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The foundations of these operations are evident enough, but
I cannot proceed with the explanation of it now. I have
preferred to conceal it thus:

6accdae13eff7i319n4o4qrr4s8t12vx

Second letter of Newton to Leibniz (1676)

Data aequatione quotcunque fluentes quantitae involvente
fluxiones invenire et vice versa

Given an equation involving any number of fluent quantities,
to find the fluxions, and vice versa

It is useful to solve differential equations!
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It is useful to consider invariant measures!

WHERE?

Classical examples

I smooth dynamics;

I measurable dynamics;

I symbolic dynamics

graphical dynamics?!
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Definition

A graph Γ is determined by its set of vertices (nodes) V
and its set of edges (links) E connected by an incidence
relation (further “decoration” is possible!).

Structured “big” set =⇒ local structure =⇒ graph structure

How can one understand a collection of (large) finite objects?

finite objects � infinite objects � invariant measures

finite words � infinite words AZ
� X information

theory

finite graphs � infinite graphs G � ?
Linguistics ⊂ Geometry
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Holonomy invariant measures on foliations Plante 1975

Measured equivalence relations (Feldman–Moore 1977)

(X , µ) — a Lebesgue probability space

R ⊂ X × X — a Borel equivalence relation with at most
countable classes (examples: orbit equivalence relations of
group actions, traces on transversals in foliations, etc.)

A partial transformation of R — a measurable bijection
ϕ : A→ B with graphϕ ⊂ R

Definition

The measure µ is R-invariant if ϕµA = µB for any partial
transformation of R .

One can also talk about quasi-invariant measures and the
associated Radon–Nikodym cocycle
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Definition (Feldman–Moore 1977)

The (left) counting measure is

d#µ(x , y) = dµ(x)d#x(y) ,

where #x is the counting measure on the fiber p−1(x) of the
projection p : R → X (i.e., on the equivalence class of x).

The involution [(x , y) 7→ (y , x)] of #µ is the right
counting measure #µ, and µ is R-quasi-invariant ⇐⇒
#µ ∼ #µ

Definition (Feldman–Moore 1977)

D(x , y) =
d#µ

d#µ

(x , y) =
dµ(y)

dµ(x)

is the (multiplicative) Radon–Nikodym cocycle.

µ is invariant ⇐⇒ D ≡ 1
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Definition (Plante 1975 - pseudogroups, Adams 1990)

K ⊂ R — a leafwise graph structure on an equivalence
relation R ; (X , µ,R ,K ) — a graphed equivalence relation.

A discrete analogue of Riemannian foliations. Further
“decoration” is possible! (edge length, labelling, colouring
etc.). One can consider structures of higher dimensional
leafwise abstract simplicial complexes.

Assume that

I K generates R (i.e., leafwise graphs are connected)

I K is locally finite (a.e. deg x <∞)

Observation

A measure µ is R-invariant ⇐⇒ the restriction #µ|K is
involution invariant.
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A measure µ is R-invariant ⇐⇒ the restriction #µ|K is
involution invariant.
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Definition

The simple random walk on a (locally finite) graph Γ is the
Markov chain with the transition probabilities

p(x , y) =

{
1/ deg x , x ∼ y ;
0, otherwise.

In the same way one defines the simple random walk along
classes of a graphed equivalence relation (X , µ,R ,K ),
cf. leafwise Brownian motion on foliations (Garnett 1983).

Theorem (K 1988, 1998)

A measure µ on a graphed equivalence relation (X ,m,R ,K )
is R-invariant ⇐⇒ the measure m = deg ·µ is stationary
and reversible with respect to the SRW on X .

Idea of proof: Reversibility ≡ involution invariance of the
joint distribution of (x0, x1) ≡ involution invariance of #µ|K .
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For continuous group actions the space of invariant measures
is weak∗ closed =⇒ approximation by measures
equidistributed on finite orbits (periodic points).

Definition (K)

A graphed equivalence relation (X ,R ,K ) on a topological
state space X is continuous if the map x 7→ πx is
continuous (with respect to the weak∗ topology on M(X )).

Theorem (K)

If a graphed equivalence relation (X ,R ,K ) is continuous,
then the space of R-invariant measures is weak∗ closed.

Idea of proof: Use closedness of the space of stationary
measures of the simple random walk and correspondence
with reversible⊂stationary measures.
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Definition (K)

Stochastic homogenization of a family of graphs is an
equivalence relation with a finite invariant measure graphed
by this family.

