Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich

University of Ottawa
April 19, 2012

Warwick

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic
homogeneity
Perspectives and
prospects
Conclusions

The foundations of these operations are evident enough, but I cannot proceed with the explanation of it now. I have preferred to conceal it thus:

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

A historical episode Invariant measures Graphical dynamics

Graphed equivalence relations

Stochastic homogeneity

Perspectives and prospects

The foundations of these operations are evident enough, but I cannot proceed with the explanation of it now. I have preferred to conceal it thus:

6accdae13eff7i319n4o4qrr4s8t12vx

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

A historical episode Invariant measures Graphical dynamics

Graphed equivalence relations

Stochastic homogeneity

Perspectives and prospects

The foundations of these operations are evident enough, but I cannot proceed with the explanation of it now. I have preferred to conceal it thus:

6accdae13eff7i319n4o4qrr4s8t12vx

Second letter of Newton to Leibniz (1676)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

A historical episode Invariant measures Graphical dynamics

Graphed equivalence relations

Stochastic homogeneity

Perspectives and prospects

The foundations of these operations are evident enough, but I cannot proceed with the explanation of it now. I have preferred to conceal it thus:

6accdae13eff7i319n4o4qrr4s8t12vx

Second letter of Newton to Leibniz (1676)

Data aequatione quotcunque fluentes quantitae involvente fluxiones invenire et vice versa

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

A historical episode Invariant measures Graphical dynamics

Graphed

The foundations of these operations are evident enough, but I cannot proceed with the explanation of it now. I have preferred to conceal it thus:

6accdae13eff7i319n4o4qrr4s8t12vx

- Second letter of Newton to Leibniz (1676)

Data aequatione quotcunque fluentes quantitae involvente fluxiones invenire et vice versa

Given an equation involving any number of fluent quantities, to find the fluxions, and vice versa

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

A historical episode Invariant measures Graphical dynamics

Graphed

Stochastic
homogeneity
Perspectives and prospects

Conclusions

The foundations of these operations are evident enough, but I cannot proceed with the explanation of it now. I have preferred to conceal it thus:

6accdae13eff7i319n4o4qrr4s8t12vx

- Second letter of Newton to Leibniz (1676)

Data aequatione quotcunque fluentes quantitae involvente fluxiones invenire et vice versa

Given an equation involving any number of fluent quantities, to find the fluxions, and vice versa

It is useful to solve differential equations!

It is useful to consider invariant measures!

Vadim A.
Kaimanovich

Introduction

A historical episode
Invariant measures
Graphical dynamics
Graphed equivalence
relations
Stochastic
homogeneity
Perspectives and
prospects
Conclusions

It is useful to consider invariant measures!

WHERE?

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

A historical episode
Invariant measures
Graphical dynamics
Graphed equivalence relations

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

It is useful to consider invariant measures!

Classical examples

- smooth dynamics;

Introduction

A historical episode
Invariant measures
Graphical dynamics
Graphed
equivalence relations

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

It is useful to consider invariant measures!

WHERE?

Classical examples

- smooth dynamics;
- measurable dynamics;

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

A historical episode
Invariant measures
Graphical dynamics
Graphed
equivalence
relations

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

It is useful to consider invariant measures!

WHERE?

Classical examples

- smooth dynamics;
- measurable dynamics;
- symbolic dynamics

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

A historical episode
Invariant measures
Graphical dynamics
Graphed
equivalence
relations

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

It is useful to consider invariant measures!

WHERE?

Classical examples

- smooth dynamics;
- measurable dynamics;
- symbolic dynamics

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

A historical episode
Invariant measures
Graphical dynamics
Graphed
equivalence
relations

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

It is useful to consider invariant measures!

- WHERE?

Classical examples

- smooth dynamics;
- measurable dynamics;
- symbolic dynamics

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

A historical episode
Invariant measures
Graphical dynamics
Graphed
equivalence
relations

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Definition

A graph 「 is determined by its set of vertices (nodes) V and its set of edges (links) E connected by an incidence relation (further "decoration" is possible!).

Introduction

A historical episode Invariant measures Graphical dynamics

Graphed equivalence relations

Stochastic homogeneity

Perspectives and prospects

Conclusions

Definition

A graph 「 is determined by its set of vertices (nodes) V and its set of edges (links) E connected by an incidence relation (further "decoration" is possible!).

Structured "big" set \Longrightarrow local structure \Longrightarrow graph structure

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

A historical episode Invariant measures Graphical dynamics

Graphed equivalence relations

Stochastic homogeneity

Perspectives and prospects

Conclusions

Definition

A graph 「 is determined by its set of vertices (nodes) V and its set of edges (links) E connected by an incidence relation (further "decoration" is possible!).

Structured "big" set \Longrightarrow local structure \Longrightarrow graph structure
How can one understand a collection of (large) finite objects?

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

A historical episode Invariant measures Graphical dynamics

Graphed

Stochastic

Perspectives and prospects

Conclusions

Definition

A graph 「 is determined by its set of vertices (nodes) V and its set of edges (links) E connected by an incidence relation (further "decoration" is possible!).

Structured "big" set \Longrightarrow local structure \Longrightarrow graph structure How can one understand a collection of (large) finite objects? finite objects \rightarrow infinite objects \rightarrow invariant measures

Introduction

A historical episode Invariant measures Graphical dynamics

Graphed

Definition

A graph 「 is determined by its set of vertices (nodes) V and its set of edges (links) E connected by an incidence relation (further "decoration" is possible!).

Structured "big" set \Longrightarrow local structure \Longrightarrow graph structure
How can one understand a collection of (large) finite objects?
finite objects \rightarrow infinite objects \rightarrow invariant measures
finite words \rightarrow infinite words $A^{\mathbb{Z}} \rightarrow \sqrt{ }$
information theory

Introduction

A historical episode
Invariant measures
Graphical dynamics
Graphed
equivalence
relations

Stochastic
homogeneity
Perspectives and prospects

Conclusions

Definition

A graph 「 is determined by its set of vertices (nodes) V and its set of edges (links) E connected by an incidence relation (further "decoration" is possible!).

Structured "big" set \Longrightarrow local structure \Longrightarrow graph structure
How can one understand a collection of (large) finite objects?
finite objects \rightarrow infinite objects \rightarrow invariant measures
finite words \rightarrow infinite words $A^{\mathbb{Z}} \rightarrow$
finite graphs \rightarrow infinite graphs $\mathcal{G} \rightarrow$
information theory

Definition

A graph 「 is determined by its set of vertices (nodes) V and its set of edges (links) E connected by an incidence relation (further "decoration" is possible!).

Structured "big" set \Longrightarrow local structure \Longrightarrow graph structure
How can one understand a collection of (large) finite objects?
finite objects \rightarrow infinite objects \rightarrow invariant measures
finite words \rightarrow infinite words $A^{\mathbb{Z}} \rightarrow$
finite graphs \rightarrow infinite graphs $\mathcal{G} \rightarrow$
information theory

Holonomy invariant measures on foliations

Measured equivalence relations (Feldman-Moore 1977)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction
Graphed
equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Holonomy invariant measures on foliations

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks
Continuity
Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Holonomy invariant measures on foliations
(X, μ) - a Lebesgue probability space
$R \subset X \times X$ - a Borel equivalence relation with at most countable classes (examples: orbit equivalence relations of group actions, traces on transversals in foliations, etc.)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Holonomy invariant measures on foliations

(X, μ) - a Lebesgue probability space
$R \subset X \times X$ - a Borel equivalence relation with at most countable classes (examples: orbit equivalence relations of group actions, traces on transversals in foliations, etc.)

A partial transformation of R - a measurable bijection $\varphi: A \rightarrow B$ with graph $\varphi \subset R$

Holonomy invariant measures on foliations

(X, μ) - a Lebesgue probability space
$R \subset X \times X$ - a Borel equivalence relation with at most countable classes (examples: orbit equivalence relations of group actions, traces on transversals in foliations, etc.)

