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Ergodic theorems for discrete groups

general set-up

Γ a discrete group,

Γt ⊂ Γ a growing family of sets, for example
Γt = {γ ∈ Γ ; N(γ) ≤ t} for some distance function N.

(X , µ) an ergodic probability measure preserving action of Γ.

Consider the uniform averages λt supported on Γt .

Basic problem : Do these averages

λt f (x) =
1
|Γt |

∑
γ∈Γt

f (γ−1x)

converge, for a given function f on X ? If so, what is their limit ?
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Ergodic theorems for amenable groups
Three classical principles

1 Existence of asymptotically invariant (Følner) sets Fn satisfying:

lim
n→∞

|KFn∆Fn|
|Fn|

= 0 for any finite K ⊂ G ,

implies the mean ergodic theorem, and pointwise almost sure
convergence on a dense subspace (Riesz, Følner...).

2 The doubling, and more generally, regularity condition :

| ∪m≤n F−1
m Fn| ≤ Cd |Fn|

implies a maximal inequality for the convolution operators λn
define on `1(Γ) (Wiener, Calderon, Tempelman....)

3 The transference principle reduces the maximal inequality in
general actions to the maximal inequality for convolutions
(Wiener, Calderon, Coifman-Weiss.....) .

For non-amenable groups the volume growth is exponential,
regularity fail, there are no Følner sets, and no transference.
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Amenable equivalence relations

• (B, ν) standard Borel probability space,

• R ⊂ B × B a Borel equivalence relation with countable equivalence
classes,

• c = counting measure on B, namely c(E) = #E , for all E ⊂ B

• ν is R-invariant if ν × c restricted to R equals c × ν restricted to R.

• A Borel map φ : B → B is an inner automorphism of R if it is
invertible with Borel inverse and its graph is contained in R.

• If ν is R-invariant then φ∗ν = ν for every φ in the group of inner
automorpshims Inn(R).

April 2012
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Asymptotic invariance, Folner sets and doubling
• A set Φ ⊂ Inn(R) generates R if for almost every pair (b1,b2) ∈ R
(w.r.t. ν × c), there exists φ in the group generated by Φ such that
φ(b1) = b2.

• Let F = {Fn(b)}∞n=1, with Fn(b) a finite subset of the equivalence
class of b. Furthermore {(b,b′) : b′ ∈ Fn(b)} ⊂ B × B is a Borel
subset of R. We also assume b ∈ Fn(b) for every b and n.

1 F is asymptotically invariant (or Følner) with respect to ν if there
exists a countable set Φ ⊂ Inn(R(B)) which generates R(B) and

lim
n→∞

|Fn(b)∆φ(Fn(b))|
|Fn(b)|

= 0

for all φ ∈ Φ, ν-a.e. b ∈ B.
2 F satisfies the regularity condition with respect to ν if there is a

constant Cd > 0 such that for ν-a.e. b ∈ B and every n ∈ N∣∣∣⋃{
Fm(b′) : m ≤ n,Fm(b′) ∩ Fn(b) 6= ∅

}∣∣∣ ≤ Cd |Fn(b)|.
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Pointwise ergodic theorem in L1

• For a function f on B, consider the averaging operators An[F ; f ]

An[F ; f ](b) :=
1

|Fn(b)|
∑

b′∈Fn(b)

f (b′).

• A Borel set E ⊂ B is R-invariant if (E × B) ∩R = E × E .

• E[f |R] denotes the conditional expectation of a function f on B, with
respect to the σ-algebra of relation-invariant Borel sets.

Pointwise ergodic theorem.
If F is asymptotically invariant and satisfies the regularity condition
then F is a pointwise ergodic sequence in L1. i.e., for every
f ∈ L1(B, ν), An[F ; f ] converges pointwise a.e. and in L1-norm to
E[f |R] as n→∞.
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Examples

• This result generalizes the classical ergodic theorem : Let R = OG
be the orbit equivalence relation of a m.p. action of an amenable
group G on (B, ν), {Fn}∞n=1 regular Folner subsets in G. Then
Fn(b) = {gb ; g ∈ Fn} is asymptotically invariant and regular for the
equivalence relation.

