Minimality of affine polynomials on a finite extension of the field of p-adic numbers

Lingmin LIAO

Université Paris-Est Créteil (University Paris 12)

The University of Warwick, April 2012

- **1** The field \mathbb{Q}_p of *p*-adic numbers and *p*-adic dynamical systems
- **2** Affine polynomial dynamical systems in \mathbb{Q}_p
- 3 Finite extensions of *p*-adic number field
- 4 Affine polynomial dynamical systems in finite extensions of \mathbb{Q}_p

一名 医下口 医下

The field \mathbb{Q}_p of *p*-adic numbers and *p*-adic dynamical systems

I. The *p*-adic numbers

• $p \ge 2$ a prime number

•
$$\forall n \in \mathbb{N}, n = \sum_{i=0}^{N} a_i p^i \ (a_i = 0, 1, \cdots, p-1)$$

• Ring \mathbb{Z}_p of p-adic integers :

$$\mathbb{Z}_p \ni x = \sum_{i=0}^{\infty} a_i p^i$$

• Field \mathbb{Q}_p of *p*-adic numbers : fraction field of \mathbb{Z}_p .

$$\mathbb{Q}_p \ni x = \sum_{i=v(x)}^{\infty} a_i p^i, \quad (\exists v(x) \in \mathbb{Z}).$$

II. Topology of \mathbb{Q}_p

• p-adic norm of $x \in \mathbb{Q}$

$$|x|_p = p^{-v(x)}$$
 if $x = p^{v(x)} \frac{r}{s}$ with $(r, p) = (s, p) = 1$

• $|x|_p$ is a **non-Archimidean** norm :

$$|-x|_{p} = |x|_{p} |xy|_{p} = |x|_{p}|y|_{p} |x+y|_{p} \le \max\{|x|_{p}, |y|_{p}\}$$

• \mathbb{Q}_p is the $|\cdot|_p$ -completion of \mathbb{Q} ($\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \le 1\} = \overline{\mathbb{N}}$)

Development of numbers :

•
$$\mathbb{N} \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{R}([-1,1]) \to \mathbb{C}$$

• $\mathbb{N} \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}_p(\mathbb{Z}_p) \to \mathbb{Q}_p^{a.c.} \to \mathbb{C}_p$

э

Geometric representation of \mathbb{Z}_3

III. Arithmetic in \mathbb{Q}_p

Addition and multiplication : similar to the decimal way. "Carrying" from left to right.

Example : $x=(p-1)+(p-1)\times p+(p-1)\times p^2+\cdots$, then x+1=0. So,

$$-1 = (p-1) + (p-1) \times p + (p-1) \times p^{2} + \cdots$$

IV. Equicontinuous dynamics

• $T: X \to X$ is equicontinuous if

 $\forall \epsilon > 0, \exists \delta > 0 \ \text{ s. t. } \ d(T^nx,T^ny) < \epsilon \ (\forall n \geq 1, \forall d(x,y) < \delta).$

Theorem

Let X be a compact metric space and $T: X \to X$ be an *equicontinuous* transformation. Then the following statements are equivalent :

- (1) T is minimal.
- (2) T is uniquely ergodic.

(3) T is ergodic for any/some invariant measure with X as its support.

- Fact : 1-Lipschitz transformation is equicontinuous.
- Fact : Polynomial $f \in \mathbb{Z}_p[x] : \mathbb{Z}_p \to \mathbb{Z}_p$ is equicontinuous.

Theorem : If the continuous transformation T is uniquely ergodic (μ is the unique invariant probability measure), then for any continuous function $g: X \to \mathbb{R}$, uniformly,

$$\frac{1}{n}\sum_{k=0}^{n-1}g(T^k(x))\to\int gd\mu.$$

V. Study on *p*-adic dynamical dystems

- Oselies, Zieschang 1975 : automorphisms of the ring of *p*-adic integers
- Herman, Yoccoz 1983 : complex *p*-adic dynamical systems
- Volovich 1987 : p-adic string theory by applying p-adic numbers
- Thiran, Verstegen, Weyers 1989 Chaotic *p*-adic quadratic polynomials
- Lubin 1994 : iteration of analytic *p*-adic maps.
- Anashin 1994 : 1-Lipschitz transformation (Mahler series)
- Coelho, Parry 2001 : ax and distribution of Fibonacci numbers
- Gundlach, Khrennikov, Lindahl 2001 : x^n