A partial transformation of R - a measurable bijection $\varphi: A \rightarrow B$ with graph $\varphi \subset R$

Definition

The measure μ is R-invariant if $\varphi \mu_{A}=\mu_{B}$ for any partial transformation of R.

Holonomy invariant measures on foliations

(X, μ) - a Lebesgue probability space
$R \subset X \times X$ - a Borel equivalence relation with at most countable classes (examples: orbit equivalence relations of group actions, traces on transversals in foliations, etc.)

A partial transformation of R - a measurable bijection $\varphi: A \rightarrow B$ with graph $\varphi \subset R$

Definition

The measure μ is R-invariant if $\varphi \mu_{A}=\mu_{B}$ for any partial transformation of R.

One can also talk about quasi-invariant measures and the associated Radon-Nikodym cocycle

Definition (Feldman-Moore 1977)

The (left) counting measure is

$$
d \#_{\mu}(x, y)=d \mu(x) d \#_{x}(y),
$$

where $\#_{x}$ is the counting measure on the fiber $\mathfrak{p}^{-1}(x)$ of the projection $\mathfrak{p}: R \rightarrow X$ (i.e., on the equivalence class of x).

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed

equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Definition (Feldman-Moore 1977)

The (left) counting measure is

$$
d \#_{\mu}(x, y)=d \mu(x) d \#_{x}(y),
$$

where $\#_{x}$ is the counting measure on the fiber $\mathfrak{p}^{-1}(x)$ of the projection $\mathfrak{p}: R \rightarrow X$ (i.e., on the equivalence class of x).

The involution $\left[(x, y) \mapsto(y, x)\right.$] of $\#_{\mu}$ is the right counting measure $\#^{\mu}$, and μ is R-quasi-invariant \Longleftrightarrow $\# \mu \sim \#^{\mu}$

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Definition (Feldman-Moore 1977)

The (left) counting measure is

$$
d \#_{\mu}(x, y)=d \mu(x) d \#_{x}(y)
$$

where $\#_{x}$ is the counting measure on the fiber $\mathfrak{p}^{-1}(x)$ of the projection $\mathfrak{p}: R \rightarrow X$ (i.e., on the equivalence class of x).

The involution $\left[(x, y) \mapsto(y, x)\right.$] of $\#_{\mu}$ is the right counting measure $\#^{\mu}$, and μ is R-quasi-invariant \Longleftrightarrow $\#{ }_{\mu} \sim \#^{\mu}$

Definition (Feldman-Moore 1977)

$$
\mathcal{D}(x, y)=\frac{d \#^{\mu}}{d \#_{\mu}}(x, y)=\frac{d \mu(y)}{d \mu(x)}
$$

is the (multiplicative) Radon-Nikodym cocycle.

Definition (Feldman-Moore 1977)

The (left) counting measure is

$$
d \#_{\mu}(x, y)=d \mu(x) d \#_{x}(y)
$$

where $\#_{x}$ is the counting measure on the fiber $\mathfrak{p}^{-1}(x)$ of the projection $\mathfrak{p}: R \rightarrow X$ (i.e., on the equivalence class of x).

The involution $\left[(x, y) \mapsto(y, x)\right.$] of $\#_{\mu}$ is the right counting measure $\#^{\mu}$, and μ is R-quasi-invariant \Longleftrightarrow $\#{ }_{\mu} \sim \#^{\mu}$

Definition (Feldman-Moore 1977)

$$
\mathcal{D}(x, y)=\frac{d \#^{\mu}}{d \#_{\mu}}(x, y)=\frac{d \mu(y)}{d \mu(x)}
$$

is the (multiplicative) Radon-Nikodym cocycle.
μ is invariant $\Longleftrightarrow \mathcal{D} \equiv 1$

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction
Graphed
equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Definition (Plante 1975 - pseudogroups, Adams 1990)

$K \subset R$ - a leafwise graph structure on an equivalence relation $R ;(X, \mu, R, K)$ - a graphed equivalence relation.

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Definition (Plante 1975 - pseudogroups, Adams 1990)

$K \subset R$ - a leafwise graph structure on an equivalence relation $R ;(X, \mu, R, K)$ - a graphed equivalence relation.
A discrete analogue of Riemannian foliations. Further "decoration" is possible! (edge length, labelling, colouring etc.). One can consider structures of higher dimensional leafwise abstract simplicial complexes.

Introduction
Graphed
equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Definition (Plante 1975 - pseudogroups, Adams 1990)

$K \subset R$ - a leafwise graph structure on an equivalence relation $R ;(X, \mu, R, K)$ - a graphed equivalence relation.
A discrete analogue of Riemannian foliations. Further "decoration" is possible! (edge length, labelling, colouring etc.). One can consider structures of higher dimensional leafwise abstract simplicial complexes.

Assume that

Introduction
Graphed
equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks
Continuity
Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Definition (Plante 1975 - pseudogroups, Adams 1990)

$K \subset R$ - a leafwise graph structure on an equivalence relation $R ;(X, \mu, R, K)$ - a graphed equivalence relation.
A discrete analogue of Riemannian foliations. Further "decoration" is possible! (edge length, labelling, colouring etc.). One can consider structures of higher dimensional leafwise abstract simplicial complexes.

Assume that

- K generates R (i.e., leafwise graphs are connected)

Introduction
Graphed
equivalence relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Definition (Plante 1975 - pseudogroups, Adams 1990)

$K \subset R$ - a leafwise graph structure on an equivalence relation $R ;(X, \mu, R, K)$ - a graphed equivalence relation. etc.). One can consider structures of higher dimensional leafwise abstract simplicial complexes.

Assume that

- K generates R (i.e., leafwise graphs are connected)
- K is locally finite (a.e. $\operatorname{deg} x<\infty$)

Introduction
Graphed
equivalence relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Definition (Plante 1975 - pseudogroups, Adams 1990)

$K \subset R$ - a leafwise graph structure on an equivalence relation $R ;(X, \mu, R, K)$ - a graphed equivalence relation. etc.). One can consider structures of higher dimensional leafwise abstract simplicial complexes.

Assume that

- K generates R (i.e., leafwise graphs are connected)
- K is locally finite (a.e. $\operatorname{deg} x<\infty$)

Introduction
Graphed
equivalence relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Definition (Plante 1975 - pseudogroups, Adams 1990)

$K \subset R$ - a leafwise graph structure on an equivalence relation $R ;(X, \mu, R, K)$ - a graphed equivalence relation. etc.). One can consider structures of higher dimensional leafwise abstract simplicial complexes.

Assume that

- K generates R (i.e., leafwise graphs are connected)
- K is locally finite (a.e. $\operatorname{deg} x<\infty$)

Observation

A measure μ is R-invariant \Longleftrightarrow the restriction $\left.\#_{\mu}\right|_{K}$ is involution invariant.

Definition

The simple random walk on a (locally finite) graph Γ is the Markov chain with the transition probabilities

$$
p(x, y)= \begin{cases}1 / \operatorname{deg} x, & x \sim y ; \\ 0, & \text { otherwise. }\end{cases}
$$

In the same way one defines the simple random walk along classes of a graphed equivalence relation cf. leafwise Brownian motion on foliations (Garrett 1983)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

Definition

The simple random walk on a (locally finite) graph Γ is the Markov chain with the transition probabilities

$$
p(x, y)= \begin{cases}1 / \operatorname{deg} x, & x \sim y ; \\ 0, & \text { otherwise. }\end{cases}
$$

In the same way one defines the simple random walk along classes of a graphed equivalence relation (X, μ, R, K), cf. leafwise Brownian motion on foliations (Garnett 1983).

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Invariance beyond groups
Counting measure Graphed equivalence relations
Simple random walks
Continuity
Stochastic
homogeneity
Perspectives and
prospects

Definition

The simple random walk on a (locally finite) graph Γ is the Markov chain with the transition probabilities

$$
p(x, y)= \begin{cases}1 / \operatorname{deg} x, & x \sim y \\ 0, & \text { otherwise }\end{cases}
$$

In the same way one defines the simple random walk along classes of a graphed equivalence relation (X, μ, R, K), cf. leafwise Brownian motion on foliations (Garnett 1983).

