Two dynamical extensions of the Nielsen-Thurston theory of surface diffeomorphsims

Anders Karlsson

University of Geneva
Warwick, 16 April 2012

Surface diffeomorphisms

Let M be a closed, orientable, higher genus surface:

Surface diffeomorphisms

Let M be a closed, orientable, higher genus surface:

The Nielsen-Thurston classification of diffeomorphisms f of M. Up to isotopy, f is

- periodic
- reducible
- pseudo-Anosov

Surface diffeomorphisms

Let M be a closed, orientable, higher genus surface:

The Nielsen-Thurston classification of diffeomorphisms f of M. Up to isotopy, f is

- periodic
- reducible
- pseudo-Anosov

Analog of the Jordan normal form; and classification in $S L(2, \mathbb{Z})$.

Surface diffeomorphisms

Let M be a closed, orientable, higher genus surface:

The Nielsen-Thurston classification of diffeomorphisms f of M. Up to isotopy, f is

- periodic
- reducible
- pseudo-Anosov

Analog of the Jordan normal form; and classification in $S L(2, \mathbb{Z})$.

- Nielsen, 1927-1945 used lifts to \mathbb{H}^{2} and $\partial \mathbb{H}^{2}$.

Surface diffeomorphisms

Let M be a closed, orientable, higher genus surface:

The Nielsen-Thurston classification of diffeomorphisms f of M. Up to isotopy, f is

- periodic
- reducible
- pseudo-Anosov

Analog of the Jordan normal form; and classification in $S L(2, \mathbb{Z})$.

- Nielsen, 1927-1945 used lifts to \mathbb{H}^{2} and $\partial \mathbb{H}^{2}$.
- Thurston, 1976, used Teichmüller theory

The spectral theorem

Let

$$
\mathcal{S}=\text { isotopy classes of simple closed curves on } \mathrm{M}
$$

and for a Riemannian metric $\rho, I_{\rho}(\beta):=\inf _{\beta^{\prime} \sim \beta}$ length $_{\rho}\left(\beta^{\prime}\right)$.

The spectral theorem

Let

$$
\mathcal{S}=\text { isotopy classes of simple closed curves on } \mathrm{M}
$$

and for a Riemannian metric $\rho, I_{\rho}(\beta):=\inf _{\beta^{\prime} \sim \beta} \operatorname{length}_{\rho}\left(\beta^{\prime}\right)$. Theorem 5 in Thurston's seminal 1976 preprint:

Theorem

For any diffeomorphism f of M, there is a finite set $1 \leq \lambda_{1}<\lambda_{2}<\ldots<\lambda_{K}$ of algebraic integers such that for any $\alpha \in \mathcal{S}$ there is a λ_{i} such that for any Riemannian metric ρ,

$$
\lim _{n \rightarrow \infty} I_{\rho}\left(f^{n} \alpha\right)^{1 / n}=\lambda_{i}
$$

The map f is isotopic to a pseudo-Anosov map iff $K=1$ and $\lambda_{1}>1$.

The spectral theorem

Let

$$
\mathcal{S}=\text { isotopy classes of simple closed curves on } \mathrm{M}
$$

and for a Riemannian metric $\rho, I_{\rho}(\beta):=\inf _{\beta^{\prime} \sim \beta}$ length $_{\rho}\left(\beta^{\prime}\right)$. Theorem 5 in Thurston's seminal 1976 preprint:

Theorem

For any diffeomorphism f of M, there is a finite set $1 \leq \lambda_{1}<\lambda_{2}<\ldots<\lambda_{K}$ of algebraic integers such that for any $\alpha \in \mathcal{S}$ there is a λ_{i} such that for any Riemannian metric ρ,

$$
\lim _{n \rightarrow \infty} I_{\rho}\left(f^{n} \alpha\right)^{1 / n}=\lambda_{i} .
$$

The map f is isotopic to a pseudo-Anosov map iff $K=1$ and $\lambda_{1}>1$.
Compare with matrices $\lim _{n \rightarrow \infty}\left\|A^{n} v\right\|^{1 / n}=\left|\lambda_{v}\right|$.

Part I

Statements of new results.

Random spectral theorem

Let $f_{n}=g_{n} g_{n-1} \ldots g_{1}$ be an integrable ergodic cocycle of diffeomorphisms of M.

Random spectral theorem

Let $f_{n}=g_{n} g_{n-1} \ldots g_{1}$ be an integrable ergodic cocycle of diffeomorphisms of M.
Theorem
There is a constant $\lambda \geq 1$ and a (random) measured foliation μ such that for any Riemannian metric ρ,

$$
\lim _{n \rightarrow \infty} I_{\rho}\left(f_{n} \alpha\right)^{1 / n}=\lambda
$$

for any $\alpha \in \mathcal{S}$ such that $i(\mu, \alpha)>0$.

