ

N,f [hN (θ)] and h̃ψN,f (θ) = Eµ̃
ψ

N,f [hN(θ)],

respectively. For f ∈ L
2(D), hf denotes the unique weak solution h =

h(θ) in H1
0 (D) of the following elliptic partial differential equation:

div{(∇σ)(∇h(θ) + ∇g(θ))} = −f(θ), θ ∈ D.

The crucial step in the proof of Proposition 3.2 is the following lemma.

Lemma 4.1.

h̃ψN,f → hf in H1
0 (D) as N → ∞.

We shall prove this lemma in Section 5. Next, define

ΞψN,f ≡
Z̃ψN,f

Z̃ψN
= Eµ̃

ψ
N

[
exp

{ 1

N

∑

x∈DN
f(
x

N
)φ(x)

}]
.

Then, in a similar way to the proof of Theorem 1.1 of [13] , by calculating

the functional derivative of Σ̃(h) and using the differentiation-integration

trick (i.e. computing d
dt

log Z̃ψN,tf and integrating it in t ∈ [0, 1]), Lemma
4.1 yields the following lemma. The proof is omitted.
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Lemma 4.2. The limit Λ(f) ≡ lim
N→∞

1
Nd

log ΞψN,f exists and it holds

that

Λ(f) =

∫

D

∫ 1

0

htf (θ)f(θ)dtdθ,

= sup
h∈H1

0 (D)

{〈h, f〉 − Σ̃(h)} + inf
H1

0 (D)
Σ̃,

= 〈hf , f〉 − Σ̃(hf ) + inf
H1

0 (D)
Σ̃,

where 〈h, f〉 =
∫
D
h(θ)f(θ)dθ.

Exponential tightness.

For the proof of the LDP upper bound in Proposition 3.2, we prepare
the following lemma.

Lemma 4.3. There exists ε > 0 such that

sup
N≥1

1

Nd
logEµ̃

ψ

N,f

[
exp

{
ε

∑

x∈DN

(
|hN

( x
N

)
|2 + |∇NhN

( x
N

)
|2

)}]
<∞,

where for a scalar lattice field {u( x
N

);x ∈ DN}, ∇Nu( x
N

) =

{∇N
j u(

x
N

)}1≤j≤d denotes a discrete gradient of u defined by ∇N
j u(

x
N

) =

N{u(
x+ej
N

) − u( x
N

)}, 1 ≤ j ≤ d.

Proof. Since D is bounded, by discrete Poincaré’s inequality and
the definition of hN , we only have to prove that there exists ε > 0 such
that

(4.1) sup
N≥1

1

Nd
logEµ̃

ψ

N,f

[
exp

{
ε

∑

b∈DN∗

|∇φ(b)|2
}]

<∞.

However, this is shown by a simple direct computation. Indeed, by the
strict convexity of V , it is easy to see that

1

2
c−H

0,∗
N (φ) −

1

4
c−

∑

b∈DN∗

(
∇(ξ ∨ ψ)(b)

)2

≤ H̃ψ
N (φ) ≤ 2c+H

0,∗
N (φ) +

1

2
c+

∑

b∈DN∗

(
∇(ξ ∨ ψ)(b)

)2
,
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where H0,∗
N (φ) = 1

4

∑
b∈DN∗

(
∇(φ ∨ 0)(b)

)2
. Therefore, the expectation in

(4.1) is bounded above by

exp
{(c−

4
+
c+
2

) ∑

b∈DN∗

|∇(ξ ∨ ψ)(b)|2
}

×

∫
exp

{(
4ε− c−

2

)
H0,∗
N (φ) + 1

N

∑
x∈DN

f( x
N

)φ(x)
} ∏
x∈DN

dφ(x)

∫
exp

{
−2c+H

0,∗
N (φ) + 1

N

∑
x∈DN

f( x
N

)φ(x)
} ∏
x∈DN

dφ(x)
.

A simple Gaussian calculation yields
∫

exp
{
−αH0,∗

N (φ) +
1

N

∑

x∈DN
f(
x

N
)φ(x)

} ∏

x∈DN
dφ(x)

=
(2π

α

) |DN |

2
√

det(−∆DN ) exp
{ 1

2αN2
VN,f

}
,

for every α > 0, where ∆DN is a discrete Laplacian on DN with 0-
boundary condition,

VN,f =
(
f
( ·

N

)
, (−∆DN )−1f

( ·

N

))
DN

= Varµ0,∗
N

( ∑

x∈DN
f
( x
N

)
φ(x)

)
,

and ( · , · )DN denotes l2(DN )-scalar product. Therefore, for every
0 < ε < 1

8c−, we obtain

logEµ̃
ψ

N,f

[
exp

{
ε

∑

b∈DN∗

|∇φ(b)|2
}]

≤ C|DN | + C
1

N2
VN,f + C

∑

b∈DN∗

|∇(ξ ∨ ψ)(b)|2,

for some C = Cε > 0 independent of N . However, VN,f = O(Nd+2)
(cf. [13, Lemma 2.8]) and

∑

b∈DN∗

|∇(ξ ∨ ψ)(b)|2

≤ 2
∑

b∈DN∗

|∇ξ(b)|2 + 2
∑

x∈∂+DN

|ξ(x) − ψ(x)|2 = O(Nd),

as N → ∞ by recalling the assumption on ψ and that ξ(x) = Ng( x
N

) for

x ∈ DN with g
∣∣
D
∈ C∞(D̄). This concludes the proof of (4.1). Q.E.D.
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Proof of Proposition 3.2.

Proof of Proposition 3.2; upper bound. For every f ∈ C∞
0 (D) and

measurable set E of L
2(D), Chebyshev’s inequality shows

(4.2) µ̃ψN (hN ∈ E) ≤ exp
{
−Nd inf

h∈E
〈h, f〉

}
Eµ̃

ψ
N

[
exp

{
Nd〈hN , f〉

}]
.

