Computing semiclassical quantum dynamics using Hagedorn wavepackets

Christian Lubich, Univ. Tübingen

joint work with

Erwan Faou and Vasile Gradinaru

Warwick, 29 September 2008
Outline

The Schrödinger equation in the semi-classical regime

Hagedorn wavepackets

A splitting method for time integration
Outline

The Schrödinger equation in the semi-classical regime

Hagedorn wavepackets

A splitting method for time integration
Schrödinger equation in semi-classical scaling

\[i\varepsilon \frac{\partial \psi}{\partial t}(x, t) = -\frac{\varepsilon^2}{2m} \Delta_x \psi(x, t) + V(x, t)\psi(x, t) \]

for the wavefunction \(\psi = \psi(x, t) \), \(x = (x_1, \ldots, x_N) \in \mathbb{R}^N \), \(t \geq 0 \)

initial value problem: \(\psi \) specified at time \(t = 0 \)

SE for the nuclei in a molecule \(0 < \varepsilon \ll 1 \)
Computational challenges

- high dimension: $N = 3 \cdot n_{particles}$

- solutions are highly oscillatory with wavelengths $\sim \varepsilon$
- localized with width $\sim \sqrt{\varepsilon}$, with velocity ~ 1

no grids! (neither full nor sparse)
Rescue?

wavefunction is well approximated by

complex Gaussian \times polynomial

\rightarrow Hagedorn wavepackets
Outline

The Schrödinger equation in the semi-classical regime

Hagedorn wavepackets

A splitting method for time integration
Complex Gaussians in Hagedorn’s parametrization

\[\varphi_0[q, p, Q, P](x) = (\pi \varepsilon)^{-N/4} (\det Q)^{-1/2} \times \]
\[\exp\left(\frac{i}{2\varepsilon} (x - q)^T P Q^{-1} (x - q) + \frac{i}{\varepsilon} p^T (x - q) \right), \]

\(q \in \mathbb{R}^N \) position, \(p \in \mathbb{R}^N \) momentum

\(Q, P \) complex \(N \times N \) matrices such that

\(Y = \begin{pmatrix} \text{Re} Q & \text{Im} Q \\ \text{Re} P & \text{Im} P \end{pmatrix} \) is symplectic: \(Y^T J Y = J \) for \(J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} \)

Consequence: \(PQ^{-1} \) is complex symmetric with positive definite imaginary part

\[\text{Hagedorn 1980} \]
Hagedorn wavepackets

L^2-orthonormal set of functions $\varphi_k(x) = \varphi_k[q, p, Q, P](x)$
for multi-indices $k = (k_1, \ldots, k_N)$, constructed recursively:
define the raising operator

$$\mathcal{R} = (\mathcal{R}_j) = \frac{1}{\sqrt{2\varepsilon}} \left(P^*(x - q) + Q^*(-i\varepsilon\nabla_x - p) \right)$$

With $\langle j \rangle = (0 \ldots 1 \ldots 0)$ the jth unit vector, set

$$\varphi_{k+\langle j \rangle} = \frac{1}{\sqrt{k_j + 1}} \mathcal{R}_j \varphi_k .$$

φ_k are polynomials of degree $k_1 + \cdots + k_N$ multiplied with the Gaussian φ_0 ($N = 1$: Hermite functions).
Recursive evaluation

\[
Q \left(\sqrt{k_j + 1} \varphi_{k+\langle j \rangle}(x) \right)^N_{j=1} = \sqrt{\frac{2}{\varepsilon}} (x-q) \varphi_k(x) - \overline{Q} \left(\sqrt{k_j} \varphi_{k-\langle j \rangle}(x) \right)^N_{j=1}
\]

\(k_1 = 3, \; k_2 = 2 \)

\(k_1 = 4, \; k_2 = 2 \)
Approximate wavefunction by Hagedorn wavepacket

\[
\psi(x, t) \approx e^{iS(t)/\epsilon} \sum_{k \in K} c_k(t) \varphi_k[q(t), p(t), Q(t), P(t)](x)
\]

over multi-index set \(K \)

- in low dimensions, full cube: \(k_j \leq K \) (\(j = 1, \ldots, N \))
- in moderate dimensions, hyperbolic cross:
 \[
 (1 + k_1) \cdot \ldots \cdot (1 + k_N) \leq K
 \]
- in high dimensions, axes: \(k_j > 0 \) only for a single component \(j \)
 in each \(k \) (Hartree-type approximation in a moving frame)

problem-adapted moving basis functions
The Schrödinger equation in the semi-classical regime

Hagedorn wavepackets

A splitting method for time integration
Recap: Schrödinger equation

\[i\varepsilon \frac{\partial \psi}{\partial t} = H\psi \]

with the Hamiltonian

\[H = T + V \]

composed of the kinetic energy operator

\[T = -\frac{\varepsilon^2}{2m}\Delta_x \]

and a smooth potential

\[V = V(x). \]

\[H = T + U_q(t) + W_q(t) \]

