Quasi-randomness and the Spectrum

Amin Coja-Oghlan

Warwick

Quasi-randomness and the spectrum

Outline

- Discrepancy and eigenvalues.
- Proof: duality and Grothendieck.
- Regular partitions.

Discrepancy

Intuition

- Think of a (more or less) regular graph.
- Goal: express that 'edges are spread uniformly'.
- To be generalized later.

Discrepancy

Intuition

- Think of a (more or less) regular graph.
- Goal: express that 'edges are spread uniformly'.
- To be generalized later.

Definition of ε-Disc

- $G=(V, E)$: graph with n vertices.
- $p=|E|\binom{n}{2}^{-1}$ is the density of G.

Discrepancy

Intuition

- Think of a (more or less) regular graph.
- Goal: express that 'edges are spread uniformly'.
- To be generalized later.

Definition of ε-Disc

- $G=(V, E)$: graph with n vertices.
- $p=|E|\binom{n}{2}^{-1}$ is the density of G.
- G has ε-discrepancy (" ε-Disc") if

$$
\left|e(S)-|S|^{2} p / 2\right|<\varepsilon|E| \text { for all } S \subset V
$$

Example: $G=G(n, p)$.

Discrepancy

Definition of ε-Disc

- $G=(V, E)$: graph with n vertices.
- $p=|E|\binom{n}{2}^{-1}$ is the density of G.
- G has ε-discrepancy (" ε-Disc") if

$$
\left|e(S)-|S|^{2} p / 2\right|<\varepsilon|E| \text { for all } S \subset V
$$

Example: $G=G(n, p)$.

Discrepancy

Definition of ε-Disc

- $G=(V, E)$: graph with n vertices.
- $p=|E|\binom{n}{2}^{-1}$ is the density of G.
- G has ε-discrepancy ($" \varepsilon$-Disc") if

$$
\left|e(S)-|S|^{2} p / 2\right|<\varepsilon|E| \text { for all } S \subset V
$$

Example: $G=G(n, p)$.

- Entails that G shares many properties of $G(n, p)$ (Krivelevich, Sudakov 2006).
- But difficult to check.

Eigenvalue separation

Definition of ε-Eig

- G has n vertices and density p.
- Let M be the $V \times V$-matrix

$$
M=p \cdot \mathbf{1}-\text { adjacency matrix }
$$

whose entries are

$$
m_{u v}=p- \begin{cases}1 & \text { if } u, v \text { are adjacent } \\ 0 & \text { otherwise }\end{cases}
$$

Eigenvalue separation

Definition of ε-Eig

- G has n vertices and density p.
- Let M be the $V \times V$-matrix

$$
M=p \cdot \mathbf{1}-\text { adjacency matrix }
$$

whose entries are

$$
m_{u v}=p- \begin{cases}1 & \text { if } u, v \text { are adjacent } \\ 0 & \text { otherwise }\end{cases}
$$

- G has ε-eigenvalue separation if

$$
\|M\|=\max _{\xi:\|\xi\|=1}\|M \xi\|<\varepsilon n p .
$$

Eigenvalue separation

Definition of ε-Eig

- G has n vertices and density p.
- Let M be the $V \times V$-matrix

$$
M=p \cdot \mathbf{1} \text { - adjacency matrix }
$$

- G has ε-eigenvalue separation if

$$
\|M\|=\max _{\xi:\|\xi\|=1}\|M \xi\|<\varepsilon n p .
$$

Proposition (folklore)

ε-Eig $\Rightarrow \varepsilon$-Disc.

$\mathrm{Eig} \Rightarrow$ Disc

Proposition (folklore)

ε-Eig $\Rightarrow \varepsilon$-Disc.

Proof.

Let $\xi=\mathbf{1}_{S}$. Then

$$
\begin{aligned}
|\langle M \xi, \xi\rangle| & =\left|2 e(S)-|S|^{2} p\right| \\
|\langle M \xi, \xi\rangle| & \leq\|M\| \cdot\|\xi\|^{2} \leq \varepsilon n p|S| \leq \varepsilon n^{2} p \leq 2 \varepsilon|E|
\end{aligned}
$$

Eig \Rightarrow Disc

Proposition (folklore)

ε-Eig $\Rightarrow \varepsilon$-Disc.

Proof.