Noting that

Nd〈hN , f〉 ≤
1

N

∑

x∈DN

f(
x

N
)φ(x) +

1

N2
‖∇f‖∞

∑

x∈DN

|φ(x)|,

and using Hölder’s inequality, the expectation in the right hand side of
(4.2) is bounded above by

Eµ̃
ψ

N

[
exp

{ p

N

∑

x∈DN

f(
x

N
)φ(x)

}] 1
p

Eµ̃
ψ

N

[
exp

{ q

N2
‖∇f‖∞

∑

x∈DN

|φ(x)|
}] 1

q

≡ IN1 × IN2 ,

for p, q > 1 satisfying 1
p

+ 1
q

= 1. However, Lemmas 4.2 and 4.3 imply

lim
N→∞

1

Nd
log IN1 =

1

p
Λ(pf),

and

lim sup
N→∞

1

Nd
log IN2 ≤ 0,

respectively. Hence, we have

lim sup
N→∞

1

Nd
log µ̃ψN (hN ∈ E) ≤ − inf

h∈E
〈h, f〉 +

1

p
Λ(pf).

Now, by (3.4), we can prove the continuity of hf in H1
0 (D) with respect

to f ∈ L
2(D) (cf. [13, Section 3.5]). Therefore, by taking the limit p ↓ 1

and infimum with respect to f ∈ C∞
0 (D), we obtain

lim sup
N→∞

1

Nd
log µ̃ψN (hN ∈ E) ≤ − sup

f∈C∞
0 (D)

inf
h∈E

{
〈h, f〉 − Λ(f)

}
.

Then by using Lemma 4.2, mini-max theorem (cf. [22, Appendix 2
Lemma 3.2]) and duality lemma (cf. [12, Lemma 4.5.8]), the standard
argument yields the LDP upper bound for every compact set of L

2(D).
This can be generalized for every closed set, since the exponential tight-

ness of µ̃ψN,f follows from Lemma 4.3. Q.E.D.
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Remark 4.1. Since the potential U is bounded, by recalling (3.1)
and the assumption on ψ, we see that the estimate in Lemma 4.3 holds

for µψ,UN in place of µ̃ψN,f for some ε0 > 0, which might be smaller than
that in Lemma 4.3. In particular, the exponential tightness holds for

µψ,UN .

Proof of Proposition 3.2; lower bound. By Lemmas 4.1 and 4.2, it
is easy to see that

lim
N→∞

1

Nd
H(µ̃ψN,f |µ̃

ψ
N ) = Ĩ(hf ),

where H(µ̃ψN,f |µ̃
ψ
N ) = Eµ̃

ψ

N,f

[
log

dµ̃
ψ

N,f

dµ̃
ψ

N

]
is the relative entropy of µ̃ψN,f

with respect to µ̃ψN ; see (5.4) in [13]. On the other hand, by Lemma
4.1, Brascamp-Lieb inequality (cf. [13, Lemma 2.8]) and the definition

of h̃ψN,f , one can prove that lim
N→∞

Eµ̃
ψ

N,f [‖hN − hf‖
2
L2(D)] = 0 (cf. (1.39)

in [13]), and this implies lim
N→∞

µ̃ψN,f (h
N ∈ O) = 1 for every open set

O ⊂ L
2(D) satisfying hf ∈ O. Combining these two facts with the

entropy inequality (cf. [14, Lemma 5.4.21]), we obtain

lim inf
N→∞

1

Nd
log µ̃ψN (hN ∈ O) ≥ − inf

f∈C∞
0 (D)

s.t. hf∈O

Ĩ(hf ).

However, we can prove by (3.4) that if hfn → h in H1
0 (D) as n → ∞

for {fn} ⊂ C∞
0 (D) then Ĩ(hfn) → Ĩ(h) as n → ∞. This fact and

the continuity of hf in H1
0 (D) with respect to f ∈ L

2(D) yield that

inf
f∈C∞

0 (D)
s.t. hf∈O

Ĩ(hf ) = inf
h∈O

Ĩ(h) for every open set O ⊂ L
2(D), which com-

pletes the proof of the LDP lower bound. Q.E.D.

§5. Proof of Lemma 4.1: Convergence of Average Profiles

Reduction to two lemmas (Lemmas 5.2 and 5.3).

In this section we shall prove Lemma 4.1. The following lemma
follows from (3.4) (cf. [13, Lemma 3.7]).

Lemma 5.1. Let {hn}n≥1 be a sequence of H1
0 (D) and define Σ̃f (h)

= Σ̃(h) − 〈h, f〉. If lim
n→∞

Σ̃f (hn) = inf
H1

0 (D)
Σ̃f , then hn → hf in H1

0 (D)

as n→ ∞.
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Also by (3.4), we have

Σ̃f (q) − Σ̃f (h̃
ψ
N,f )

≥

∫

D

(∇q(θ) −∇h̃ψN,f (θ)) · (∇σ)(∇h̃ψN,f (θ) + ∇g(θ))dθ

−

∫

D

(q(θ) − h̃ψN,f (θ))f(θ)dθ,

for every q ∈ C∞
0 (D). Once we can prove that the right hand side

goes to 0 as N → ∞ for every q ∈ C∞
0 (D), we have lim

N→∞
Σ̃f (h̃

ψ
N,f ) =

inf
H1

0 (D)
Σ̃f . This combined with Lemma 5.1 completes the proof of Lemma

4.1. Hence, all we have to prove are the following two lemmas.

Lemma 5.2. For every q ∈ C∞
0 (D),

lim
N→∞

∫

D

∇q(θ) · (∇σ)(∇h̃ψN,f (θ) + ∇g(θ))dθ =

∫

D

q(θ)f(θ)dθ.

