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Definition

Critical circle map: orientation-preserving C 3 circle homeo-
morphism, with exactly one critical point of odd type.

We will focus on the case of irrational rotation number (no
periodic orbits).

Topological Rigidity (Yoccoz 1984)

Any C 3 critical circle map f with ρ(f ) ∈ R \Q is minimal.
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Rigidity Conjecture

Any two C 3 critical circle maps with the same irrational rotation
number of bounded type are conjugate by a C 1+α circle diffeo-
morphism.

Recall that θ in [0, 1] is of bounded type if ∃ ε > 0:∣∣∣∣θ − p

q

∣∣∣∣ ≥ ε

q2
,

for any positive coprime integers p and q.

The set BT ⊂ [0, 1] of bounded type numbers has Hausdorff
dimension equal to 1, but Lebesgue measure equal to zero.
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Theorem (de Faria-de Melo, Yampolsky, Khanin-Teplinsky)

Let f and g be two critical circle maps such that:

f and g are real-analytic.

ρ(f ) = ρ(g) ∈ R \Q.

Let h be the conjugacy between f and g that maps the critical point
of f to the critical point of g . Then:

h is a C 1 diffeomorphism.

h is C 1+α in the critical point of f for a universal α > 0.

For a full Lebesgue measure set of rotation numbers (that
contains all bounded type numbers), h is globally C 1+α.
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Main Theorem: Rigidity Conjecture for C 3 Critical Circle Maps.

Any two C 3 critical circle maps with the same irrational rotation
number of bounded type are conjugate by a C 1+α circle diffeo-
morphism, for some α > 0 that only depends on the rotation num-
ber.
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Main tools: Renormalization operator and

asymptotically holomorphic maps.

f qn(c) closest approach to c , Rn first return to
the interval [f qn(c), f qn+1(c)] 3 c , normalized:
critical commuting pair.

Renormalization operator acting on the space of
normalized critical commuting pairs.

Lanford: critical commuting pairs 7→ smooth
conjugacy class of critical circle maps.
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Theorem (de Faria-de Melo 1999)

There exists A ⊂ [0, 1] with:

Leb(A) = 1

BT ⊂ A
such that for any two C 3 critical circle maps f and g with ρ(f ) =
ρ(g) ∈ A we have that if:

d0

(
Rn(f ),Rn(g)

)
→ 0 when n→ +∞

exponentially fast, then f and g are C 1+α conjugate, for some α > 0
that only depends on the rotation number.

The remaining cases: exponential convergence in the C 2-metric
implies C 1-rigidity for any irrational rotation
number.(Khanin-Teplinsky 2007).
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Theorem (de Faria-de Melo 2000, Yampolsky 2003)

There exists λ in (0, 1) such that given critical circle maps f and g
such that:

f and g are real-analytic, and

ρ(f ) = ρ(g) ∈ R \Q,

there exists C > 0 such that for all n ∈ N:

dr

(
Rn(f ),Rn(g)

)
≤ Cλn

for any r ∈ {0, 1, ...,∞}. The constant is uniform for f and g in a
compact set.
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Theorem A

Given f and g two C 3 critical circle maps with:

ρ(f ) = ρ(g) ∈ BT ,

there exist C > 0 and λ ∈ (0, 1) such that for all n ∈ N:

d0

(
Rn(f ),Rn(g)

)
≤ Cλn.
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Theorem B

There exists a Cω-compact set K of real-analytic critical commuting
pairs such that:

Given a C 3 critical circle map f with any irrational rotation number
θ there exist:

C > 0 and λ ∈ (0, 1) with λ = λ(θ), and

{fn}n∈N ⊂ K,

such that for all n ∈ N:

d0

(
Rn(f ), fn

)
≤ Cλn, and

ρ(fn) = ρ
(
Rn(f )

)
.

Theorem B + defaria-demelo2000 =⇒ Theorem A
Theorem A+ defaria-demelo1999 =⇒ Main
Theorem
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Asymptotically holomorphic maps

Let f̃ : R → R be the canonical lift of a C 3 critical circle map f .
There exist R > 0 and a C 3 map F defined in

{∣∣=(z)
∣∣ < R

}
, which

is an extension of f̃ , such that:

∂F

∂z̄
(x) = 0 for every x ∈ R,

∂F
∂z̄ (z)(
=(z))

)2
→ 0 uniformly as =(z)→ 0,

F commutes with unitary horizontal translation in AR , and

the critical points of F in AR are the integers, and they are of
cubic type.
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We are able to control the iterates of the extension, by controlling
the distortion of Poincaré disks:

Almost Schwarz inclusion (Graczyk-Sands-Świa̧tek 2005)

Let h : I → J be a C 3 diffeomorphism between compact intervals,
and let H be any C 3 extension of h to a complex neighborhood of
I , which is asymptotically holomorphic of order 3 on I .

There exist K > 0 and δ > 0 such that for any a < b in I and
θ ∈ (0, π):

If diam
(
Dθ(a, b)

)
< δ then H

(
Dθ(a, b)

)
⊆ Dθ̃

(
h(a), h(b)

)
,

where:
θ̃ = θ − K |b − a|diam

(
Dθ(a, b)

)
.
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By the real bounds (Herman, Świa̧tek, 1988):

qn+1−1∑
j=1

∣∣∣f̃ j(In)
∣∣∣2 < max

j∈{1,...,qn+1−1}

∣∣∣f̃ j(In)
∣∣∣

goes to zero exponentially fast. For each n ∈ N we get an open
interval Jn, with In ⊂ Jn and |Jn| > (1 + ε)|In|, and {θn} → 0
exponentially fast such that:

F−j
(
Dθ

(
(Jn)

))
⊂ Dθ−θn

(
f̃ −j(Jn)

)
for j ∈ {0, 1, ..., qn+1 − 1} and θ close enough to π.
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Since F is C 3 we have for big n and j ∈ {0, 1, ..., qn+1 − 1}:∣∣∣∣∂F

∂z̄

(
F j(z)

)∣∣∣∣ << ∣∣∣f̃ j(In)
∣∣∣2 in F−j

(
Dθ

(
(Jn)

))
.

and also the conformal distortion is bounded by a constant times∣∣∣f̃ j(In)
∣∣∣2 By the chain rule for the ∂

∂z̄ derivative, and the control

obtained via real bounds for the ∂
∂z derivative: The conformal

distortion of F qn+1−1 is bounde by Cλn on the pre-image of the
Poincaré disk Dθ

(
(Jn)

)
. By controlling the distortion around the

critical point, we pull-back this estimates to an R-symmetric
topological disk containing In.
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