Weaker form: a finite stationary measure for the leafwise
simple random walk (≡ stationary scenery). Is the same as
strong homogenization if the measure is, in addition,
reversible.

Observation

An invariant measure need not exist! Compactness of the
state space implies existence of a stationary one (cf.
Garnett’s harmonic measures for foliations).
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I Group actions
I Random perturbations of Cayley graphs (extreme case:

percolation)
I Graphs arising from invariant point processes on

homogeneous manifolds (Benjamini–Schramm 2001,
Holroyd–Peres 2003, Timár 2004)

I Schreier graphs and random subgroups
I Extremely non-free actions (Vershik 2010)
I Self-similar groups (Nekrashevych 2005, Nagnibeda et al.

2010, Grigorchuk 2011)

I Z-actions
I Fractal graphs (K 2001)
I Zuta (Glasner–Weiss 2011)

I Graphs arising from foliations (the trace of a transversal
on a leaf)

I Augmented Galton–Watson trees Lyons–Peres–Pemantle 1995

I Uniform infinite planar triangulation (Angel–Schramm
2003) and quadrangulation (Chassaing–Durhuus 2006,
Krikun 2006)
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Another approach: a graphed equivalence relation
(X , µ,R ,K ) produces a random pointed (rooted) graph

π : x 7→ ([x ]K , x)

What can one say about the arising measures π(µ)?

Definition

G = {(Γ, v) : v is a vertex of Γ)} – the space of
(isomorphism classes) of locally finite pointed (rooted)
infinite graphs.

G = lim
←

Gr (pointed finite graphs of radius ≤ r)

G is compact if vertex degrees are uniformly bounded
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(isomorphism classes) of locally finite pointed (rooted)
infinite graphs.

G = lim
←

Gr (pointed finite graphs of radius ≤ r)

G is compact if vertex degrees are uniformly bounded
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G has natural “root moving” equivalence relation and the
associated graph structure (K 1998):

R = {(Γ, v), (Γ′, v ′) : Γ ∼= Γ′}
K = {(Γ, v), (Γ, v ′) : v and v ′ are neighbors in Γ}

The equivalence class of a graph Γ is the quotient

[Γ] = Γ/ Iso(Γ)

Γ is vertex transitive ⇐⇒ [Γ] = {·}
Γ is quasi-transitive ⇐⇒ [Γ] is finite
Γ is rigid ⇐⇒ [Γ] ∼= Γ

Theorem (K)

If a.e. graph in a graphed equivalence relation (X , µ,R ,K )
with R-invariant measure µ is rigid, than the image measure
π(µ) on G is R-invariant.

Not true in the presence of symmetries!
Replace invariance with unimodularity!



Equivalence
relations and

random graphs:
an introduction to

graphical
dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations

Stochastic
homogeneity

Definition

Examples

Space of rooted
graphs

Invariance

Unimodularity

Modular cocycle

Perspectives and
prospects

Conclusions

G has natural “root moving” equivalence relation and the
associated graph structure (K 1998):

R = {(Γ, v), (Γ′, v ′) : Γ ∼= Γ′}
K = {(Γ, v), (Γ, v ′) : v and v ′ are neighbors in Γ}

The equivalence class of a graph Γ is the quotient

[Γ] = Γ/ Iso(Γ)

Γ is vertex transitive ⇐⇒ [Γ] = {·}
Γ is quasi-transitive ⇐⇒ [Γ] is finite
Γ is rigid ⇐⇒ [Γ] ∼= Γ

Theorem (K)

If a.e. graph in a graphed equivalence relation (X , µ,R ,K )
with R-invariant measure µ is rigid, than the image measure
π(µ) on G is R-invariant.

Not true in the presence of symmetries!
Replace invariance with unimodularity!



Equivalence
relations and

random graphs:
an introduction to

graphical
dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations

Stochastic
homogeneity

Definition

Examples

Space of rooted
graphs

Invariance

Unimodularity

Modular cocycle

Perspectives and
prospects

Conclusions

G has natural “root moving” equivalence relation and the
associated graph structure (K 1998):

R = {(Γ, v), (Γ′, v ′) : Γ ∼= Γ′}
K = {(Γ, v), (Γ, v ′) : v and v ′ are neighbors in Γ}

The equivalence class of a graph Γ is the quotient

[Γ] = Γ/ Iso(Γ)

Γ is vertex transitive ⇐⇒ [Γ] = {·}
Γ is quasi-transitive ⇐⇒ [Γ] is finite
Γ is rigid ⇐⇒ [Γ] ∼= Γ

Theorem (K)

If a.e. graph in a graphed equivalence relation (X , µ,R ,K )
with R-invariant measure µ is rigid, than the image measure
π(µ) on G is R-invariant.