Random spectral theorem

Let $f_{n}=g_{n} g_{n-1} \ldots g_{1}$ be an integrable ergodic cocycle of diffeomorphisms of M.
Theorem
There is a constant $\lambda \geq 1$ and a (random) measured foliation μ such that for any Riemannian metric ρ,

$$
\lim _{n \rightarrow \infty} I_{\rho}\left(f_{n} \alpha\right)^{1 / n}=\lambda
$$

for any $\alpha \in \mathcal{S}$ such that $i(\mu, \alpha)>0$.

- Random walks, iid, Kaimanovich-Masur 1996,
- Duchin 2003,
- K.-Margulis 2005
- Rivin, Kowalski, Maher, 2008-2012

Holomorphic self-maps

Let $\mathcal{T}(\mathrm{M})$ be the Teichmüller space. Theorem of Royden, 1971:

$$
\mathbb{C}-\operatorname{Aut}(\mathcal{T}) \cong \mathrm{MCG}:=\operatorname{Diff}_{+}(\mathrm{M}) / \operatorname{Diff}_{0}(\mathrm{M})
$$

Holomorphic self-maps

Let $\mathcal{T}(\mathrm{M})$ be the Teichmüller space. Theorem of Royden, 1971:

$$
\mathbb{C}-\operatorname{Aut}(\mathcal{T}) \cong \mathrm{MCG}:=\operatorname{Diff}_{+}(\mathrm{M}) / \operatorname{Diff}_{0}(\mathrm{M})
$$

Theorem

Let $f: \mathcal{T}(M) \rightarrow \mathcal{T}(M)$ be a holomorphic map. Then there is a $\lambda \geq 1$ and a point P in the Gardiner-Masur compactification such that for any $x \in \mathcal{T}$ and curve $\beta \in \mathcal{S}$ with $E_{P}(\beta)>0$

$$
\operatorname{Ext}_{f^{n} x}(\beta)^{1 / n} \rightarrow \lambda
$$

Holomorphic self-maps

Let $\mathcal{T}(\mathrm{M})$ be the Teichmüller space. Theorem of Royden, 1971:

$$
\mathbb{C}-\operatorname{Aut}(\mathcal{T}) \cong \mathrm{MCG}:=\operatorname{Diff}_{+}(\mathrm{M}) / \operatorname{Diff}_{0}(\mathrm{M})
$$

Theorem

Let $f: \mathcal{T}(M) \rightarrow \mathcal{T}(M)$ be a holomorphic map. Then there is a $\lambda \geq 1$ and a point P in the Gardiner-Masur compactification such that for any $x \in \mathcal{T}$ and curve $\beta \in \mathcal{S}$ with $E_{P}(\beta)>0$

$$
\operatorname{Ext}_{f^{n} x}(\beta)^{1 / n} \rightarrow \lambda
$$

Holomorphic self-maps

Let $\mathcal{T}(\mathrm{M})$ be the Teichmüller space. Theorem of Royden, 1971:

$$
\mathbb{C}-\operatorname{Aut}(\mathcal{T}) \cong \mathrm{MCG}:=\operatorname{Diff}_{+}(\mathrm{M}) / \operatorname{Diff}_{0}(\mathrm{M})
$$

Theorem

Let $f: \mathcal{T}(M) \rightarrow \mathcal{T}(M)$ be a holomorphic map. Then there is a $\lambda \geq 1$ and a point P in the Gardiner-Masur compactification such that for any $x \in \mathcal{T}$ and curve $\beta \in \mathcal{S}$ with $E_{P}(\beta)>0$

$$
\operatorname{Ext}_{f n_{x}}(\beta)^{1 / n} \rightarrow \lambda
$$

Examples of holomorphic self-maps of \mathcal{T} :

- Thurston's skinning map in three-dimensional topology
- Thurston's pull-back map in complex dynamics

Wolff-Denjoy theorem

Theorem

Let $f: \mathcal{T} \rightarrow \mathcal{T}$ be holomorphic. Then either every orbit is bounded, or every orbit leaves every compact set and there are associated points P in the Gardiner-Masur boundary . If P is uniquely ergodic, then every orbit converges to P and for some $\lambda \geq 1$ and any $x \in \mathcal{T}(M)$

$$
\inf _{\alpha} \frac{E x t_{f(x)}^{1 / 2}(\alpha)}{E_{P}(\alpha)} \geq \lambda \inf _{\alpha} \frac{E x t_{x}^{1 / 2}(\alpha)}{E_{P}(\alpha)}
$$

