Introduction Renormalization of critical commuting pairs Asymptotically holomorphic maps

Rigidity Conjecture for C^3 Critical Circle Maps

joint with Pablo Guarino

Warwick April 2012

Image: A matrix and a matrix

< ∃⇒

Introduction

Renormalization of critical commuting pairs Asymptotically holomorphic maps

Definition

Critical circle map: orientation-preserving C^3 circle homeomorphism, with exactly one critical point of odd type.

We will focus on the case of **irrational** rotation number (no periodic orbits).

Topological Rigidity (Yoccoz 1984)

Any C^3 critical circle map f with $ho(f)\in\mathbb{R}\setminus\mathbb{Q}$ is minimal.

イロト イヨト イヨト イヨト

Introduction Renormalization of critical commuting pairs Asymptotically holomorphic maps

Definition

Critical circle map: orientation-preserving C^3 circle homeomorphism, with exactly one critical point of odd type.

We will focus on the case of **irrational** rotation number (no periodic orbits).

Topological Rigidity (Yoccoz 1984)

Any C^3 critical circle map f with $ho(f)\in\mathbb{R}\setminus\mathbb{Q}$ is minimal.

イロト イヨト イヨト イヨト

Introduction Renormalization of critical commuting pairs Asymptotically holomorphic maps

Definition

Critical circle map: orientation-preserving C^3 circle homeomorphism, with exactly one critical point of odd type.

We will focus on the case of **irrational** rotation number (no periodic orbits).

Topological Rigidity (Yoccoz 1984)

Any C^3 critical circle map f with $\rho(f) \in \mathbb{R} \setminus \mathbb{Q}$ is **minimal**.

▲ □ ► ▲ □ ►

Rigidity Conjecture

Any two C^3 critical circle maps with the same irrational rotation number of **bounded type** are conjugate by a $C^{1+\alpha}$ circle diffeomorphism.

Recall that θ in [0,1] is of *bounded type* if $\exists \varepsilon > 0$:

$$\left|\theta - \frac{p}{q}\right| \geq \frac{\varepsilon}{q^2}\,,$$

- A 🗇 N - A 🖻 N - A 🖻 N

for any positive coprime integers p and q.

The set $\mathcal{BT} \subset [0,1]$ of bounded type numbers has Hausdorff dimension equal to 1, but Lebesgue measure equal to zero.

Rigidity Conjecture

Any two C^3 critical circle maps with the same irrational rotation number of **bounded type** are conjugate by a $C^{1+\alpha}$ circle diffeomorphism.

Recall that θ in [0,1] is of *bounded type* if $\exists \varepsilon > 0$:

$$\left|\theta - \frac{p}{q}\right| \geq \frac{\varepsilon}{q^2}\,,$$

for any positive coprime integers p and q.

The set $\mathcal{BT} \subset [0,1]$ of bounded type numbers has Hausdorff dimension equal to 1, but Lebesgue measure equal to zero.

Rigidity Conjecture

Any two C^3 critical circle maps with the same irrational rotation number of **bounded type** are conjugate by a $C^{1+\alpha}$ circle diffeomorphism.

Recall that θ in [0,1] is of *bounded type* if $\exists \varepsilon > 0$:

$$\left| heta-rac{p}{q}
ight|\geqrac{arepsilon}{q^2}\,,$$

for any positive coprime integers p and q.

The set $\mathcal{BT} \subset [0,1]$ of bounded type numbers has Hausdorff dimension equal to 1, but Lebesgue measure equal to zero.

Theorem (de Faria-de Melo, Yampolsky, Khanin-Teplinsky)

Let f and g be two critical circle maps such that:

- f and g are real-analytic.
- $\rho(f) = \rho(g) \in \mathbb{R} \setminus \mathbb{Q}$.