• • • • • • •

Affine polynomial dynamical systems on \mathbb{Z}_p

I. Polynomial dynamical systems on \mathbb{Z}_p

- Let $f \in \mathbb{Z}_p[x]$ be a polynomial with coefficients in \mathbb{Z}_p .
- Polynomial dynamical systems : $f : \mathbb{Z}_p \to \mathbb{Z}_p$, noted as (\mathbb{Z}_p, f) .

Theorem (Ai-Hua Fan, L 2011) minimal decomposition

Let $f \in \mathbb{Z}_p[x]$ with $\deg f \ge 2$. The space \mathbb{Z}_p can be decomposed into three parts :

$$\mathbb{Z}_p = A \sqcup B \sqcup C,$$

where

- A is the finite set consisting of all periodic orbits;
- $B := \sqcup_{i \in I} B_i$ (I finite or countable)
 - $\rightarrow B_i$: finite union of balls,
 - $\rightarrow f: B_i \rightarrow B_i$ is minimal;
- C is attracted into $A \sqcup B$.

通 と く ヨ と く ヨ と

II. Affine polynomials on \mathbb{Z}_p Let $T_{a,b}x = ax + b$ $(a, b \in \mathbb{Z}_p)$. Denote

 $\mathbb{U} = \{ z \in \mathbb{Z}_p : |z| = 1 \}, \quad \mathbb{V} = \{ z \in \mathbb{U} : \exists m \ge 1, \text{s.t. } z^m = 1 \}.$

Easy cases :

- $a \in \mathbb{Z}_p \setminus \mathbb{U} \Rightarrow$ one attracting fixed point b/(1-a).
- $a=1, b=0 \ \Rightarrow \text{ every point is fixed.}$
- a ∈ V \ {1} ⇒ every point is on a ℓ-periodic orbit, with ℓ the smallest integer ≥ 1 such that a^ℓ = 1.

Theorem (AH. Fan, MT. Li, JY. Yao, D. Zhou 2007) Case $p \ge 3$:

•
$$a \in (\mathbb{U} \setminus \mathbb{V}) \cup \{1\}, v_p(b) < v_p(1-a) \Rightarrow p^{v_p(b)}$$
 minimal parts.

$$\ \, {\mathfrak S} \ \, a \in {\mathbb U} \setminus {\mathbb V}, \ \, v_p(b) \geq v_p(1-a) \Rightarrow ({\mathbb Z}_p, T_{a,b}) \ \, {\rm is \ \, conjugate \ to \ \, } ({\mathbb Z}_p, ax).$$

Decomposition : $\mathbb{Z}_p = \{0\} \sqcup \sqcup_{n \ge 1} p^n \mathbb{U}.$

(1) One fixed point $\{0\}$.

(2) All $(p^n \mathbb{U}, ax)(n \ge 0)$ are conjugate to (\mathbb{U}, ax) .

For $(\mathbb{U}, T_{a,0}) : p^{v_p(a^\ell - 1) - 1}$ minimal parts, with ℓ the smallest integer ≥ 1 such that $a^\ell \equiv 1 \pmod{p}$.

Theorem (Fan-Li-Yao-Zhou 2007) Case p = 2: • $a \in (\mathbb{U} \setminus \mathbb{V}) \cup \{1\}, v_n(b) < v_n(1-a).$ • $v_n(b) = 0 \Rightarrow p^{v_p(a+1)-1}$ minimal parts. • $v_n(b) > 0 \Rightarrow p^{v_p(b)}$ minimal parts. $a \in \mathbb{U} \setminus \mathbb{V}, v_n(b) > v_n(1-a)$ $\Rightarrow (\mathbb{Z}_p, T_{a,b})$ is conjugate to (\mathbb{Z}_p, ax) . Decomposition : $\mathbb{Z}_n = \{0\} \sqcup \sqcup_{n \ge 1} p^n \mathbb{U}.$ (1) One fixed point $\{0\}$. (2) All $(p^n \mathbb{U}, ax)(n \ge 0)$ are conjugate to (\mathbb{U}, ax) . For $(\mathbb{U}, T_{a,0})$: $p^{v_p(a-1)-1} \cdot p^{v_p(a+1)-1}$ minimal parts.