• Tempered Folner sets can be defined, and they satisfy the pointwise
ergodic theorem. This relies on a generalization of Weiss’ proof
(2003) of Lindenstrauss’ Thm in the case of amenable groups.

• Hyperfiniteness. R is hyperfinite if R = ∪nRn in the increasing
union of subequivalence relations with finite classes. For b ∈ B,
Rn(b) (the Rn-equivalence class of b) form doubling Folner
sequences for the relation R provided the union of automorphisms
groups Inn(Rn) generate R . In that case, Rn(b) satisfy

• Extreme Besicovich property: If Fn(b) intersects Fm(b′), then one
of the two sets is contained in the other !

April 2012
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Ratio ergodic theorem

When the extreme Besicovich property holds the equivalence relation
satisfies the ratio ergodic theorem, as follows.

Let B be any Borel space which is non-singular under the
equivalence relation R, with Radon-Nikodym derivative δ(b′,b).

The ratio ergodic operators Q2n[·, ·] are defined, given U,V ∈ L1(B)
with V > 0, by

Q2n[U,V ](b) =

∑
b′∈Fn(b) U(b′)δ(b′,b)∑
b′∈Fn(b) V (b′)δ(b′,b)

.

Ratio ergodic theorem. For any U,V ∈ L1(B) with E[V |R] > 0, the
sequence {Q2n[U,V ]}∞n=1 converges pointwise a.e. to the limit

E[U|R](b)

E[V |R](b)
.

April 2012
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Besicovich property and ratio theorem

• Every amenable equivalence relation (in the sense of Zimmer) is
hyperfinite (Connes-Feldman-Weiss 1980).

• In the case of Zd -actions for d > 1 the ratio ergodic theorem is of
recent vintage (Feldman 2007, Hochman 2009). It was shown by
Hochman (2009) that the Besicovich property is necessary and
sufficient for the validity of the ratio ergodic theorem in this case.

April 2012
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From amenable groups to amenable actions

• Non-amenable groups do not have Følner sets, but they do have
amenable actions (in the sense of Zimmer) where the orbit
equivalence relation does have a sequence of Følner sets
(Connes-Feldman-Weiss 1980).

• Furthermore, if X is a measure-preserving action and Y an
amenable action, then B = X × Y is an amenable action as well.

• In particular, the action of a non-amenable group G on its Poisson
boundary Y = ∂G (Furstenberg 1963) is an amenable action
(Zimmer 1978), and hence so is X × ∂G. Note however that the orbit
relation does not preserve the measure in the last three case

.

• Let us proceed to consider a natural example of a non-amenable
group G where the amenable equivalence relation on X × ∂G has a
natural subrelation with an invariant measure and natural Folner sets
with the extreme Besicovich property.

April 2012
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boundary Y = ∂G (Furstenberg 1963) is an amenable action
(Zimmer 1978), and hence so is X × ∂G. Note however that the orbit
relation does not preserve the measure in the last three case

.

• Let us proceed to consider a natural example of a non-amenable
group G where the amenable equivalence relation on X × ∂G has a
natural subrelation with an invariant measure and natural Folner sets
with the extreme Besicovich property.
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The free group and its boundary

• F = 〈a1, . . . ,ar 〉 free group of rank r ≥ 2, S = {a1, . . . ,ar}.

• g = s1 · · · sn with si ∈ S and si+1 6= s−1
i for all i , uniquely. Define

|g| := n, and a distance function on F by d(g1,g2) := |g−1
1 g2|.

• The boundary ∂F is the set of all geodesic rays emanating from the
origin. Equivalently, the set of all sequences ξ = (ξ1, ξ2, . . .) ∈ SN

such that ξi+1 6= ξ−1
i for all i ≥ 1. Thus ∂F is a subshift of finite type.

• A metric d∂ on ∂F is defined by d∂
(
(ξ1, ξ2, . . .), (t1, t2, . . .)

)
= 1

n
where n is the largest natural number such that ξi = ti for all i < n.

