
ALGORITHMS IN NETWORKS:
Computational tools for network research

Eduardo López
CABDyN Complexity Centre

University of Oxford

January 2011: University of Warwick

Some Basic Notation and Functions
• Pseudocode:

- Loops: for (either counter or set element)
- C or Python like
- Approximation of true code (details missing)

• Auxiliary functions:
- rand: uniform random number between 0 and 1
- intrand(a,b): uniform random integer between a and b- intrand(a,b): uniform random integer between a and b
- min/max({ Q}): element of minimum value from set Q

- min/max(f({ Q})): element of minimum value f from set Q

• Symbols:
- ∅: Empty set
- { x}: Set element x
- (i,j): Link between i and j

Something about data structure
• This is a practical choice: Usual trade-off

Higher memory use
&

Lower CPU time
VS

Lower memory use
&

Higher CPU time

• Another trade-off

Complex data structure
& VS

Simple data structure
&&

Better performance
VS &

Worse performance

• Some basic possibilities:
- Use adjacency matrices (thus use matrix data structure)
- Use adjacency lists (effectively combination of 1-d arrays)
- Ex: arrays in C, lists and dictionaries in Python.
- Always consider network packages (e.g. networkx, igraph) BUT TEST!

Writing your code
• Analyze your problem in detail and decide on algorithms needed

• Consider combination of own + downloaded code.

• Test your code with every conceivable case within reason!
- Look for cases that can be also be solved by hand
- Check quantities that should be preserved
- Test for memory and performance

• Consider making your code modular for future use.

- Test for memory and performance
- Check results against intuition

• Document your code, also for future use, or checking of results.

Network construction I
Subroutine ER vers. 1

Pseudocode:
ER1(n,φ) ->G=(N,Λ):
Input:

• Create network data structure
• Scan through all possible links
• Add a link if rand<φ

Input:
- n: Number of nodes
- φ: Link density wrt n(n-1)/2
Output:
- G: Network
Procedure:
- node set N={1,…,n}
- link set Λ=«
- for i=1,n {
- for j=i+1,n {
- if (rand<φ): Λ<-Λ»(i,j) }}
- return(G=(N,Λ))

Network construction I
Subroutine ER vers. 2

Pseudocode:
ER2(n,φ)->G=(N,Λ):
Input:
- n: Number of nodes
- φ: Link density wrt n(n-1)/2
Output:
- G: Network

Use knowledge of ER to optimize:
• For node i, draw number k from:

• For node i draw k random
integers j∫i between 1 and n.
• Each random number is used to

pk = e−zzk /k! ; z≡ nφ

- G: Network
Procedure:
- node set N={1,…,n}
- link set Λ=«
- z=(n-1) φ
- for i=1,n {
- k<-pk
- for uj=1,k{
- Λ<-Λ∪(i,j) }}
- return(G=(N,Λ))

This algorithm works because 2

1
~]),(&),(Prob[draw

n-

z
ijji

But number of steps ~ n z

• Each random number is used to
create link (i,j).
• After running over all nodes,
eliminate repeated links.

{ k1 = 2,k2 =1,k3 = 3,k4 = 2,k5 =1,k6 =1}
1) Degree sequence:

3

31

1

2

3

4

4 65

2) Create copies according to degree sequence:

3) Interconnect copies randomly with no self- or repeated connections

Network Construction: Configuration model

3
41

2
5

6
3

41

2
5

6

Example 1: Example 2:

3) Interconnect copies randomly with no self- or repeated connections

• Check degree sequence can create G

Network Construction: Configuration model

Pseudocode:
CM({ki})->G=(N,Λ):
Input:
- {ki}i=1,…,n: Degree sequence
Output:
- G: Network
Procedure:
- K= «
- link set Λ=«
- for i=1,n {

Pseudocode:
Mix(K0)->Λ:
Input:
- K0: Element List
Output:
- Λ: Link set
Procedure:
- K = K0
- while K≠ « {
- K=K0
- Λ= «- for i=1,n {

- for j =1,ki {
- K<-K∪{i} }}
- Λ<-Mix(K)
- return(G=(N,Λ))

NOTE: {ki} Must be checked
for consistency

- Λ= «

- for x in K {
- y=intrand(K-{x})
- while [(x,y) ∈ Λ] OR [x=y]{
- K’ <- K’(<-K) - {y}
- y=intrand(K’)
- if (K’= «): restart Mix}
- Λ <− Λ ∪ {(x,y)}
- K<-K-{x,y} }}
- return(Λ)

• Conserves P(k)

• Does not guarantee connected network

Randomization of real networks
• Hypothesis:

- Real networks typically display unique features compared to random

• How to test this statement?
- Key: “compared to random.” What does this mean?