Let h be the conjugacy between f and g that maps the critical point of f to the critical point of g. Then:

- h is a C^1 diffeomorphism.
- *h* is $C^{1+\alpha}$ in the critical point of *f* for a universal $\alpha > 0$.
- For a full Lebesgue measure set of rotation numbers (that contains all bounded type numbers), h is globally $C^{1+\alpha}$.

<ロ> <同> <同> <同> < 同> < 同>

Introduction

Renormalization of critical commuting pairs Asymptotically holomorphic maps

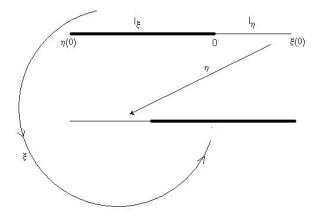
Main Theorem: Rigidity Conjecture for C^3 Critical Circle Maps.

Any two C^3 critical circle maps with the same irrational rotation number of **bounded type** are conjugate by a $C^{1+\alpha}$ circle diffeomorphism, for some $\alpha > 0$ that only depends on the rotation number.

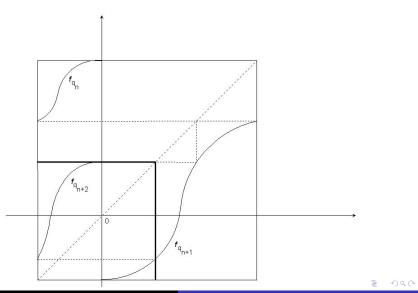
Main tools: Renormalization operator and asymptotically holomorphic maps.

- f^{q_n}(c) closest approach to c, Rⁿ first return to the interval [f^{q_n}(c), f<sup>q_{n+1}(c)] ∋ c, normalized: critical commuting pair.
 </sup>
- Renormalization operator acting on the space of normalized critical commuting pairs.
- Lanford: critical commuting pairs → smooth conjugacy class of critical circle maps.

Introduction Renormalization of critical commuting pairs Asymptotically holomorphic maps



(ロ) (四) (E) (E) (E)



Theorem (de Faria-de Melo 1999)

There exists $\mathbb{A} \subset [0,1]$ with:

- $Leb(\mathbb{A}) = 1$
- $\mathcal{BT} \subset \mathbb{A}$

such that for any two C^3 critical circle maps f and g with $\rho(f) = \rho(g) \in \mathbb{A}$ we have that if:

$$d_0(\mathcal{R}^n(f),\mathcal{R}^n(g))
ightarrow 0$$
 when $n
ightarrow +\infty$

exponentially fast, then f and g are $C^{1+\alpha}$ conjugate, for some $\alpha > 0$ that only depends on the rotation number.

The remaining cases: exponential convergence in the C^2 -metric implies C^1 -rigidity for any irrational rotation number.(Khanin-Teplinsky 2007).

イロン イヨン イヨン イヨン

Theorem (de Faria-de Melo 1999)

There exists $\mathbb{A} \subset [0, 1]$ with:

- Leb(\mathbb{A}) = 1
- $\mathcal{BT} \subset \mathbb{A}$

such that for any two C^3 critical circle maps f and g with $\rho(f) =$ $\rho(g) \in \mathbb{A}$ we have that if:

$$d_0(\mathcal{R}^n(f),\mathcal{R}^n(g))
ightarrow 0$$
 when $n
ightarrow +\infty$

exponentially fast, then f and g are $C^{1+\alpha}$ conjugate, for some $\alpha > 0$ that only depends on the rotation number.

The remaining cases: exponential convergence in the C^2 -metric implies C^1 -rigidity for any irrational rotation number.(Khanin-Teplinsky 2007).

イロト イヨト イヨト イヨト

Theorem (de Faria-de Melo 2000, Yampolsky 2003)

There exists λ in (0,1) such that given critical circle maps f and g such that:

• f and g are real-analytic, and

•
$$\rho(f) = \rho(g) \in \mathbb{R} \setminus \mathbb{Q}$$
,

there exists C > 0 such that for all $n \in \mathbb{N}$:

 $d_r(\mathcal{R}^n(f), \mathcal{R}^n(g)) \leq C\lambda^n$

for any $r \in \{0, 1, ..., \infty\}$. The constant is uniform for f and g in a compact set.

