Minimality of affine polynomials on a finite extension of the field of p-adic numbers

Lingmin LIAO
Université Paris-Est Créteil (University Paris 12)

The University of Warwick, April 2012

Outline

(1) The field \mathbb{Q}_{p} of p-adic numbers and p-adic dynamical systems
(2) Affine polynomial dynamical systems in \mathbb{Q}_{p}
(3) Finite extensions of p-adic number field
(4) Affine polynomial dynamical systems in finite extensions of \mathbb{Q}_{p}

The field \mathbb{Q}_{p} of p-adic numbers

and p-adic dynamical systems

I. The p-adic numbers

- $p \geq 2$ a prime number
- $\forall n \in \mathbb{N}, n=\sum_{i=0}^{N} a_{i} p^{i} \quad\left(a_{i}=0,1, \cdots, p-1\right)$
- Ring \mathbb{Z}_{p} of p-adic integers :

$$
\mathbb{Z}_{p} \ni x=\sum_{i=0}^{\infty} a_{i} p^{i}
$$

- Field \mathbb{Q}_{p} of p-adic numbers : fraction field of \mathbb{Z}_{p}.

$$
\mathbb{Q}_{p} \ni x=\sum_{i=v(x)}^{\infty} a_{i} p^{i}, \quad(\exists v(x) \in \mathbb{Z}) .
$$

II. Topology of \mathbb{Q}_{p}

- p-adic norm of $x \in \mathbb{Q}$

$$
|x|_{p}=p^{-v(x)} \quad \text { if } \quad x=p^{v(x)} \frac{r}{s} \quad \text { with } \quad(r, p)=(s, p)=1
$$

- $|x|_{p}$ is a non-Archimidean norm :

$$
\begin{aligned}
& |-x|_{p}=|x|_{p} \\
& |x y|_{p}=|x|_{p}|y|_{p} \\
& |x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\}
\end{aligned}
$$

- \mathbb{Q}_{p} is the $|\cdot|_{p}$-completion of $\mathbb{Q}\left(\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\}=\overline{\mathbb{N}}\right)$

Development of numbers:

- $\mathbb{N} \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{R}([-1,1]) \rightarrow \mathbb{C}$
- $\mathbb{N} \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q}_{p}\left(\mathbb{Z}_{p}\right) \rightarrow \mathbb{Q}_{p}^{\text {a.c. }} \rightarrow \mathbb{C}_{p}$

Geometric representation of \mathbb{Z}_{3}

III. Arithmetic in \mathbb{Q}_{p}

Addition and multiplication : similar to the decimal way. "Carrying" from left to right.
Example : $x=(p-1)+(p-1) \times p+(p-1) \times p^{2}+\cdots$, then $x+1=0$. So,

$$
-1=(p-1)+(p-1) \times p+(p-1) \times p^{2}+\cdots .
$$

IV. Equicontinuous dynamics

- $T: X \rightarrow X$ is equicontinuous if

$$
\forall \epsilon>0, \exists \delta>0 \quad \text { s. t. } \quad d\left(T^{n} x, T^{n} y\right)<\epsilon(\forall n \geq 1, \forall d(x, y)<\delta)
$$

Theorem

Let X be a compact metric space and $T: X \rightarrow X$ be an equicontinuous transformation. Then the following statements are equivalent:
(1) T is minimal.
(2) T is uniquely ergodic.
(3) T is ergodic for any/some invariant measure with X as its support.

- Fact : 1-Lipschitz transformation is equicontinuous.
- Fact : Polynomial $f \in \mathbb{Z}_{p}[x]: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is equicontinuous.

Theorem : If the continuous transformation T is uniquely ergodic (μ is the unique invariant probability measure), then for any continuous function $g: X \rightarrow \mathbb{R}$, uniformly,

$$
\frac{1}{n} \sum_{k=0}^{n-1} g\left(T^{k}(x)\right) \rightarrow \int g d \mu
$$

V. Study on p-adic dynamical dystems

- Oselies, Zieschang 1975 : automorphisms of the ring of p-adic integers
- Herman, Yoccoz 1983 : complex p-adic dynamical systems
- Volovich 1987 : p-adic string theory by applying p-adic numbers
- Thiran, Verstegen, Weyers 1989 Chaotic p-adic quadratic polynomials
- Lubin 1994 : iteration of analytic p-adic maps.
- Anashin 1994: 1-Lipschitz transformation (Mahler series)
- Coelho, Parry 2001:ax and distribution of Fibonacci numbers
- Gundlach, Khrennikov, Lindahl $2001: x^{n}$
-

Affine polynomial

 dynamical systems on \mathbb{Z}_{p}
I. Polynomial dynamical systems on \mathbb{Z}_{p}

- Let $f \in \mathbb{Z}_{p}[x]$ be a polynomial with coefficients in \mathbb{Z}_{p}.
- Polynomial dynamical systems : $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$, noted as $\left(\mathbb{Z}_{p}, f\right)$.