Theorem (K 1988, 1998)

A measure μ on a graphed equivalence relation (X, m, R, K) is R-invariant \Longleftrightarrow the measure $m=\operatorname{deg} \cdot \mu$ is stationary and reversible with respect to the SRW on X.

Definition

The simple random walk on a (locally finite) graph Γ is the Markov chain with the transition probabilities

$$
p(x, y)= \begin{cases}1 / \operatorname{deg} x, & x \sim y \\ 0, & \text { otherwise }\end{cases}
$$

In the same way one defines the simple random walk along classes of a graphed equivalence relation (X, μ, R, K), cf. leafwise Brownian motion on foliations (Garnett 1983).

Theorem (K 1988, 1998)

A measure μ on a graphed equivalence relation (X, m, R, K) is R-invariant \Longleftrightarrow the measure $m=\operatorname{deg} \cdot \mu$ is stationary and reversible with respect to the SRW on X.

Idea of proof: Reversibility \equiv involution invariance of the joint distribution of $\left(x_{0}, x_{1}\right) \equiv$ involution invariance of $\# \mu \mid \kappa$.

For continuous group actions the space of invariant measures is weak* closed

equidistributed on finite orbits (periodic points)
Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

For continuous group actions the space of invariant measures

 is weak* closed \Longrightarrow approximation by measures equidistributed on finite orbits (periodic points).Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

For continuous group actions the space of invariant measures is weak* closed \Longrightarrow approximation by measures equidistributed on finite orbits (periodic points).

Definition (K)

A graphed equivalence relation (X, R, K) on a topological state space X is continuous if the map $x \mapsto \pi_{x}$ is continuous (with respect to the weak* topology on $M(X)$).

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Invariance beyond groups
Counting measure
Graphed equivalence relations
Simple random walks Continuity

Stochastic
homogeneity
Perspectives and
prospects
Conclusions

For continuous group actions the space of invariant measures is weak* closed \Longrightarrow approximation by measures equidistributed on finite orbits (periodic points).

Definition (K)

A graphed equivalence relation (X, R, K) on a topological state space X is continuous if the map $x \mapsto \pi_{x}$ is continuous (with respect to the weak* topology on $M(X)$).

Theorem (K)

If a graphed equivalence relation (X, R, K) is continuous, then the space of R-invariant measures is weak* closed.

For continuous group actions the space of invariant measures is weak* closed \Longrightarrow approximation by measures equidistributed on finite orbits (periodic points).

Definition (K)

A graphed equivalence relation (X, R, K) on a topological state space X is continuous if the map $x \mapsto \pi_{x}$ is continuous (with respect to the weak* topology on $M(X)$).

Theorem (K)

If a graphed equivalence relation (X, R, K) is continuous, then the space of R-invariant measures is weak* closed.

Idea of proof: Use closedness of the space of stationary measures of the simple random walk and correspondence with reversible \subset stationary measures.

Definition (K)

Stochastic homogenization of a family of graphs is an equivalence relation with a finite invariant measure graphed by this family.
 simple random walk (三 stationarv scenerv). Is the same as

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity Modular cocycle

Perspectives and
prospects
Conclusions

Definition (K)

Stochastic homogenization of a family of graphs is an equivalence relation with a finite invariant measure graphed by this family.

Weaker form: a finite stationary measure for the leafwise simple random walk (\equiv stationary scenery). Is the same as strong homogenization if the measure is, in addition, reversible.

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction
Graphed
equivalence
relations
Stochastic homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

Definition (K)

Stochastic homogenization of a family of graphs is an equivalence relation with a finite invariant measure graphed by this family.

Weaker form: a finite stationary measure for the leafwise simple random walk (\equiv stationary scenery). Is the same as strong homogenization if the measure is, in addition, reversible.

Observation

An invariant measure need not exist! Compactness of the state space implies existence of a stationary one (cf.
Garnett's harmonic measures for foliations).

- Group actions

Equivalence

 relations and random graphs: an introduction to graphical dynamicsVadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic
homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and prospects

Conclusions

- Group actions
- \quad Random perturbations of Cayley graphs (extreme case: percolation)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic
homogeneity
Definition

Examples

Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

- Group actions
- - Random perturbations of Cayley graphs (extreme case: percolation)
- Graphs arising from invariant point processes on homogeneous manifolds (Benjamini-Schramm 2001, Holroyd-Peres 2003, Timár 2004)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic homogeneity
Definition

Examples

Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

- Group actions
- - Random perturbations of Cayley graphs (extreme case: percolation)
- Graphs arising from invariant point processes on homogeneous manifolds (Benjamini-Schramm 2001, Holroyd-Peres 2003, Timár 2004)
- Schreier graphs and random subgroups

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic homogeneity
Definition

Examples

Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

- Group actions
- - Random perturbations of Cayley graphs (extreme case: percolation)
- Graphs arising from invariant point processes on homogeneous manifolds (Benjamini-Schramm 2001, Holroyd-Peres 2003, Timár 2004)
- Schreier graphs and random subgroups
- Extremely non-free actions (Vershik 2010)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic homogeneity
Definition

Examples

Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

- Group actions
- - Random perturbations of Cayley graphs (extreme case: percolation)
- Graphs arising from invariant point processes on homogeneous manifolds (Benjamini-Schramm 2001, Holroyd-Peres 2003, Timár 2004)
- Schreier graphs and random subgroups
- Extremely non-free actions (Vershik 2010)
- Self-similar groups (Nekrashevych 2005, Nagnibeda et al. 2010, Grigorchuk 2011)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic homogeneity
Definition

Examples

Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

- Group actions
- - Random perturbations of Cayley graphs (extreme case: percolation)
- Graphs arising from invariant point processes on homogeneous manifolds (Benjamini-Schramm 2001, Holroyd-Peres 2003, Timár 2004)
- Schreier graphs and random subgroups
- Extremely non-free actions (Vershik 2010)
- Self-similar groups (Nekrashevych 2005, Nagnibeda et al. 2010, Grigorchuk 2011)
- Z -actions

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic homogeneity
Definition

Examples

Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

- Group actions
- - Random perturbations of Cayley graphs (extreme case: percolation)
- Graphs arising from invariant point processes on homogeneous manifolds (Benjamini-Schramm 2001, Holroyd-Peres 2003, Timár 2004)
- Schreier graphs and random subgroups
- Extremely non-free actions (Vershik 2010)
- Self-similar groups (Nekrashevych 2005, Nagnibeda et al. 2010, Grigorchuk 2011)
- Z -actions
- Fractal graphs (K 2001)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic homogeneity
Definition

Examples

Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

- Group actions
- - Random perturbations of Cayley graphs (extreme case: percolation)
- Graphs arising from invariant point processes on homogeneous manifolds (Benjamini-Schramm 2001, Holroyd-Peres 2003, Timár 2004)
- Schreier graphs and random subgroups
- Extremely non-free actions (Vershik 2010)
- Self-similar groups (Nekrashevych 2005, Nagnibeda et al. 2010, Grigorchuk 2011)
- Z -actions
- Fractal graphs (K 2001)
- Zuta (Glasner-Weiss 2011)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic
homogeneity
Definition

Examples

Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

- Group actions
- - Random perturbations of Cayley graphs (extreme case: percolation)
- Graphs arising from invariant point processes on homogeneous manifolds (Benjamini-Schramm 2001, Holroyd-Peres 2003, Timár 2004)
- Schreier graphs and random subgroups
- Extremely non-free actions (Vershik 2010)
- Self-similar groups (Nekrashevych 2005, Nagnibeda et al. 2010, Grigorchuk 2011)
- Z -actions
- Fractal graphs (K 2001)
- Zuta (Glasner-Weiss 2011)
- Graphs arising from foliations (the trace of a transversal on a leaf)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence relations

