The Frenkel-Kontorova model for quasi-periodic environments of Fibonacci type

Philippe Thieullen
(joint work with E. Garibaldi and S. Petite)
Université Bordeaux 1, Institut de Mathématiques
Ergodic Theory and Dynamical Systems:
Perspectives and Prospects
Warwick, 16-20 April 2012

0. Outline I. Aubry-Mather II. Fibonacci III. Results

Outline

Outline

- I. Minimizing configurations and minimizing measures in Aubry-Mather theory in the periodic case
- II. Quasi-periodic environments of Fibonacci type
- III. A few results on Aubry-Mather theory in the quasi-periodic case

I. Minimizing configurations

I. Minimizing configurations

- Consider a chain of atoms in $\mathbb{R}: x_{n}$ position of the nth atom
- Each atom is in interaction with its nearest neighbours and with an external potential
- The energy at each site is $E\left(x_{n}, x_{n+1}\right)=W\left(x_{n+1}-x_{n}\right)+V\left(x_{n}\right)$

The main problem

The main problem

Problem: Describe the set of configurations with the lowest total energy

$$
E_{t o t}=\sum_{n \in \mathbb{Z}} E\left(x_{n}, x_{n+1}\right) \quad(\text { the total sum is infinite })
$$

The main problem

Problem: Describe the set of configurations with the lowest total energy

$$
E_{t o t}=\sum_{n \in \mathbb{Z}} E\left(x_{n}, x_{n+1}\right) \quad \text { (the total sum is infinite) }
$$

Definition: A configuration $\left\{x_{n}\right\}_{n \in \mathbb{Z}}$ is minimizing in the Aubry sense if

$$
\begin{aligned}
E\left(x_{n}, \ldots, x_{n+k}\right) & :=\sum_{i=0}^{k-1} E\left(x_{n+i}, x_{n+i+1}\right) \\
& \leq E\left(y_{n}, \ldots, y_{n+k}\right)
\end{aligned}
$$

whenever $x_{n}=y_{n}$ and $x_{n+k}=y_{n+k}$, for all $n \in \mathbb{Z}$ and $k \geq 1$

The original Frenkel-Kontorova

The original Frenkel-Kontorova

- The environment $V(x)$ is periodic: (of period 1)

$$
V(x)=\frac{K}{(2 \pi)^{2}}(1-\cos (2 \pi x))
$$

The original Frenkel-Kontorova

- The environment $V(x)$ is periodic: (of period 1)

$$
V(x)=\frac{K}{(2 \pi)^{2}}(1-\cos (2 \pi x))
$$

- The elastic interaction W is quadratic:

$$
W(y-x)=\frac{1}{2}|y-x-\lambda|^{2} \quad\left(-\frac{1}{2} \lambda^{2}\right)
$$

The original Frenkel-Kontorova

- The environment $\boldsymbol{V}(\boldsymbol{x})$ is periodic: (of period 1$)$

$$
V(x)=\frac{K}{(2 \pi)^{2}}(1-\cos (2 \pi x))
$$

- The elastic interaction W is quadratic:

$$
W(y-x)=\frac{1}{2}|y-x-\lambda|^{2} \quad\left(-\frac{1}{2} \lambda^{2}\right)
$$

- A more general framework: $E_{\lambda}(x, y)=E_{0}(x, y)-\lambda(y-x)$
$E_{0}(x, y)$ is of class C^{2}
E_{0} is periodic: $\quad E_{0}(x+1, y+1)=E_{0}(x, y)$
E_{0} is superlinerar: $\lim _{\|y-x\| \rightarrow+\infty} \frac{E_{0}(x, y)}{\|y-x\|}=+\infty$
E_{0} is twist: $\quad \frac{\partial^{2} E_{0}}{\partial x \partial y}<-\alpha<0$

A small part of Aubry theory

A small part of Aubry theory

Theorem (Aubry 1986): (The periodic case)

A small part of Aubry theory

Theorem (Aubry 1986): (The periodic case)