• The probability measure ν on ∂F is the Markov measure satisfying
for every finite sequence t1, . . . , tn with ti+1 6= t−1

i for 1 ≤ i < n,

ν
({

(ξ1, ξ2, . . .) ∈ ∂F : ξi = ti , 1 ≤ i ≤ n
})

:= (2r − 1)−n+1(2r)−1.
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Horofunctions and horospheres

• There is a natural action of F on ∂F by

(t1 · · · tn)ξ := (t1, . . . , tn−k , ξk+1, ξk+2, . . .)

where t1, . . . , tn ∈ S, t1 · · · tn is in reduced form and k is the largest
number ≤ n such that ξ−1

i = tn+1−i for all i ≤ k .

• Observe that if g = t1 · · · tn then the Radon-Nikodym derivative of ν
satisfies

dν ◦ g
dν

(ξ) = (2r − 1)2k−n.

• For ξ ∈ ∂F as above, define the horofunction hξ : F→ Z by

hξ(g) := − log2r−1

(
dν ◦ g−1

dν
(ξ)

)
.
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• For example, if g = ξ1 · · · ξn then hξ(g) = −n. More generally, if
g = ξ1 · · · ξnt1 · · · tm is in reduced form and t1 6= ξn+1 then
hξ(g) = m − n. So hξ(g) = 0 iff n = m.

• Alternatively, if sn = ξ1ξ2 · · · ξn → ξ then

hξ(g) = lim
n→∞

d(g, sn)− n.

• A horosphere is any level set of a horofunction. Let Hξ denote the
horosphere Hξ := h−1

ξ (0). Then

Hξ =

{
g ∈ F :

dν ◦ g−1

dν
(ξ) = 1

}
.

• If ξ = (ξ1, ξ2, . . .) then g ∈ Hξ if and only if the reduced form of g is
g = ξ1ξ2 · · · ξnt1 · · · tn for some t1, . . . , tn ∈ S such that ξn+1 6= t1 (so
g−1ξ = (t−1

n , . . . , t−1
1 , ξn+1, . . .)). Hξ is called the horosphere passing

through the identity e associated to ξ.
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Figure: The “upper half space” model of the rank 2 free group.
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The boundary action and associated relation

• The group F acts on horofunctions by g · hξ(f ) = hξ(g−1f ) for any
g, f ∈ F, ξ ∈ ∂F, and thus F acts on horospheres by

g · Hξ = {gw : w ∈ Hξ}.

• If g ∈ Hξ then g−1Hξ = Hg−1ξ and g−1 · hξ = hg−1ξ. More generally,
if g ∈ F is arbitrary then

hgξ = g · hξ − hξ(g−1) (chain rule, or cocycle equation.)

• Let R∂F be the horospherical equivalence relation on ∂F where
ξ ∼ η if and only if there is a g ∈ F such that gξ = η and dν◦g

dν (ξ) = 1.

• In other words, η = gξ where g−1 ∈ Hξ. Symmetry and transitivity
follow from the cocycle equation.
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Finite order automorphisms

• Note that R∂F is a sub-relation of the F-orbit relation, but
nevertheless, ν is an R∂F-invariant measure on the boundary !

• Note further that viewing ∂F as a subshift of finite type, R∂F
coincides with synchronous tail relation on the subshift.

• Thus it is clear that R∂F is an increasing union of finite equivalence
relations Rn. Just define ξ and ξ′ to be Rn equivalent if they coincide
from the n-th place onwards. In fact, the sets Fn(ξ) = Rn(ξ) are
Folner sets for R.

• To show that, define finite order automorphisms of R, declaring
bijections φ : ∂F→ ∂F to have order n if for any two boundary points
ξ, ξ′ ∈ ∂F with identical first n coordinates, φ(ξ) = φ(ξ′).
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Proposition.

• For any (ξ, ξ′) ∈ R∂F, there exists a map φ ∈ Inn(R∂F) such that
φ(ξ) = ξ′ and φ has order n for some n <∞. Thus the set of finite
order inner automorphisms of R∂F is a generating set for the
equivalence relation R∂F.

