Example Sheet 8

1. (a) If \(f \) is holomorphic in an open set \(U \) and \(\gamma \) a closed piecewise \(C^1 \) curve with \(\gamma \to 0 \), then
\[
\oint_{\gamma} f(z) \, dz = 0
\]

(b) If \(U \) is simply connected, any closed piecewise \(C^1 \) curve \(\gamma \) is homotopy to 0, hence \(\oint_{\gamma} f(z) \, dz = 0 \).

(c) A star region is simply connected, the above applies.

2. (1) \(f(z) = (-3z^3 + 7) + (z^7 + e^z) \)

If \(|z| = 1 \), \(|-3z^3 + 7| \geq 7 - 3 = 4 \)
\[
|z^7 + e^z| < 1 + |e^z| < 1 + e < 4.
\]

By Rouche's theorem, \(f(z) \) has same # of zeros in \(\{ z : |z| < 1 \} \) as \(-3z^3 + 7 \).

- \(-3z^3 + 7 \) has no root in \(\{ z : |z| < 1 \} \).

(2) \(f(z) = z^7 + (-3z^3 + e^z + 7) \).

On \(\{ z : |z| = 2 \} \), \(|z^7| = 128 \)
\[
|-3z^3 + e^z + 7| \leq 3
\]

By Rouche's theorem, \(f \) has 7 zeros inside \(\{ z : |z| < 2 \} \) (same as \(z^7 = 0 \)).

\(f \) has 7 zeros inside \(\{ z : |z| < 2 \} \), no zeros on \(\{ z : |z| = 13 \} \), no \(\frac{df}{dz} \) in \(\{ z : |z| = 11 \} \).

So it has 7 zeros in \(\{ z : |z| < 2 \} \). Q.E.D.
Example sheet 8

3. Suppose \(f \) is not identically zero and \(\exists z_0 \in U \) s.t. \(f(z_0) = 0 \).

Firstly by Weierstrass' theorem, \(f \) is holomorphic on \(U \). Then there exist \(\epsilon > 0 \) s.t. if \(|z - z_0| < \epsilon \) and \(z \neq z_0 \), \(f(z) \neq 0 \).

Let \(S = \max_{|z - z_0| = \epsilon} |f(z)| \neq 0 \).

By the uniform convergence, \(\exists N > 0 \) s.t. if \(n > N \),

\[
|f_n(z) - f(z)| < \frac{\epsilon}{2}, \quad |z - z_0| = \epsilon.
\]
i.e. \(|f_n(z) - f(z)| < |f(z)| \) on \(\overline{c(z_0, \epsilon)} \).

Note \(f_n(z) = f(z) + (f(z) - f_n(z)) \).

We apply Rouché's theorem to see that the number of zero's of \(f_n \) in \(D(z_0, \epsilon) \) equals the number of zero's of \(f \) in \(D(z_0, \epsilon) \). Hence \(f_n \) has a zero, contradicting with the assumption.
4) \(f(z) = \frac{e^{\xi z}}{1 + e^z}, \ \alpha \in (0, 1). \)

Feasibly, \(1 + e^z = 0 \) at
\[z = \pi i + 2\pi ki, \ k \in \mathbb{Z}. \]

Also \(e^{\xi z} \neq 0 \) at zero's of \(1 + e^z \).

This means \(f(z) \) has a pole at \(\pi i \) inside the rectangular. If \(k \neq 0 \), \((\pi i + 2\pi k) i \) does not lie inside the rectangular.

Ord \(f; z_0 = 2n \pi i \):
\[
\lim_{z \to z_0} (z - z_0)^2 f(z) \text{ exists and non-zero.}
\]

\[
\lim_{z \to \pi i} \frac{(z - \pi i)}{1 + e^z} \ e^{\xi z} = \left(\lim_{z \to \pi i} \frac{z - \pi i}{1 + e^z} \right) e^{\xi \pi i} = \frac{1}{e^{\pi i}} e^{\pi i} = -e^{\pi i}.
\]

Hence \(\text{ord}(f; \pi i) = 1 \), \(\text{Res}(f; \pi i) = \lim_{z \to \pi i} (z - \pi i) f(z) = -e^{\pi i} \).

Note:
\[
\text{Observe } e^z = e^{\pi i} + e^{(z - \pi i)} + \cdots + f(z)(z - \pi i)^2 + \cdots
\]
where \(f \) is a pole or branch function (Taylor expansion at \(\pi i \)).