Wolff-Denjoy theorem

Theorem

Let $f: \mathcal{T} \rightarrow \mathcal{T}$ be holomorphic. Then either every orbit is bounded, or every orbit leaves every compact set and there are associated points P in the Gardiner-Masur boundary. If P is uniquely ergodic, then every orbit converges to P and for some $\lambda \geq 1$ and any $x \in \mathcal{T}(M)$

$$
\inf _{\alpha} \frac{E x t_{f(x)}^{1 / 2}(\alpha)}{E_{P}(\alpha)} \geq \lambda \inf _{\alpha} \frac{E x t_{x}^{1 / 2}(\alpha)}{E_{P}(\alpha)}
$$

1. Bounded orbit,
2. P is Reducible,
3. P is $U E$

Wolff-Denjoy theorem

Theorem

Let $f: \mathcal{T} \rightarrow \mathcal{T}$ be holomorphic. Then either every orbit is bounded, or every orbit leaves every compact set and there are associated points P in the Gardiner-Masur boundary. If P is uniquely ergodic, then every orbit converges to P and for some $\lambda \geq 1$ and any $x \in \mathcal{T}(M)$

$$
\inf _{\alpha} \frac{E x t_{f(x)}^{1 / 2}(\alpha)}{E_{P}(\alpha)} \geq \lambda \inf _{\alpha} \frac{E x t_{x}^{1 / 2}(\alpha)}{E_{P}(\alpha)}
$$

1. Bounded orbit,
2. P is Reducible,
3. P is $U E$

Wolff-Denjoy theorem

Theorem

Let $f: \mathcal{T} \rightarrow \mathcal{T}$ be holomorphic. Then either every orbit is bounded, or every orbit leaves every compact set and there are associated points P in the Gardiner-Masur boundary. If P is uniquely ergodic, then every orbit converges to P and for some $\lambda \geq 1$ and any $x \in \mathcal{T}(M)$

$$
\inf _{\alpha} \frac{E x t_{f(x)}^{1 / 2}(\alpha)}{E_{P}(\alpha)} \geq \lambda \inf _{\alpha} \frac{E x t_{x}^{1 / 2}(\alpha)}{E_{P}(\alpha)}
$$

1. Bounded orbit,
2. P is Reducible,
3. P is $U E$

Question: In the bounded orbit case does f always have a fixed point in \mathcal{T} ?

Part II

Definitions and Proofs

Simple closed curves

Let \mathcal{S} denote the isotopy classes of simple closed curves on M not isotopically trivial.

Figure 1. A typical simple closed curve on a surface is complicated, from the point of view of someone tracing out the curve.

Simple closed curves

Let \mathcal{S} denote the isotopy classes of simple closed curves on M not isotopically trivial.

Figure 1. A typical simple closed curve on a surface is complicated, from the point of view of someone tracing out the curve.
Can embedd \mathcal{S} into $P\left(\mathbb{R}_{\geq 0}^{\mathcal{S}}\right)$ via the intersection number

$$
\alpha \mapsto i(\alpha, \cdot) .
$$

projectivized. The closure $\mathcal{P} \mathcal{M} \mathcal{F}$ is homeomorphic to a sphere of $\operatorname{dim} 6 \mathrm{~g}-7$ and points are projective measured foliations.

Thurston compactification

Thurston also showed that embedding $\mathcal{T}(\mathrm{M})$ into $P\left(\mathbb{R}_{\geq 0}^{\mathcal{S}}\right)$ via

$$
x \mapsto I_{x}(\cdot)
$$

projectivized, taking closure gives a ball, with boundary $\mathcal{P \mathcal { M F }}$:

$$
\mathcal{T}(M) \hookrightarrow B^{6 g-6} \quad \mathcal{P} \mathcal{M F}=\partial \mathrm{B}^{6 \mathrm{~g}-6}
$$

Thurston compactification

Thurston also showed that embedding $\mathcal{T}(\mathrm{M})$ into $P\left(\mathbb{R}_{\geq 0}^{\mathcal{S}}\right)$ via

$$
x \mapsto I_{x}(\cdot)
$$

projectivized, taking closure gives a ball, with boundary $\mathcal{P \mathcal { M F }}$:

$$
\mathcal{T}(M) \hookrightarrow B^{6 g-6} \quad \mathcal{P} \mathcal{M} \mathcal{F}=\partial \mathrm{B}^{6 \mathrm{~g}-6}
$$