• Usually, we seek networks displaying atypical features.
These features are signature of special behavior in network.These features are signature of special behavior in network.

• Main difficulty: choose network ensemble with which to compare
network of interest.

• Some possibilities: From original network “turn off” (or on)
characteristics one at a time.

• Many network studies use P(k) conserved

Randomization of real networks (cont)

• Example: Assortativity
of social networks- What is my
friend’s average degree?

• In general, social networks tend
to be assortative, technogical
and biological disassortative

Episims data, large contact users

∑
′

′′
=

k
neigh k

kkPk
kk

)|(
)(neigh

• Assortativity is measured as:

Episims: high resolution agent based
simulation of Portland, OR, USA • Assortativity reflects how nodes

link together, independent of P(k)

Randomization of real networks (cont)

Pseudocode:
RN(G) -> H
Input:
- G: Original network

Output:
- H: Randomized network

Procedure:
- H <- G
- for i=1,s x L {

• Link exchange randomization

• Conserves P(k)

a

x

b

y

⇒
a

x

b

y

or
a

x

b

y

• Does not guarantee connectivity- for i=1,s x L {
- do {
- e1,e2=randint(L),randint(L-1)
- ne1 <- (e1,o,e2,f)
- ne2 <- (e2,o,e1,f)
- until CNTC(H)=True }}
- return(H)

• Does not guarantee connectivity

• Costly due to connectivity check
(using routine CNTC (True or False)

• To randomize, choose s so expected
of times choosing last link is ≥1.
This generally implies s ~ 2 or 3
(estimate s using negative binomial
distribution).

Connectivity Check
• Basic routine. Can be done directly, with Dijkstra, other ways.
• One option is burning algorithm:

from any starting node, visit all
neighbors of visited nodes at
each time step.

1

2

3

4

1

2

3

4

Pseudocode:
CNTC(G,s) -> (True,False)
Input:
- G: Network
- s: Source node
Output:
- True,False: G connected or not
Procedure:
- BF <- {s}

• By-product: link-count path length

• AKA: Snowball sampling in
population statistical studies

1

2

3

4

1

2

3

4

- BF <- {s}
- V <- {s}
- while BF ≠ « {
- NBF = «
- for u in BF {
- for v in neighbors(u) {
- if v not in V {
- V <- V ∪ {v}
- NBF <- NBF ∪ {v} }}}
- BF <- NBF }
- return(True if V={1,..,n}, else False)

• Trivial change returns componentCNTComp

Bipartite Networks and Randomization

• Some networks are naturally (or can be related to) bipartite structures

1

2

3

A

B

People Movies
watched

• Projected networks can be created:

1

2

3 6

7

A

B

C D

E

3

4

5

6

C

D

4 5

7

E

C D

• Objects do not connect directly, but through
particular feature⇔Important for randomization

• Examples: Recommendation networks,
collaboration networks, genetic diseases, etc.

Bipartite Networks and Randomization (cont)
• Algorithm logic⇔preserves degree of people and movies

1

2

3

A

B

Original network Sever connections Rewire randomly

1

2

3 6

7
1

2

3

A

B

1

2

3

A

B

3

4

5

6

C

D

7

E

4 5

A

B

C D

E

3

4

5

6

C

D

7

E

3

4

5

6

C

D

7

E

Bipartite Networks and Randomization (cont)
Pseudocode

BR(G) -> H
Input:
- G: Original bipartite network
Output:
- H: Randomized bipartite network
Procedure:
- Bipartite degree seqs. {ki},{mj} <- G
- K = ∅
- M = ∅
- for i=1,n {