Let $\xi=\mathbf{1}_{S}$. Then

$$
\begin{aligned}
|\langle M \xi, \xi\rangle| & =\left|2 e(S)-|S|^{2} p\right| \\
|\langle M \xi, \xi\rangle| & \leq\|M\| \cdot\|\xi\|^{2} \leq \varepsilon n p|S| \leq \varepsilon n^{2} p \leq 2 \varepsilon|E|
\end{aligned}
$$

Question

ε-Disc $\Rightarrow f(\varepsilon)$-Eig?

Disc \Rightarrow Eig?

In general: no.

Example: $G=G(n, p)$ for $p=1 / \varepsilon n$.

Disc \Rightarrow Eig?

In general: no.

Example: $G=G(n, p)$ for $p=1 / \varepsilon n$.

Dense case (Chung, Graham, Wilson 1989)

If $p>\delta$ for a fixed $\delta>0$, then ε-Disc $\Rightarrow f(\varepsilon)$-Eig.

Disc \Rightarrow Eig?

In general: no.

Example: $G=G(n, p)$ for $p=1 / \varepsilon n$.

Dense case (Chung, Graham, Wilson 1989)

If $p>\delta$ for a fixed $\delta>0$, then ε-Disc $\Rightarrow f(\varepsilon)$-Eig.

Bilu, Linial 2007

Assume G is d-regular and that

$$
\forall S \subset V:\left|e(S)-|S|^{2} p / 2\right| \leq \varepsilon d|S| / 2
$$

Then $f(\varepsilon)$ - Eig holds with $f(\varepsilon)=O(-\varepsilon \ln \varepsilon)$.

New result

'Essential' eigenvalue separation

G has ε-ess-Eig if there is $W \subset V,|W| \geq(1-\varepsilon) n$ such that the minor M_{W} on $W \times W$ satisfies

$$
\left\|M_{W}\right\| \leq \varepsilon n p
$$

New result

'Essential' eigenvalue separation

G has ε-ess-Eig if there is $W \subset V,|W| \geq(1-\varepsilon) n$ such that the minor M_{W} on $W \times W$ satisfies

$$
\left\|M_{W}\right\| \leq \varepsilon n p
$$

Theorem (Alon, ACO, Han, Kang, Rödl, Schacht 2010)

There is a constant $\gamma>0$ such that

$$
\left(\gamma \varepsilon^{2}\right)-\text { Disc } \Rightarrow \varepsilon-\text { ess-Eig. }
$$

The ε^{2} is best possible.

Grothendieck's inequality

The cut norm. . .

\ldots of $B=\left(b_{u v}\right)_{u, v \in V}$ is

$$
\begin{aligned}
\|B\|_{\square}= & \max
\end{aligned} \begin{aligned}
& \sum_{u, v \in V} b_{u v} \xi_{u} \zeta_{v} \\
& \text { s.t. } \\
& \xi_{u}, \zeta_{u} \in\{-1,1\} \text { for all } u \in V
\end{aligned}
$$

Grothendieck's inequality

The cut norm. . .

\ldots of $B=\left(b_{u v}\right)_{u, v \in V}$ is

$$
\|B\|_{\square}=\max \sum_{u, v \in V} b_{u v} \xi_{u} \zeta_{v}
$$

s.t. $\xi_{u}, \zeta_{u} \in\{-1,1\}$ for all $u \in V$.

A relaxation

- Allow unit vectors $\xi_{u}, \zeta_{v} \in \mathbb{R}^{V}$.
- That is, let

$$
\left.\begin{array}{rl}
\operatorname{SDP}(B)= & \max
\end{array} \sum_{u, v \in V} b_{u v}\left\langle\xi_{u}, \zeta_{v}\right\rangle\right)
$$

Grothendieck's inequality

Let

$$
\begin{aligned}
\|B\|_{\square}= & \max \\
& \sum_{u, v \in V} b_{u v} \xi_{u} \zeta_{v} \\
\text { s.t. } & \xi_{u}, \zeta_{v} \in\{-1,1\}
\end{aligned}
$$

$$
\operatorname{SDP}(B)=\max \sum_{u, v \in V} b_{u v}\left\langle\xi_{u}, \zeta_{v}\right\rangle
$$

$$
\text { s.t. }\left\|\xi_{u}\right\|=\left\|\zeta_{u}\right\|=1 \text { for all } u \in V
$$

Grothendieck's inequality

Let

$$
\begin{aligned}
&\|B\|_{\square}= \max \\
& \sum_{u, v \in V} b_{u v} \xi_{u} \zeta_{v} \\
& \text { s.t. } \\
& \xi_{u}, \zeta_{v} \in\{-1,1\} \\
& \operatorname{SDP}(B)= \max \\
& \sum_{u, v \in V} b_{u v}\left\langle\xi_{u}, \zeta_{v}\right\rangle \\
& \text { s.t. }\left\|\xi_{u}\right\|=\left\|\zeta_{u}\right\|=1 \text { for all } u \in V
\end{aligned}
$$

Theorem (Grothendieck 1953)

There is a constant $\theta>1$ such that $\|B\|_{\square} \leq \operatorname{SDP}(B) \leq \theta\|B\|_{\square}$.

