Characterization of CLTs for Ergodic Markov Chains via Regeneration

Krzysztof Łatuszyński* Witold Bednorz[†] Rafał Latała[‡]

Keywords: Markov chains, central limit theorems, ergodicity, regeneration.

Abstract. Let $(X_n)_{n\geq 0}$ be a Markov chain on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ with transition kernel P and stationary distribution π . We say that $(X_n)_{n\geq 0}$ is ergodic if

$$\lim_{n \to \infty} \|P^n(x, \cdot) - \pi\|_{tv} = 0, \quad \text{for every} \quad x \in \mathcal{X},$$

where $\|\cdot\|_{tv}$ is the total variation distance.

For a function $g: \mathcal{X} \to \mathbb{R}$ with $\pi g^2 < \infty$, define $S_n = \sum_{i=0}^{n-1} \bar{g}(X_i)$, where $\bar{g} = g - \pi g$. We say that a central limit theorem holds for $(X_n)_{n \ge 0}$ and g if

$$\frac{S_n}{\sqrt{n}} \xrightarrow{d} N(0, \sigma_g^2), \quad \text{for some} \quad \sigma_g^2 < \infty.$$
(1)

CLTs for ergodic Markov chains are of crucial practical importance in sensible implementing of MCMC algorithms and of vital theoretical interest.

However, ergodic chains admit the split chain construction (cf. [2]) with an atom $\check{\alpha} \in \mathcal{X} \times \{0, 1\}$ of positive stationary measure. Let $\sigma_{\check{\alpha}}(0), \sigma_{\check{\alpha}}(1), \ldots$, denote consecutive regeneration times (visits of $(X_n)_{n \ge 0}$ to $\check{\alpha}$). By

 $Z_1, Z_2, ...$

denote consecutive tours between regenerations. $Z_1, Z_2, ...$ are identically distributed random variables. We present the following

Theorem 0.1. A CLT holds for $(X_n)_{n \ge 0}$ and g, if and only if, $EZ_1^2 < \infty$.

References

- Bednorz W., Latała R., Łatuszyński K. (2008). A Regeneration Proof of the Central Limit Theorem for Uniformly Ergodic Markov Chains. Electronic Communications in Probability, 13, 85–98.
- [2] Meyn S. P., Tweedie R. L. (1993). Markov Chains and Stochastic Stability. Springer-Verlag.

^{*}University of Warwick, UK; E-mail: latuch@gmail.com; (presenting author)

[†]University of Warsaw, Poland; E-mail: w.bednorz@mimuw.edu.pl

[‡]University of Warsaw, Poland; E-mail: wniem@mat.uni.torun.pl