Lemma 5.3.

lim
N→∞

{∫

D

∇h̃ψN,f (θ) · (∇σ)(∇h̃ψN,f (θ) + ∇g(θ))dθ

−

∫

D

h̃ψN,f (θ)f(θ)dθ
}

= 0.

For the proof of Lemmas 5.2 and 5.3, we prepare several lemmas.

A priori bounds.

Lemma 5.4. There exists some p ∈ (2, p0) such that

sup
N≥1

‖∇h̃ψN,f‖Lp(D) <∞ and sup
N≥1

‖∇h̄ψN,f‖Lp(D) <∞,

where p0 > 2 is the constant appearing in the condition (ψ2).

Proof. We first prove the uniform L
p estimate for ∇h̃ψN,f . It is easy

to see that

V ′(∇jφ(x) + ∇j(ξ ∨ ψ)(x)
)

(5.1)

− V ′(∇jφ(x) −Eµ̃
ψ

N,f [∇jφ(x)] + ∇j(ξ ∨ ψ)(x)
)

= Eµ̃
ψ

N,f [∇jφ(x)]

×

∫ 1

0

V ′′(∇jφ(x) − (1 − t)Eµ̃
ψ

N,f [∇jφ(x)] + ∇j(ξ ∨ ψ)(x)
)
dt,
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for every 1 ≤ j ≤ d and x ∈ DN . For x ∈ DN , define AN (x) =
{AN,i,j(x)}1≤i,j≤d and aN (x) = {aN,j(x)}1≤j≤d by

AN,j,j(x) = Eµ̃
ψ

N,f

[∫ 1

0

V ′′(∇jφ(x) − (1 − t)Eµ̃
ψ

N,f [∇jφ(x)]

+ ∇j(ξ ∨ ψ)(x)
)
dt

]
,

AN,i,j(x) = 0 if i 6= j,

aN,j(x) = Eµ̃
ψ

N,f

[
V ′(∇jφ(x) −Eµ̃

ψ

N,f [∇jφ(x)] + ∇j(ξ ∨ ψ)(x)
)]
,

respectively. Then, taking divN
{
Eµ̃

ψ

N,f [ · ]
}

of the both sides of (5.1),
we have

divN
{
AN (x)∇N h̃ψN,f (

x

N
)
}

= −divN
{
aN (x)

}
+ divN

{
Eµ̃

ψ

N,f

[
V ′(∇φ(x) + ∇(ξ ∨ ψ)(x)

)]}
,

where divNα is defined by divNα(x) = N
∑d

j=1(αj(x)−αj(x−ej)) for a

vector lattice field α(x) = {αj(x)}1≤j≤d, x ∈ Z
d. By calculating

∂H
ψ

N,f

∂φ(x)

and taking its expectation under µψN,f as in the proof of (1.55) of [13],
we obtain

(5.2) divN
{
Eµ

ψ

N,f [V ′(∇φ(x))]
}

= −f(
x

N
),

for every x ∈ DN . By (3.1), the change of variable yields

divN
{
Eµ̃

ψ

N,f

[
V ′(∇φ(x) + ∇(ξ ∨ ψ)(x)

)]}
= −f(

x

N
).

Therefore, {h̃ψN,f(
x
N

)} satisfies the following discrete elliptic equation:

divN
{
AN (x)∇N h̃ψN,f (

x

N
)
}

= −divN
{
aN(x)

}
− f(

x

N
),

for every x ∈ DN . However, by the assumption on V , AN (x) satisfies
the uniform ellipticity condition c−I ≤ AN (x) ≤ c+I for every x ∈ DN .
Hence, by the proof of Lemma 3.4 of [13], we know that there exist some
p > 2 and C <∞ such that

‖∇h̃ψN,f‖Lp(D) ≤ C
(
‖aN‖Lp(D) + ‖f‖Lp(D)

)
,

uniformly in N . Note that µ̃ψN,f is endowed with 0-boundary condition.
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Now, since V ′ is linearly growing, using the change of variable again,
we have that

|aN,j(x)| ≤ C
(
Eµ

ψ

N,f

[
|∇jφ(x) −Eµ

ψ

N,f [∇jφ(x)]|
]
+ |∇j(ξ ∨ ψ)(x)|

)
,

for some C > 0. Then,
∑

x∈DN |aN(x)|p0 = O(Nd) as N → ∞ follows
from the Brascamp-Lieb inequality and the assumptions on ψ as in the

proof of Lemma 4.3. This proves the uniform L
p estimate for ∇h̃ψN,f .

The uniform L
p estimate for ∇h̄ψN,f follows from that for ∇h̃ψN,f ,

the change of variable and the assumptions on ψ. Q.E.D.

Lemma 5.5. For every e ∈ Z
d with |e| = 1, we have

(5.3) lim
N→∞

1

Nd

∑

x∈DN

∣∣∇N h̃ψN,f
(x+ e

N

)
−∇N h̃ψN,f

( x
N

) ∣∣2= 0,

(5.4) lim
N→∞

1

Nd

∑

x∈DN

∣∣∇N h̄ψN,f
(x+ e

N

)
−∇N h̄ψN,f

( x
N

) ∣∣2= 0.

Proof. We first prove (5.4) by following the argument for the proof
of Lemma 3.1 of [13]. Define IN = {x ∈ DN ; dist(x,Zd \DN) ≥ 2}, then
the sum

∑
x∈DN in (5.4) can be divided into

∑
x∈IN and

∑
x∈DN\IN .