Theorem A

Given f and g two C^3 critical circle maps with:

 $\rho(f) = \rho(g) \in \mathcal{BT},$

there exist C > 0 and $\lambda \in (0, 1)$ such that for all $n \in \mathbb{N}$:

 $d_0(\mathcal{R}^n(f),\mathcal{R}^n(g)) \leq C\lambda^n.$

Image: A matrix and a matrix

- ∢ ≣ ▶

Theorem B

There exists a C^{ω} -compact set \mathcal{K} of real-analytic critical commuting pairs such that:

Given a C^3 critical circle map f with **any** irrational rotation number θ there exist:

- C>0 and $\lambda\in(0,1)$ with $\lambda=\lambda(heta)$, and
- $\{f_n\}_{n\in\mathbb{N}}\subset\mathcal{K}$,

such that for all $n \in \mathbb{N}$:

•
$$d_0(\mathcal{R}^n(f), f_n) \leq C\lambda^n$$
, and
• $o(f_n) = o(\mathcal{R}^n(f))$

• $\rho(f_n) = \rho(\mathcal{R}^n(f)).$

Theorem B + defaria-demelo2000 \implies Theorem A Theorem A+ defaria-demelo1999 \implies Main Theorem

イロン イヨン イヨン イヨン

Asymptotically holomorphic maps

۲

۲

Let $\tilde{f} : \mathbb{R} \to \mathbb{R}$ be the canonical lift of a C^3 critical circle map f. There exist R > 0 and a C^3 map F defined in $\{|\Im(z)| < R\}$, which is an extension of \tilde{f} , such that:

$$rac{\partial {\sf F}}{\partial ar z}(x)=0 \quad {
m for \ every} \ x\in {\mathbb R},$$

$$\frac{\frac{\partial F}{\partial \overline{z}}(z)}{\bigl(\Im(z))\bigr)^2} \to 0 \quad \text{uniformly as } \Im(z) \to 0,$$

- F commutes with unitary horizontal translation in A_R , and
- the critical points of *F* in *A_R* are the integers, and they are of cubic type.

We are able to control the iterates of the extension, by controlling the distortion of **Poincaré disks**:

Almost Schwarz inclusion (Graczyk-Sands-Świątek 2005)

Let $h: I \to J$ be a C^3 diffeomorphism between compact intervals, and let H be any C^3 extension of h to a complex neighborhood of I, which is asymptotically holomorphic of order 3 on I.

There exist K > 0 and $\delta > 0$ such that for any a < b in I and $\theta \in (0, \pi)$:

 $\text{If } diam\big(D_{\theta}(a,b)\big) < \delta \quad \text{then } \quad H\big(D_{\theta}(a,b)\big) \subseteq D_{\widetilde{\theta}}\big(h(a),h(b)\big),$

where:

$$\tilde{\theta} = \theta - K | b - a | diam(D_{\theta}(a, b)).$$

<ロ> <同> <同> < 同> < 同> < 同><<

We are able to control the iterates of the extension, by controlling the distortion of **Poincaré disks**:

Almost Schwarz inclusion (Graczyk-Sands-Świątek 2005)

Let $h: I \to J$ be a C^3 diffeomorphism between compact intervals, and let H be any C^3 extension of h to a complex neighborhood of I, which is asymptotically holomorphic of order 3 on I.