Not true in the presence of symmetries!
Replace invariance with unimodularity!



Equivalence
relations and

random graphs:
an introduction to

graphical
dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations

Stochastic
homogeneity

Definition

Examples

Space of rooted
graphs

Invariance

Unimodularity

Modular cocycle

Perspectives and
prospects

Conclusions

G has natural “root moving” equivalence relation and the
associated graph structure (K 1998):

R = {(Γ, v), (Γ′, v ′) : Γ ∼= Γ′}
K = {(Γ, v), (Γ, v ′) : v and v ′ are neighbors in Γ}

The equivalence class of a graph Γ is the quotient

[Γ] = Γ/ Iso(Γ)

Γ is vertex transitive ⇐⇒ [Γ] = {·}
Γ is quasi-transitive ⇐⇒ [Γ] is finite
Γ is rigid ⇐⇒ [Γ] ∼= Γ

Theorem (K)

If a.e. graph in a graphed equivalence relation (X , µ,R ,K )
with R-invariant measure µ is rigid, than the image measure
π(µ) on G is R-invariant.

Not true in the presence of symmetries!
Replace invariance with unimodularity!



Equivalence
relations and

random graphs:
an introduction to

graphical
dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations

Stochastic
homogeneity

Definition

Examples

Space of rooted
graphs

Invariance

Unimodularity

Modular cocycle

Perspectives and
prospects

Conclusions

G has natural “root moving” equivalence relation and the
associated graph structure (K 1998):

R = {(Γ, v), (Γ′, v ′) : Γ ∼= Γ′}
K = {(Γ, v), (Γ, v ′) : v and v ′ are neighbors in Γ}

The equivalence class of a graph Γ is the quotient

[Γ] = Γ/ Iso(Γ)

Γ is vertex transitive ⇐⇒ [Γ] = {·}
Γ is quasi-transitive ⇐⇒ [Γ] is finite
Γ is rigid ⇐⇒ [Γ] ∼= Γ

Theorem (K)

If a.e. graph in a graphed equivalence relation (X , µ,R ,K )
with R-invariant measure µ is rigid, than the image measure
π(µ) on G is R-invariant.

Not true in the presence of symmetries!
Replace invariance with unimodularity!



Equivalence
relations and

random graphs:
an introduction to

graphical
dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations

Stochastic
homogeneity

Definition

Examples

Space of rooted
graphs

Invariance

Unimodularity

Modular cocycle

Perspectives and
prospects

Conclusions

G has natural “root moving” equivalence relation and the
associated graph structure (K 1998):

R = {(Γ, v), (Γ′, v ′) : Γ ∼= Γ′}
K = {(Γ, v), (Γ, v ′) : v and v ′ are neighbors in Γ}

The equivalence class of a graph Γ is the quotient

[Γ] = Γ/ Iso(Γ)

Γ is vertex transitive ⇐⇒ [Γ] = {·}
Γ is quasi-transitive ⇐⇒ [Γ] is finite
Γ is rigid ⇐⇒ [Γ] ∼= Γ

Theorem (K)

If a.e. graph in a graphed equivalence relation (X , µ,R ,K )
with R-invariant measure µ is rigid, than the image measure
π(µ) on G is R-invariant.

Not true in the presence of symmetries!
Replace invariance with unimodularity!



Equivalence
relations and

random graphs:
an introduction to

graphical
dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations

Stochastic
homogeneity

Definition

Examples

Space of rooted
graphs

Invariance

Unimodularity

Modular cocycle

Perspectives and
prospects

Conclusions

G has natural “root moving” equivalence relation and the
associated graph structure (K 1998):

R = {(Γ, v), (Γ′, v ′) : Γ ∼= Γ′}
K = {(Γ, v), (Γ, v ′) : v and v ′ are neighbors in Γ}

The equivalence class of a graph Γ is the quotient

[Γ] = Γ/ Iso(Γ)

Γ is vertex transitive ⇐⇒ [Γ] = {·}
Γ is quasi-transitive ⇐⇒ [Γ] is finite
Γ is rigid ⇐⇒ [Γ] ∼= Γ

Theorem (K)

If a.e. graph in a graphed equivalence relation (X , µ,R ,K )
with R-invariant measure µ is rigid, than the image measure
π(µ) on G is R-invariant.