Natural \Rightarrow MCG acts on this ball

Thurston compactification

Thurston also showed that embedding $\mathcal{T}(\mathrm{M})$ into $P\left(\mathbb{R}_{\geq 0}^{\mathcal{S}}\right)$ via

$$
x \mapsto I_{x}(\cdot)
$$

projectivized, taking closure gives a ball, with boundary $\mathcal{P \mathcal { M F }}$:

$$
\mathcal{T}(M) \hookrightarrow B^{6 g-6} \quad \mathcal{P} \mathcal{M} \mathcal{F}=\partial \mathrm{B}^{6 \mathrm{~g}-6}
$$

Natural \Rightarrow MCG acts on this ball
Brouwer fixed point theorem \Rightarrow Nielsen-Thurston classification

Thurston compactification

Thurston also showed that embedding $\mathcal{T}(\mathrm{M})$ into $P\left(\mathbb{R}_{\geq 0}^{\mathcal{S}}\right)$ via

$$
x \mapsto I_{x}(\cdot)
$$

projectivized, taking closure gives a ball, with boundary $\mathcal{P \mathcal { M F }}$:

$$
\mathcal{T}(M) \hookrightarrow B^{6 g-6} \quad \mathcal{P} \mathcal{M} \mathcal{F}=\partial \mathrm{B}^{6 \mathrm{~g}-6}
$$

Natural \Rightarrow MCG acts on this ball
Brouwer fixed point theorem \Rightarrow Nielsen-Thurston classification "Using the theory of foliations of surfaces" \Rightarrow "spectral theorem".

Teichmüller and Thurston metrics

Kerckhoff's formula for Teichmüller distance:

$$
d(x, y)=\frac{1}{2} \log \sup _{\alpha \in \mathcal{S}} \frac{E x t_{y}(\alpha)}{E x t_{x}(\alpha)},
$$

where $\operatorname{Ext}_{x}(\alpha)$ is the extremal length:

$$
E x t_{x}(\alpha)=\sup _{\rho} \frac{I_{\rho}(\alpha)^{2}}{A(\rho)}
$$

Teichmüller and Thurston metrics

Kerckhoff's formula for Teichmüller distance:

$$
d(x, y)=\frac{1}{2} \log \sup _{\alpha \in \mathcal{S}} \frac{E x t_{y}(\alpha)}{E x t_{x}(\alpha)}
$$

where $\operatorname{Ext}_{x}(\alpha)$ is the extremal length:

$$
E x t_{x}(\alpha)=\sup _{\rho} \frac{I_{\rho}(\alpha)^{2}}{A(\rho)}
$$

d is symmetric!

Teichmüller and Thurston metrics

Kerckhoff's formula for Teichmüller distance:

$$
d(x, y)=\frac{1}{2} \log \sup _{\alpha \in \mathcal{S}} \frac{E x t_{y}(\alpha)}{E x t_{x}(\alpha)}
$$

where $\operatorname{Ext}_{x}(\alpha)$ is the extremal length:

$$
E x t_{x}(\alpha)=\sup _{\rho} \frac{I_{\rho}(\alpha)^{2}}{A(\rho)}
$$

d is symmetric!
On the other hand, Thurston's

$$
L(x, y)=\log \sup _{\alpha \in \mathcal{S}} \frac{I_{y}(\alpha)}{I_{x}(\alpha)}
$$

is asymmetric metric.

Teichmüller and Thurston metrics

Kerckhoff's formula for Teichmüller distance:

$$
d(x, y)=\frac{1}{2} \log \sup _{\alpha \in \mathcal{S}} \frac{E x t_{y}(\alpha)}{E x t_{x}(\alpha)}
$$

where $\operatorname{Ext}_{x}(\alpha)$ is the extremal length:

$$
E x t_{x}(\alpha)=\sup _{\rho} \frac{I_{\rho}(\alpha)^{2}}{A(\rho)}
$$

d is symmetric!
On the other hand, Thurston's

$$
L(x, y)=\log \sup _{\alpha \in \mathcal{S}} \frac{I_{y}(\alpha)}{I_{x}(\alpha)}
$$

is asymmetric metric.

Gardiner-Masur compactification

Compactify \mathcal{T} like Thurston but using Ext $t_{x}(\cdot)^{1 / 2}$ instead of $I_{x}(\cdot)$.

Gardiner-Masur compactification

Compactify \mathcal{T} like Thurston but using $E x t_{x}(\cdot)^{1 / 2}$ instead of $I_{x}(\cdot)$. Gardiner-Masur showed that $\mathcal{P M F} \subsetneq \partial_{\mathrm{GM}} \mathcal{T}$.

Gardiner-Masur compactification

Compactify \mathcal{T} like Thurston but using Ext $t_{x}(\cdot)^{1 / 2}$ instead of $I_{x}(\cdot)$. Gardiner-Masur showed that $\mathcal{P M F} \subsetneq \partial_{G M} \mathcal{T}$. Recently studied by Miyachi, Liu and Su.

