Nonasymptotic bounds on the estimation error for regenerative MCMC^{*}

Wojciech Niemiro

Nicolaus Copernicus University, Toruń, Poland and University of Warsaw, Poland

Let $0 = T_0 < T_1 < \cdots < T_r < \cdots$ be consecutive moments at which Markov chain X_n regenerates. Let π be the stationary distribution. Regenerative estimators of $\theta := \pi(f) = \int \pi(\mathrm{d}x) f(x)$ are of the form

$$\hat{\theta}_r := \frac{\sum_{i=0}^{T_r - 1} f(X_i)}{T_r}.$$

We consider a sequential/regenerative estimator $\hat{\theta}_{R(n)}$, where *n* is fixed and $R(n) := \min\{r : T_r \ge n\}$. We prove bounds on the mean square error of the estimator and the expected value of the stopping time $T_{R(n)}$ (length of simulations). The main assumption is a geometric drift condition towards a small set. The result holds for a general state space and possibly unbounded function f.

Theorem. We have

(i)
$$\mathbb{E} (\hat{\theta}_{R(n)} - \theta)^2 \leq \frac{A_1}{n} \left(1 + \frac{A_2}{n} \right)$$

and

(*ii*) $\mathbb{E}T_{R(n)} \leq n + A_2$.

Constants A_1 and A_2 are explicitly expressed in terms of the quantities which appear in the drift condition.

 $^{^{*}\}mathrm{Work}$ partially supported by Polish Ministry of Science and Higher Education Grant No. N N201387234.