Remark : For the case p = 2, all minimal parts (except for the periodic orbits) are conjugate to $(\mathbb{Z}_2, x + 1)$.

• • = • • = •

-

III. An application

Distribution of recurrence sequence.

Corollary (Fan-Li-Yao-Zhou 2007)

Let $k \ge 1$ be an integer, and let a, b, c be three integers in \mathbb{Z} coprime with $p \ge 2$. Let s_k be the least integer ≥ 1 such that $a^{s_k} \equiv 1 \pmod{p^k}$.

(a) If
$$b \not\equiv a^j c \pmod{p^k}$$
 for all integers $j \ (0 \leqslant j < s_k)$, then
 $p^k \nmid (a^n c - b)$, for any integer $n \ge 0$.
(b) If $b \equiv a^j c \pmod{p^k}$ for some integer $j \ (0 \leqslant j < s_k)$, then we have
 $\lim_{N \to +\infty} \frac{1}{N} \operatorname{Card}\{1 \leqslant n < N : p^k \mid (a^n c - b)\} = \frac{1}{s_k}$.

One motivation :

Coelho and Parry 2001 : Ergodicity of *p*-adic multiplications and the distribution of Fibonacci numbers.

Finite extensions of *p***-adic number field**

I. Notations

- K is a finite extension of \mathbb{Q}_p .
- Still denote by $|\cdot|_p$ the extended absolute value of K.
- Degree : $n = [K : \mathbb{Q}_p]$. Ramification index : e
- Valuation function : $v_p(x) := -\log_p(|x|_p)$. $\operatorname{Im}(v_p) = \frac{1}{e}\mathbb{Z}$.
- $\mathcal{O}_K := \{x \in K : |x|_p \le 1\}$: the local ring of K, $\mathcal{P}_K := \{x \in K : |x|_p < 1\}$: its maximal ideal.
- Residual field : $\mathbb{K} = \mathcal{O}_K / \mathcal{P}_K$. Then $\mathbb{K} = \mathbb{F}_{p^f}$, with f = n/e.

Example : For $\mathbb{Q}_p(\sqrt{p})$ $(p \ge 3)$:

$$n = 2, e = 2, f = 1.$$

II. Uniformizer and representation

An element $\pi \in K$ is a uniformizer if $v_p(\pi) = 1/e$.

Define $v_{\pi}(x) := e \cdot v_p(x)$ for $x \in K$. Then $\operatorname{Im}(v_{\pi}) = \mathbb{Z}$, and $v_{\pi}(\pi) = 1$.

Let $C = \{c_0, c_1, \ldots, c_{p^f-1}\}$ be a fixed complete set of representatives of the cosets of \mathcal{P}_K in \mathcal{O}_K . Then every $x \in K$ has a unique π -adic expansion of the form

$$x = \sum_{i=i_0}^{\infty} a_i \pi^i,$$

where $i_0 \in \mathbb{Z}$ and $a_i \in C$ for all $i \geq i_0$.

Example : For $\mathbb{Q}_p(\sqrt{p})$ $(p \geq 3)$, take $\pi = \sqrt{p}$, and

$$x = a_0 + a_1\sqrt{p} + a_2p + a_3p^{3/2} + a_4p^2 + \cdots$$

Affine polynomial dynamical systems on \mathcal{O}_K

I. Minimal subsystems and odometer

Given a positive integer sequence $(p_s)_{s\geq 0}$ such that $p_s|p_{s+1}$. Profinite groupe : $\mathbb{Z}_{(p_s)} := \lim_{\leftarrow} \mathbb{Z}/p_s\mathbb{Z}$.

Odometer : The transformation $\tau : x \mapsto x + 1$ on $\mathbb{Z}_{(p_s)}$.