Pseudocode:
MixB(K0,M0) -> Λ:
Input:
- K0,M0: Degree sequences
Output:
- Λ: Randomized links
Procedure:
- while K≠ « {
- K,M=K0,M0
- Λ= «

- for x in K {- for i=1,na {
- for q=1,ki {
- K <- {i} }}
- for j=1,nb {
- for q=1,mj {
- M <- {j} }}
- Λ <- MixB(K,M)
- return(H(Λ))

• Bipartite graph: na nodes of classa, nb of b
• Conserves degree distributionsPa(ki) & Pb(mj)

- for x in K {
- y=intrand(M)
- while [(x,y) ∈ Λ]{
- M’ <- M’(<-M) - {y}
- y=intrand(M’)
- if (M’= «): restart MixB}
- Λ <− Λ ∪ {(x,y)}
- K <- K - {x},M<- M - {y} }}
- return(Λ)

• Does not guarantee connected network

Path length and Dijkstra’s algorithm
• Algorithm based on breath-first search strategy:
- Start at source node [optimal: end at destination node]; cost to reach=0
- Visit all source node neighbors
- Each node is given updated cost to be reached (undefined before)
- Pick lowest cost node and visit its neighbors. Mark node as ‘solved’
- Continue until making all nodes (or destination node) as ‘solved’.

10
1 10

10
8 14

10
1 1

• Example:

0

10

5

2

2

7
3 9

64 0

10

5

10

5

2
7

3 9
64 0

8

5

14

7

10

5

2
7

3 9
64

2 2

0

8

5

13

7

10

5

2
7

3 9
64

2

1

0

8

5

9

7

10

5

2
7

3 9
64

2

1

0

8

5

9

7

10

5

2
7

3 9
64

2

1

Path length and Dijkstra’s algorithm
Pseudocode:
Dijkstra(G,s,[d])->w({N})
Input:
- G: Network
- s: source node
- d: destination node
Output:
- w({N}): cost/distance to node set N
Procedure:
- Q <- {s}
- w(s) = 0

• Notes:
- For simple link count distance

take each link weight w(u,v)=1

- If only interested in s to d
distance/cost: i) introduce exit
clause after finding u=d, ii)
adjust return to desired output.- w(s) = 0

- while Q ≠ « {
- u <- min(w({Q}))
- Q <- Q - {u}
- for v in neighbors(u) {
- if (w(u)+w(u,v)<w(v)) {
- Q <- Q ∪ {v}
- w(v) = w(u)+w(u,v) }}
- return(w({N}))

adjust return to desired output.
- By definition of ∪, Q <- Q ∪ {v} does

not lead to element duplication in Q.
- Care necessary in function min(w({Q}))

to achieve optimal performance.

Betweenness: Definitions
• Notion of Betweenness: for a set of paths, measure
counting number visiting to a node or link, i.e.,
way to measure node/link relevance in
communication mediated by path set.

• Some specific definitions:
- Shortest path betweenness: Single shortest path,

all shortest paths, count/ignore end nodes.

• Example:
Newman link
(shortest path
betweenness due
to paths to node s)

s
11/6 25/6

5/6
all shortest paths, count/ignore end nodes.

- Optimal path betweenness: On weighted network,
use optimal paths to calculate betweenness. Same
options as before.

• Several algorithms depending on definition.
Newman link/node common choice in un-weighted
networks, optimal path in weighted networks.

5/6
5/6

7/3

2/3 1/3
1

To calculate total
betweenness,
one must loop
over all nodes
as sources and
add results.

Betweenness: Newman link algorithm
• Based on Breath First Search strategy.
• Looping over all sources s, find betweenness due to paths to s

• First find all paths reaching a node, then backtrack to find betweenness.
• Example:

s (ds=0,ws=1)

-Outbound trip: define variables d (distance) & w (weight) on all nodes.
w represents # of distinct paths⇒gives relative importance of path.