- We can solve exactly the **free Schrödinger equation**, with the wavefunction remaining in the Hagedorn wavepacket form with unaltered coefficients \(c_k \).
- For a **quadratic potential**, we can solve exactly the potential equation with the wavefunction remaining in the Hagedorn wavepacket form with the same coefficients \(c_k \).
- For the **non-quadratic remainder**, we compute the variational approximation of the potential equation on the linear space spanned by the functions \(\varphi_k \) with fixed parameters \(q, p, Q, P \), letting the coefficients \(c_k \) vary.
Free Schrödinger equation

\[i\varepsilon \frac{\partial \psi}{\partial t} = -\frac{\varepsilon^2}{2m} \Delta \psi \]

A time-dependent Hagedorn wavepacket solves the free Schrödinger equation with modified positions

\[q(t) = q(0) + \frac{t}{m} p(0) \]
\[Q(t) = Q(0) + \frac{t}{m} P(0) \]

and unchanged momenta \(p, P \) and unchanged coefficients \(c_k \).

change only position \(q \) and \(Q \) and phase \(S \)
Quadratic potential

\[i\varepsilon \frac{\partial \psi}{\partial t} = U \psi \]

For a quadratic potential \(U(x) \), a time-dependent Hagedorn wavepacket solves the equation with modified momenta

\[
\begin{align*}
p(t) &= p(0) - t \nabla U(q(0)) \\
P(t) &= P(0) - t \nabla^2 U(q(0)) Q(0)
\end{align*}
\]

and unchanged positions \(q \) and \(Q \) and unchanged coefficients \(c_k \).

change only momentum \(p \) and \(P \) and phase \(S \)
Galerkin approximation for the remainder

\[i\varepsilon \frac{\partial \psi}{\partial t} = W\psi, \quad W = W(x) \]

fix Gauss parameters \(q, p, Q, P \) in \(\varphi_k(x) = \varphi_k[q, p, Q, P](x) \)

Galerkin condition: determine \(u(x, t) = \sum_{k \in K} c_k(t)\varphi_k(x) \) from

\[\langle \varphi_k , i\varepsilon \partial_t u - Wu \rangle = 0 \quad \forall \, k \in K \]
Galerkin approximation for the remainder (ctd.)

Galerkin condition determines the coefficient vector $c = (c_k)$ as

$$c(t) = \exp\left(-\frac{it}{\varepsilon} F\right) c(0)$$

with the Hermitian matrix

$$F = (f_{k\ell}), \quad f_{k\ell} = \int_{\mathbb{R}^N} W(x) \overline{\varphi}_k(x) \varphi_\ell(x) \, dx$$

- The integrals are non-oscillatory, approximated by sparse Gauss–Hermite quadrature.
- $F = O(\varepsilon^{3/2})$ if the quadratic Taylor polynomial of W at q vanishes. Therefore, $\exp\left(-\frac{it}{\varepsilon} F\right) c(0)$ is computed efficiently using just a few Lanczos iterations with F.

change only coefficients c_k
Time-stepping algorithm

start from position q^0, momentum p^0, phase S^0, width matrices Q^0, P^0 satisfying the symplecticity condition, and coefficients c_k^0

$$\psi(x, t^0) \approx u^0(x) = e^{iS^0/\varepsilon} \sum_{k \in \mathcal{K}} c_k^0 \varphi_k[q^0, p^0, Q^0, P^0](x)$$

determine approximation $u^1(x)$ of the same form after time step Δt using a splitting algorithm
Splitting algorithm

1. **Half-step of kinetic part**: updates \(q^{1/2}, Q^{1/2}, S^{1/2}, \).

2. **Full step of potential part**: split the potential

\[
V(x) = U^{1/2}(x) + W^{1/2}(x)
\]

into its quadratic Taylor polynomial \(U^{1/2}(x) \) at \(q^{1/2} \) and the remainder

- solve with quadratic potential \(U^{1/2} \): updates \(p^1, P^1, S^{1/2},+ \)
- Galerkin approximation for the non-quadratic remainder \(W^{1/2} \):
 update coefficients \(c_k^1 \)

3. **Half-step of kinetic part**: updates \(q^1, Q^1, S^1 \).
Properties

- time-reversible method
- preserves the symplecticity relation of the matrices Q and P
- preserves the L^2 norm of the wavepacket
- for position q and momentum p: Störmer-Verlet method for the corresponding classical Hamiltonian system
- limit of taking the full basis set φ_k with all $k \in \mathbb{N}^N$: Strang splitting of the Schrödinger equation
- robust in the semi-classical limit $\varepsilon \to 0$: approximation in the potential part becomes exact for $\varepsilon \to 0$, while the kinetic part is solved exactly for all ε.
Error behaviour in a numerical example

Maximum error vs. number of basis functions at $t = 1$ and $t = 5$.
Flying carpet

Squared absolute values of the approximate wave function evaluated on the flying carpet of quadrature points.
The Schrödinger equation in the semi-classical regime

Hagedorn wavepackets

A splitting method for time integration