• Furthermore, the sets Rn(ξ) are asymptotically invariant under
finite-order automorphisms, and constitute Folner sets with the
extreme Besicovich property.
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Geometric interpretation

• For g ∈ F and n ≥ 0, let Bn(g) ⊂ F denote the ball of radius n
centered at g (with respect to the word metric).

• Horospherical balls on the horosphere Hξ are simply the
intersections Hξ ∩ Bn(e).

•We define for each ξ a finite subset of the R∂F-equivalence class of
ξ. Namely we consider the set of images of ξ under the elements
whose inverses lie in a horospherical ball :

B2n(ξ) := {gξ : g−1 ∈ Hξ ∩ B2n(e)}

• The horospherical ball B2n(ξ) coincide with the equivalence class of
ξ under the finite equivalence relation Rn.
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The amenable equivalence relation associated with a
measure-preserving ergodic action

• Let F act on (X , λ) by m.p.t. , and define an equivalence relation
RX×∂F on X × ∂F, with (x , ξ) equivalent to (x ′, ξ′) if there exists a
g−1 ∈ Hξ such that gx = x ′ and gξ = ξ′.

• Because ν is invariant under R∂F, the product measure λ× ν is
invariant under RX×∂F.

• For f ∈ L1(X × ∂F), denote by E[f |RX×∂F] the conditional
expectation of f on the σ-algebra of RX×∂F-invariant sets.

• Define the horospherical ball of radius n centered at (x , ξ)

B̃n(x , ξ) := {(gx ,gξ) ∈ X × ∂F : g−1 ∈ Hξ, |g| ≤ n}.

For n ≥ 0 and (x , ξ) ∈ X × ∂F.
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Main convergence result for horospherical ball
averages

We now define horospherical ball averages and state

Theorem. For n ≥ 0 let A2n[B̃; ·] : L1(X × ∂F)→ L1(X × ∂F) be the
operator given by

A2n[B̃; f ](x , ξ) =
1

|B̃2n(x , ξ)|

∑
(x ′,ξ′)∈B̃2n(x,ξ)

f (x ′, ξ′). (1)

Then for any f ∈ L1(X × ∂F), the sequence {A2n[B̃; f ]}∞n=1 converges
pointwise a.e. and in L1 norm to E[f |RX×∂F].

Proof : B̃n(x , ξ) is asymptotically invariant and extremely Besicovich
for RX×∂F because Bn(ξ) is for R∂F.
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Ergodic theorems for free groups

• Clearly, we can view a function f on X as a function on X × ∂F,
apply the averages A2n[B̃; f ](x , ξ), and then integrate as ξ ranges
over the boundary ∂F, w.r.t any continuous probability density η.

•When η is the constant 1, we get pointwise convergence for the
(even) radial averages β2nf (x) on the free group.

•We must identify the limit obtained, namely the conditional
expectation on the σ-algebra of RX×∂F-invariant sets. This coincides
with the σ-algebra of sets in X invariant under the sbgp F2.

• Thus when F is ergodic on X , the σ-algebra has at most two
elements. When F2 is ergodic, the limit is the space average

∫
X fdλ.

• This gives a new proof and generalizes the pointwise ergodic
theorem for free groups in Lp, p > 1 (N 1994, N-Stein 1994).
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Ergodic theorems beyond amenable groups

To prove pointwise ergodic theorems for a finitely generated group Γ
let us follow the following recipe :

1. Identify the Poisson boundary ∂Γ of Γ, or another convenient
amenable action Y with pleasant properties,

2. Compute the Radon-Nikodym derivative of a well-chosen
geometrically natural non-singular measure,

3. Define horospheres using the RN level sets, and the
corresponding horospherical balls,

4. Show that the horospherical relation R∂Γ has an asymptotically
invariant doubling or regular sequence,

5. Deduce a pointwise ergodic theorem in L1 for the horospherical
ball averages defined in the equivalence relation RX×∂Γ,
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6. Compute the limit, namely the conditional expectation on the
space of relation-invariant sets,

7. compute the weights arising on Γ itself when integrating out the
dependence on the boundary point. These weights give a
pointwise ergodic theorem for measure-preserving actions of Γ.

