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The Nielsen-Thurston classification of diffeomorphisms f of M. Up
to isotopy, f is

» periodic
» reducible
» pseudo-Anosov

Analog of the Jordan normal form; and classification in SL(2,7).

» Nielsen, 1927-1945 used lifts to H2and OH?2.

» Thurston, 1976, used Teichmiiller theory
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The spectral theorem

Let
S= isotopy classes of simple closed curves on M

and for a Riemannian metric p, /,(3) := infz.g length,(5").
Theorem 5 in Thurston's seminal 1976 preprint:

Theorem
For any diffeomorphism f of M, there is a finite set
1 < A1 < X\ < ... < Ak of algebraic integers such that for any
a € S there is a A\j such that for any Riemannian metric p,
lim 1,(F )Y/ = A;.
n—oo

The map f is isotopic to a pseudo-Anosov map iff K =1 and
A1 > 1.

Compare with matrices limp_o ||A”v|]1/” =|\/.



Statements of new results.
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Random spectral theorem

Let f, = gngn_1...1 be an integrable ergodic cocycle of
diffeomorphisms of M.

Theorem
There is a constant A > 1 and a (random) measured foliation p
such that for any Riemannian metric p,

lim 1,(f,0)¥" = X

n—oo
for any oo € S such that i(p, ) > 0.

» Random walks, iid, Kaimanovich-Masur 1996,
» Duchin 2003,

» K.-Margulis 2005

» Rivin, Kowalski, Maher, 2008-2012
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Holomorphic self-maps

Let 7(M) be the Teichmiiller space. Theorem of Royden, 1971:

C—Aut(7T) 2 MCG := Diff (M)/Diffg (M).

Theorem

Let f : T(M) — T (M) be a holomorphic map. Then there is a

A > 1 and a point P in the Gardiner-Masur compactification such
that for any x € T and curve 3 € S with Ep(3) >0

Extgny (8)Y" — A.
Examples of holomorphic self-maps of 7:

» Thurston's skinning map in three-dimensional topology

» Thurston's pull-back map in complex dynamics
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Wolff-Denjoy theorem

Theorem
Let f : T — T be holomorphic. Then either every orbit is bounded,
or every orbit leaves every compact set and there are associated
points P in the Gardiner-Masur boundary . If P is uniquely ergodic,
then every orbit converges to P and for some A\ > 1 and any
x € T(M)

Ext™/2 () 1/2

o\ . Exti’"(a)

e O\ Ext,""(a)
|2f Er(0) _>\|r01lf Er()

1. Bounded orbit,
2. P is Reducible,
3. Pis UE

Question: In the bounded orbit case does f always have a fixed
point in 7 7



Part 1l

Definitions and Proofs
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FIGURE 1. A typical simple closed curve on a surface is
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out the curve.



Simple closed curves

Let S denote the isotopy classes of simple closed curves on M not
isotopically trivial.

FIGURE 1. A typical simple closed curve on a surface is
complicated, from the point of view of someone tracing

out the curve.
Can embedd S into P(RE)) via the intersection number

a—i(a,-).

projectivized. The closure PMF is homeomorphic to a sphere of
dim 6g-7 and points are projective measured foliations.
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Thurston compactification

Thurston also showed that embedding 7 (M) into P(R‘go) via
X ()
projectivized, taking closure gives a ball, with boundary PMF:
T(M) — B%~° PMF=0oB%6,

Natural = MCG acts on this ball
Brouwer fixed point theorem = Nielsen-Thurston classification
“Using the theory of foliations of surfaces’ = “spectral theorem”.
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Gardiner-Masur compactification

Compactify 7 like Thurston but using Ext,(-)'/? instead of /(-).

Gardiner-Masur showed that PMFC dgm7 -

Recently studied by Miyachi, Liu and Su.

Let

B Ext, ()Y/?
KL/

where K, is the g-c dilation of the Teichmiiller map from xg to x.

Miyachi noted that E, extends continuously to a function defined

on the Gardiner-Masur compactification TMof T

Ex(a)

)



Proof of Theorem 2

Let f : T(M) — T (M) be holomorphic. By Royden,
d =Kobayashi, hence f is 1 — Lip. Define

[ = lim 1d(f—nXo,X()).

n—oo N
. ~=GM | . . .
For any point P € 7~ define following Liu and Su
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Let f : T(M) — T (M) be holomorphic. By Royden,
d =Kobayashi, hence f is 1 — Lip. Define

[ = lim 1C/(f—nXo,X()).

n—oo N

For any point P € TM define following Liu and Su

Ep(B) Ep(a)
hp(x) = | Bl e A i 2 B
p(x) ogsl;p Ext.(9)1/2 og sup Exty, ()12

Given a sequence €; \, 0 we set b;j(n) = d(f"xo,x0) — (I — €i)n.
Since these numbers are unbounded, we can find a subsequence
such that bj(n;) > bj(m) for any m < n; and by sequential
compactness we may moreover assume that f"(xg) — P € 7M.



Proof of Theorem 2, Il

By a result of Liu and Su identifying the horoboundary
compactification of (77, d) with the Gardiner-Masur
compactification we have for any k > 1 that

hp(fhxp) = lim d(f¥xo, fMixo) — d(x0, F" xp)

< liminf d(xo, " *x0) — d(x0, f" x0)

1—00



Proof of Theorem 2, Il

By a result of Liu and Su identifying the horoboundary
compactification of (77, d) with the Gardiner-Masur
compactification we have for any k > 1 that

hp(fhxp) = lim d(f¥xo, fMixo) — d(x0, F" xp)

< liminf d(xo, " *x0) — d(x0, f" x0)

1—00

< liminf bj(nj — k) + (I — €;)(ni — k) — bi(n;) — (I — €i)n;

j—o00

<liminf —(/ — €;)k = —Ik.