Stochastic homogeneity
Definition

Examples

Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

- Group actions
- - Random perturbations of Cayley graphs (extreme case: percolation)
- Graphs arising from invariant point processes on homogeneous manifolds (Benjamini-Schramm 2001, Holroyd-Peres 2003, Timár 2004)
- Schreier graphs and random subgroups
- Extremely non-free actions (Vershik 2010)
- Self-similar groups (Nekrashevych 2005, Nagnibeda et al. 2010, Grigorchuk 2011)
- Z -actions
- Fractal graphs (K 2001)
- Zuta (Glasner-Weiss 2011)
- Graphs arising from foliations (the trace of a transversal on a leaf)
- Augmented Galtion-Watson trees Lyons-Peres-Pemantle 1995

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence relations

Stochastic
homogeneity
Definition

Examples

Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

- Group actions
- - Random perturbations of Cayley graphs (extreme case: percolation)
- Graphs arising from invariant point processes on homogeneous manifolds (Benjamini-Schramm 2001, Holroyd-Peres 2003, Timár 2004)
- Schreier graphs and random subgroups
- Extremely non-free actions (Vershik 2010)
- Self-similar groups (Nekrashevych 2005, Nagnibeda et al. 2010, Grigorchuk 2011)
- Z -actions
- Fractal graphs (K 2001)
- Zuta (Glasner-Weiss 2011)
- Graphs arising from foliations (the trace of a transversal on a leaf)
- Augmented Galton-Watson trees Lyons-Peres-Pemantle 1995
- Uniform infinite planar triangulation (Angel-Schramm 2003) and quadrangulation (Chassaing-Durhuus 2006, Krikun 2006)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction
Graphed
equivalence relations

Stochastic
homogeneity
Definition

Examples

Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

Another approach: a graphed equivalence relation (X, μ, R, K) produces a random pointed (rooted) graph

$$
\pi: x \mapsto\left([x]_{K}, x\right)
$$

Introduction

Graphed
equivalence
relations
Stochastic
homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

Another approach: a graphed equivalence relation (X, μ, R, K) produces a random pointed (rooted) graph

$$
\pi: x \mapsto\left([x]_{K}, x\right)
$$

What can one say about the arising measures $\pi(\mu)$?

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic
homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

Another approach: a graphed equivalence relation (X, μ, R, K) produces a random pointed (rooted) graph

$$
\pi: x \mapsto\left([x]_{K}, x\right)
$$

What can one say about the arising measures $\pi(\mu)$?

Definition

$\mathcal{G}=\{(\Gamma, v): v$ is a vertex of $\Gamma)\}$ - the space of (isomorphism classes) of locally finite pointed (rooted) infinite graphs.

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic
homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

Another approach: a graphed equivalence relation (X, μ, R, K) produces a random pointed (rooted) graph

$$
\pi: x \mapsto\left([x]_{K}, x\right)
$$

What can one say about the arising measures $\pi(\mu)$?

Definition

$\mathcal{G}=\{(\Gamma, v): v$ is a vertex of $\Gamma)\}$ - the space of (isomorphism classes) of locally finite pointed (rooted) infinite graphs.
$\mathcal{G}=\lim _{\leftarrow} \mathcal{G}_{r}$ (pointed finite graphs of radius $\leq r$)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence relations

Stochastic
homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

Another approach: a graphed equivalence relation (X, μ, R, K) produces a random pointed (rooted) graph

$$
\pi: x \mapsto\left([x]_{K}, x\right)
$$

What can one say about the arising measures $\pi(\mu)$?

Definition

$\mathcal{G}=\{(\Gamma, v): v$ is a vertex of $\Gamma)\}$ - the space of (isomorphism classes) of locally finite pointed (rooted) infinite graphs.
$\mathcal{G}=\lim _{\leftarrow} \mathcal{G}_{r}$ (pointed finite graphs of radius $\leq r$)
\mathcal{G} is compact if vertex degrees are uniformly bounded

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction
Graphed
equivalence relations

Stochastic
homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions
\mathcal{G} has natural "root moving" equivalence relation and the associated graph structure (K 1998):

$$
\mathcal{R}=\left\{(\Gamma, v),\left(\Gamma^{\prime}, v^{\prime}\right): \Gamma \cong \Gamma^{\prime}\right\}
$$

$$
\mathcal{K}=\left\{(\Gamma, v),\left(\Gamma, v^{\prime}\right): v \text { and } v^{\prime} \text { are neighbors in } \Gamma\right\}
$$

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic homogeneity
Definition
Examples
Space of rooted graphs

Invariance

Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions
\mathcal{G} has natural "root moving" equivalence relation and the associated graph structure (K 1998):

$$
\begin{gathered}
\mathcal{R}=\left\{(\Gamma, v),\left(\Gamma^{\prime}, v^{\prime}\right): \Gamma \cong \Gamma^{\prime}\right\} \\
\mathcal{K}=\left\{(\Gamma, v),\left(\Gamma, v^{\prime}\right): v \text { and } v^{\prime} \text { are neighbors in } \Gamma\right\}
\end{gathered}
$$

The equivalence class of a graph Γ is the quotient

$$
[\Gamma]=\Gamma / \mathrm{Iso}(\Gamma)
$$

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic
homogeneity
Definition
Examples
Space of rooted graphs

Invariance

Unimodularity Modular cocycle

Perspectives and prospects

Conclusions
\mathcal{G} has natural "root moving" equivalence relation and the associated graph structure (K 1998):

$$
\begin{gathered}
\mathcal{R}=\left\{(\Gamma, v),\left(\Gamma^{\prime}, v^{\prime}\right): \Gamma \cong \Gamma^{\prime}\right\} \\
\mathcal{K}=\left\{(\Gamma, v),\left(\Gamma, v^{\prime}\right): v \text { and } v^{\prime} \text { are neighbors in } \Gamma\right\}
\end{gathered}
$$

The equivalence class of a graph Γ is the quotient

$$
[\Gamma]=\Gamma / \operatorname{Iso}(\Gamma)
$$

Γ is vertex transitive $\Longleftrightarrow[\Gamma]=\{\cdot\}$

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic
homogeneity
Definition
Examples
Space of rooted graphs

Invariance

Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions
\mathcal{G} has natural "root moving" equivalence relation and the associated graph structure (K 1998):

$$
\begin{gathered}
\mathcal{R}=\left\{(\Gamma, v),\left(\Gamma^{\prime}, v^{\prime}\right): \Gamma \cong \Gamma^{\prime}\right\} \\
\mathcal{K}=\left\{(\Gamma, v),\left(\Gamma, v^{\prime}\right): v \text { and } v^{\prime} \text { are neighbors in } \Gamma\right\}
\end{gathered}
$$

The equivalence class of a graph Γ is the quotient

$$
[\Gamma]=\Gamma / \operatorname{Iso}(\Gamma)
$$

Γ is vertex transitive
$\Longleftrightarrow[\Gamma]=\{\cdot\}$
Γ is quasi-transitive $\Longleftrightarrow[\Gamma]$ is finite

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction
Graphed
equivalence
relations
Stochastic
homogeneity
Definition
Examples
Space of rooted graphs

Invariance

Unimodularity Modular cocycle

Perspectives and prospects

Conclusions
\mathcal{G} has natural "root moving" equivalence relation and the associated graph structure (K 1998):

$$
\begin{gathered}
\mathcal{R}=\left\{(\Gamma, v),\left(\Gamma^{\prime}, v^{\prime}\right): \Gamma \cong \Gamma^{\prime}\right\} \\
\mathcal{K}=\left\{(\Gamma, v),\left(\Gamma, v^{\prime}\right): v \text { and } v^{\prime} \text { are neighbors in } \Gamma\right\}
\end{gathered}
$$