The boundary term
∑
x∈DN\IN is o(Nd) as N → ∞ by Lemma 5.4 and

Hölder’s inequality. For the interior term
∑
x∈IN , the entropy argument

(cf. [13, Proposition 2.10 and Lemma 3.2]) yields the desired result. Note
that the variance of the field φ(x) does not depend on the boundary

condition ψ under the Gaussian measure µψ,∗N .
Next, we shall prove (5.3). The boundary term

∑
x∈DN\IN is o(Nd)

as before. For the interior term, by (3.1), the change of variable yields

(5.5) ∇N
j h̄

ψ
N,f

( x
N

)
= ∇N

j h̃
ψ
N,f

( x
N

)
+ ∇j(ξ ∨ ψ)(x),

for every 1 ≤ j ≤ d and x ∈ DN . The contribution from the first term
is o(Nd) by (5.4), while that coming from the second term:

∑
x∈IN∣∣∇ξ(x+ e)−∇ξ(x)

∣∣2 is also o(Nd). This is because ξ(x) = Ng( x
N

) and

we have ∇jξ(x + e) −∇jξ(x) = 1
N
∇N
j ∇N

e g(
x
N

) for every 1 ≤ j ≤ d and
x ∈ DN . Q.E.D.



Large deviations for ∇ϕ interface model 197

Local equilibria.

Next, let

X = {η ∈ R
(Zd)∗ ; η = ∇φ for some φ ∈ R

Z
d

},

Xr = {η ∈ X ;
∑

b∈(Zd)∗

|η(b)|2e−2r|xb| <∞}, r > 0,

and define QN ∈ M+(D ×X ) and VN ∈ M+(Rd ×X ) by

QN(dθdη) =
1

Nd

∑

x∈DN
δ x
N

(dθ)µψ,∇N,f ◦ τ−1
x (dη),

VN (dvdη) =
1

Nd

∑

x∈DN
δ∇N h̄ψ

N,f
( x
N

)(dv)µ
ψ,∇
N,f ◦ τ−1

x (dη),

where M+(E) stands for the class of all non-negative measures on E ,

µψ,∇N,f (dη) is the distribution of η = ∇φ on X under µψN,f and τx : X → X

denotes the shift on Z
d defined by (τxη)(b) = η(b − x) for b ∈ (Zd)∗.

We regard µψN,f ∈ P(RZ
d

) by considering φ(x) = ψ(x)(= g( x
N

)) for

x ∈ Z
d \DN . We denote by µ∇

v (dη), v = (vi)1≤i≤d ∈ R
d the unique ∇φ-

Gibbs measure on X which is translation invariant, ergodic and satisfies

Eµ
∇
v [η(b)2] < ∞ for every b ∈ (Zd)∗ and Eµ

∇
v [η(ei)] = vi for every

1 ≤ i ≤ d (cf. [18, Section 3]).
In a similar way to the proof of Lemma 4.3 of [13], we can prove the

following lemma. Note again that the variance does not depend on the

boundary condition ψ under the Gaussian measure µψ,∗N . The proof is
omitted.

Lemma 5.6. For each r > 0 both the families of measures {QN} on
D×Xr and {VN} on R

d×Xr are tight. Moreover, for every limit point
Q of {QN}, there exists νQ ∈ M+(D × R

d) such that Q is represented
as

Q(dθdη) =

∫

Rd

νQ(dθdv)µ∇
v (dη).

Similarly, for each limit point V of {VN}, there exists νV ∈ M+(Rd×R
d)

such that V is represented as

V (dvdη) =

∫

Rd

νV (dvdu)µ∇
u (dη).
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Now by Lemma 5.4, along some subsequence, {∇h̃ψN,f (θ)}N gener-

ates the family of Young measures ν̃(θ, dv) ∈ P(Rd) i.e. it holds that

(5.6) lim
N→∞

∫

D

q(θ)G(∇h̃ψN,f (θ))dθ =

∫

D×Rd

q(θ)G(v)ν̃(θ, dv)dθ.

for every q ∈ L
∞(D) and G ∈ C0(R

d) (cf. [13, Section 4.3], [3]). Then,
the following lemma holds.

Lemma 5.7. If the subsequence {N} is commonly taken, the limits
νQ and νV which appear in Lemma 5.6 can be represented as

(5.7) νQ(dθdv) = ν̃(θ, dv −∇g(θ))dθ,

and

(5.8) νV (dvdu) = δv(du)

∫

D

ν̃(θ, dv −∇g(θ))dθ.

Proof. By following the argument in the proof of Lemma 4.4 of
[13], we shall only prove (5.7). The second equality (5.8) can be proved
in a similar manner. For (5.7), it is enough to show that

(5.9)

∫

D×Rd

q(θ)G(v)νQ(dθdv) =

∫

D×Rd

q(θ)G(v + ∇g(θ))ν̃(θ, dv)dθ

for every q ∈ C∞
0 (D) and G ∈ C1

b (R
d). In fact, since the ergodicity of

µ∇
v implies

G(v) = lim
l→∞

Eµ
∇
v [G(Avlη)],

where Avlη = 1
(2l+1)d

∑
x∈Bl η(x) ∈ R

d, Bl = [−l, l]d ∩ Z
d, we have by

Lemma 5.6,
∫

D×Rd

q(θ)G(v)νQ(dθdv)

= lim
l→∞

lim
N→∞

1

Nd

∑

x∈DN
q(
x

N
)Eµ

ψ,∇
N,f

◦τ−1
x [G(Avlη)].