(0,1)s

(1,1) (1,1)
(0,1)s

(1,1) (1,1)

(2,2) (2,1)

(0,1)s

(1,1) (1,1)

(2,1)

-Per step:
d=d+1

=# of dist. (2,2) (2,1) (2,2) (2,1)

(3,1)(3,3)

w=# of dist.
paths

s

1

1
1+ 1

3
+ 1

1

1/1

1/1

1/3

-Find weight ratios
w(d-1)/w(d)

s

Weight
Ratio =2/3

1/11/3

1/1

1/11/1

1/2 1/2

-Backtrack from d larger to s

be = w(d −1)

w(d)
(1+ b ′ e

′ e ∈farther

∑)

s

1/1
1/32/3

7/3
5/6

5/6

25/611/6

-For source s,
betweenness are

Betweenness: Newman link algorithm (cont)
Pseudocode:
FirstRun(G,s) -> W,D
Input:
- G: Network
- s: Source node

Output:
- W: Node weights
- D: Node distance from s

Procedure:
- D(s)=0,W(s)=1
- BF <- {s}

Pseudocode:
NLBs(G,s) -> {be}s
Input:
- G: Network
- s: Source node

Output:
- {be}s: Link betweennesses from s

Procedure:
- W,D <- FirstRun(G,s)

• Focus on single source code

- BF <- {s}
- while BF≠∅ {
- NBF=∅
- for u in BF {
- for i in neighbors(u) {
- if D(i) undefined {
- D(i)=D(u)+1
- W(i)=W(u)
- NBF <- NBF ∪ {i}
- else if D(i)=D(u)+1 {
- W(i)=W(i)+W(u) }}}
- BF <- NBF
- return(W,D)

- W,D <- FirstRun(G,s)
- for e in Λ { {be=wi/wj}s } [D(j)=D(i)+1]
- ri=∑j be(=(i,j)) [D(j)=Dmax (leaves)]
- for i in D-Dmax-1 { (D ordered from far to s) {
- for j in neighbor(i) and D(j)=D(i)+1 {
- {be=be x (1+rj)}s }
- ri=∑j be(=(i,j)) }
- return({be}s)

Betweenness in single path case: Algorithm
• Consider case of single paths

• Consider notion of predecessors, i.e., node/link
visited on way forward. Define p[V] of node set

0

5

• Most networks have multiple paths, e.g. 0 to 5

3

• At 3, how to choose? Approach: If paths equivalent,
choose predecessor randomly. In this case: 1 or 2.

0
6

4

1 2

p(1)=0 0 0 0 0 0

5

3

1 2

4

6

p(1)=0 0 0 0 0 0

21,21,2 2

3 4

• By returning via predecessors, we obtain (another) non-normalized
betweenness. Two results (Is that it?):3 3

1

2

1

2
0

1 4

1

2

1

0
2

Betweenness (cont)
Pseudocode:
FirstRunPre(G,s) -> P,D
Input:
- G: Network
- s: Source node

Output:
- P: Predecessor sets
- D: Node distance from s

Procedure:
- D(s)=0,P(s)=«
- BF <- {s}

Pseudocode:
LBSPs(G,s) -> {be}s
Input:
- G: Network
- s: Source node

Output:
- {be}s: Link betweennesses from s

Procedure:

• Focus on single source code
(no weights in this case):

- BF <- {s}
- while BF≠∅ {
- NBF=∅
- for u in BF {
- for i in neighbors(u) {
- if D(i) undefined {
- D(i)=D(u)+1
- P(i) <- P(i) ∪ {u}
- NBF <- NBF ∪ {i}
- else if D(i)=D(u)+1 {
- P(i) <- P(i) ∪ {u} } }}
- BF <- NBF
- return(P,D)

Procedure:
- P,D <- FirstRunPre(G,s)
- {be}s = 0
- {ri}=0
- for i in D { (i ordered from Dmax to s) {
- j < - intrand(|P(i)|)
- be=(i,j) =be=(i,j) + 1 + ri
- rj = rj + be=(i,j) }
- return({be}s)