The dual problem

- Let $\operatorname{SDP}(B)=\max \sum_{u, v \in V} b_{u v}\left\langle\xi_{u}, \zeta_{v}\right\rangle$ s.t. $\left\|\xi_{u}\right\|=\left\|\zeta_{u}\right\|=1$.
- This is a linear problem on the cone of PSD matrices:

$$
\begin{array}{rll}
\operatorname{SDP}(B)= & \max & \frac{1}{2}\left\langle\left(\begin{array}{cc}
0 & B \\
B & 0
\end{array}\right), X\right\rangle \\
& \text { s.t. } & \operatorname{diag}(X)=1, X \geq 0
\end{array}
$$

The dual problem

- Let $\operatorname{SDP}(B)=\max \sum_{u, v \in V} b_{u v}\left\langle\xi_{u}, \zeta_{v}\right\rangle$ s.t. $\left\|\xi_{u}\right\|=\left\|\zeta_{u}\right\|=1$.
- This is a linear problem on the cone of PSD matrices:

$$
\begin{aligned}
\operatorname{SDP}(B)= & \max
\end{aligned} \frac{1}{2}\left\langle\left(\begin{array}{cc}
0 & B \\
B & 0
\end{array}\right), X\right\rangle .
$$

- The dual problem reads

$$
\begin{aligned}
& \operatorname{DSDP}(B)= \min \langle\mathbf{1}, y\rangle \\
& \text { s.t. } \\
& \frac{1}{2}\left(\begin{array}{cc}
0 & B \\
B & 0
\end{array}\right) \leq \operatorname{diag}(y), y \in \mathbb{R}^{2 n} .
\end{aligned}
$$

- We have $\operatorname{SDP}(B)=\operatorname{DSDP}(B)$.

The dual problem

- The dual problem reads

$$
\begin{aligned}
\operatorname{DSDP}(B)= & \min \\
& \text { s.t. } \\
& \frac{1}{2}\left(\begin{array}{cc}
0 & B \\
B & 0
\end{array}\right) \leq \operatorname{diag}(y), y \in \mathbb{R}^{2 n} .
\end{aligned}
$$

- We have $\operatorname{SDP}(B)=\operatorname{DSDP}(B)$.

Proposition

$$
\operatorname{DSDP}(B)=n \cdot \min _{z \in \mathbb{R}^{n}, z \perp \mathbf{1}} \lambda_{\max }\left[\left(\begin{array}{cc}
0 & B \\
B & 0
\end{array}\right)-\operatorname{diag}\binom{z}{z}\right] .
$$

Resuming the proof

Let $M=p \cdot \mathbf{1}$-adjacency matrix of G.

Resuming the proof

Let $M=p \cdot \mathbf{1}$-adjacency matrix of G.

Goal

$\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow \operatorname{ess}-\operatorname{Eig}(\varepsilon)$.

Proof outline

(1) G has $\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow\|M\|_{\square} \leq 10 \gamma \varepsilon^{2} n^{2} p$ (easy).
(2) Grothendieck $\Rightarrow \operatorname{SDP}(M)$ is small.
(3) SDP duality $\Rightarrow \operatorname{DSDP}(M)$ is small.
(9) DSDP $\rightsquigarrow G$ has ess- $\operatorname{Eig}(\varepsilon)$.

$\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow \operatorname{ess}-\operatorname{Eig}(\varepsilon)$

- If G has $\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \ldots$
- ... then $\operatorname{SDP}(M) \leq 10 \theta \cdot \gamma \varepsilon^{2} n^{2} p$ (Grothendieck).

$\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow \operatorname{ess}-\operatorname{Eig}(\varepsilon)$

- If G has $\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \ldots$
- ... then $\operatorname{SDP}(M) \leq 10 \theta \cdot \gamma \varepsilon^{2} n^{2} p$ (Grothendieck).