If one can replace Eµ
ψ,∇
N,f

◦τ−1
x [G(Avlη)] with G

(
∇N h̃ψN,f (

x
N

)+∇Ng( x
N

)
)
,

then the right hand side is equal to

lim
N→∞

1

Nd

∑

x∈DN
q(
x

N
)G

(
∇N h̃ψN,f (

x

N
) + ∇Ng(

x

N
)
)

=

∫

D×Rd

q(θ)G(v + ∇g(θ))ν̃(θ, dv)dθ,
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which implies (5.9). The last equality follows from Proposition 4.2 of
[13], Lemma 5.5 and the fact that the equation (5.6) holds for G =
G(v + ∇g(θ)) instead of G = G(v) by p.213 remark 3 of [3].

For the replacement above, we have

∣∣ 1

Nd

∑

x∈DN
q
( x
N

)
Eµ

ψ,∇
N,f

◦τ−1
x [G(Avlη)]

−
1

Nd

∑

x∈DN
q
( x
N

)
G

(
∇N h̃ψN,f

( x
N

)
+ ∇Ng

( x
N

)) ∣∣

≤ S1 + S2 + S3,

where

S1 =
∣∣ 1

Nd

∑

x∈DN
q
( x
N

){
Eµ

ψ,∇
N,f

◦τ−1
x [G(Avlη)] −G

(
Eµ

ψ,∇
N,f

◦τ−1
x [Avlη]

)} ∣∣,

S2 =
∣∣ 1

Nd

∑

x∈DN
q
( x
N

){
G

(
Eµ

ψ,∇
N,f

◦τ−1
x [Avlη]

)
−G

(
∇N h̄ψN,f

( x
N

))} ∣∣,

S3 =
∣∣ 1

Nd

∑

x∈DN
q
( x
N

){
G

(
∇N h̄ψN,f

( x
N

))

−G
(
∇N h̃ψN,f

( x
N

)
+ ∇Ng

( x
N

))} ∣∣ .

In a similar way to the proof of Lemma 4.4 of [13], we can prove that
S1, S2 → 0 as N → ∞, l → ∞. Also by (5.5),

S3 =
∣∣ 1

Nd

∑

x∈DN
q
( x
N

){
G

(
∇N h̃ψN,f

( x
N

)
+ ∇(ξ ∨ ψ)(x)

)

−G
(
∇N h̃ψN,f

( x
N

)
+ ∇ξ(x)

)} ∣∣

≤
1

Nd

∑

x∈∂−DN

‖q‖∞‖∇G‖∞|∇(ξ ∨ ψ)(x) −∇ξ(x)|,

where ∂−DN = {x ∈ DN ; dist(x,Zd \ DN ) = 1}. This goes to 0 as
N → ∞ by the assumptions on ψ. Q.E.D.

Proof of Lemmas 5.2 and 5.3.

We are now in the position to prove Lemmas 5.2 and 5.3.
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Proof of Lemma 5.2. For every q ∈ C∞
0 (D), by (5.2) and summa-

tion by parts, we have
∫

D

q(θ)f(θ)dθ = lim
N→∞

1

Nd

∑

x∈DN
q(
x

N
)f(

x

N
)

= lim
N→∞

1

Nd

∑

x∈DN
∇Nq(

x

N
) ·Eµ

ψ

N,f [V ′(∇φ(x))].

Now by the definition of QN , Lemmas 5.6, 5.7 and the property of the

surface tension ∂σ
∂vi

(v) = Eµ
∇
v [V ′(∇iφ(0))] for every 1 ≤ i ≤ d (cf. [18,

Theorem 3.4 (iii)]), we obtain

∫

D

q(θ)f(θ)dθ =

∫

D×X
∇q(θ) · Eµ

∇
v [V ′(∇φ(0))]νQ(dθdv)

=

∫

D×Rd

∇q(θ) · (∇σ)(v + ∇g(θ))ν̃(θ, dv)dθ

= lim
N→∞

∫

D

∇q(θ) · (∇σ)(∇h̃ψN,f (θ) + ∇g(θ))dθ,

Note that we can apply (5.6) for G = G(v, θ) = (∇σ)(v+∇g(θ)) instead
of G = G(v) by p.213 remark 3 of [3] and the property of the surface
tension |(∇σ)(u)| ≤ c(1 + |u|) (cf. [18, Theorem 3.4 (v)]).

Q.E.D.

Proof of Lemma 5.3. By (5.2), summation by parts and (5.5), we
have

lim
N→∞

∫

D

h̃ψN,f (θ)f(θ)dθ

= lim
N→∞

1

Nd

∑

x∈DN
∇N h̃ψN,f

( x
N

)
·Eµ

ψ

N,f [V ′(∇φ(x))]

= lim
N→∞

1

Nd

∑

x∈DN
∇N h̄ψN,f

( x
N

)
·Eµ

ψ

N,f [V ′(∇φ(x))]

− lim
N→∞

1

Nd

∑

x∈DN
∇(ξ ∨ ψ)(x) · Eµ

ψ

N,f [V ′(∇φ(x))]

≡ S1 − S2.

Now, by the assumptions on V and ψ, it is easy to see that

S2 = lim
N→∞

1

Nd

∑

x∈DN
∇Ng(

x

N
) · Eµ

ψ

N,f [V ′(∇φ(x))],
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since ξ(x) = Ng( x
N

). Hence, by the proof of Lemma 5.2, we obtain

S2 = lim
N→∞

∫

D

∇g(θ) · (∇σ)(∇h̃ψN,f (θ) + ∇g(θ))dθ.

Also, by Lemmas 5.6, 5.7 and the property of the surface tension σ, in
a similar way to the proof of Lemma 5.2 we can prove that

S1 = lim
N→∞

∫

D

(∇h̃ψN,f (θ) + ∇g(θ)) · (∇σ)(∇h̃ψN,f (θ) + ∇g(θ))dθ.

Therefore, the proof is completed. Q.E.D.

§6. Proof of Theorem 2.2: LDP for δ-Pinning

Schilder’s theorem.