1) There exist minimizing configurations with any prescribed rotation number ρ

$$
\sup _{n \in \mathbb{Z}}\left|x_{n}-x_{0}-n \rho\right|<+\infty
$$

2) All recurrent minimizing configuration admits a rotation number

A small part of Aubry theory

Theorem (Aubry 1986): (The periodic case)

1) There exist minimizing configurations with any prescribed rotation number ρ

$$
\sup _{n \in \mathbb{Z}}\left|x_{n}-x_{0}-n \rho\right|<+\infty
$$

2) All recurrent minimizing configuration admits a rotation number
3) The main idea in the proof: a translation by an integer of a minimizing configuration is still minimizing and cannot cross itself

- It is not any more true in the quasi-periodic case

Mather minimizing measures

Mather minimizing measures

Remark: If $\left\{x_{n}\right\}_{n \in \mathbb{Z}}$ is minimizing in the Aubry sense then

$$
\begin{gathered}
\frac{\partial E}{\partial y}\left(x_{n-1}, x_{n}\right)+\frac{\partial E}{\partial x}\left(x_{n}, x_{n+1}\right)=0, \quad \forall n \\
\left(x_{n}, x_{n+1}\right) \quad \text { can be computed from } \quad\left(x_{n-1}, x_{n}\right)
\end{gathered}
$$

Mather minimizing measures

Remark: If $\left\{x_{n}\right\}_{n \in \mathbb{Z}}$ is minimizing in the Aubry sense then

$$
\begin{gathered}
\frac{\partial E}{\partial y}\left(x_{n-1}, x_{n}\right)+\frac{\partial E}{\partial x}\left(x_{n}, x_{n+1}\right)=0, \quad \forall n \\
\left(x_{n}, x_{n+1}\right) \quad \text { can be computed from } \quad\left(x_{n-1}, x_{n}\right)
\end{gathered}
$$

Definition: A minimizing configuration can be seen as a particular orbit of a dynamical system called Euler-Lagrange dynamics.
Let $v_{n}=x_{n+1}-x_{n}$,

$$
\Phi_{E L}=\left\{\begin{array}{lll}
\mathbb{T}^{1} \times \mathbb{R} & \rightarrow \mathbb{T}^{1} \times \mathbb{R} \\
\left(x_{n}, v_{n}\right) & \rightarrow \quad\left(x_{n+1}=x_{n}+v_{n}, v_{n+1}=v_{n}+V^{\prime}\left(x_{n+1}\right)\right.
\end{array}\right.
$$

Mather minimizing measures

Remark: If $\left\{x_{n}\right\}_{n \in \mathbb{Z}}$ is minimizing in the Aubry sense then

$$
\begin{gathered}
\frac{\partial E}{\partial y}\left(x_{n-1}, x_{n}\right)+\frac{\partial E}{\partial x}\left(x_{n}, x_{n+1}\right)=0, \quad \forall n \\
\left(x_{n}, x_{n+1}\right) \quad \text { can be computed from } \quad\left(x_{n-1}, x_{n}\right)
\end{gathered}
$$

Definition: A minimizing configuration can be seen as a particular orbit of a dynamical system called Euler-Lagrange dynamics.
Let $v_{n}=x_{n+1}-x_{n}$,

$$
\Phi_{E L}=\left\{\begin{array}{lll}
\mathbb{T}^{1} \times \mathbb{R} & \rightarrow \mathbb{T}^{1} \times \mathbb{R} \\
\left(x_{n}, v_{n}\right) & \rightarrow \quad\left(x_{n+1}=x_{n}+v_{n}, v_{n+1}=v_{n}+V^{\prime}\left(x_{n+1}\right)\right.
\end{array}\right.
$$

Definition: A configuration $\left\{x_{n}\right\}_{n}$ is minimizing in the Mather sense if

$$
\begin{gathered}
\left(x_{n}, v_{n}\right) \in \operatorname{Supp}\left(\mu_{\min }\right), \quad \forall n \in \mathbb{Z}, \quad \text { where } \mu_{\min } \text { is minimizing } \\
\mu_{\min }=\arg \min \left\{\int_{\mathbb{T}^{1} \times \mathbb{R}} E(x, x+v) d \mu(x, v): \mu \text { is a } \Phi_{E L} \text {-inv prob }\right\}
\end{gathered}
$$