Theorem (Ai-Hua Fan, L 2011) minimal decomposition

Let $f \in \mathbb{Z}_{p}[x]$ with $\operatorname{deg} f \geq 2$. The space \mathbb{Z}_{p} can be decomposed into three parts:

$$
\mathbb{Z}_{p}=A \sqcup B \sqcup C,
$$

where

- A is the finite set consisting of all periodic orbits;
- $B:=\sqcup_{i \in I} B_{i}$ (I finite or countable)
$\rightarrow B_{i}$: finite union of balls,
$\rightarrow f: B_{i} \rightarrow B_{i}$ is minimal ;
- C is attracted into $A \sqcup B$.

II. Affine polynomials on \mathbb{Z}_{p}

Let $T_{a, b} x=a x+b \quad\left(a, b \in \mathbb{Z}_{p}\right)$. Denote

$$
\mathbb{U}=\left\{z \in \mathbb{Z}_{p}:|z|=1\right\}, \quad \mathbb{V}=\left\{z \in \mathbb{U}: \exists m \geq 1 \text {, s.t. } z^{m}=1\right\} .
$$

Easy cases :

(1) $a \in \mathbb{Z}_{p} \backslash \mathbb{U} \Rightarrow$ one attracting fixed point $b /(1-a)$.
(2) $a=1, b=0 \Rightarrow$ every point is fixed.
(0) $a \in \mathbb{V} \backslash\{1\} \Rightarrow$ every point is on a ℓ-periodic orbit, with ℓ the smallest integer $\geqslant 1$ such that $a^{\ell}=1$.

Theorem (AH. Fan, MT. Li, JY. Yao, D. Zhou 2007) Case $p \geq 3$

(. $a \in(\mathbb{U} \backslash \mathbb{V}) \cup\{1\}, v_{p}(b)<v_{p}(1-a) \Rightarrow p^{v_{p}(b)}$ minimal parts.

- $a \in \mathbb{U} \backslash \mathbb{V}, v_{p}(b) \geq v_{p}(1-a) \Rightarrow\left(\mathbb{Z}_{p}, T_{a, b}\right)$ is conjugate to $\left(\mathbb{Z}_{p}, a x\right)$.

Decomposition : $\mathbb{Z}_{p}=\{0\} \sqcup \sqcup_{n \geq 1} p^{n} \mathbb{U}$.
(1) One fixed point $\{0\}$.
(2) All $\left(p^{n} \mathbb{U}, a x\right)(n \geq 0)$ are conjugate to ($\left.\mathbb{U}, a x\right)$.

For $\left(\mathbb{U}, T_{a, 0}\right): p^{v_{p}\left(a^{\ell}-1\right)-1}$ minimal parts, with ℓ the smallest integer $\geqslant 1$ such that $a^{\ell} \equiv 1(\bmod p)$.

Theorem (Fan-Li-Yao-Zhou 2007) Case $p=2$

($a \in(\mathbb{U} \backslash \mathbb{V}) \cup\{1\}, v_{p}(b)<v_{p}(1-a)$.

- $v_{p}(b)=0 \Rightarrow p^{v_{p}(a+1)-1}$ minimal parts.
- $v_{p}(b)>0 \Rightarrow p^{v_{p}(b)}$ minimal parts.
© $a \in \mathbb{U} \backslash \mathbb{V}, v_{p}(b) \geq v_{p}(1-a)$
$\Rightarrow\left(\mathbb{Z}_{p}, T_{a, b}\right)$ is conjugate to $\left(\mathbb{Z}_{p}, a x\right)$.
Decomposition : $\mathbb{Z}_{p}=\{0\} \sqcup \sqcup_{n \geq 1} p^{n} \mathbb{U}$.
(1) One fixed point $\{0\}$.
(2) All $\left(p^{n} \mathbb{U}, a x\right)(n \geq 0)$ are conjugate to $(\mathbb{U}, a x)$.