Throughout this section, we assume that d = 1 and V (η) = 1
2η

2. We

first notice that the large deviation principle holds for {hN (θ); θ ∈ D}

under µa,bN on Wa,b(D). Recall that the space Wa,b(D) is endowed with
the topology determined by the sup-norm.

Lemma 6.1. For the family of distributions on the space Wa,b(D)

under µa,bN of {hN (θ); θ ∈ D}, the large deviation principle holds with a

rate functional Ia,b(h) := Σ(h)− 1
2 (b−a)2 where Σ(h) = 1

2

∫ 1

0
(h′)2(θ)dθ.

Proof. Let w = {w(x);x ∈ [0, N ]} be the one-dimensional standard
Brownian motion starting at 0 and set h̄N (θ) := w(Nθ)/N, θ ∈ [0, 1].
Then, by Schilder’s theorem (see, e.g., Theorem 5.1 of [25]), the large
deviation principle holds for {h̄N}N onW0 = {h ∈ C([0, 1]; R);h(0) = 0}
with the rate function Σ(h). Define φ = {φ(x);x ∈ [0, N ]} from w as

φ(x) = w(x)−xw(N)/N +(N −x)a+xb. Then, {φ(x);x ∈ DN} is µa,bN -

distributed. Set h̃N(θ) = φ(Nθ)/N, θ ∈ [0, 1], and consider a mapping

Φ : h̄ ∈ W0 7→ h̃ ∈ Wa,b(D) defined by

Φ(h̄)(θ) = h̄(θ) − θh̄(1) + (1 − θ)a+ θb.

Then, Φ is continuous and h̃N = Φ(h̄N ) holds. Therefore, by the con-

traction principle, the large deviation principle holds for {h̃N}N with the

rate functional Σ̃(h) = inf
h̄∈W0:Φ(h̄)=h

Σ(h̄), which coincides with Ia,b(h).

The proof of lemma is completed by showing a super exponential esti-
mate for the difference between hN and h̃N as in p.17 of [25]: For every
δ > 0,

P
(
||hN − h̃N ||∞ ≥ δ

)
= exp

[
−
N2δ2

8
+ o(N2)

]
,
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as N → ∞. Q.E.D.

Proof of Theorem 2.2.

Proof of Theorem 2.2. Step1 (lower bound). Let δ > 0 and g ∈
Wa,b(D) which satisfies the condition:

|{θ ∈ D; g(θ) = 0}| > 0 and there exist disjoint intervals

{Ij}1≤j≤K ,K <∞ such that |{θ ∈ D; g(θ) = 0}| =
∑K

j=1
|Ij |(6.1)

and g(θ) = 0 if θ ∈
⋃K

j=1
Ij ,

be fixed. Then, one can decompose D \
⋃K
j=1 I

j =
⋃K+1
j=1 Lj with dis-

joint intervals {Lj}1≤j≤K+1. We define IjN = NIj ∩ Z, LjN = NLj ∩

Z, IN =
⋃K
j=1 I

j
N and LN =

⋃K+1
j=1 LjN . By expanding the product∏

x∈DN (eJδ0(dφ(x)) + dφ(x)), we have

Za,b,JN

Za,bN
µa,b,JN (hN ∈ B∞(g, δ))

=
∑

Λ⊂DN
eJ|Λ

c|Z
a,b
Λ

Za,bN
µa,bΛ (hN ∈ B∞(g, δ))

≥
∑

LN⊂Λ⊂DN
eJ|Λ

c|Z
a,b
Λ

Za,bN
µa,bΛ (hN ∈ B∞(g, δ))

=
∑

A⊂IN
eJ|IN\A|Z

a,b
LN∪A

Za,bN
µa,bLN∪A(hN ∈ B∞(g, δ)),

where B∞(g, δ) = {h ∈Wa,b(D); ‖h− g‖∞ < δ} and µa,bΛ is defined by

µa,bΛ (dφ) =
1

Za,bΛ

exp
{
−

1

2

∑

b∈Λ̄∗

V (∇(φ ∨ ψ̃)(b))
}

×
∏

x∈Λ

dφ(x)
∏

x∈DN\Λ

δψ̃(x)(dφ(x)),

and ψ̃(x) = ψ(x) if x ∈ ∂+DN = {0, N} (i.e. ψ̃(0) = aN, ψ̃(N) = bN),

ψ̃(x) = 0 if x ∈ DN \ Λ. The constant Za,bΛ is for normalization.
Now, write IN \ A = {x1, x2, · · · , xk}, 1 ≤ x1 < x2 < · · · < xk ≤

N − 1 and define l1 = [1, x1 − 1] ∩ Z, l2 = [x1 + 1, x2 − 1] ∩ Z, · · · , lk =
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[xk−1 +1, xk−1]∩Z, lk+1 = [xk+1, N−1]∩Z. Then,
⋃k+1
j=1 lj = LN ∪A

and by the Markov property of the φ-field, we have

µa,bLN∪A(hN ∈ B∞(g, δ)) ≥ µa,bLN∪A
(

max

x∈
k+1�

j=1

lj

|
1

N
φ(x) − g(

x

N
)| <

1

2
δ
)

=

k+1∏

j=1

µ
aj ,bj
lj

(
max
x∈lj

|
1

N
φ(x) − g(

x

N
)| <

1

2
δ
)
,

for N large enough, where aj = a if j = 1, aj = 0 otherwise, bj = b
if j = k + 1, bj = 0 otherwise. We define Γ = {1 ≤ j ≤ k + 1; lj ⊃
LiN for some 1 ≤ i ≤ K + 1} and Γc = {1 ≤ j ≤ k + 1} \ Γ. If j ∈ Γc,
since g( x

N
) = 0 for each x ∈ lj , we have

µ
aj ,bj
lj

(
max
x∈lj

|
1

N
φ(x) − g(

x

N
)| <

1

2
δ
)

= µ
aj ,bj
lj

(
max
x∈lj

|
1

N
φ(x)| <

1

2
δ
)

≥ 1 −
∑

x∈lj
µ0,0
lj

(
|φ(x)| ≥

1

2
δN

)
.