We have followed the recipe in full for the following class of discrete
groups, which thus far were not amenable to the usual methods of
amenable ergodic theory.

Let Γ act discretely and co-compactly on a CAT (−1) space M. Fix
m ∈ M with trivial stabilizer, and let Γt = Γ ·m ∩ Bt (m) be the discrete
ball, and At = Γt+c \ Γt be the discrete annuli of width c.

von-Neumann and Birkhoff theorems for hyperbolic groups. There
exists a sequence of weights λt supported on At ⊂ Γ, which forms a
mean and pointwise ergodic sequence in Lp, 1 < p <∞.
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Hyperbolic groups : word metrics

• Consider the word metric determined on a hyperbolic group Γ by a
finite symmetric set of generators.

• Consider the normalized sphere averages σn, and then the uniform
averages of the spheres, namely µn = 1

n+1

∑n
k=1 σk .

• It has been shown by Bufetov, Kristoforov and Klimenko (2011) that
µnf converges in Lp-norm whenever f ∈ Lp, and convegres pointwise
almost surely when the function f is bounded.

• Pollicott and Sharpe (2011) have used a different method and
proved similar results for the averages µ′n = 1

n+1

∑n
k=0 σ

′
k , where σ′k is

the sum over words of length k , normalized slightly differently. They
have also proved the corresponding ratio theorem.

• It is an indication of the difficulty of this problem that in the
convergence results just quoted, the limit is not identified.
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• The limit has been identified as the ergodic averages only in the
case of surface groups with the standard set of generators (and for
other Fuchsian groups) in recent work of Bufetov and Series 2010.

• It is also known for general hyperbolic group provided the action has
strong mixing properties (Fujiwara-N 1998.)
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Ratio ergodic theorems beyond Abelian groups : some
surprises

Consider now a (possibly non-compact) lcsc space X , with Γ
preserving a (possibly infinite) Radon measure µ.

Fix a choice of growth rate function V (t), and consider the operators,
defined on a compactly supported test-function f : X → R by

πX (λt )f (x) =
1

V (t)

∑
γ∈Γt

f (γ−1x) .

Actions of non-amenable groups exhibit several new phenomena that
have not been anticipated and do not seem to have analogues in
classical Abelian ergodic theory, as follows.

1. the operators πX (λt ) may fail to converge even in the case where
λt are ball averages w.r.t. a word metric and the action is an
isometric action on a compact group preserving Haar measure.
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2. the operators πX (λt ) may converge to a limit operator, but the
limit may be different than the space average, even for a
probability preserving ergodic action.

3. πX (λt ) and the ratios ∣∣{γ ∈ Bt ; γ−1x ∈ A1
}∣∣

|{γ ∈ Bt ; γ−1x ∈ A2}|

may converge in a non-compact space X , but the measure νx

appearing in the limiting expression νx (A1)
νx (A2) may be different than

the invariant measure.
4. This can happen even when the invariant measure is unique and

even when the action is isometric. Moreover, the limit measure
νx may depend non-trivially on the initial point x .

5. The limit measure ν may depend non-trivially on the family of
sets Bt which are taken as the support of the measures βt , even
when the action is isometric.
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5. The limit measure ν may depend non-trivially on the family of
sets Bt which are taken as the support of the measures βt , even
when the action is isometric.
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6. Under a spectral gap assumption, the operators πX (λt ) converge
with a uniform rate of convergence, valid for almost all points. In
isometric actions, the rate can be uniform over all points (for
Hölder functions). This can happen in compact space and also in
non-compact spaces, and it implies of course that
equidistribution of orbits points, or their ratios, takes place at a
uniform rate.

Facts 1,2 above are implicit in Arnold-Krylov (1962) and Guivarc’h
(1968), and noted explicitly by Bewley (1970). Fact 3, 4, 5 above were
exhibited by Ledrappier 1999 and Ledrappier-Pollicott 2003 for
lattices in SL2(R) acting on R2 . Other contributions are by
Maucourant, Oh. A major generalization is due to Gorodnik-Weiss
2006.
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