The equivalence class of a graph Γ is the quotient

$$
[\Gamma]=\Gamma / \operatorname{Iso}(\Gamma)
$$

Γ is vertex transitive
$\Longleftrightarrow[\Gamma]=\{\cdot\}$
Γ is quasi-transitive $\Longleftrightarrow[\Gamma]$ is finite
Γ is rigid
$\Longleftrightarrow[\Gamma] \cong \Gamma$

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich

Introduction
Graphed
equivalence
relations
Stochastic
homogeneity
Definition
Examples
Space of rooted graphs

Invariance

Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions
\mathcal{G} has natural "root moving" equivalence relation and the associated graph structure (K 1998):

$$
\begin{gathered}
\mathcal{R}=\left\{(\Gamma, v),\left(\Gamma^{\prime}, v^{\prime}\right): \Gamma \cong \Gamma^{\prime}\right\} \\
\mathcal{K}=\left\{(\Gamma, v),\left(\Gamma, v^{\prime}\right): v \text { and } v^{\prime} \text { are neighbors in } \Gamma\right\}
\end{gathered}
$$

The equivalence class of a graph Γ is the quotient

$$
[\Gamma]=\Gamma / \operatorname{Iso}(\Gamma)
$$

$\begin{array}{ll}\Gamma \text { is vertex transitive } & \Longleftrightarrow[\Gamma]=\{\cdot\} \\ \Gamma \text { is quasi-transitive } & \Longleftrightarrow[\Gamma] \text { is finite } \\ \Gamma \text { is rigid } & \Longleftrightarrow[\Gamma] \cong \Gamma\end{array}$
Theorem (K)
If a.e. graph in a graphed equivalence relation (X, μ, R, K) with R-invariant measure μ is rigid, than the image measure $\pi(\mu)$ on \mathcal{G} is \mathcal{R}-invariant.

Equivalence

 relations and random graphs: an introduction to graphical dynamicsVadim A.
Kaimanovich

Introduction
Graphed
equivalence relations

Stochastic
homogeneity
Definition
Examples
Space of rooted graphs

Invariance

Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions
\mathcal{G} has natural "root moving" equivalence relation and the associated graph structure (K 1998):

$$
\begin{gathered}
\mathcal{R}=\left\{(\Gamma, v),\left(\Gamma^{\prime}, v^{\prime}\right): \Gamma \cong \Gamma^{\prime}\right\} \\
\mathcal{K}=\left\{(\Gamma, v),\left(\Gamma, v^{\prime}\right): v \text { and } v^{\prime} \text { are neighbors in } \Gamma\right\}
\end{gathered}
$$

The equivalence class of a graph Γ is the quotient

$$
[\Gamma]=\Gamma / \operatorname{Iso}(\Gamma)
$$

Γ is vertex transitive
$\Longleftrightarrow[\Gamma]=\{\cdot\}$
Γ is quasi-transitive $\Longleftrightarrow[\Gamma]$ is finite Γ is rigid

Theorem (K)
If a.e. graph in a graphed equivalence relation (X, μ, R, K) with R-invariant measure μ is rigid, than the image measure $\pi(\mu)$ on \mathcal{G} is \mathcal{R}-invariant.

Not true in the presence of symmetries!
relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich

Introduction
Graphed
equivalence relations

Stochastic
homogeneity
Definition
Examples
Space of rooted graphs

Invariance

Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions
\mathcal{G} has natural "root moving" equivalence relation and the associated graph structure (K 1998):

$$
\begin{gathered}
\mathcal{R}=\left\{(\Gamma, v),\left(\Gamma^{\prime}, v^{\prime}\right): \Gamma \cong \Gamma^{\prime}\right\} \\
\mathcal{K}=\left\{(\Gamma, v),\left(\Gamma, v^{\prime}\right): v \text { and } v^{\prime} \text { are neighbors in } \Gamma\right\}
\end{gathered}
$$

Equivalence

 relations and random graphs: an introduction to graphical dynamicsVadim A.
Kaimanovich
The equivalence class of a graph Γ is the quotient

$$
[\Gamma]=\Gamma / \operatorname{Iso}(\Gamma)
$$

Γ is vertex transitive
$\Longleftrightarrow[\Gamma]=\{\cdot\}$
Γ is quasi-transitive $\Longleftrightarrow[\Gamma]$ is finite
Γ is rigid
$\Longleftrightarrow[\Gamma] \cong \Gamma$
Theorem (K)
If a.e. graph in a graphed equivalence relation (X, μ, R, K) with R-invariant measure μ is rigid, than the image measure $\pi(\mu)$ on \mathcal{G} is \mathcal{R}-invariant.

Not true in the presence of symmetries! Replace invariance with unimodularity!

Instead of \mathcal{R} one can consider the space of (isomorphism classes of) doubly rooted graphs $\mathcal{G} \bullet \bullet \mathcal{G}$.

Definition (Benjamini-Schramm 2001)A measure m on \mathcal{R} is unimodular if the associated counting measure on $\mathcal{G}_{\text {.e }}$ is preserved by the involution (root switching). For a finite graph the invariant measure is equidistributed on its equivalence class. whereas the unimodular measure is the quotient of the uniform measure on the graph itself.

Introduction

Graphed
equivalence relations

Stochastic

homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

Instead of \mathcal{R} one can consider the space of (isomorphism classes of) doubly rooted graphs $\mathcal{G} \bullet \bullet \mathcal{G}$.

Definition (Benjamini-Schramm 2001)

A measure m on \mathcal{R} is unimodular if the associated counting measure on $\mathcal{G}_{\bullet \bullet}$ is preserved by the involution (root switching).

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic
homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

Instead of \mathcal{R} one can consider the space of (isomorphism classes of) doubly rooted graphs $\mathcal{G} \bullet \rightarrow \mathcal{G}$.

Definition (Benjamini-Schramm 2001)

A measure m on \mathcal{R} is unimodular if the associated counting measure on $\mathcal{G}_{\bullet \bullet}$ is preserved by the involution (root switching).

For a finite graph the invariant measure is equidistributed on its equivalence class, whereas the unimodular measure is the quotient of the uniform measure on the graph itself.

Instead of \mathcal{R} one can consider the space of (isomorphism classes of) doubly rooted graphs $\mathcal{G} \bullet \bullet \mathcal{G}$.

Definition (Benjamini-Schramm 2001)

A measure m on \mathcal{R} is unimodular if the associated counting measure on $\mathcal{G}_{\bullet \bullet}$ is preserved by the involution (root switching).

For a finite graph the invariant measure is equidistributed on its equivalence class, whereas the unimodular measure is the quotient of the uniform measure on the graph itself.

Theorem (K - uses an appropriate Markov chain on \mathcal{G})
The space of unimodular measures on \mathcal{G} is weak* closed the space of invariant ones is not!

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich

Introduction
Graphed
equivalence relations

Stochastic
homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

Instead of \mathcal{R} one can consider the space of (isomorphism classes of) doubly rooted graphs $\mathcal{G} \bullet \rightarrow \mathcal{G}$.

Definition (Benjamini-Schramm 2001)

A measure m on \mathcal{R} is unimodular if the associated counting measure on $\mathcal{G}_{\bullet \bullet}$ is preserved by the involution (root switching).

For a finite graph the invariant measure is equidistributed on its equivalence class, whereas the unimodular measure is the quotient of the uniform measure on the graph itself.

Theorem (K - uses an appropriate Markov chain on \mathcal{G})
The space of unimodular measures on \mathcal{G} is weak* closed the space of invariant ones is not!

Corollary (Benjamini-Schramm convergence 2001)
Any weak* limit of unimodular measures on finite graphs is unimodular.

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction
Graphed
equivalence relations

Stochastic
homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

The notions of invariance and unimodularity coincide for measures concentrated on rigid graphs (those with trivial automorphisms group). What happens in general?