1—00



Proof of Theorem 2, conclusion

This means in terms of extremal lengths that for any 5 € S

Ep(a)

—2
EXfkao(/B) > EP(5)2 (sup W) o2k

On the other hand, in view of Kerchoff's formula one has an
estimate from above:

Qd(kamXo) = sup ExtkaO(a) EthkXO(ﬁ)

a Exty(a) = Extg(B)

e

In particular, provided Ep((3) > 0, the two estimates imply that

ExtkaO(ﬁ)l/” — e =\



Proof of Theorem 2, conclusion

This means in terms of extremal lengths that for any 5 € S

2 Ep(c) \ 77 ok
Extsi,, (8) > Ep(8) sup = ()12 e’

On the other hand, in view of Kerchoff's formula one has an
estimate from above:

d(kamXo) = sup ExtkaO(a) EthkXO(ﬁ)

e? ’
o Exty(a) = Exty(f)

In particular, provided Ep((3) > 0, the two estimates imply that
ExtkaO(ﬁ)l/” — e =\

(I'm leaving out the additional arguments required for the weak
Wolff-Denjoy analog - uniquely ergodic.)
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Theorem 1, reminder

Let f, = gngn_1...g1 be an integrable ergodic cocycle of
diffeomorphisms of M, which in turn defines mapping class
elements.

Theorem
There is a A > 1 and a (random) y € PMUF such that

lim 1,(f,0)¥" = X

n—oo

for any o € S such that i(p, o) > 0.
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that g : Q — Diff *(M) - MCG(M) is measurable and
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Notice here that we have shifted the order, so that in the
terminology of the theorem, f; = Z-* and the g; = (g(Ti_lw))_l.



Proof of Theorem 1

Let T:(Q, 1) — (Q, 1) be an ergodic m.p.t., u(2) = 1. Assume
that g : Q — Diff *(M) - MCG(M) is measurable and

Zp(w) = g(w)g(Tw)...g( T”_lw).

Notice here that we have shifted the order, so that in the
terminology of the theorem, f; = Z-* and the g; = (g(T‘_lw))_l.
Fix a base point xp € Tz. We will assume that

/QL(g(w)xo,xO) + L(x0, g(w)x0)du(w) < oo,

in which case we refer to f, or Z, as an integrable ergodic cocycle.



Proof of Theorem 1

Let T:(Q, 1) — (Q, 1) be an ergodic m.p.t., u(2) = 1. Assume
that g : Q — Diff *(M) - MCG(M) is measurable and

Zp(w) = g(w)g(Tw)...g( T”_lw).

Notice here that we have shifted the order, so that in the
terminology of the theorem, f; = Z-* and the g; = (g(T‘_lw))_l.
Fix a base point xp € Tz. We will assume that

/QL(g(w)xo,xO) + L(x0, g(w)x0)du(w) < oo,

in which case we refer to f, or Z, as an integrable ergodic cocycle.
One has subadditivity:

L(Znt-m(w)xo, x0) < L(Zn(w)Zm(T"w)x0, Zn(w)x0))+L(Zn(w)x0, X0)

= L(Zm(T"w)xo, x0) + L(Zn(w)x0, x0)-

Kingman = [ := lim,_ %L(Zn(w)xo,xo).



Proof of Theorem 1, cont

Following Walsh, consider functions h in the so-called horofunction
compactification of 7, that is, for uy € PMF

i(p, o)

hu(x) = Iogsup (o) Iogsup ip, )

ho(B)

(well-defined ) and for x, — p

hu(x) = nll_)rrgo L(x,xn) — L(x0, Xn)-



Proof of Theorem 1, cont

Following Walsh, consider functions h in the so-called horofunction
compactification of 7, that is, for u € PMF

i(p, o)
h(a)

i(p, B)
ho(B)

hu(x) = Iogsup Iogsup

(well-defined ) and for x, — p
hu(x) = lim L(x,xp) — L(x0, Xn)-

Following work of K. & Ledrappier: for g € MCG and h as above
let F(g,h) = —h(g 'xo0). We note the following cocycle property:

F(g1,&2h) + F(g2, h) = —(g2 - h)(g1 " x0) — h(gz ' x0)

= —h(g; 'g1 'x0) + h(g; "x0) — h(gs 'x0) = F(g182. h).
Note that moreover

L(gx0,x0) = —L(g X0, 8 *x0) + L(x0, & 'x0) = max F(g,h),
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Having asymmetry of L causes almost no trouble!
Skew product system T : Q x H — Q x H by
T(w,h) = (Tw,g Y (w)h) and checks that with
F(w, h) :== F(g(w)™, h) one has that

Moreover we have
|F(gt(w), h)| < max{L(x0, g(w)xo, L(g(w)x0, x0)} so F is
integrable.
The proof now runs as in K.-Ledrappier, that is, construct a special
measure that accounts for drift and projects to p.. Birkhoff's
ergodic theorem and a selecting measurable section. We get that
for a.e. w there is an h = h* such that

lim — 2 h(Zuo) = 1.

n—oo N



Proof of Theorem 1, conclusion

Letting C, ' = sup ,(“(’gg we then obtain
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Concluding remarks and questions



Random products case

Questions

» Ray approximation in the Teichmiiller metric:

1
—d(Zyxo, (I - n)) — 0.
n
» Version with several foliations i and several As.
» Central limit theorem
» Behaviour of i(f,a, )
» Study of surface bundles



Holomorphic self-maps

» Is there a more refined Wolff-Denjoy theorem / extended
Nielsen-Thurston classification ?

» Fixed point?

» Tighter relations to Thurston's pull-back map and Thurston
obstruction



Thanks!