For $\left(\mathbb{U}, T_{a, 0}\right): p^{v_{p}(a-1)-1} \cdot p^{v_{p}(a+1)-1}$ minimal parts.
Remark: For the case $p=2$, all minimal parts (except for the periodic orbits) are conjugate to ($\mathbb{Z}_{2}, x+1$).

III. An application

Distribution of recurrence sequence.

Corollary (Fan-Li-Yao-Zhou 2007)

Let $k \geqslant 1$ be an integer, and let a, b, c be three integers in \mathbb{Z} coprime with $p \geqslant 2$. Let s_{k} be the least integer $\geqslant 1$ such that $a^{s_{k}} \equiv 1\left(\bmod p^{k}\right)$.
(a) If $b \not \equiv a^{j} c\left(\bmod p^{k}\right)$ for all integers $j\left(0 \leqslant j<s_{k}\right)$, then $p^{k} \nmid\left(a^{n} c-b\right)$, for any integer $n \geqslant 0$.
(b) If $b \equiv a^{j} c\left(\bmod p^{k}\right)$ for some integer $j\left(0 \leqslant j<s_{k}\right)$, then we have

$$
\lim _{N \rightarrow+\infty} \frac{1}{N} \operatorname{Card}\left\{1 \leqslant n<N: p^{k} \mid\left(a^{n} c-b\right)\right\}=\frac{1}{s_{k}} .
$$

One motivation :
Coelho and Parry 2001 : Ergodicity of p-adic multiplications and the distribution of Fibonacci numbers.

Finite extensions of p-adic number field

I. Notations

- K is a finite extension of \mathbb{Q}_{p}.
- Still denote by $|\cdot|_{p}$ the extended absolute value of K.
- Degree : $n=\left[K: \mathbb{Q}_{p}\right]$. Ramification index : e
- Valuation function : $v_{p}(x):=-\log _{p}\left(|x|_{p}\right) . \operatorname{Im}\left(v_{p}\right)=\frac{1}{e} \mathbb{Z}$.
- $\mathcal{O}_{K}:=\left\{x \in K:|x|_{p} \leq 1\right\}$: the local ring of K, $\mathcal{P}_{K}:=\left\{x \in K:|x|_{p}<1\right\}:$ its maximal ideal.
- Residual field : $\mathbb{K}=\mathcal{O}_{K} / \mathcal{P}_{K}$. Then $\mathbb{K}=\mathbb{F}_{p^{f}}$, with $f=n / e$.

Example : For $\mathbb{Q}_{p}(\sqrt{p})(p \geq 3)$:

$$
n=2, e=2, f=1
$$

II. Uniformizer and representation

An element $\pi \in K$ is a uniformizer if $v_{p}(\pi)=1 / e$.
Define $v_{\pi}(x):=e \cdot v_{p}(x)$ for $x \in K$. Then $\operatorname{Im}\left(v_{\pi}\right)=\mathbb{Z}$, and $v_{\pi}(\pi)=1$.
Let $C=\left\{c_{0}, c_{1}, \ldots, c_{p^{f}-1}\right\}$ be a fixed complete set of representatives of the cosets of \mathcal{P}_{K} in \mathcal{O}_{K}. Then every $x \in K$ has a unique π-adic expansion of the form

$$
x=\sum_{i=i_{0}}^{\infty} a_{i} \pi^{i}
$$

where $i_{0} \in \mathbb{Z}$ and $a_{i} \in C$ for all $i \geq i_{0}$.
Example : For $\mathbb{Q}_{p}(\sqrt{p})(p \geq 3)$, take $\pi=\sqrt{p}$, and

$$
x=a_{0}+a_{1} \sqrt{p}+a_{2} p+a_{3} p^{3 / 2}+a_{4} p^{2}+\cdots .
$$

Affine polynomial

dynamical systems on \mathcal{O}_{K}

I. Minimal subsystems and odometer

Given a positive integer sequence $\left(p_{s}\right)_{s \geq 0}$ such that $p_{s} \mid p_{s+1}$.
Profinite groupe : $\mathbb{Z}_{\left(p_{s}\right)}:=\lim _{\leftarrow} \mathbb{Z} / p_{s} \mathbb{Z}$.
Odometer: The transformation $\tau: x \mapsto x+1$ on $\mathbb{Z}_{\left(p_{s}\right)}$.

Theorem (Chabert-Fan-Fares 2007)

Let E be a compact set in \mathcal{O}_{K} and $T: E \rightarrow E$ a 1-lipschitzian transformation. If the dynamical system (E, T) is minimal, then

- (E, T) is conjugate to the odometer $\left(\mathbb{Z}_{\left(p_{s}\right)}, \tau\right)$ where $\left(p_{s}\right)$ is determined by the structure of E.