Gardiner-Masur compactification

Compactify \mathcal{T} like Thurston but using $E x t_{x}(\cdot)^{1 / 2}$ instead of $I_{x}(\cdot)$. Gardiner-Masur showed that $\mathcal{P M F} \subsetneq \partial_{\mathrm{GM}} \mathcal{T}$. Recently studied by Miyachi, Liu and Su. Let

$$
E_{x}(\alpha)=\frac{E x t_{x}(\alpha)^{1 / 2}}{K_{x}^{1 / 2}}
$$

where K_{x} is the q-c dilation of the Teichmüller map from x_{0} to x. Miyachi noted that E_{x} extends continuously to a function defined on the Gardiner-Masur compactification $\overline{\mathcal{T}}^{G M}$ of \mathcal{T}.

Proof of Theorem 2

Let $f: \mathcal{T}(M) \rightarrow \mathcal{T}(M)$ be holomorphic. By Royden, $d=$ Kobayashi, hence f is $1-$ Lip. Define

$$
I=\lim _{n \rightarrow \infty} \frac{1}{n} d\left(f^{n} x_{0}, x_{0}\right)
$$

For any point $P \in \overline{\mathcal{T}}^{G M}$ define following Liu and Su

$$
h_{P}(x)=\log \sup _{\beta} \frac{E_{P}(\beta)}{E x t_{x}(\beta)^{1 / 2}}-\log \sup _{\alpha} \frac{E_{P}(\alpha)}{E x t_{x_{0}}(\alpha)^{1 / 2}} .
$$

Proof of Theorem 2

Let $f: \mathcal{T}(M) \rightarrow \mathcal{T}(M)$ be holomorphic. By Royden, $d=$ Kobayashi, hence f is $1-\operatorname{Lip}$. Define

$$
I=\lim _{n \rightarrow \infty} \frac{1}{n} d\left(f^{n} x_{0}, x_{0}\right)
$$

For any point $P \in \overline{\mathcal{T}}^{G M}$ define following Liu and Su

$$
h_{P}(x)=\log \sup _{\beta} \frac{E_{P}(\beta)}{E x t_{x}(\beta)^{1 / 2}}-\log \sup _{\alpha} \frac{E_{P}(\alpha)}{E x t_{x_{0}}(\alpha)^{1 / 2}}
$$

Given a sequence $\epsilon_{i} \searrow 0$ we set $b_{i}(n)=d\left(f^{n} x_{0}, x_{0}\right)-\left(I-\epsilon_{i}\right) n$. Since these numbers are unbounded, we can find a subsequence such that $b_{i}\left(n_{i}\right)>b_{i}(m)$ for any $m<n_{i}$ and by sequential compactness we may moreover assume that $f^{n_{i}}\left(x_{0}\right) \rightarrow P \in \overline{\mathcal{T}}^{G M}$.

Proof of Theorem 2, II

By a result of Liu and Su identifying the horoboundary compactification of (\mathcal{T}, d) with the Gardiner-Masur compactification we have for any $k \geq 1$ that

$$
h_{P}\left(f^{k} x_{0}\right)=\lim _{i \rightarrow \infty} d\left(f^{k} x_{0}, f^{n_{i}} x_{0}\right)-d\left(x_{0}, f^{n_{i}} x_{0}\right)
$$

$\leq \liminf _{i \rightarrow \infty} d\left(x_{0}, f^{n_{i}-k} x_{0}\right)-d\left(x_{0}, f^{n_{i}} x_{0}\right)$

Proof of Theorem 2, II

By a result of Liu and Su identifying the horoboundary compactification of (\mathcal{T}, d) with the Gardiner-Masur compactification we have for any $k \geq 1$ that

$$
h_{P}\left(f^{k} x_{0}\right)=\lim _{i \rightarrow \infty} d\left(f^{k} x_{0}, f^{n_{i}} x_{0}\right)-d\left(x_{0}, f^{n_{i}} x_{0}\right)
$$

$$
\leq \liminf _{i \rightarrow \infty} d\left(x_{0}, f^{n_{i}-k} x_{0}\right)-d\left(x_{0}, f^{n_{i}} x_{0}\right)
$$

$$
\leq \liminf _{i \rightarrow \infty} b_{i}\left(n_{i}-k\right)+\left(I-\epsilon_{i}\right)\left(n_{i}-k\right)-b_{i}\left(n_{i}\right)-\left(I-\epsilon_{i}\right) n_{i}
$$

$$
\leq \liminf _{i \rightarrow \infty}-\left(I-\epsilon_{i}\right) k=-I k
$$

Proof of Theorem 2, conclusion

This means in terms of extremal lengths that for any $\beta \in \mathcal{S}$

$$
E x t_{f^{k} x_{0}}(\beta) \geq E_{P}(\beta)^{2}\left(\sup _{\alpha} \frac{E_{P}(\alpha)}{E x t_{x_{0}}(\alpha)^{1 / 2}}\right)^{-2} e^{2 l k}
$$