Theorem (Chabert-Fan-Fares 2007)

Let E be a compact set in \mathcal{O}_K and $T: E \to E$ a 1-lipschitzian transformation. If the dynamical system (E,T) is minimal, then

• (E,T) is conjugate to the odometer $(\mathbb{Z}_{(p_s)},\tau)$ where (p_s) is determined by the structure of E.

Consider polynomial $T \in \mathcal{O}_K[x]$ as a dynamical system : $T : \mathcal{O}_K \to \mathcal{O}_K$. Let X be a finite union of balls in \mathcal{O}_K . We say that X is of type (k, \vec{E}) if (X, T) is decomposed into uncountable (cardinality of \mathbb{R}) many minimal subsystems, all of them are conjugate to the odometer $(\mathbb{Z}_{(p_s)}, \tau)$ with

$$(p_s) = (k, \underbrace{kp, \cdots, kp}_{E_1}, \underbrace{kp^2, \cdots, kp^2}_{E_2}, \underbrace{kp^3, \cdots, kp^3}_{E_3}, \cdots).$$

If $\vec{E} = (e, e, e, ...)$, we call simply that X is of type (k, e).

II. Minimal decomposition for $\alpha x + \beta$ on \mathcal{O}_K Let $T(x) = \alpha x + \beta$. Denote

$$\mathbb{U} := \{ x \in \mathcal{O}_K : |x|_p = 1 \}, \ \mathbb{V} := \{ x \in \mathbb{U} : \exists m \in \mathbb{N}, m \ge 1, x^m = 1 \}.$$

Easy cases :

- $\ \, {\bf O} \ \, \alpha \notin \mathbb{U}(|\alpha|_p < 1) \Rightarrow \text{ one attracting fixed point } \beta/(1-\alpha).$
- $\ \, \mathbf{0} \ \, \alpha = 1, \beta = 0 \Rightarrow \text{ every point is fixed}.$

III. Minimal decomposition for $\alpha x + \beta$ on \mathcal{O}_K , $p \geq 3$

Theorem (L, preprint)

$$\ \bullet \ \ \alpha \in (\mathbb{U} \setminus \mathbb{V}) \cup \{1\}, v_{\pi}(\beta) < v_{\pi}(1-\alpha).$$

- $v_{\pi}(\beta) = 0 \Rightarrow \mathcal{O}_K$ is decomposed into p^{d-1} compact sets. Each compact set is of type (p, e).
- $v_{\pi}(\beta) > 0 \Rightarrow \mathcal{O}_{K}$ is decomposed into $p^{v_{\pi}(\beta) \cdot f}$ compact sets. Each compact set is of type (1, e).
- $\alpha \in \mathbb{U} \setminus \mathbb{V}, v_{\pi}(\beta) \ge v_{\pi}(1-\alpha) \Rightarrow (\mathcal{O}_{K}, T)$ is conjugate to $(\mathcal{O}_{K}, \alpha x)$. Decomposition : $\mathcal{O}_{K} = \{0\} \cup \bigcup_{k=0}^{\infty} \pi^{k} \mathbb{U}$,
 - (1) The point 0 is fixed.
 - (2) Each $(\pi^k \mathbb{U}, \alpha x)$ is conjugate to $(\mathbb{U}, \alpha x)$.
 - * Denote by ℓ the smallest integer ≥ 1 such that $\alpha^{\ell} \equiv 1 \pmod{\pi}$. Pour $(\mathbb{U}, \alpha x)$, \mathbb{U} is decomposed into

$$(p^f - 1) \cdot p^{v_\pi(\alpha^\ell - 1)f - f}/\ell$$

compact sets and each compact set is of type (ℓ, e) .

IV. Minimal decomposition for $\alpha x + \beta$ on \mathcal{O}_K , p = 2

Theorem (L, preprint)

$$a \in (\mathbb{U} \setminus \mathbb{V}) \cup \{1\}, v_{\pi}(\beta) < v_{\pi}(1-\alpha).$$

Denote by N the biggest integer such that $v_{\pi}(\alpha^{2^N} + 1) < e$.