The dual SDP

We have

$$
\operatorname{SDP}(M)=n \cdot \min _{z \in \mathbb{R}^{n}, z \perp \mathbf{1}} \lambda_{\max }\left[\left(\begin{array}{cc}
0 & M \\
M & 0
\end{array}\right)-\operatorname{diag}\binom{z}{z}\right] .
$$

$\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow \operatorname{ess}-\operatorname{Eig}(\varepsilon)$

- If G has $\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \ldots$
- ... then $\operatorname{SDP}(M) \leq 10 \theta \cdot \gamma \varepsilon^{2} n^{2} p$ (Grothendieck).

The dual SDP

We have

$$
\operatorname{SDP}(M)=n \cdot \min _{z \in \mathbb{R}^{n}, z \perp \mathbf{1}} \lambda_{\max }\left[\left(\begin{array}{cc}
0 & M \\
M & 0
\end{array}\right)-\operatorname{diag}\binom{z}{z}\right] .
$$

Hence, there is $z \perp \mathbf{1}$ such that

$$
\lambda_{\max }\left[\left(\begin{array}{cc}
0 & M \\
M & 0
\end{array}\right)-\operatorname{diag}\binom{z}{z}\right]<\frac{\varepsilon^{2} n p}{64}
$$

$\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow \operatorname{ess}-\operatorname{Eig}(\varepsilon)$

There is $z \perp \mathbf{1}$ such that $\lambda_{\max }\left[\left(\begin{array}{cc}0 & M \\ M & 0\end{array}\right)-\operatorname{diag}\binom{z}{z}\right]<\varepsilon^{2} n p / 64$.

- Let $W=\left\{v:\left|z_{v}\right|<\varepsilon n p / 8\right\}$.
- Goal: $\left\|M_{W}\right\| \leq \varepsilon n p$ and $|W| \geq(1-\varepsilon) n$.

$\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow \operatorname{ess}-\operatorname{Eig}(\varepsilon)$

There is $z \perp \mathbf{1}$ such that $\lambda_{\max }\left[\left(\begin{array}{cc}0 & M \\ M & 0\end{array}\right)-\operatorname{diag}\binom{z}{z}\right]<\varepsilon^{2} n p / 64$.

- Let $W=\left\{v:\left|z_{v}\right|<\varepsilon n p / 8\right\}$.
- Goal: $\left\|M_{W}\right\| \leq \varepsilon n p$ and $|W| \geq(1-\varepsilon) n$.
- We have

$$
\frac{1}{4}\left\|M_{W}\right\| \leq \lambda_{\max }\left(\begin{array}{cc}
0 & M_{W} \\
M_{W} & 0
\end{array}\right)
$$

$\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow \operatorname{ess}-\operatorname{Eig}(\varepsilon)$

There is $z \perp \mathbf{1}$ such that $\lambda_{\max }\left[\left(\begin{array}{cc}0 & M \\ M & 0\end{array}\right)-\operatorname{diag}\binom{z}{z}\right]<\varepsilon^{2} n p / 64$.

- Let $W=\left\{v:\left|z_{v}\right|<\varepsilon n p / 8\right\}$.
- Goal: $\left\|M_{W}\right\| \leq \varepsilon n p$ and $|W| \geq(1-\varepsilon) n$.
- We have

$$
\begin{aligned}
\frac{1}{4}\left\|M_{W}\right\| & \leq \lambda_{\max }\left(\begin{array}{cc}
0 & M_{W} \\
M_{W} & 0
\end{array}\right) \\
& \leq \lambda_{\max }\left[\left(\begin{array}{cc}
0 & M_{W} \\
M_{W} & 0
\end{array}\right)-\operatorname{diag}\binom{z_{W}}{z_{W}}\right]+\left\|\operatorname{diag}\left(z_{W}\right)\right\|
\end{aligned}
$$

$\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow \operatorname{ess}-\operatorname{Eig}(\varepsilon)$

There is $z \perp \mathbf{1}$ such that $\lambda_{\max }\left[\left(\begin{array}{cc}0 & M \\ M & 0\end{array}\right)-\operatorname{diag}\binom{z}{z}\right]<\varepsilon^{2} n p / 64$.