On the other hand, in view of Kerchoff's formula one has an estimate from above:

$$
e^{2 d\left(f^{k} x_{0}, x_{0}\right)}=\sup _{\alpha} \frac{E x t_{f^{k_{x_{0}}}}(\alpha)}{E x t_{x_{0}}(\alpha)} \geq \frac{E x t_{f^{k} x_{0}}(\beta)}{E x t_{x_{0}}(\beta)} .
$$

In particular, provided $E_{P}(\beta)>0$, the two estimates imply that

$$
\operatorname{Ext}_{f_{k_{x_{0}}}}(\beta)^{1 / n} \rightarrow e^{2 \prime}=: \lambda
$$

Proof of Theorem 2, conclusion

This means in terms of extremal lengths that for any $\beta \in \mathcal{S}$

$$
E x t_{f^{k} x_{0}}(\beta) \geq E_{P}(\beta)^{2}\left(\sup _{\alpha} \frac{E_{P}(\alpha)}{E x t_{x_{0}}(\alpha)^{1 / 2}}\right)^{-2} e^{2 l k}
$$

On the other hand, in view of Kerchoff's formula one has an estimate from above:

$$
e^{2 d\left(f^{k} x_{x_{0}}, x_{0}\right)}=\sup _{\alpha} \frac{E x t_{f^{k} x_{0}}(\alpha)}{E x t_{x_{0}}(\alpha)} \geq \frac{E x t_{f^{k} x_{0}}(\beta)}{E x t_{x_{0}}(\beta)} .
$$

In particular, provided $E_{P}(\beta)>0$, the two estimates imply that

$$
\operatorname{Ext}_{f_{k_{x_{0}}}}(\beta)^{1 / n} \rightarrow e^{2 \prime}=: \lambda
$$

(I'm leaving out the additional arguments required for the weak Wolff-Denjoy analog - uniquely ergodic.)

Theorem 1, reminder

Let $f_{n}=g_{n} g_{n-1} \ldots g_{1}$ be an integrable ergodic cocycle of diffeomorphisms of M, which in turn defines mapping class elements.

Theorem 1, reminder

Let $f_{n}=g_{n} g_{n-1} \ldots g_{1}$ be an integrable ergodic cocycle of diffeomorphisms of M, which in turn defines mapping class elements.

Theorem
There is a $\lambda \geq 1$ and a (random) $\mu \in \mathcal{P} \mathcal{M F}$ such that

$$
\lim _{n \rightarrow \infty} I_{\rho}\left(f_{n} \alpha\right)^{1 / n}=\lambda
$$

for any $\alpha \in \mathcal{S}$ such that $i(\mu, \alpha)>0$.

Proof of Theorem 1

Let $T:(\Omega, \mu) \rightarrow(\Omega, \mu)$ be an ergodic m.p.t., $\mu(\Omega)=1$. Assume that $g: \Omega \rightarrow \operatorname{Diff}^{+}(M) \rightarrow M C G(M)$ is measurable and

$$
Z_{n}(\omega):=g(\omega) g(T \omega) \ldots g\left(T^{n-1} \omega\right)
$$

Notice here that we have shifted the order, so that in the terminology of the theorem, $f_{\dot{n}}=Z_{n}^{-1}$ and the $g_{i}=\left(g\left(T^{i-1} \omega\right)\right)^{-1}$.

Proof of Theorem 1

Let $T:(\Omega, \mu) \rightarrow(\Omega, \mu)$ be an ergodic m.p.t., $\mu(\Omega)=1$. Assume that $g: \Omega \rightarrow \operatorname{Diff}^{+}(M) \rightarrow M C G(M)$ is measurable and

$$
Z_{n}(\omega):=g(\omega) g(T \omega) \ldots g\left(T^{n-1} \omega\right)
$$

Notice here that we have shifted the order, so that in the terminology of the theorem, $f_{\dot{n}}=Z_{n}^{-1}$ and the $g_{i}=\left(g\left(T^{i-1} \omega\right)\right)^{-1}$. Fix a base point $x_{0} \in T_{g}$. We will assume that

$$
\int_{\Omega} L\left(g(\omega) x_{0}, x_{0}\right)+L\left(x_{0}, g(\omega) x_{0}\right) d \mu(\omega)<\infty
$$

in which case we refer to f_{n} or Z_{n} as an integrable ergodic cocycle.