There exist K > 0 and $\delta > 0$ such that for any a < b in I and $\theta \in (0, \pi)$:

 $\text{If } \ \ diam \big(D_\theta(a,b) \big) < \delta \quad \text{then} \quad H \big(D_\theta(a,b) \big) \subseteq D_{\widetilde{\theta}} \big(h(a), h(b) \big),$

where:

$$\widetilde{ heta} = heta - K | b - a | diam (D_{ heta}(a, b)).$$

(日) (同) (E) (E) (E)

By the real bounds (Herman, Świątek, 1988):

$$\sum_{j=1}^{q_{n+1}-1} \left|\widetilde{f}^j(I_n)\right|^2 < \max_{j \in \{1,\ldots,q_{n+1}-1\}} \left|\widetilde{f}^j(I_n)\right|$$

goes to zero exponentially fast. For each $n \in \mathbb{N}$ we get an open interval J_n , with $\overline{I_n} \subset J_n$ and $|J_n| > (1 + \varepsilon)|I_n|$, and $\{\theta_n\} \to 0$ exponentially fast such that:

$$F^{-j}\left(D_{\theta}\left((J_{n})\right)
ight)\subset D_{ heta- heta_{n}}\left(\widetilde{f}^{-j}(J_{n})
ight)$$

イロト イポト イヨト イヨト

for $j \in \{0, 1, ..., q_{n+1} - 1\}$ and θ close enough to π .

By the real bounds (Herman, Świątek, 1988):

$$\sum_{j=1}^{q_{n+1}-1} \left|\widetilde{f}^j(I_n)\right|^2 < \max_{j \in \{1,\ldots,q_{n+1}-1\}} \left|\widetilde{f}^j(I_n)\right|$$

goes to zero exponentially fast. For each $n \in \mathbb{N}$ we get an open interval J_n , with $\overline{I_n} \subset J_n$ and $|J_n| > (1 + \varepsilon)|I_n|$, and $\{\theta_n\} \to 0$ exponentially fast such that:

$$F^{-j}\left(D_{\theta}\left((J_{n})\right)\right)\subset D_{\theta- heta_{n}}\left(\widetilde{f}^{-j}(J_{n})\right)$$

for $j \in \{0, 1, ..., q_{n+1} - 1\}$ and θ close enough to π .

イロト イポト イヨト イヨト

By the real bounds (Herman, Świątek, 1988):

$$\sum_{j=1}^{q_{n+1}-1} \left|\widetilde{f}^j(I_n)\right|^2 < \max_{j \in \{1,\ldots,q_{n+1}-1\}} \left|\widetilde{f}^j(I_n)\right|$$

goes to zero exponentially fast. For each $n \in \mathbb{N}$ we get an open interval J_n , with $\overline{I_n} \subset J_n$ and $|J_n| > (1 + \varepsilon)|I_n|$, and $\{\theta_n\} \to 0$ exponentially fast such that:

$$F^{-j}\left(D_{\theta}\left((J_{n})\right)\right)\subset D_{\theta- heta_{n}}\left(\widetilde{f}^{-j}(J_{n})\right)$$

for $j \in \{0, 1, ..., q_{n+1} - 1\}$ and θ close enough to π .

イロト イポト イヨト イヨト

Since F is C^3 we have for big n and $j \in \{0, 1, ..., q_{n+1} - 1\}$:

$$\left|\frac{\partial F}{\partial \bar{z}}(F^j(z))\right| << \left|\tilde{f}^j(I_n)\right|^2 \quad \text{in} \quad F^{-j}\left(D_{\theta}((J_n))\right).$$

and also the conformal distortion is bounded by a constant times $\left|\tilde{f}^{j}(I_{n})\right|^{2}$ By the chain rule for the $\frac{\partial}{\partial z}$ derivative, and the control obtained via real bounds for the $\frac{\partial}{\partial z}$ derivative: The conformal distortion of $F^{q_{n+1}-1}$ is bounde by $C\lambda^{n}$ on the pre-image of the Poincaré disk $D_{\theta}((J_{n}))$. By controlling the distortion around the critical point, we pull-back this estimates to an \mathbb{R} -symmetric topological disk containing I_{n} .