• $v_{\pi}(\beta) = 0 \Rightarrow \mathcal{O}_K$ is decomposed into $p^{f \cdot v_{\pi}(\alpha+1)-1}$ compact sets. Each compact set is of type (p, \vec{E}) avec

$$\vec{E} = \left(v_{\pi}(\alpha^2 + 1), \ v_{\pi}(\alpha^4 + 1), \ \cdots, \ v_{\pi}(\alpha^{2^N} + 1), \ e, \ e, \ \cdots \right).$$

• $v_{\pi}(\beta) > 0 \Rightarrow \mathcal{O}_{K}$ is decomposed into $p^{v_{\pi}(\beta) \cdot f}$ compact sets. Each compact set is of type (p, \vec{E}) with

$$\vec{E} = \left(v_{\pi}(\alpha+1), \ v_{\pi}(\alpha^{2}+1), \ \cdots, \ v_{\pi}(\alpha^{2^{N}}+1), \ e, \ e, \ \cdots \right).$$

V. Decomposition for $\alpha x + \beta$, p = 2, continued

Theorem (L, preprint)

- $\alpha \in \mathbb{U} \setminus \mathbb{V}, v_{\pi}(\beta) \ge v_{\pi}(1-\alpha) \Rightarrow (\mathcal{O}_{K}, T)$ is conjugate to $(\mathcal{O}_{K}, \alpha x)$. Decomposition : $\mathcal{O}_{K} = \{0\} \cup \bigcup_{k=0}^{\infty} \pi^{k} \mathbb{U}$,
 - (1) The point 0 is fixed.
 - (2) Each $(\pi^k \mathbb{U}, \alpha x)$ is conjugate to $(\mathbb{U}, \alpha x)$.
 - * Denote by ℓ the smallest integer ≥ 1 such that $\alpha^{\ell} \equiv 1 \pmod{\pi}$. For $(\mathbb{U}, \alpha x)$, \mathbb{U} is decomposed into

$$(p^f - 1) \cdot p^{v_\pi(\alpha^\ell - 1)f - f} / \ell$$

compact sets and each compact set is of type (ℓ, \vec{E}) with

$$\vec{E} = \left(v_{\pi}(\alpha^{\ell} + 1), \ v_{\pi}(\alpha^{\ell p} + 1), \ \cdots, \ v_{\pi}(\alpha^{\ell p^{N}} + 1), \ e, \ e, \ \cdots \right),$$

where N the biggest integer such that $v_{\pi}(\alpha^{\ell p^N} + 1) < e$.

VI. An example

Let $p \geq 3$.

Consider the finite extension $K = \mathbb{Q}_p(\sqrt{p})$, and $T(x) = \alpha x$ with $\alpha \in \mathbb{Z}_p$. Let ℓ be the least integer ≥ 1 such that $\alpha^{\ell} \equiv 1 \pmod{p}$. Consider T as a system on $X = \{x \in \mathbb{Z}_p : |x|_p = 1\}$. Then X consists of $p^{v_p(\alpha^{\ell}-1)-1}(p-1)/\ell$ minimal parts.

As a system on \mathcal{O}_K ,

• we have the decomposition $(\mathbb{U} = \{x \in \mathcal{O}_K : |x|_p = 1\})$

$$\mathcal{O}_K = \{0\} \cup \bigcup_{k=0}^{\infty} \pi^k \mathbb{U}.$$

- All $(\pi^k \mathbb{U}, T)$ are conjugate to (\mathbb{U}, T) .
- For (\mathbb{U},T) , we have uncountable (cardinality of real numbers) many minimal parts which can be written as

$$E \cdot (1 + \sqrt{py}),$$

with E a minimal part of T on X ($\subset \mathbb{Z}_p$) and $y \in \mathbb{Z}_p$.

VII. Ideas and methods

Fan, Li, Yao, Zhou : Fourier analysis.

Our methodes :

Theorem (Anashin 1994, Chabert, Fan and Fares 2009)

Let $X \subset \mathcal{O}_K$ be a compact set. $f: X \to X$ is minimal \Leftrightarrow $f_k: X/\pi^k \mathcal{O}_K \to X/\pi^k \mathcal{O}_K$ is minimal for all $k \ge 1$.

Predicting the behavior of f_{k+1} by the structure of f_k . \rightarrow Idea of Desjardins and Zieve 1994 (arXiv) and Zieve's Ph.D. Thesis 1996.