Not true in the presence of symmetries!
Replace invariance with unimodularity!



Equivalence
relations and

random graphs:
an introduction to

graphical
dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations

Stochastic
homogeneity

Definition

Examples

Space of rooted
graphs

Invariance

Unimodularity

Modular cocycle

Perspectives and
prospects

Conclusions

G has natural “root moving” equivalence relation and the
associated graph structure (K 1998):

R = {(Γ, v), (Γ′, v ′) : Γ ∼= Γ′}
K = {(Γ, v), (Γ, v ′) : v and v ′ are neighbors in Γ}

The equivalence class of a graph Γ is the quotient

[Γ] = Γ/ Iso(Γ)

Γ is vertex transitive ⇐⇒ [Γ] = {·}
Γ is quasi-transitive ⇐⇒ [Γ] is finite
Γ is rigid ⇐⇒ [Γ] ∼= Γ

Theorem (K)

If a.e. graph in a graphed equivalence relation (X , µ,R ,K )
with R-invariant measure µ is rigid, than the image measure
π(µ) on G is R-invariant.

Not true in the presence of symmetries!
Replace invariance with unimodularity!



Equivalence
relations and

random graphs:
an introduction to

graphical
dynamics

Vadim A.
Kaimanovich

Introduction

Graphed
equivalence
relations

Stochastic
homogeneity

Definition

Examples

Space of rooted
graphs

Invariance

Unimodularity

Modular cocycle

Perspectives and
prospects

Conclusions

Instead of R one can consider the space of (isomorphism
classes of) doubly rooted graphs G•• → G.

Definition (Benjamini–Schramm 2001)

A measure m on R is unimodular if the associated counting
measure on G•• is preserved by the involution (root
switching).

For a finite graph the invariant measure is equidistributed on
its equivalence class, whereas the unimodular measure is the
quotient of the uniform measure on the graph itself.

Theorem (K – uses an appropriate Markov chain on G)

The space of unimodular measures on G is weak∗ closed —
the space of invariant ones is not!

Corollary (Benjamini–Schramm convergence 2001)

Any weak∗ limit of unimodular measures on finite graphs is
unimodular.
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The notions of invariance and unimodularity coincide for
measures concentrated on rigid graphs (those with trivial
automorphisms group). What happens in general?

G = Iso(Γ) — group of isomorphisms of a graph Γ
Gx = Stabx ⊂ G — the stabilizer of a vertex x ∈ Γ

Definition (cf. Schlichting 1979, Trofimov 1985)

∆(x , y) = |Gxy |/|Gyx | — the modular cocycle of Γ.

∆ determines a multiplicative cocycle of the equivalence
relation R restricted to the subset G0 ⊂ G of graphs Γ with
unimodular Iso(Γ).

Theorem (K)

m is unimodular iff it is concentrated on G0 and its
Radon–Nikodym cocycle is ∆.

Problem

Are there purely non-atomic unimodular measures not
equivalent to any invariant measure?
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I Classification and description of invariant measures
(measures on trees, soficity and approximation)

I Ergodic properties of the associated dynamics
(geometric flows, natural cocycles)

I Properties of stochastically homogeneous graphs
(leafwise random walks, growth, other asymptotic
invariants)

I Random Schreier graphs (invariant random subgroups)

I Applications to “real life”
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La guerre!!!
C’est une chose trop grave pour la confier à des militaires!
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(Dr. Strangelove or: How I Learned to Stop Worrying
and Love the Bomb, Stanley Kubrik 1964)

When he said that, 50 years ago, he might have been right.
But today, war is too important to be left to politicians.
They have neither the time, the training, nor the inclination
for strategic thought!
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The variety of ways by which the same goal is approached
has given me the greater pleasure, because three methods of
arriving at series of that kind had already become known to
me, so that I could scarcely expect a new one to be
communicated to us...
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Galileo (1632)

La filosofia naturale è scritta in questo grandissimo libro che
continuamente ci sta aperto innanzi agli occhi [...] Egli è
scritto in lingua matematica, e i caratteri son triangoli,
cerchi ed altre figure geometriche, senza i quali mezzi è
impossibile a intenderne umanamente parola; senza questi è
un aggirarsi vanamente per un oscuro labirinto.
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un aggirarsi vanamente per un oscuro labirinto.

Return



Equivalence
relations and

random graphs:
an introduction to

graphical
dynamics

Vadim A.
Kaimanovich

.