Since F is C^3 we have for big n and $j \in \{0, 1, ..., q_{n+1} - 1\}$:

$$\left|\frac{\partial F}{\partial \overline{z}}(F^{j}(z))\right| << \left|\widetilde{f}^{j}(I_{n})\right|^{2} \text{ in } F^{-j}\left(D_{\theta}((J_{n}))\right).$$

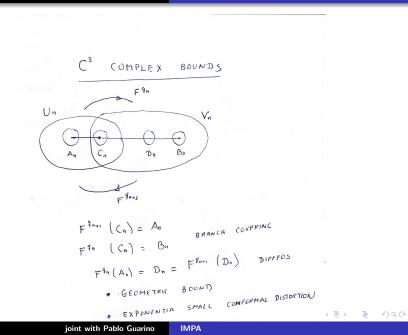
and also the conformal distortion is bounded by a constant times $\left|\tilde{f}^{j}(I_{n})\right|^{2}$ By the chain rule for the $\frac{\partial}{\partial z}$ derivative, and the control obtained via real bounds for the $\frac{\partial}{\partial z}$ derivative: The conformal distortion of $F^{q_{n+1}-1}$ is bounde by $C\lambda^{n}$ on the pre-image of the Poincaré disk $D_{\theta}((J_{n}))$. By controlling the distortion around the critical point, we pull-back this estimates to an \mathbb{R} -symmetric topological disk containing I_{n} .

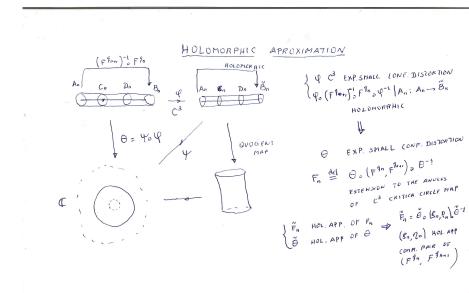
Since F is C^3 we have for big n and $j \in \{0, 1, ..., q_{n+1} - 1\}$:

$$\left|\frac{\partial F}{\partial \overline{z}}(F^{j}(z))\right| << \left|\widetilde{f}^{j}(I_{n})\right|^{2} \text{ in } F^{-j}\left(D_{\theta}((J_{n}))\right).$$

and also the conformal distortion is bounded by a constant times $\left|\tilde{f}^{j}(I_{n})\right|^{2}$ By the chain rule for the $\frac{\partial}{\partial z}$ derivative, and the control obtained via real bounds for the $\frac{\partial}{\partial z}$ derivative: The conformal distortion of $F^{q_{n+1}-1}$ is bounde by $C\lambda^{n}$ on the pre-image of the Poincaré disk $D_{\theta}((J_{n}))$. By controlling the distortion around the critical point, we pull-back this estimates to an \mathbb{R} -symmetric topological disk containing I_{n} .

Introduction Renormalization of critical commuting pairs Asymptotically holomorphic maps





References

- de Faria, E., de Melo, W., Rigidity of critical circle mappings I, *J. Eur. Math. Soc.*, **1**, 339-392, (1999).
- de Faria, E., de Melo, W., Rigidity of critical circle mappings II, *J. Amer. Math. Soc.*, **13**, 343-370, (2000).
- de Melo, A.A. Pinto., Rigidity of C² Infinitely Renormalizable Unimofal Maps, *Commun.Math. Phys.*, **208**, 91-105, (19990
- Khanin, K., Teplinsky, A., Robust rigidity for circle diffeomorphisms with singularities, *Invent. Math.*, 169, 193-218, (2007).
- Yampolsky, M., Renormalization horseshoe for critical circle maps, *Commun. Math. Phys.*, **240**, 75-96, (2003).

Yoccoz, J.-C., II n'y a pas de contre-exemple de Denjoy analytique, *C.R. Acad. Sc. Paris*, **298**, 141-1447 (1984): **Sc. Paris**, **10**