Percolation: Basic theory of network connectivity

p S(p) i

j

l ij

l’ ij=pc Ndf/d

1 N
<1 P

∞
N

<pc log N

p: occupied fraction of links

l’’ ij

• What is minimum condition
for network to allow traffic?
=To be connected

• How much degradation
can network accept before
connection is lost?
= percolation threshold

p: occupied fraction of links

P
∞
: probability of random

node to be in largest cluster
pc: connectivity threshold

df: fractal dim., d dim.Transition:

disconnected

connected
↓

Log N

L
og

 S

p<pc

p=pc

p>pc

Slope df /d

Slope 1

Logarithmic

0 1
p

0
P

pc

1

L
og

ar
ith

m
ic

Linear

F
ra

ct
al

= percolation threshold

Percolation: Some algorithms
• Most relevant percolation algorithms related to previous slides

• Some important Percolation quantities: i) percolation threshold pc,
ii) dist. of connected cluster sizes, iii) Size S(p) of largest cluster vs. p

Pseudocode:
LPercolate(G, pf) -> {Hi}
Input:
- G: Original network
- pf: Final link density

Pseudocode:
FindClusts(G) -> {Gi}
Input:
- G: Network

Output:- pf: Final link density
Output:
- {Hi}: Connected clusters set
Procedure:
- for l=1,nlr [= L x (1-pf)] {
- e=rand(Λ)
- Λ <- Λ - {e}
- {Hi (l)} <- FindClusts(G(l)) }
- return({Hi} [full history or final])

Output:
- {Gi}: Connected clusters

Procedure:
- V <- ∅
- Gset <- ∅
- while V≠ N {
- v=rand(N)
- Gset <- Gset ∪ CNTComp(G,v)
- V <- V - CNTComp(G,v) }
- return(Gset)

Minimum Spanning Tree
• Weighted networks can be simplified to minimal connected (spanning) tree
• MST is generalization of “all pairs shortest path tree” to weighted networks
• Determined through Prim’s or Kruskal’s algorithms
• Example:

10

5

2

2

7

9
6

1

1

Pseudocode:
Prim(G,s) -> MST
Input:
- G: Network
- s: source node

Output:

Pseudocode:
MintoNewN(G,V) -> i
Input:
- G: Network
- V: nodes already visited

Ouput:

5

2

2

1

10

5

2

2

7

9
6

1 Output:
- MST

Procedure:
- V <- {s}
- while V≠N {
- inew <- MintoNewN(G,V)
- V <- V ∪ {inew} }
- return(V)

Ouput:
- i: New node through min link

Procedure:
- Λnew <- LinksNew(G,V)
- enew [=(iold,inew)] <- min(Λnew)
- return(inew)

• Function LinksNew compares G
with nodes found (V) to extract
only unsued links of nodes in V.

Motifs in Networks
• Question: How many triangles should a network have?
- Well … it depends on the network.

• This illustrates motifs. Real networks may have special structure (e.g. lots
of sub-graphs like triangles, long loops, etc.) but this is a relative statement

• In order to determine statistical significance of special features we must
- Choose and identify the feature
- Define a base case (null/random model) against which to compare

• Definition of Motifs: Structural network features appearing far more • Definition of Motifs: Structural network features appearing far more
(less) than expected compared to a chosen random network model.

• Algorithmic problem:
- Identify desired structural feature in real network (including re-weigh
of multiple identification of same structure/double counting)
- Generate random networks to compare with.
- Identify same features in the random model and determine statistical
significance of features in real network.

Motifs in Networks
• Significance profile: i) choose finite feature set (e.g.)

ii) determine their statistical significance, iii) plot the ratios of the two
…

• Choice of random model is quite relevant. If choice too random, any

R
el

at
iv

e
E

xp
ec

ta
tio

n

…

…
Random flatline=
no stat. significance

• Choice of random model is quite relevant. If choice too random, any
feature in significance profile seems special. If choice too specific,
possibly no feature is significant.
- Sensible approach: add one property at a time to random model.
- Each feature for which significance disappears is likely explained
by newly added property to random model.
- Beware: Large motifs costly to detect due to size.
- Beware 2: Biased motif sampling leads to wrong significance profile.

Motifs in Networks (Wernicke algorithm)
• Enumerate nodes to avoid multiple visits
• Find subgraphs of desired motif size m.