Hence \(e^z + 1 = -(z - \pi i) + (z - \pi i)^2 f(z). \)
5) Let \(f(z) = \frac{e^{r^2}}{1 + e^z} \) and \(R \) as in 4).

By the residue theorem,
\[
\int_{\gamma} f(z) \, dz = 2\pi i \cdot \text{Res}(f, \pi i) \cdot \text{ind}(\gamma, \pi i)
\]
\[
= 2\pi i \cdot (-e^{-\pi i}) \cdot 1
\]
\[
= -e^{-\pi i} \cdot 2\pi i
\]

Define \(I(R) = \int_{\gamma} f(z) \, dz \).

So \(I(R) = \int_{-R}^{R} f(x) \, dx \).

\[
= -\int_{-R}^{R} \frac{e^{rx}}{1 + e^x} \, dx.
\]

\[
\int_{\gamma_3(R)} f(z) \, dz = \frac{z(t) = 2\pi it,}{\gamma_3(R)} \int_{-R}^{R} \frac{e^{r(2\pi it - t)}}{1 + e^{2\pi it - t}} (-1) \, dt
\]
\[
= e^{r\pi i} \int_{-R}^{R} \frac{e^{-rt}}{1 + e^{-t}} (-1) \, dt = -e^{r\pi i} I(R).
\]

\[
\left| \int_{\gamma_2(R)} f(z) \, dz \right| = \frac{Z(t) = it + R}{\gamma_2(R)} \left| \int_{0}^{2\pi} \frac{i e^{itR + R}}{1 + e^{itR + R}} \, dt \right|
\]
\[
\leq \frac{\pi e^R}{e^R - 1} \to 0 \quad (\text{as } R \to \infty).
\]

Similarly \(\left| \int_{\gamma_4(R)} f(z) \, dz \right| \to 0 \quad (\text{as } R \to \infty). \)

Finally \((1 - e^{2r\pi i}) \int_{-\infty}^{\infty} f(z) \, dx = -2\pi i e^{-\pi i} \).

Answer: \(\frac{e^{r\pi i} 2\pi i}{e^{2r\pi i} - 1} = \frac{\pi i \left(e^{\pi i} - e^{-\pi i} \right)}{2} = \pi i / \sinh(\pi R). \)
6. Denote \(\{x_i\} \) the set of points on the closed curve \(\gamma \).

\[z \in \{x_i\}, \]

\[G_m(z) = \int_{\gamma} \frac{f(s)}{(s-z)^m} \, ds, \]

We first prove \(G_m \) is continuous on \(\mathbb{C} \setminus \{x_i\} \). For \(m \geq 1 \), \(a, b \in \mathbb{C} \),

\[a^m - b^m = (a-b)(a^{m-1} + a^{m-2}b + \cdots + ab^{m-2} + b^{m-1}), \]

Let \(z_0 \in \mathbb{C} \setminus \{x_i\} \),

\[\frac{1}{(z-z_0)^m} - \frac{1}{(z-z_0)^m} = (z-z_0)\left(\frac{1}{(z-z_0)(z-z_0)} + \frac{1}{(z-z_0)(z-z_0)} + \cdots + \frac{1}{(z-z_0)(z-z_0)}\right), \]

Hence

\[\left| \frac{1}{(z-z_0)^m} - \frac{1}{(z-z_0)^m} \right| = \frac{1}{|z-z_0|^m}, \]

Since \(f \) is continuous on \(\gamma \), it is bounded by a number \(M \).

\[|G_m(z) - G_m(z_0)| \leq |z-z_0| \int_{\gamma} \left| \frac{f(s)}{(s-z)^m} \right| \, ds \cdot M \cdot |z|, \]

If \(|z-z_0| \leq \frac{1}{2} \cdot d(z_0, \mathbb{C}) \), \(|f(s)| \) is bounded. This proves

continuity of \(f \) at \(z_0 \).

Let \(z_0, z \in \mathbb{C} \setminus \{x_i\}, z \neq z_0 \),

\[\frac{G_m(z) - G_m(z_0)}{z - z_0} = \int_{\gamma} \frac{f(s)}{(s-z)^m} - \frac{f(s)}{(s-z_0)^m} \, ds \int_{\gamma} f(s) \, ds. \]

Each term \(\frac{1}{(s-z)^m} \) is continuous in \(z \) for all \(s \in \gamma \).

The integrals are also \(\in \mathbb{C} \).

In particular, \(\lim_{z \to z_0} \) of both sides exists and

\[G_m'(z_0) = \int_{\gamma} \frac{f(s)}{(s-z)^m} \, ds = m \cdot G_m(z_0). \]