- Let $W=\left\{v:\left|z_{v}\right|<\varepsilon n p / 8\right\}$.
- Goal: $\left\|M_{W}\right\| \leq \varepsilon n p$ and $|W| \geq(1-\varepsilon) n$.
- We have

$$
\begin{aligned}
\frac{1}{4}\left\|M_{W}\right\| & \leq \lambda_{\max }\left(\begin{array}{cc}
0 & M_{W} \\
M_{W} & 0
\end{array}\right) \\
& \leq \lambda_{\max }\left[\left(\begin{array}{cc}
0 & M_{W} \\
M_{W} & 0
\end{array}\right)-\operatorname{diag}\binom{z_{W}}{z_{W}}\right]+\left\|\operatorname{diag}\left(z_{W}\right)\right\| \\
& \leq \lambda_{\max }\left[\left(\begin{array}{cc}
0 & M \\
M & 0
\end{array}\right)-\operatorname{diag}\binom{z}{z}\right]+\left\|\operatorname{diag}\left(z_{W}\right)\right\| \leq \frac{\varepsilon n p}{4} .
\end{aligned}
$$

$\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow \operatorname{ess}-\operatorname{Eig}(\varepsilon)$

There is $z \perp \mathbf{1}$ such that $\lambda_{\max }\left[\left(\begin{array}{cc}0 & M \\ M & 0\end{array}\right)-\operatorname{diag}\binom{z}{z}\right]<\varepsilon^{2} n p / 64$.

- Let $W=\left\{v:\left|z_{v}\right|<\varepsilon n p / 8\right\}$.
- To do: Show that $|W| \geq(1-\varepsilon) n$.

$\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow \operatorname{ess}-\operatorname{Eig}(\varepsilon)$

There is $z \perp \mathbf{1}$ such that $\lambda_{\max }\left[\left(\begin{array}{cc}0 & M \\ M & 0\end{array}\right)-\operatorname{diag}\binom{z}{z}\right]<\varepsilon^{2} n p / 64$.

- Let $W=\left\{v:\left|z_{v}\right|<\varepsilon n p / 8\right\}$.
- To do: Show that $|W| \geq(1-\varepsilon) n$.
- Let $S=\left\{v: z_{v}<0\right\}$ and $\xi=\mathbf{1}_{S}$.
- Then

$$
\begin{aligned}
\frac{\varepsilon^{2} n p|S|}{32} & =\frac{\varepsilon^{2} n p}{64}\left\|\binom{\xi}{\xi}\right\|^{2} \\
& \geq\left\langle\left[\left(\begin{array}{cc}
0 & M \\
M & 0
\end{array}\right)-\operatorname{diag}\binom{z}{z}\right] \cdot\binom{\xi}{\xi},\binom{\xi}{\xi}\right\rangle \\
& =2\langle M \xi, \xi\rangle-2 \sum_{v \in S} z_{v}
\end{aligned}
$$

$\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow \operatorname{ess}-\operatorname{Eig}(\varepsilon)$

There is $z \perp \mathbf{1}$ such that $\lambda_{\max }\left[\left(\begin{array}{cc}0 & M \\ M & 0\end{array}\right)-\operatorname{diag}\binom{z}{z}\right]<\varepsilon^{2} n p / 64$.

- Let $W=\left\{v:\left|z_{v}\right|<\varepsilon n p / 8\right\}$.
- To do: Show that $|W| \geq(1-\varepsilon) n$.
- Let $S=\left\{v: z_{v}<0\right\}$ and $\xi=\mathbf{1}_{S}$.
- Hence,

$$
\sum_{v \in S}\left|z_{v}\right| \leq \frac{\varepsilon n^{2} p}{64}+|\langle M \xi, \xi\rangle| \leq \frac{\varepsilon n^{2} p}{32}
$$

because $|\langle M \xi, \xi\rangle| \leq\|M\|_{\square} \leq \frac{\varepsilon n^{2} p}{64}$.

$\operatorname{Disc}\left(\gamma \varepsilon^{2}\right) \Rightarrow \operatorname{ess}-\operatorname{Eig}(\varepsilon)$

There is $z \perp \mathbf{1}$ such that $\lambda_{\max }\left[\left(\begin{array}{cc}0 & M \\ M & 0\end{array}\right)-\operatorname{diag}\binom{z}{z}\right]<\varepsilon^{2} n p / 64$.