3

98

Example of motif count (m=3) Pseudocode:
CMm(G,m) -> {Mm}
Input:
- G: Network
- m: Size of motifs

Output:
- {Mm}: Subgraphs of size m

Procedure:

3

1 2

98

5

4

6

7

First step:

1 2

5

4

6

7

Procedure:
- for i=1,n (nodes need to be labelled) {
- Vg <- {neighbors(i)}
- {Mm} <- Extend({i},Vg,i) }
- return({Mm})
Extend(Vr,Vg,i) -> {Mm}j (Mm subset)
- if |Vr| = m: return(Vr graph)
- while Vg∫« {
- Vg <- Vg – {u <- intrand(Vg)}
- Vg <- Vg » {light-blue neighbors(u)}
- {Mm}j <- Extend(Vr » {u},Vg,i) }
- return({Mm}j)

5 6

3

1 2

98

5

4

6

7

• Two more steps: identify isomorphic
graphs (nautyalg.), and calculate signif.

Community Detection: Divisive Clustering
• Notion of Communities: Imagine set of nodes in network with more
connections between each other than with rest of network.

• In such cases, one expect betweenness to be larger on links between
communities than links inside communities.

• With this motivation, one can set up community detection algorithms
based on betweenness. This is core idea of Divisive Clustering.

• Algorithm:
- Calculate all link betweennesses

1 2
3- Calculate all link betweennesses

- Remove link with largest betweenness
- Recalculate all betweenness
- Keep track of cluster splits
- Repeat until all links are eliminated

• Outcome: Dendrogram (binary tree)
of network community structure

1 3

3
1 2

1 2
3

1 2 3

Dendrogram:

Community Detection: Divisive Clustering

• Algorithm:

Pseudocode:
DC(G) -> T
Input:
- G: Network
Output:
- T: Dendrogram
Procedure:

• NC(G) counts number of clusters.

• Keeping track of dendrogram
formation requires units to measure
significance of split.

• One can use the density of links
wrt original network as scale

Procedure:
- while Λ∫« {
- {b} <- NLB(G)
- Λ’ <- Λ – Max({b})
- if NC(G’)=NC(G)+1 {
- T <- T » {network split}
- Λ <- Λ’
- return(T)

• Word of caution: Important with
any community detection algorithm
to check the communities produced.
This algorithm is top down ⇒ once
lots of network removed, small scale
is resolved with little information.

Community Detection: Modularity Maximization

• Modularity ()ji
ij

ji
ij cc

L

kk
A

L
Q ,

22

1 δ∑

−=

• Goal: Find communities such that Q is maximized.

• Full enumeration costly ⇒Approximate methods needed, e.g.,
simulated annealing, genetic algorithms, spectral methods, etc.

• In matrix form, modularity , where s is
indicator in bipartitioning of network into communities: si=1 if
node i belongs to community, and s=-1 if it belongs to another.

L

kk
AB

L
Q ji

ijij
T

2
 ,

4

1 −== Bss

node i belongs to community, and si=-1 if it belongs to another.

• By solving eigenvalue problem, with {uj} set of eigenvectors of B,
and {βj} the eigenvalues, ∑

=

•=
n

i
i

T
iL

Q
1

2)(
4

1 βsu

• Bipartitioning network involves maximizing Q through choosing s
to maximize via largest eigenvalue. One first partition is found,
subsequent partitions are found in similar way.

Community Detection: Modularity Maximization
• Goal: Find communities such that Q is maximized.

∑
=

•=
n

i
i

T
iL

Q
1

2)(
4

1 βsu),,,(21 iniii uuu K=u

• uiv >0 or <0. For i=1 such that β1 is largest eigenvalue, choose sv

so that product u1v sv>0 always for all v.

1);,...,,...,(1 ±== vnv sssss

Pseudocode:
Qmax(G,g,s0=(1,…,)) -> s(g)
Input:
- G: Network, g: community
Output:

• Once first division done, each piece may
divide again, provided it adds modularity.