Consider polynomial $T \in \mathcal{O}_{K}[x]$ as a dynamical system : $T: \mathcal{O}_{K} \rightarrow \mathcal{O}_{K}$. Let X be a finite union of balls in \mathcal{O}_{K}. We say that X is of type (k, \vec{E}) if (X, T) is decomposed into uncountable (cardinality of \mathbb{R}) many minimal subsystems, all of them are conjugate to the odometer $\left(\mathbb{Z}_{\left(p_{s}\right)}, \tau\right)$ with

$$
\left(p_{s}\right)=(k, \underbrace{k p, \cdots, k p}_{E_{1}}, \underbrace{k p^{2}, \cdots, k p^{2}}_{E_{2}}, \underbrace{k p^{3}, \cdots, k p^{3}}_{E_{3}}, \cdots) .
$$

If $\vec{E}=(e, e, e, \ldots)$, we call simply that X is of type (k, e).

II. Minimal decomposition for $\alpha x+\beta$ on \mathcal{O}_{K}

Let $T(x)=\alpha x+\beta$. Denote

$$
\mathbb{U}:=\left\{x \in \mathcal{O}_{K}:|x|_{p}=1\right\}, \mathbb{V}:=\left\{x \in \mathbb{U}: \exists m \in \mathbb{N}, m \geq 1, x^{m}=1\right\} .
$$

Easy cases :

(1) $\alpha \notin \mathbb{U}\left(|\alpha|_{p}<1\right) \Rightarrow$ one attracting fixed point $\beta /(1-\alpha)$.
(2) $\alpha=1, \beta=0 \Rightarrow$ every point is fixed.
($\alpha \in \mathbb{V} \backslash\{1\} \Rightarrow$ every point is on a ℓ-periodic orbit, with ℓ the smallest integer $\geqslant 1$ such that $\alpha^{\ell}=1$.

III. Minimal decomposition for $\alpha x+\beta$ on $\mathcal{O}_{K}, p \geq 3$

Theorem (L, preprint)

- $\alpha \in(\mathbb{U} \backslash \mathbb{V}) \cup\{1\}, v_{\pi}(\beta)<v_{\pi}(1-\alpha)$.
- $v_{\pi}(\beta)=0 \Rightarrow \mathcal{O}_{K}$ is decomposed into p^{d-1} compact sets. Each compact set is of type (p, e).
- $v_{\pi}(\beta)>0 \Rightarrow \mathcal{O}_{K}$ is decomposed into $p^{v_{\pi}(\beta) \cdot f}$ compact sets.

Each compact set is of type $(1, e)$.
(0) $\alpha \in \mathbb{U} \backslash \mathbb{V}, v_{\pi}(\beta) \geq v_{\pi}(1-\alpha) \Rightarrow\left(\mathcal{O}_{K}, T\right)$ is conjugate to $\left(\mathcal{O}_{K}, \alpha x\right)$.

Decomposition : $\mathcal{O}_{K}=\{0\} \cup \cup_{k=0}^{\infty} \pi^{k} \mathbb{U}$,
(1) The point 0 is fixed.
(2) Each $\left(\pi^{k} \mathbb{U}, \alpha x\right)$ is conjugate to ($\left.\mathbb{U}, \alpha x\right)$.
\star Denote by ℓ the smallest integer $\geqslant 1$ such that $\alpha^{\ell} \equiv 1(\bmod \pi)$. $\operatorname{Pour}(\mathbb{U}, \alpha x), \mathbb{U}$ is decomposed into

$$
\left(p^{f}-1\right) \cdot p^{v_{\pi}\left(\alpha^{\ell}-1\right) f-f} / \ell
$$

compact sets and each compact set is of type ($\ell, e)$.

IV. Minimal decomposition for $\alpha x+\beta$ on $\mathcal{O}_{K}, p=2$

Theorem (L, preprint)

(4) $\alpha \in(\mathbb{U} \backslash \mathbb{V}) \cup\{1\}, v_{\pi}(\beta)<v_{\pi}(1-\alpha)$.

Denote by N the biggest integer such that $v_{\pi}\left(\alpha^{2^{N}}+1\right)<e$.