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

The notions of invariance and unimodularity coincide for measures concentrated on rigid graphs (those with trivial automorphisms group). What happens in general?
$G=I s o(\Gamma)$ - group of isomorphisms of a graph Γ $G_{x}=\operatorname{Stab}_{x} \subset G$ - the stabilizer of a vertex $x \in \Gamma$

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed equivalence relations

Stochastic homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

The notions of invariance and unimodularity coincide for measures concentrated on rigid graphs (those with trivial automorphisms group). What happens in general?
$G=\operatorname{Iso}(\Gamma)$ - group of isomorphisms of a graph Γ $G_{x}=\operatorname{Stab}_{x} \subset G$ - the stabilizer of a vertex $x \in \Gamma$

Definition (cf. Schlichting 1979, Trofimov 1985)
$\Delta(x, y)=\left|G_{x} y\right| /\left|G_{y} x\right|$ - the modular cocycle of Γ.

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction
Graphed
equivalence
relations
Stochastic
homogeneity
Definition
Examples
Space of rooted graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

The notions of invariance and unimodularity coincide for measures concentrated on rigid graphs (those with trivial automorphisms group). What happens in general?
$G=\operatorname{Iso}(\Gamma)$ - group of isomorphisms of a graph Γ $G_{x}=S_{t a b_{x}} \subset G$ - the stabilizer of a vertex $x \in \Gamma$

Definition (cf. Schlichting 1979, Trofimov 1985)
$\Delta(x, y)=\left|G_{x} y\right| /\left|G_{y} x\right|$ - the modular cocycle of Γ.
Δ determines a multiplicative cocycle of the equivalence relation \mathcal{R} restricted to the subset $\mathcal{G}^{0} \subset \mathcal{G}$ of graphs Γ with unimodular Iso(Г).

The notions of invariance and unimodularity coincide for measures concentrated on rigid graphs (those with trivial automorphisms group). What happens in general?
$G=\operatorname{Iso}(\Gamma)$ - group of isomorphisms of a graph Γ $G_{x}=\operatorname{Stab}_{x} \subset G$ - the stabilizer of a vertex $x \in \Gamma$

Definition (cf. Schlichting 1979, Trofimov 1985)
$\Delta(x, y)=\left|G_{x} y\right| /\left|G_{y} x\right|$ - the modular cocycle of Γ.
Δ determines a multiplicative cocycle of the equivalence relation \mathcal{R} restricted to the subset $\mathcal{G}^{0} \subset \mathcal{G}$ of graphs Γ with unimodular Iso(Г).

Theorem (K)

m is unimodular iff it is concentrated on \mathcal{G}^{0} and its
Radon-Nikodym cocycle is Δ.

The notions of invariance and unimodularity coincide for measures concentrated on rigid graphs (those with trivial automorphisms group). What happens in general?
$G=\operatorname{Iso}(\Gamma)$ - group of isomorphisms of a graph Γ
$G_{x}=\operatorname{Stab}_{x} \subset G$ - the stabilizer of a vertex $x \in \Gamma$
Definition (cf. Schlichting 1979, Trofimov 1985)
$\Delta(x, y)=\left|G_{x} y\right| /\left|G_{y} x\right|$ - the modular cocycle of Γ.
Δ determines a multiplicative cocycle of the equivalence relation \mathcal{R} restricted to the subset $\mathcal{G}^{0} \subset \mathcal{G}$ of graphs Γ with unimodular Iso(Г).

Theorem (K)

m is unimodular iff it is concentrated on \mathcal{G}^{0} and its Radon-Nikodym cocycle is Δ.

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich

Introduction
Graphed
equivalence relations

Stochastic
homogeneity
Definition
Examples
Space of rooted
graphs
Invariance
Unimodularity
Modular cocycle
Perspectives and
prospects
Conclusions

Problem

Are there purely non-atomic unimodular measures not equivalent to any invariant measure?

- Classification and description of invariant measures (measures on trees, soficity and approximation)

Introduction
Graphed
equivalence
relations
Stochastic homogeneity
prospects

Conclusions

- Classification and description of invariant measures (measures on trees, soficity and approximation)
- Ergodic properties of the associated dynamics (geometric flows, natural cocycles)
- Classification and description of invariant measures (measures on trees, soficity and approximation)
- Ergodic properties of the associated dynamics (geometric flows, natural cocycles)
- Properties of stochastically homogeneous graphs (leafwise random walks, growth, other asymptotic invariants)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic homogeneity

- Classification and description of invariant measures (measures on trees, soficity and approximation)
- Ergodic properties of the associated dynamics (geometric flows, natural cocycles)
- Properties of stochastically homogeneous graphs (leafwise random walks, growth, other asymptotic invariants)

Introduction
Graphed
equivalence relations

Stochastic homogeneity

- Random Schreier graphs (invariant random subgroups)
- Classification and description of invariant measures (measures on trees, soficity and approximation)
- Ergodic properties of the associated dynamics (geometric flows, natural cocycles)
- Properties of stochastically homogeneous graphs (leafwise random walks, growth, other asymptotic invariants)

Introduction
Graphed
equivalence relations

Stochastic homogeneity

- Random Schreier graphs (invariant random subgroups)
- Applications to "real life"

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction
Graphed
equivalence
relations
Stochastic
homogeneity
Perspectives and prospects

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction
Graphed
equivalence
relations
Stochastic
homogeneity
Perspectives and prospects

La guerre!!!

C'est une chose trop grave pour la confier à des militaires!

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction
Graphed
equivalence
relations
Stochastic
homogeneity
Perspectives and prospects

La guerre!!!

C'est une chose trop grave pour la confier à des militaires!

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations
Stochastic
homogeneity
Perspectives and prospects

General Jack D. Ripper

General Jack D. Ripper

(Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb, Stanley Kubrik 1964)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction
Graphed
equivalence relations

Stochastic

homogeneity
Perspectives and prospects

When he said that, 50 years ago, he might have been right. But today, war is too important to be left to politicians. They have neither the time, the training, nor the inclination for strategic thought!

General Jack D. Ripper
(Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb, Stanley Kubrik 1964)

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence relations

Stochastic
homogeneity
Perspectives and prospects

When he said that, 50 years ago, he might have been right But todav. war is too important to be left to politicians. They have neither the time, the training, nor the inclination for strategic thought!

General Jack D. Ripper
(Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb, Stanley Kubrik 1964)

When he said that, 50 years ago, he might have been right. But today, war is too important to be left to politicians.
They have neither the time, the training, nor the inclination for strategic thought!

Do not leave it to probabilists!

Do not leave it to probabilists!

Thank you!

Vadim A.

The variety of ways by which the same goal is approached has given me the greater pleasure, because three methods of arriving at series of that kind had already become known to me, so that I could scarcely expect a new one to be communicated to us...

Robert Hooke (1676)

Robert Hooke (1676)

ceiiinosssssttuv

Robert Hooke (1676)

ceiiinosssssttuv

Ut tensio, sic vis!

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Galileo (1632)

La filosofia naturale è scritta in questo grandissimo libro che continuamente ci sta anerto innanzi aoli occhi [1 Foli è scritto in lingua matematica, e i caratteri son triangoli cerchi ed altre figure geometriche, senza i quali mezzi è impossibile a intenderne umanamente parola: senza questi è un aggirarsi vanamente per un oscuro abirinto.

Galileo (1632)

La filosofia naturale è scritta in questo grandissimo libro che continuamente ci sta aperto innanzi agli occhi [...] Egli è scritto in lingua matematica, e i caratteri son triangoli, cerchi ed altre figure geometriche, senza i quali mezzi è impossibile a intenderne umanamente parola; senza questi è un aggirarsi vanamente per un oscuro labirinto.