Galileo (1632)
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Euclidean lattice (Z2) Bethe lattice (free group F2)

A is a finite alphabet

AG — the space of configurations

The group G acts on AG = {(ag )}g∈G by translations

Any Bernoulli measure on AG is G -invariant
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“Roman” encoding (1←→ I, 2←→ II, 3←→ III)
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Euclidean lattice (Z2) Bethe lattice (free group F2)

G — group, K — (symmetric) generating set
Cayley(G ,K ) := vertices V = G ,

edges E = {(g , kg) : g ∈ G , k ∈ K}

Edges are labelled!

X — G -space
Schreier(X ,G ,K ) := vertices V = X ,

edges E = {(x , kx) : x ∈ X , k ∈ K}
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random fields
on vertices

vert.eps
extreme case:
site percolation

random fields
on edges

edge.eps
extreme case:
bond percolation
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For an action G : X �

X 3 x 7→ Stabx = {g ∈ G : gx = x} ⊂ G (∗)

In the presence of a generating set K ⊂ G a subgroup
H ⊂ G determines the associated graph Schreier(X ,G ,K )
on X = G/H rooted at o = {H} ∈ X , and vice versa

If m is an invariant measure on X , then its image under (∗)
is a G -invariant measure on subgroups of G (≡ an invariant
measure on the space of Schreier graphs).

Definition (Vershik 2010)

An action G : (X ,m) � is extremely non-free if (∗) is a
bijection (mod 0).

Extremely non-free actions of G ≡ invariant measures on the
space of Schreier graphs of G ≡ stochastically homogeneous
random Schreier graphs.
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A — finite alphabet, T = T (A) — the rooted Cayley tree of
finite words. Then any group G ⊂ Iso(T ) preserves the
uniform measure m on the boundary ∂T .

tree.eps

gx.eps

If G is self-similar (g ∈ G =⇒ ga ∈ G ), then the action on
∂T typically has “big” stabilizers. Return
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finite words. Then any group G ⊂ Iso(T ) preserves the
uniform measure m on the boundary ∂T .
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Fractal sets arising from Iterated Function Systems (e.g.,
the Sierpiński triangle) give rise to the associated graphs:

serp.eps

“Natural extension” (analogous to the one used in
dynamical systems) provides stochastic homogenization of
such graphs.

ext.eps
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the Sierpiński triangle) give rise to the associated graphs:

`

t

r
∅

`
t

`t
t`

`tt
t``

“Natural extension” (analogous to the one used in
dynamical systems) provides stochastic homogenization of
such graphs.

ext.eps

Return



Equivalence
relations and

random graphs:
an introduction to

graphical
dynamics

Vadim A.
Kaimanovich

.

Fractal sets arising from Iterated Function Systems (e.g.,
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(Tω)n = ωn+1 — the shift on Ω = {0, 1}Z = {ω = (ωn)n∈Z}
with a T -invariant (e.g., Bernoulli) measure m

The skew action α(ω, g) = (Tω,αω0g) of the free group
F2 = 〈a, b〉 (where α = a, b) determines a stochastically
homogeneous Schreier graph (“slowed down” Cayley
tree).

Geometrically: χ = #a +#b −#a−1 −#b−1 : F2 → Z —
the signed letter counting character. If ωn = 0, then any
two edges with a common endpoint between χ−1(n) and
χ−1(n + 1) in the Cayley tree of F2 are “glued” together.

Another example: m — shift-invariant measure on bilateral
infinite irreducible words in F2 (invariant measure of the
geodesic flow), produces by “doubling” the associated
stochastically homogeneous Schreier graph (or consider
Z2 ∗ Z2 ∗ Z2 instead of F2 — Elek 2011).

The associated action of the free group is amenable and
effective. Return
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Galton–Watson trees

Augmented measure

Realizations of a branching (Galton-Watson) process with
offspring distribution p = (0, p1, p2, . . . , pk) are rooted trees:

The arising measure P on rooted trees is not invariant (the
root is statistically different from other vertices!).

Solution: consider augmented GW trees: add by force
one offspring to the root, i.e., use p̃ = (0, 0, p1, p2, . . . ) for
the first generation, and p otherwise.

Or: start branching from an edge rather than a vertex

GW2.eps
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Or: start branching from an edge rather than a vertex
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The augmented measure P̃ still is not invariant:

part.eps
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5
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3/2 = P̃(A′)/P̃(A) = deg o′/ deg o

The measure P̃/ deg is invariant.
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Invariant and quotient measures on the equivalence class
of a finite graph
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