- $v_{\pi}(\beta)=0 \Rightarrow \mathcal{O}_{K}$ is decomposed into $p^{f \cdot v_{\pi}(\alpha+1)-1}$ compact sets. Each compact set is of type (p, \vec{E}) avec

$$
\vec{E}=\left(v_{\pi}\left(\alpha^{2}+1\right), v_{\pi}\left(\alpha^{4}+1\right), \cdots, v_{\pi}\left(\alpha^{2^{N}}+1\right), e, e, \cdots\right)
$$

- $v_{\pi}(\beta)>0 \Rightarrow \mathcal{O}_{K}$ is decomposed into $p^{v_{\pi}(\beta) \cdot f}$ compact sets. Each compact set is of type (p, \vec{E}) with

$$
\vec{E}=\left(v_{\pi}(\alpha+1), v_{\pi}\left(\alpha^{2}+1\right), \cdots, v_{\pi}\left(\alpha^{2^{N}}+1\right), e, e, \cdots\right)
$$

V. Decomposition for $\alpha x+\beta, p=2$, continued

Theorem (L, preprint)

(0) $\alpha \in \mathbb{U} \backslash \mathbb{V}, v_{\pi}(\beta) \geq v_{\pi}(1-\alpha) \Rightarrow\left(\mathcal{O}_{K}, T\right)$ is conjugate to $\left(\mathcal{O}_{K}, \alpha x\right)$.

Decomposition : $\mathcal{O}_{K}=\{0\} \cup \cup_{k=0}^{\infty} \pi^{k} \mathbb{U}$,
(1) The point 0 is fixed.
(2) Each $\left(\pi^{k} \mathbb{U}, \alpha x\right)$ is conjugate to $(\mathbb{U}, \alpha x)$.

* Denote by ℓ the smallest integer $\geqslant 1$ such that $\alpha^{\ell} \equiv 1(\bmod \pi)$. For $(\mathbb{U}, \alpha x), \mathbb{U}$ is decomposed into

$$
\left(p^{f}-1\right) \cdot p^{v_{\pi}\left(\alpha^{\ell}-1\right) f-f} / \ell
$$

compact sets and each compact set is of type (ℓ, \vec{E}) with

$$
\vec{E}=\left(v_{\pi}\left(\alpha^{\ell}+1\right), v_{\pi}\left(\alpha^{\ell p}+1\right), \cdots, v_{\pi}\left(\alpha^{\ell p^{N}}+1\right), e, e, \cdots\right),
$$

where N the biggest integer such that $v_{\pi}\left(\alpha^{\ell p^{N}}+1\right)<e$.

VI. An example

Let $p \geq 3$.
Consider the finite extension $K=\mathbb{Q}_{p}(\sqrt{p})$, and $T(x)=\alpha x$ with $\alpha \in \mathbb{Z}_{p}$. Let ℓ be the least integer $\geqslant 1$ such that $\alpha^{\ell} \equiv 1(\bmod p)$.
Consider T as a system on $X=\left\{x \in \mathbb{Z}_{p}:|x|_{p}=1\right\}$. Then X consists of $p^{v_{p}\left(\alpha^{\ell}-1\right)-1}(p-1) / \ell$ minimal parts.
As a system on \mathcal{O}_{K},

- we have the decomposition $\left(\mathbb{U}=\left\{x \in \mathcal{O}_{K}:|x|_{p}=1\right\}\right)$

$$
\mathcal{O}_{K}=\{0\} \cup \bigcup_{k=0}^{\infty} \pi^{k} \mathbb{U}
$$

- All $\left(\pi^{k} \mathbb{U}, T\right)$ are conjugate to (\mathbb{U}, T).
- For (\mathbb{U}, T), we have uncountable (cardinality of real numbers) many minimal parts which can be written as

$$
E \cdot(1+\sqrt{p} y)
$$

with E a minimal part of T on $X\left(\subset \mathbb{Z}_{p}\right)$ and $y \in \mathbb{Z}_{p}$.

VII. Ideas and methods

Fan, Li, Yao, Zhou: Fourier analysis.
Our methodes :

Theorem (Anashin 1994, Chabert, Fan and Fares 2009)

Let $X \subset \mathcal{O}_{K}$ be a compact set.
$f: X \rightarrow X$ is minimal \Leftrightarrow
$f_{k}: X / \pi^{k} \mathcal{O}_{K} \rightarrow X / \pi^{k} \mathcal{O}_{K}$ is minimal for all $k \geq 1$.
Predicting the behavior of f_{k+1} by the structure of f_{k}.
\rightarrow Idea of Desjardins and Zieve 1994 (arXiv) and Zieve's Ph.D. Thesis 1996.