• Generally maximize (g: community)

• Remaining task: find largest eigenvalue

• Use Power method, iterate:
1

1

−

−=
q

q
q

Bx

Bx
x

• Convergence ratio |β2/β1|

Output:
- s: Community selection
Procedure:
- B <- B(g)

- for {

- u1,β1 <- Power(B)
- for v=1,n {sv=sign(u1v)}
- s(1) <- Qmax(G,1,s(g))
- s(2) <- Qmax(G,2,s (g))
- recalculate Q
- until β1≤0 of ∆Q≤0 }
- return(s)

• Generally maximize (g: community)

∑
∈

−=
gk

ikijij
g

ij
gT BBB

L
δ)()(;

4

1
sBs

Flow in Networks: Circuit Analysis
• Networks typically carry flows (information, passengers, viruses,

electrical power, etc.)

• Network structures may evolve as optimized solution to flow

• Flow details can vary, e.g. DC circuits, laminar hydraulic circuits

V

Example: DC circuits-- Find conductance distribution

-Circuits can be homogeneous (r =1 links)∀

3
41

2
5

6

-Circuits can be homogeneous (r =1 links)
and heterogeneous (different r for each link)

r14 -Source(s)/sink(d) choice based on problem

-Find Rsd and/or distribution P(Rsd)

-Apply constant voltage or current

-With change to AC circuit, results relevant
to power grid

Circuit Analysis algorithm

• Solve node potential equations from current conservation

I ij

j ∈Neigh(i)

∑ = 1
rij

(Vi −V j)
j ∈Neigh(i)

∑ = Vi

1
rijj ∈Neigh(i)

∑ −
V j

rijj ∈Neigh(i)

∑ = I i ; ∀i =1,...,n (rij = r ji)

1
r1 jj ∈Neigh(1)

∑ − 1
r12

K − 1
r1n

− 1
r

1
r

∑ K − 1
r

V1

V2

 =

I1
I2

 ⇒

r
λ
r
V =

r
I

• Define Laplacian matrix of network from previous equation
r
λ

r21 r2 jj ∈Neigh(2)

∑
r2n

M M K M

− 1
rn1

− 1
rn2

K
1
rnjj ∈Neigh(2)

∑

M

Vn

=
M

In

 ⇒ λ V = I

• Application of boundary conditions requires conservation of total
current input/output, reducing matrix & specifying some Vi, Ii values

• For all r =1, Laplacian matrix = diagonal degree - adjacency matrix

Circuit Analysis applied to Fungal Networks
• Example: Fungal Networks
- BC: i) One source node, q sink nodes, ii) Growing network dictates

in/out current.

Source
Network growthi) Current conservation: Is = − I i

i ∈sinks

∑

Sinks

ii) Incompresibility of fluid+ growth:I i ∈sinks = ∆Volume/ t

Circuit Analysis applied to Fungal Networks (cont)
• Example: Fungal Networks

Pseudocode
FunFlow(G(t)) ->
Input:
- G(t): Time evolving network

Output:
- : Link currents over time

Procedure:
- for t=1,…,T-1 (T: final time) {
- for e(t) in Λ(t) {

r
I (t)

r
I (t)

• Function g determines current BC
based on link changes. g maybe
global as opposed to local. If so,
loop over edges not necessary but
g more complex.

• Function F is Ohm’s law

- for e(t) in Λ(t) {
- Ieo

(t), Ief
(t) = g(e(t),e(t+1))

- Is(t) = -∑i Ii(t) }
- <- Λ(t)
- <- CircSolve(,{Is(t),Ii(t)})
- }
- return()

r
V (t)

r
I (t) = F(

r
V (t))

r
I (t)

• Routine CircSolve inverts eq.

r
L
r
V =

r
I ⇒

r
V =

r
L −1

r
I

• To invert matrices, alwaysuse
numerical package (do not try
this at home!)

)t(Λ
r

)t(Λ
r

Conclusions
• In writing network algorithms, consider the entire problem

and plan ahead.

• Choose your tools according to the problem and consider different
possibilities before starting to code.

• Test code extensively, either custom made or from a package.

• Writing code is, in general, a practical task and not the goal itself.
Remember this and always be practical: balance the desire/need to
write good code with the time spent on it. Use your best judgement.