However, it is easy to see that

µ0,0
lj

(
|φ(x)| ≥

1

2
δN

)
≤ exp

{
−

( 1
2δN)2

Varµ0,0

lj

(φ(x))

}
≤ exp{−Cδ2N},

for some C > 0 and we obtain

∏

j∈Γc

µ
aj ,bj
lj

(
max
x∈lj

|
1

N
φ(x) − g(

x

N
)| <

1

2
δ
)
≥ 1 −N exp{−Cδ2N}.

Next, for every closed interval F ≡ [xF , yF ] ⊂ [0, 1], define

B∞(g, δ;F ) = {h ∈ C(F ; R); sup
θ∈F

|h(θ) − g(θ)| < δ},

Wa,b(F ) = {h ∈ C(F ; R);h(xF ) = a, h(yF ) = b},

H1
a,b(F ) = {h ∈Wa,b(F );h is absolutely continuous, h′ ∈ L

2(F )}.
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We also define l̃j =
lj
N

⊂ [0, 1] for j ∈ Γ. Then, by the LDP lower bound

for µa,bN (Lemma 6.1), we know that

∏

j∈Γ

µ
aj ,bj
lj

(
max
x∈lj

|
1

N
φ(x) − g(

x

N
)| <

1

2
δ
)

≥ exp
{
−N

(∑

j∈Γ

inf
h∈B∞(g, 1

2
δ;l̃j)

I
aj ,bj

l̃j
(h) + ε

)}

≥ exp
{
−N

(
Σ(g) −

1

2
(
a2

|l̃1|
+

b2

|l̃k+1|
) + ε

)}
,

for every ε > 0 and N large enough, where

Ia,bF (h) =

{
ΣF (h) − (b−a)2

2|F | if h ∈ H1
a,b(F ),

+∞ otherwise,

and ΣF (h) = 1
2

∫
F
(h′)2(θ)dθ for closed interval F ⊂ [0, 1]. Recall that

Σ[0,1](h) coincides with Σ(h). Therefore, we obtain

µa,bLN∪A(hN ∈ B∞(g, δ))

≥ exp
{
−N

(
Σ(g) −

1

2
(
a2

|l̃1|
+

b2

|l̃k+1|
) + ε

)}
(1 −Ne−CNδ

2

).

Note that this estimate holds for every choice of A ⊂ IN and for every
N large enough, since |Γ| ≤ K + 1 is independent of N . Also, simple
calculation yields that

Za,bLN∪A = Z0,0
LN∪A exp

{
−
N

2
(
a2

|l̃1|
+

b2

|l̃k+1|
)
}
,

Za,bN = Z0,0
N exp

{
−
N

2
(b− a)2

}
.

Hence we obtain

Za,b,JN

Za,bN
µa,b,JN (hN ∈ B∞(g, δ))(6.2)

≥
∑

A⊂IN
eJ|IN\A|Z

0,0
LN∪A

Z0,0
N

exp
{
−N

(
Ia,b(g) + 2ε

)}
,

for every ε > 0 and N large enough.



Large deviations for ∇ϕ interface model 205

Now, we can exactly calculate that Z0,0
N = (

√
2π)N−1

√
N

and this shows

(6.3) 1 ≤
Z0,0
LN∪A

Z0,0
LN
Z0,0
A

≤ eaN ,

for every A ⊂ IN , where aN = o(N). Note that LN consists of finite
number of disjoint intervals of size O(N). By using (6.3), it is easy to
see that

(6.4)
Z0,0,J
IN

Z0,0
IN

e−aN ≤
∑

A⊂IN
eJ|IN\A|Z

0,0
LN∪A

Z0,0
N

≤
Z0,0,J
IN

Z0,0
IN

eaN .

The sub-additivity argument (cf. [8, Section 4.3], [18, Appendix II]) and

the fact that |IN |
N

→ |{θ ∈ D; g(θ) = 0}| as N → ∞ yield that the limit
τ(J) in (2.7) exists and it holds that

(6.5) lim
N→∞

1

N
log

Z0,0,J
IN

Z0,0
IN

= −τ(J)|{θ ∈ D; g(θ) = 0}|.

Combining (6.4), (6.5) with (6.2), we obtain

lim inf
N→∞

1

N
log

Za,b,JN

Za,bN
µa,b,JN (hN ∈ B∞(g, δ))(6.6)

≥ −Ia,b(g) − τ(J)|{θ ∈ D; g(θ) = 0}|

≡ −Ia,b;J(g),

for every g ∈ Wa,b(D) satisfying the condition (6.1) and δ > 0. In the
case that |{θ ∈ D; g(θ) = 0}| = 0, we have only to take the sum A = IN
in (6.2) and the same inequality as above is obtained.