A small part of Mather theory

A small part of Mather theory

Theorem (Mather 1991): (the periodic case) Recall
$E_{\lambda}(x, y)=E_{0}(x, y)-\lambda(y-x)$

1) Any configuration minimizing E_{λ} in the Mather sense is minimizing in the Aubry sense
2) For configurations minimizing in the Aubry sense, minimizing E_{λ} is equivalent to minimizing E_{0}
3) Any recurrent minimizing configuration in the Aubry sense is minimizing E_{λ} in the Mather sense for any λ related to the rotation number ω

$$
\begin{gathered}
\omega=-\frac{d \bar{E}}{d \lambda}(\lambda) \\
\bar{E}:=\min \left\{\int E(x, x+v) d \mu(x, v): \mu \Phi_{E L-\mathrm{inv}}\right\}
\end{gathered}
$$

II. Environment of Fibonacci type

II. Environment of Fibonacci type

Problem: Describe the set of minimizing configurations for quasi-periodic environments of Fibonacci type

II. Environment of Fibonacci type

Problem: Describe the set of minimizing configurations for quasi-periodic environments of Fibonacci type

$-\mathbb{R}$ is partitioned into segments of two kinds: long and short

- the external potential admits two forms: $V_{L}(x)$ and $V_{S}(x)$
- $\underline{\Omega}=$ the closure of all the shifts of the Fibonacci word

$$
\ldots, L S L, L S \mid L S, L, L S, L S L, L S L L S, \ldots
$$

Existence of rotation number

Existence of rotation number

Notations: $\underline{\Omega}$ is the compact set of Fibonacci words. $\underline{\Omega}$ is compact minimal and uniquely ergodic. Each $\underline{\omega} \in \underline{\Omega}$ gives a quasi-periodic potential $V_{\underline{\omega}}(x)$.
As before, the total energy per site is

$$
E_{\underline{\omega}}(x, y)=W(y-x)+V_{\underline{\omega}}(x), \quad W^{\prime \prime}(x)<-\alpha<0
$$

Existence of rotation number

Notations: $\underline{\Omega}$ is the compact set of Fibonacci words. $\underline{\Omega}$ is compact minimal and uniquely ergodic. Each $\underline{\omega} \in \underline{\Omega}$ gives a quasi-periodic potential $V_{\underline{\omega}}(x)$.
As before, the total energy per site is

$$
E_{\underline{\omega}}(x, y)=W(y-x)+V_{\underline{\omega}}(x), \quad W^{\prime \prime}(x)<-\alpha<0
$$

Theorem (Gambaudo, Guiraud, Petite, 2006): We fixe an environment $\underline{\omega} \in \underline{\Omega}$.

- Any minimizing configuration in the Aubry sense has a rotation number

$$
\rho=\lim _{m-n \rightarrow+\infty} \frac{x_{m}-x_{n}}{m-n}
$$

- Any rotation number is achieved

Existence of rotation number

Notations: $\underline{\Omega}$ is the compact set of Fibonacci words. $\underline{\Omega}$ is compact minimal and uniquely ergodic. Each $\underline{\omega} \in \underline{\Omega}$ gives a quasi-periodic potential $V_{\omega}(x)$.
As before, the total energy per site is

$$
E_{\underline{\omega}}(x, y)=W(y-x)+V_{\underline{\omega}}(x), \quad W^{\prime \prime}(x)<-\alpha<0
$$

Theorem (Gambaudo, Guiraud, Petite, 2006): We fixe an environment $\underline{\omega} \in \underline{\Omega}$.

- Any minimizing configuration in the Aubry sense has a rotation number

$$
\rho=\lim _{m-n \rightarrow+\infty} \frac{x_{m}-x_{n}}{m-n}
$$

- Any rotation number is achieved

Question:
What about minimizing configurations in the Mather sense?
What plays the role of $\mathbb{T}^{1} \times \mathbb{R}$ in the periodic case?