Proof of Theorem 1

Let $T:(\Omega, \mu) \rightarrow(\Omega, \mu)$ be an ergodic m.p.t., $\mu(\Omega)=1$. Assume that $g: \Omega \rightarrow \operatorname{Diff}^{+}(M) \rightarrow \operatorname{MCG}(M)$ is measurable and

$$
Z_{n}(\omega):=g(\omega) g(T \omega) \ldots g\left(T^{n-1} \omega\right)
$$

Notice here that we have shifted the order, so that in the terminology of the theorem, $f_{\dot{n}}=Z_{n}^{-1}$ and the $g_{i}=\left(g\left(T^{i-1} \omega\right)\right)^{-1}$. Fix a base point $x_{0} \in T_{g}$. We will assume that

$$
\int_{\Omega} L\left(g(\omega) x_{0}, x_{0}\right)+L\left(x_{0}, g(\omega) x_{0}\right) d \mu(\omega)<\infty
$$

in which case we refer to f_{n} or Z_{n} as an integrable ergodic cocycle.
One has subadditivity:

$$
\begin{aligned}
& \begin{aligned}
L\left(Z_{n+m}(\omega) x_{0},\right. & \left.\left.x_{0}\right) \leq L\left(Z_{n}(\omega) Z_{m}\left(T^{n} \omega\right) x_{0}, Z_{n}(\omega) x_{0}\right)\right)+L\left(Z_{n}(\omega) x_{0}, x_{0}\right) \\
& =L\left(Z_{m}\left(T^{n} \omega\right) x_{0}, x_{0}\right)+L\left(Z_{n}(\omega) x_{0}, x_{0}\right) .
\end{aligned} \\
& \text { Kingman } \Rightarrow I:=\lim _{n \rightarrow \infty} \frac{1}{n} L\left(Z_{n}(\omega) x_{0}, x_{0}\right) .
\end{aligned}
$$

Proof of Theorem 1, cont

Following Walsh, consider functions h in the so-called horofunction compactification of \mathcal{T}, that is, for $\mu \in P M F$

$$
h_{\mu}(x)=\log \sup _{\alpha} \frac{i(\mu, \alpha)}{I_{x}(\alpha)}-\log \sup _{\beta} \frac{i(\mu, \beta)}{I_{x_{0}}(\beta)},
$$

(well-defined) and for $x_{n} \rightarrow \mu$

$$
h_{\mu}(x)=\lim _{n \rightarrow \infty} L\left(x, x_{n}\right)-L\left(x_{0}, x_{n}\right)
$$

Proof of Theorem 1, cont

Following Walsh, consider functions h in the so-called horofunction compactification of \mathcal{T}, that is, for $\mu \in P M F$

$$
h_{\mu}(x)=\log \sup _{\alpha} \frac{i(\mu, \alpha)}{I_{x}(\alpha)}-\log \sup _{\beta} \frac{i(\mu, \beta)}{I_{x_{0}}(\beta)},
$$

(well-defined) and for $x_{n} \rightarrow \mu$

$$
h_{\mu}(x)=\lim _{n \rightarrow \infty} L\left(x, x_{n}\right)-L\left(x_{0}, x_{n}\right) .
$$

Following work of K. \& Ledrappier: for $g \in M C G$ and h as above let $F(g, h)=-h\left(g^{-1} x_{0}\right)$. We note the following cocycle property:

$$
\begin{aligned}
& F\left(g_{1}, g_{2} h\right)+F\left(g_{2}, h\right)=-\left(g_{2} \cdot h\right)\left(g_{1}^{-1} x_{0}\right)-h\left(g_{2}^{-1} x_{0}\right) \\
= & -h\left(g_{2}^{-1} g_{1}^{-1} x_{0}\right)+h\left(g_{2}^{-1} x_{0}\right)-h\left(g_{2}^{-1} x_{0}\right)=F\left(g_{1} g_{2}, h\right) .
\end{aligned}
$$

Note that moreover

$$
L\left(g x_{0}, x_{0}\right)=-L\left(g^{-1} x_{0}, g^{-1} x_{0}\right)+L\left(x_{0}, g^{-1} x_{0}\right)=\max _{h \in H} F(g, h),
$$

Proof of Theorem 1, cont

Having asymmetry of L causes almost no trouble!