- Let $W=\left\{v:\left|z_{v}\right|<\varepsilon n p / 8\right\}$.
- To do: Show that $|W| \geq(1-\varepsilon) n$.
- Let $S=\left\{v: z_{v}<0\right\}$ and $\xi=\mathbf{1}_{S}$.
- Since $z \perp 1$, we get $\sum_{v \in V}\left|z_{v}\right| \leq \frac{\varepsilon n^{2} p}{16}$.
- Thus, $|V \backslash W| \leq \varepsilon n / 2$

Extension: general degree distributions

- Let $G=(V, E)$ be a graph with degree sequence $\left(d_{v}\right)_{v \in V}$.
- For $S \subset V$ define $\operatorname{vol}(S)=\sum_{v \in S} d_{v}$.

Discrepancy revisited

G has $\operatorname{Disc}(\varepsilon)$ if for all $S \subset V\left|e(S)-\frac{\operatorname{vol}^{2}(S)}{2 \operatorname{vol}(V)}\right| \leq \varepsilon \operatorname{vol}(V) / 2$.

Extension: general degree distributions

- Let $G=(V, E)$ be a graph with degree sequence $\left(d_{v}\right)_{v \in V}$.
- For $S \subset V$ define $\operatorname{vol}(S)=\sum_{v \in S} d_{v}$.

Discrepancy revisited

G has $\operatorname{Disc}(\varepsilon)$ if for all $S \subset V\left|e(S)-\frac{\operatorname{vol}^{2}(S)}{2 \operatorname{vol}(V)}\right| \leq \varepsilon \operatorname{vol}(V) / 2$.

Intuition

$\frac{\operatorname{vol}^{2}(S)}{2 \mathrm{vol}(V)}=$ expected number of edges in a random graph.

Extension: general degree distributions

- Let $G=(V, E)$ be a graph with degree sequence $\left(d_{v}\right)_{v \in V}$.
- For $S \subset V$ define $\operatorname{vol}(S)=\sum_{v \in S} d_{v}$.

Discrepancy revisited

G has $\operatorname{Disc}(\varepsilon)$ if for all $S \subset V\left|e(S)-\frac{\operatorname{vol}^{2}(S)}{2 \operatorname{vol}(V)}\right| \leq \varepsilon \operatorname{vol}(V) / 2$.

The normalized Laplacian. . .

\ldots of G is the matrix $L=\left(\ell_{v w}\right)_{v, w \in V}$ with

$$
\ell_{v w}=\left\{\begin{array}{cl}
1 & \text { if } v=w \text { and } d_{v} \geq 1 \\
-1 / \sqrt{d_{v} d_{w}} & \text { if } v, w \text { are adjacent } \\
0 & \text { otherwise }
\end{array}\right.
$$

Extension: general degree distributions

- Let $G=(V, E)$ be a graph with degree sequence $\left(d_{v}\right)_{v \in V}$.
- For $S \subset V$ define $\operatorname{vol}(S)=\sum_{v \in S} d_{v}$.

Discrepancy revisited

G has $\operatorname{Disc}(\varepsilon)$ if for all $S \subset V\left|e(S)-\frac{\operatorname{vol}^{2}(S)}{2 \operatorname{vol}(V)}\right| \leq \varepsilon \operatorname{vol}(V) / 2$.

Eigenvalues revisited

G has ess- $\operatorname{Eig}(\varepsilon)$ if there is $W \subset V, \operatorname{vol}(W) \geq(1-\varepsilon) \operatorname{vol}(V)$ such that

$$
1-\varepsilon \leq \lambda_{2}\left(L_{W}\right) \leq \lambda_{\max }\left(L_{W}\right) \leq 1+\varepsilon
$$

Extension: general degree distributions

- Let $G=(V, E)$ be a graph with degree sequence $\left(d_{v}\right)_{v \in V}$.
- For $S \subset V$ define $\operatorname{vol}(S)=\sum_{v \in S} d_{v}$.

Discrepancy revisited

G has $\operatorname{Disc}(\varepsilon)$ if for all $S \subset V\left|e(S)-\frac{\operatorname{vol}^{2}(S)}{2 \operatorname{vol}(V)}\right| \leq \varepsilon \operatorname{vol}(V) / 2$.

Theorem (Alon, ACO, Han, Kang, Rödl, Schacht 2010)
There is a constant $\gamma>0$ such that $\operatorname{Disc}\left(\gamma \varepsilon^{2}\right)$ implies ess- $\operatorname{Eig}(\varepsilon)$.

Summary

- A spectral characterization of discrepancy.
- Off-spin: an eigenvalue minimization problem.
- Extends to general degree distributions.
- Corresponding regular partitions approximate a given graph by 'a few' quasi-random ones.
- They exist on bounded graphs.