The space of quasi-periodic environments

The space of quasi-periodic environments

Extension of $\underline{\Omega}$:

- the origin does not play any role. We consider the set of all shifts

$$
\Omega=\underline{\Omega} \times \mathbb{R} / \sim \Leftrightarrow\left\{\begin{array}{l}
\text { different parametrizations but } \\
\text { same sequence of impurities }
\end{array}\right.
$$

- Ω is a suspension over $\underline{\Omega}$ built with a return map of length L or S
- In the periodic case $L=S$ and $\Omega=\mathbb{T}^{1}$
- In the quasi-periodic case Ω plays the role of \mathbb{T}^{1}

Mather measures

Mather measures

A global potential \boldsymbol{V} : Recall $\left(\Omega,\left\{\phi^{t}\right\}\right)$ denotes the minimal Fibonacci flow

$$
\begin{aligned}
V_{\omega}(x) & =V \circ \phi^{x}(\omega) \\
E_{\omega}(x, y) & =W(y-x)+V_{\omega}(x) \\
& =L\left(\phi^{x}(\omega), y-x\right) \\
L(\omega, v) & =W(v)+V(\omega)
\end{aligned}
$$

Mather measures

A global potential \boldsymbol{V} : Recall $\left(\Omega,\left\{\phi^{t}\right\}\right)$ denotes the minimal Fibonacci flow

$$
\begin{aligned}
V_{\omega}(x) & =V \circ \phi^{x}(\omega) \\
E_{\omega}(x, y) & =W(y-x)+V_{\omega}(x) \\
& =L\left(\phi^{x}(\omega), y-x\right) \\
L(\omega, v) & =W(v)+V(\omega)
\end{aligned}
$$

Minimizing measures in the Mather sense:

- There is no way we can define an equivalent Euler-Lagrange map $\Phi_{E L}$
- In the periodic case: $\Phi_{E L}(x, v)=(x+v, \ldots), \quad x \in \mathbb{T}^{1}, v \in \mathbb{R}$
- A measure μ is holonomic if

$$
\int f(\omega) d \mu(\omega, v)=\int f \circ \phi^{v}(\omega) d \mu(\omega, v), \quad \forall f \in C^{0}(\Omega)
$$

- A measure $\mu_{\text {min }}$ is minimizing in the Mather sense if

$$
\mu_{\text {min }}=\arg \min \left\{\int_{\Omega \times \mathbb{R}} L(\omega, v) d \mu(\omega, v): \mu \text { is holonomic }\right\}
$$

III. A few results in Aubry-Mather theory

III. A few results in Aubry-Mather theory

Mather set: $M:=\cup\{\operatorname{Supp}(\mu):$ holonomic minimizing $\} \subset \Omega \times \mathbb{R}$

III. A few results in Aubry-Mather theory

Mather set: $M:=\cup\{\operatorname{Supp}(\mu):$ holonomic minimizing $\} \subset \Omega \times \mathbb{R}$

Results:

- Optimal segments $\left\{x_{k}\right\}_{k}$ (minimizing $E\left(x_{0}, \ldots, x_{n}\right)$) have uniform bounded gaps

$$
\exists C \text { s.t. }\left\{x_{k}\right\}_{k=0}^{n} \text { is optimal } \Rightarrow\left|x_{k+1}-x_{k}\right|<C
$$

- The Mather set is compact and non empty
- The lowest mean energy can be computed using either minimizing configurations or minimizing measures $\quad(L(\omega, v)=W(v)+V(\omega))$

$$
\begin{aligned}
\bar{E} & =\lim _{n \rightarrow+\infty} \min _{\omega, x_{0}, \ldots, x_{n}} \frac{1}{n} E_{\omega}\left(x_{0}, \ldots, x_{n}\right) \\
& =\min _{\mu \text { holonomic }} \int L(\omega, v) d \mu(\omega, v)=\int L d \mu_{\text {min }}
\end{aligned}
$$

- If \tilde{M} denotes the projection of the Mather set on Ω, then \tilde{M} has a non empty intersection with any orbit of length long enough of the Fibonacci flow.