Euclidean lattice $\left(\mathbb{Z}^{2}\right)$

Bethe lattice (free group \mathcal{F}_{2})

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Euclidean lattice $\left(\mathbb{Z}^{2}\right)$

Bethe lattice (free group \mathcal{F}_{2})
A is a finite alphabet
A^{G} - the space of configurations
The group G acts on $A^{G}=\left\{\left(a_{g}\right)\right\}_{g \in G}$ by translations
Any Bernoulli measure on A^{G} is G-invariant

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Arpanet in 1970

Dating in a high school

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich
"Roman" encoding $(1 \longleftrightarrow \mathrm{I}, 2 \longleftrightarrow \mathrm{II}, 3 \longleftrightarrow \mathrm{III})$

Euclidean lattice $\left(\mathbb{Z}^{2}\right)$

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich

Euclidean lattice $\left(\mathbb{Z}^{2}\right)$

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich
G - group, K - (symmetric) generating set
Cayley $(G, K):=$ vertices $V=G$, edges $E=\{(g, k g): g \in G, k \in K\}$

Euclidean lattice $\left(\mathbb{Z}^{2}\right)$

Equivalence relations and random graphs: an introduction to graphical dynamics
$G-$ group, $K-$ (symmetric) generating set
Cayley $(G, K):=$ vertices $V=G$, edges $E=\{(g, k g): g \in G, k \in K\}$

Edges are labelled!

Euclidean lattice $\left(\mathbb{Z}^{2}\right)$

Bethe lattice (free group \mathcal{F}_{2})
G - group, $K-$ (symmetric) generating set
Cayley $(G, K):=$ vertices $V=G$, edges $E=\{(g, k g): g \in G, k \in K\}$

Edges are labelled!
$X-G$-space
Schreier $(X, G, K):=$ vertices $V=X$, edges $E=\{(x, k x): x \in X, k \in K\}$

Holonomy invariant measures on foliations

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

random fields

on vertices

edge.eps

extreme case: site nercolation
extreme case:
bond percolation

random fields on vertices

extreme case: site percolation

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich
random fields on vertices
random fields on edges

extreme case: bond percolation

For an action $G: X \circlearrowright$
$X \ni x \mapsto \operatorname{Stab}_{x}=\{g \in G: g x=x\} \subset G$

For an action $G: X \circlearrowright$

$$
\begin{equation*}
X \ni x \mapsto \operatorname{Stab}_{x}=\{g \in G: g x=x\} \subset G \tag{*}
\end{equation*}
$$

In the presence of a generating set $K \subset G$ a subgroup $H \subset G$ determines the associated graph $\operatorname{Schreier}(X, G, K)$ on $X=G / H$ rooted at $o=\{H\} \in X$, and vice versa

For an action $G: X \circlearrowright$

$$
\begin{equation*}
X \ni x \mapsto \operatorname{Stab}_{x}=\{g \in G: g x=x\} \subset G \tag{*}
\end{equation*}
$$

In the presence of a generating set $K \subset G$ a subgroup
$H \subset G$ determines the associated graph $\operatorname{Schreier}(X, G, K)$ on $X=G / H$ rooted at $o=\{H\} \in X$, and vice versa

If m is an invariant measure on X, then its image under $(*)$ is a G-invariant measure on subgroups of G (\equiv an invariant measure on the space of Schreier graphs).

For an action $G: X \circlearrowright$

$$
\begin{equation*}
X \ni x \mapsto \operatorname{Stab}_{x}=\{g \in G: g x=x\} \subset G \tag{*}
\end{equation*}
$$

In the presence of a generating set $K \subset G$ a subgroup
$H \subset G$ determines the associated graph $\operatorname{Schreier}(X, G, K)$ on $X=G / H$ rooted at $o=\{H\} \in X$, and vice versa

If m is an invariant measure on X, then its image under (*) is a G-invariant measure on subgroups of G (\equiv an invariant measure on the space of Schreier graphs).

Definition (Vershik 2010)

An action $G:(X, m) \circlearrowright$ is extremely non-free if $(*)$ is a bijection $(\bmod 0)$.

For an action $G: X \circlearrowright$

$$
\begin{equation*}
X \ni x \mapsto \operatorname{Stab}_{x}=\{g \in G: g x=x\} \subset G \tag{*}
\end{equation*}
$$

In the presence of a generating set $K \subset G$ a subgroup
$H \subset G$ determines the associated graph $\operatorname{Schreier}(X, G, K)$ on $X=G / H$ rooted at $o=\{H\} \in X$, and vice versa

If m is an invariant measure on X, then its image under ($*$) is a G-invariant measure on subgroups of G (\equiv an invariant measure on the space of Schreier graphs).

Definition (Vershik 2010)

An action $G:(X, m) \circlearrowright$ is extremely non-free if $(*)$ is a bijection $(\bmod 0)$.

Extremely non-free actions of $G \equiv$ invariant measures on the space of Schreier graphs of $G \equiv$ stochastically homogeneous random Schreier graphs.
A - finite alphabet, $T=T(A)$ - the rooted Cayley tree of finite words. Then any group $G \subset \operatorname{Iso}(T)$ preserves the uniform measure m on the boundary ∂T.

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

A - finite alphabet, $T=T(A)$ - the rooted Cayley tree of finite words. Then any group $G \subset \operatorname{Iso}(T)$ preserves the uniform measure m on the boundary ∂T.

A - finite alphabet, $T=T(A)$ - the rooted Cayley tree of finite words. Then any group $G \subset \operatorname{Iso}(T)$ preserves the uniform measure m on the boundary ∂T.

Equivalence relations and random graphs: an introduction to graphical dynamics

A - finite alphabet, $T=T(A)$ - the rooted Cayley tree of finite words. Then any group $G \subset$ Iso(T) preserves the uniform measure m on the boundary ∂T.

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

If G is self-similar $\left(g \in G \Longrightarrow g_{a} \in G\right)$, then the action on ∂T typically has "big" stabilizers.

Fractal sets arising from Iterated Function Systems (e.g., the Sierpiński triangle) give rise to the associated graphs:

Fractal sets arising from Iterated Function Systems (e.g., the Sierpiński triangle) give rise to the associated graphs:

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich

Fractal sets arising from Iterated Function Systems (e.g., the Sierpiński triangle) give rise to the associated graphs:

"Natural extension" (analogous to the one used in dynamical systems) provides stochastic homogenization of such graphs.

Fractal sets arising from Iterated Function Systems (e.g., the Sierpiński triangle) give rise to the associated graphs:

"Natural extension" (analogous to the one used in dynamical systems) provides stochastic homogenization of such graphs.

...rle

\ldots... $r r$
$(T \bar{\omega})_{n}=\omega_{n+1}$ - the shift on $\Omega=\{0,1\}^{\mathbb{Z}}=\left\{\bar{\omega}=\left(\omega_{n}\right)_{n \in \mathbb{Z}}\right\}$ with a T-invariant (e.g., Bernoulli) measure m

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich
$(T \bar{\omega})_{n}=\omega_{n+1}$ - the shift on $\Omega=\{0,1\}^{\mathbb{Z}}=\left\{\bar{\omega}=\left(\omega_{n}\right)_{n \in \mathbb{Z}}\right\}$ with a T-invariant (e.g., Bernoulli) measure m

The skew action $\alpha(\bar{\omega}, g)=\left(T \bar{\omega}, \alpha^{\omega_{0}} g\right)$ of the free group $\mathcal{F}_{2}=\langle a, b\rangle$ (where $\alpha=a, b$) determines a stochastically homogeneous Schreier graph ("slowed down" Cayley tree).
$(T \bar{\omega})_{n}=\omega_{n+1}$ — the shift on $\Omega=\{0,1\}^{\mathbb{Z}}=\left\{\bar{\omega}=\left(\omega_{n}\right)_{n \in \mathbb{Z}}\right\}$ with a T-invariant (e.g., Bernoulli) measure m

The skew action $\alpha(\bar{\omega}, g)=\left(T \bar{\omega}, \alpha^{\omega_{0}} g\right)$ of the free group $\mathcal{F}_{2}=\langle a, b\rangle$ (where $\alpha=a, b$) determines a stochastically homogeneous Schreier graph ("slowed down" Cayley tree).