Proof of Theorem 1, cont

Having asymmetry of L causes almost no trouble!
Skew product system $\bar{T}: \Omega \times H \rightarrow \Omega \times H$ by
$\bar{T}(\omega, h)=\left(T \omega, g^{-1}(\omega) h\right)$ and checks that with
$\bar{F}(\omega, h):=F\left(g(\omega)^{-1}, h\right)$ one has that

$$
F\left(Z_{n}(\omega)^{-1}, h\right)=\sum_{i=0}^{n-1} \bar{F}\left(\bar{T}^{i}(\omega, h)\right)
$$

Moreover, we have

$$
\left|F\left(g^{\cdot 1}(\omega), h\right)\right| \leq \max \left\{L\left(x_{0}, g(\omega) x_{0}, L\left(g(\omega) x_{0}, x_{0}\right)\right\} \text { so } F\right. \text { is }
$$ integrable.

Proof of Theorem 1, cont

Having asymmetry of L causes almost no trouble!
Skew product system $\bar{T}: \Omega \times H \rightarrow \Omega \times H$ by
$\bar{T}(\omega, h)=\left(T \omega, g^{-1}(\omega) h\right)$ and checks that with
$\bar{F}(\omega, h):=F\left(g(\omega)^{-1}, h\right)$ one has that

$$
F\left(Z_{n}(\omega)^{-1}, h\right)=\sum_{i=0}^{n-1} \bar{F}\left(\bar{T}^{i}(\omega, h)\right)
$$

Moreover, we have
$\left|F\left(g^{.1}(\omega), h\right)\right| \leq \max \left\{L\left(x_{0}, g(\omega) x_{0}, L\left(g(\omega) x_{0}, x_{0}\right)\right\}\right.$ so F is integrable.
The proof now runs as in K.-Ledrappier, that is, construct a special measure that accounts for drift and projects to μ.. Birkhoff's ergodic theorem and a selecting measurable section. We get that for a.e. ω there is an $h=h^{\omega}$ such that

$$
\lim _{n \rightarrow \infty}-\frac{1}{n} h\left(Z_{n} x_{0}\right)=l
$$

Proof of Theorem 1, conclusion

Letting $C_{\mu}^{-1}=\sup \frac{i(\mu, \beta)}{I_{x_{0}}(\beta)}$ we then obtain

$$
\sup _{\alpha} \frac{i(\mu, \alpha)}{I_{Z_{n} x_{0}}(\alpha)} \leq C_{\mu}^{-1} e^{-(I-\epsilon) n}
$$

which leads to that for every α we have

$$
I_{Z_{n} \times_{0}}(\alpha) \geq C_{\mu} i(\mu, \alpha) e^{(I-\epsilon) n}
$$

Note: more precise than the theorem!

Proof of Theorem 1, conclusion

Letting $C_{\mu}^{-1}=\sup \frac{i(\mu, \beta)}{I_{x_{0}}(\beta)}$ we then obtain

$$
\sup _{\alpha} \frac{i(\mu, \alpha)}{Z_{Z_{n} \times_{0}}(\alpha)} \leq C_{\mu}^{-1} e^{-(I-\epsilon) n}
$$

which leads to that for every α we have

$$
I_{Z_{n} \times_{0}}(\alpha) \geq C_{\mu} i(\mu, \alpha) e^{(I-\epsilon) n}
$$

Note: more precise than the theorem!
The other inequality comes from that in the thick part of \mathcal{T}, ratios of extremal length are comparable to ratio of hyperbolic lengths, and the symmetry of Teichmuller distance.

Proof of Theorem 1, conclusion

Letting $C_{\mu}^{-1}=\sup \frac{i(\mu, \beta)}{I_{x_{0}}(\beta)}$ we then obtain

$$
\sup _{\alpha} \frac{i(\mu, \alpha)}{Z_{Z_{n} \times_{0}}(\alpha)} \leq C_{\mu}^{-1} e^{-(I-\epsilon) n}
$$

which leads to that for every α we have

$$
I_{Z_{n} \times_{0}}(\alpha) \geq C_{\mu} i(\mu, \alpha) e^{(I-\epsilon) n}
$$

Note: more precise than the theorem!
The other inequality comes from that in the thick part of \mathcal{T}, ratios of extremal length are comparable to ratio of hyperbolic lengths, and the symmetry of Teichmuller distance.

Part III

Concluding remarks and questions

Random products case

Questions

- Ray approximation in the Teichmüller metric:

$$
\frac{1}{n} d\left(Z_{n} x_{0}, \gamma(l \cdot n)\right) \rightarrow 0
$$

- Version with several foliations μ and several λ s.
- Central limit theorem
- Behaviour of $i\left(f_{n} \alpha, \beta\right)$
- Study of surface bundles

Holomorphic self-maps

- Is there a more refined Wolff-Denjoy theorem / extended Nielsen-Thurston classification ?
- Fixed point?
- Tighter relations to Thurston's pull-back map and Thurston obstruction

Thanks

Thanks!