However, for every open set O of Wa,b(D), we have that

(6.7) inf
g∈O:(6.1)′

Ia,b;J(g) = inf
h∈O

Ia,b;J(h),

where (6.1)
′

means the condition (6.1) or |{θ ∈ D; g(θ) = 0}| = 0.
Indeed, since the left hand side of (6.7) is larger than or equal to the
right hand side, we may prove the reverse inequality only. To this end,
for every ε > 0, take h ∈ O such that Ia,b;J(h) ≤ infO Ia,b;J + ε; note
that h ∈ H1

a,b(D). Since O is open, one can find δ > 0 such that

B∞(h, δ) ⊂ O. Taking n ≥ 1 such that |θ1 − θ2| ≤ 1/n implies |h(θ1) −
h(θ2)| < δ, divide the interval [0, 1] = ∪nk=1Jk,Jk = [(k−1)/n, k/n] and
set J = ∪kJk , the union of Jk’s on which h(θ) 6= 0. We now define
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a function g = g(θ), first on J , by g(θ) = h(θ). On J c, starting at
points in ∂J , g(θ) = h(θ) up to θ̄’s such that h(θ̄) = 0, and set g ≡ 0
otherwise. Then, g ∈ B∞(h, δ) ⊂ O, Ia,b;J(g) ≤ Ia,b;J(h) and g satisfies
the condition (6.1)′. This proves (6.7). Therefore, from (6.6) and (6.7),
we have

(6.8) lim inf
N→∞

1

N
log

Za,b,JN

Za,bN
µa,b,JN (hN ∈ O) ≥ − inf

h∈O
Ia,b;J(h),

for every open set O of Wa,b(D).
Step2 (upper bound). Let δ > 0 and g ∈ Wa,b(D) which satisfies the
condition:

for every γ > 0 small enough, there exist disjoint

intervals {Ij(γ)}1≤j≤K ,K <∞ such that(6.9)

{θ ∈ D; |g(θ)| ≤ γ} =
⋃K

j=1
Ij(γ),

be fixed. Then, one can write {θ ∈ D; |g(θ)| > γ} =
⋃K+1
j=1 Lj(γ) for

disjoint intervals {Lj(γ)}1≤j≤K+1. We define IjN = NIj(δ) ∩ Z, LjN =

NLj(δ) ∩ Z, IN =
⋃K
j=1 I

j
N and LN =

⋃K+1
j=1 LjN . Since µa,bΛ (hN ∈

B∞(g, δ)) = 0 for Λ ⊂ DN such that Λ 6⊃ LN , we have

Za,b,JN

Za,bN
µa,b,JN (hN ∈ B∞(g, δ))

=
∑

LN⊂Λ⊂DN
eJ|Λ

c|Z
a,b
Λ

Za,bN
µa,bΛ (hN ∈ B∞(g, δ))

=
∑

A⊂IN
eJ|IN\A|Z

a,b
LN∪A

Za,bN
µa,bLN∪A(hN ∈ B∞(g, δ)).

Now, let IN \A = {x1, x2, · · · , xk}, 1 ≤ x1 < x2 < · · · < xk ≤ N −1
and define l1, l2, · · · , lk, lk+1 and Γ in the same way as in the proof of
lower bound. Then, by the Markov property of the φ-field and the LDP

upper bound for µa,bN (Lemma 6.1), we have

µa,bLN∪A(hN ∈ B∞(g, δ)) ≤ µa,bLN∪A
(

max

x∈
k+1�

j=1

lj

|
1

N
φ(x) − g(

x

N
)| < δ

)

≤
∏

j∈Γ

µ
aj ,bj
lj

(
max
x∈lj

|
1

N
φ(x) − g(

x

N
)| < δ

)
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≤ exp
{
−N

(∑

j∈Γ

inf
h∈B̄∞(g,2δ;l̃j)

I
aj ,bj

l̃j
(h) − ε

)}

≤ exp
{
−N

(
inf

h∈B̄∞(g,2δ)
h(0)=a,h(1)=b

Σ(h) −
1

2
(
a2

|l̃1|
+

b2

|l̃k+1|
) − ε

)}
,

for every ε > 0 and N large enough. Then, in a similar way to the proof
of lower bound, we can prove that

lim sup
N→∞

1

N
log

Za,b,JN

Za,bN
µa,b,JN (hN ∈ B∞(g, δ))(6.10)

≤ − inf
h∈B̄∞(g,2δ)

Ia,b(g) − τ(J)|{θ ∈ D; |g(θ)| ≤ δ}|,

for every g ∈ Wa,b(D) satisfying the condition (6.9) and δ > 0. Note
that IN is defined by N{θ ∈ D; |g(θ)| ≤ δ} ∩ Z in this case.

By using (6.10), the right-continuity of |{θ ∈ D; |g(θ)| ≤ δ}| in δ
and the fact that the set of g ∈Wa,b(D) satisfying the condition (6.9) is
dense in Wa,b(D), the similar argument to the proof of the upper bound
of Theorem 2.1 yields that for every g ∈ Wa,b(D) and ε > 0, there exists
some δ > 0 such that

lim sup
N→∞

1

N
log

Za,b,JN

Za,bN
µa,b,JN (hN ∈ B∞(g, δ)) ≤ −Ia,b;J(g) + ε.

Since µa,b,JN can be written as the superposition of µa,bΛ ,Λ ⊂ DN , expo-

nential tightness for µa,b,JN follows from the similar argument as before
and the standard argument yields

(6.11) lim sup
N→∞

1

N
log

Za,b,JN

Za,bN
µa,b,JN (hN ∈ C) ≤ − inf

h∈C
Ia,b;J(h),

for every closed set C of Wa,b(D). The lower and upper bounds (6.8)
and (6.11) conclude the proof. Q.E.D.

Remark 6.1. By the proof above and [8, Lemma 2.3.1 (a)] (note
that the argument given there can be extended to all d ≥ 1), we know
that

Z0,0,J
N

Z0,0
N

=
∑

Λ⊂DN
eJ|Λ

c|Z
0,0
Λ

Z0,0
N

≥
∑

Λ⊂DN
eJ|Λ

c|e−C|Λc| = (1 + eJ−C)|DN |

for some constant C > 0. Therefore, τ(J) < 0 for every J ∈ R.
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