Geometrically: $\chi=\#_{a}+\#_{b}-\#_{a^{-1}}-\#_{b^{-1}}: \mathcal{F}_{2} \rightarrow \mathbb{Z}-$ the signed letter counting character. If $\omega_{n}=0$, then any two edges with a common endpoint between $\chi^{-1}(n)$ and $\chi^{-1}(n+1)$ in the Cayley tree of \mathcal{F}_{2} are "glued" together.
$(T \bar{\omega})_{n}=\omega_{n+1}$ — the shift on $\Omega=\{0,1\}^{\mathbb{Z}}=\left\{\bar{\omega}=\left(\omega_{n}\right)_{n \in \mathbb{Z}}\right\}$ with a T-invariant (e.g., Bernoulli) measure m

The skew action $\alpha(\bar{\omega}, g)=\left(T \bar{\omega}, \alpha^{\omega_{0}} g\right)$ of the free group $\mathcal{F}_{2}=\langle a, b\rangle$ (where $\alpha=a, b$) determines a stochastically homogeneous Schreier graph ("slowed down" Cayley tree).

Geometrically: $\chi=\#_{a}+\#_{b}-\#_{a^{-1}}-\#_{b^{-1}}: \mathcal{F}_{2} \rightarrow \mathbb{Z}-$ the signed letter counting character. If $\omega_{n}=0$, then any two edges with a common endpoint between $\chi^{-1}(n)$ and $\chi^{-1}(n+1)$ in the Cayley tree of \mathcal{F}_{2} are "glued" together.
Another example: m - shift-invariant measure on bilateral infinite irreducible words in \mathcal{F}_{2} (invariant measure of the geodesic flow), produces by "doubling" the associated stochastically homogeneous Schreier graph (or consider $\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}$ instead of \mathcal{F}_{2} - Elek 2011).
$(T \bar{\omega})_{n}=\omega_{n+1}$ — the shift on $\Omega=\{0,1\}^{\mathbb{Z}}=\left\{\bar{\omega}=\left(\omega_{n}\right)_{n \in \mathbb{Z}}\right\}$ with a T-invariant (e.g., Bernoulli) measure m

The skew action $\alpha(\bar{\omega}, g)=\left(T \bar{\omega}, \alpha^{\omega_{0}} g\right)$ of the free group $\mathcal{F}_{2}=\langle a, b\rangle$ (where $\alpha=a, b$) determines a stochastically homogeneous Schreier graph ("slowed down" Cayley tree).

Geometrically: $\chi=\#_{a}+\#_{b}-\#_{a^{-1}}-\#_{b^{-1}}: \mathcal{F}_{2} \rightarrow \mathbb{Z}-$ the signed letter counting character. If $\omega_{n}=0$, then any two edges with a common endpoint between $\chi^{-1}(n)$ and $\chi^{-1}(n+1)$ in the Cayley tree of \mathcal{F}_{2} are "glued" together.
Another example: m - shift-invariant measure on bilateral infinite irreducible words in \mathcal{F}_{2} (invariant measure of the geodesic flow), produces by "doubling" the associated stochastically homogeneous Schreier graph (or consider $\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}$ instead of \mathcal{F}_{2} - Elek 2011).

The associated action of the free group is amenable and effective.

Realizations of a branching (Galton-Watson) process with offspring distribution $p=\left(0, p_{1}, p_{2}, \ldots, p_{k}\right)$ are rooted trees:

Realizations of a branching (Galton-Watson) process with offspring distribution $p=\left(0, p_{1}, p_{2}, \ldots, p_{k}\right)$ are rooted trees:

The arising measure \mathbf{P} on rooted trees is not invariant (the root is statistically different from other vertices!).

Realizations of a branching (Galton-Watson) process with offspring distribution $p=\left(0, p_{1}, p_{2}, \ldots, p_{k}\right)$ are rooted trees:

The arising measure \mathbf{P} on rooted trees is not invariant (the root is statistically different from other vertices!).

Solution: consider augmented GW trees: add by force one offspring to the root, i.e., use $\widetilde{p}=\left(0,0, p_{1}, p_{2}, \ldots\right)$ for the first generation, and p otherwise.

Realizations of a branching (Galton-Watson) process with offspring distribution $p=\left(0, p_{1}, p_{2}, \ldots, p_{k}\right)$ are rooted trees:

The arising measure \mathbf{P} on rooted trees is not invariant (the root is statistically different from other vertices!).

Solution: consider augmented GW trees: add by force one offspring to the root, i.e., use $\widetilde{p}=\left(0,0, p_{1}, p_{2}, \ldots\right)$ for the first generation, and p otherwise.

Or: start branching from an edge rather than a vertex

Realizations of a branching (Galton-Watson) process with offspring distribution $p=\left(0, p_{1}, p_{2}, \ldots, p_{k}\right)$ are rooted trees:

The arising measure \mathbf{P} on rooted trees is not invariant (the root is statistically different from other vertices!).

Solution: consider augmented GW trees: add by force one offspring to the root, i.e., use $\widetilde{p}=\left(0,0, p_{1}, p_{2}, \ldots\right)$ for the first generation, and p otherwise.

Or: start branching from an edge rather than a vertex

The augmented measure \mathbf{P} still is not invariant:

The augmented measure $\widetilde{\mathbf{P}}$ still is not invariant:

Vadim A.
Kaimanovich

The augmented measure $\widetilde{\mathbf{P}}$ still is not invariant:

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich

Galton-Watson trees Augmented measure

$$
\widetilde{\mathbf{P}}(A)=p_{1} \cdot p_{2}^{2} \cdot 4 p_{1} p_{2}^{3}=4 p_{1}^{2} p_{2}^{5} .
$$

The augmented measure $\widetilde{\mathbf{P}}$ still is not invariant:

$$
\widetilde{\mathbf{P}}(A)=p_{1} \cdot p_{2}^{2} \cdot 4 p_{1} p_{2}^{3}=4 p_{1}^{2} p_{2}^{5} .
$$

$$
\widetilde{\mathbf{P}}\left(A^{\prime}\right)=p_{2} \cdot 3 p_{1} p_{2}^{2} \cdot p_{2} \cdot 2 p_{1} p_{2}=6 p_{1}^{2} p_{2}^{5} .
$$

The augmented measure $\widetilde{\mathbf{P}}$ still is not invariant:

$$
\widetilde{\mathbf{P}}(A)=p_{1} \cdot p_{2}^{2} \cdot 4 p_{1} p_{2}^{3}=4 p_{1}^{2} p_{2}^{5} .
$$

$$
\widetilde{\mathbf{P}}\left(A^{\prime}\right)=p_{2} \cdot 3 p_{1} p_{2}^{2} \cdot p_{2} \cdot 2 p_{1} p_{2}=6 p_{1}^{2} p_{2}^{5} .
$$

$$
3 / 2=\widetilde{\mathbf{P}}\left(A^{\prime}\right) / \widetilde{\mathbf{P}}(A)=\operatorname{deg} o^{\prime} / \operatorname{deg} o
$$

The augmented measure $\widetilde{\mathbf{P}}$ still is not invariant:

$$
\widetilde{\mathbf{P}}(A)=p_{1} \cdot p_{2}^{2} \cdot 4 p_{1} p_{2}^{3}=4 p_{1}^{2} p_{2}^{5} .
$$

$$
\begin{gathered}
\widetilde{\mathbf{P}}\left(A^{\prime}\right)=p_{2} \cdot 3 p_{1} p_{2}^{2} \cdot p_{2} \cdot 2 p_{1} p_{2}=6 p_{1}^{2} p_{2}^{5} . \\
3 / 2=\widetilde{\mathbf{P}}\left(A^{\prime}\right) / \widetilde{\mathbf{P}}(A)=\operatorname{deg} o^{\prime} / \operatorname{deg} o
\end{gathered}
$$

The measure $\widetilde{\mathbf{P}} / \mathrm{deg}$ is invariant.

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A. Kaimanovich

Galton-Watson trees Augmented measure

Invariant and quotient measures on the equivalence class of a finite graph

Equivalence relations and random graphs: an introduction to graphical dynamics

Vadim A.
Kaimanovich

Galton-Watson trees Augmented measure

