Central limit theorem for the measure of balls in non-conformal dynamics

Benoit Saussol, joint work with Renaud Leplaideur

Université de Bretagne Occidentale, Brest

April 2012

Warwick

Outline

Fluctuations of the measure of balls

- Introduction
- Hausdorff and pointwise dimension of measures
- The main theorem and its corollaries

Reduction to a non homogeneous sum of random variables

- From balls to cylinders
- Measure of the approximation as a Birkhoff sum
- Probabilistic arguments
- Generalizations and open questions
- 5 Application to Poincaré recurrence

Introduction

Hausdorff and pointwise dimension of measures The main theorem and its corollaries

< (1) > < (2) > <

-∢ ≣ →

How the measure behaves at small scales ?

Fluctuations of the measure of balls a non homogeneous sum of random variables

Probabilistic arguments Generalizations and open questions Application to Poincaré recurrence

Introduction

Hausdorff and pointwise dimension of measures The main theorem and its corollaries

3

How the measure behaves at small scales ?

Motivation

Introduction

Hausdorff and pointwise dimension of measures The main theorem and its corollaries

For a smooth dynamical system and under suitable conditions, the pointwise dimension of an ergodic measure μ exists and is related to

- Hausdorff dimensior
- entropy
- Lyapunov exponents

The existence of the pointwise dimension may be viewed as a Law of Large Number, it makes sense to ask for a Central Limit Theorem associated to it.

Some question related to this have been studied before, but in the conformal case: Law of Iterated Logarithm (Przytycki, Urbanski & Zdunik, Bhouri & Heurteaux)

Here we will work with non-conformal maps: $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ Mc Mullen, Gatzouras & Peres, Luzia, Barral & Feng,

Motivation

Introduction

Hausdorff and pointwise dimension of measures The main theorem and its corollaries

A (1) < A (1) </p>

For a smooth dynamical system and under suitable conditions, the pointwise dimension of an ergodic measure μ exists and is related to

- Hausdorff dimension
- entropy
- Lyapunov exponents

The existence of the pointwise dimension may be viewed as a Law of Large Number, it makes sense to ask for a Central Limit Theorem associated to it.

Some question related to this have been studied before, but in the conformal case: Law of Iterated Logarithm (Przytycki, Urbanski & Zdunik, Bhouri & Heurteaux)

Here we will work with non-conformal maps: $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$

Motivation

Introduction

Hausdorff and pointwise dimension of measures The main theorem and its corollaries

マヨン イラン イラン

For a smooth dynamical system and under suitable conditions, the pointwise dimension of an ergodic measure μ exists and is related to

- Hausdorff dimension
- entropy
- Lyapunov exponents

The existence of the pointwise dimension may be viewed as a Law of Large Number, it makes sense to ask for a Central Limit Theorem associated to it.

Some question related to this have been studied before, but in the conformal case: Law of Iterated Logarithm (Przytycki, Urbanski & Zdunik, Bhouri & Heurteaux)

Here we will work with non-conformal maps: $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ Mc Mullen, Gatzouras & Peres, Luzia, Barral & Feng, .

Motivation

Introduction

Hausdorff and pointwise dimension of measures The main theorem and its corollaries

- 4 回 5 - 4 三 5 - 4 三 5

For a smooth dynamical system and under suitable conditions, the pointwise dimension of an ergodic measure μ exists and is related to

- Hausdorff dimension
- entropy
- Lyapunov exponents

The existence of the pointwise dimension may be viewed as a Law of Large Number, it makes sense to ask for a Central Limit Theorem associated to it.

Some question related to this have been studied before, but in the conformal case: Law of Iterated Logarithm (Przytycki, Urbanski & Zdunik, Bhouri & Heurteaux)

Here we will work with non-conformal maps: $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$

Mc Mullen, Gatzouras & Peres, Luzia, Barral & Feng, ...

Motivation

Introduction

Hausdorff and pointwise dimension of measures The main theorem and its corollaries

For a smooth dynamical system and under suitable conditions, the pointwise dimension of an ergodic measure μ exists and is related to

- Hausdorff dimension
- entropy
- Lyapunov exponents

The existence of the pointwise dimension may be viewed as a Law of Large Number, it makes sense to ask for a Central Limit Theorem associated to it.

Some question related to this have been studied before, but in the conformal case: Law of Iterated Logarithm (Przytycki, Urbanski & Zdunik, Bhouri & Heurteaux)

Here we will work with non-conformal maps: $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ Mc Mullen, Gatzouras & Peres, Luzia, Barral & Feng, .

Motivation

Introduction

Hausdorff and pointwise dimension of measures The main theorem and its corollaries

< 🗇 🕨

For a smooth dynamical system and under suitable conditions, the pointwise dimension of an ergodic measure μ exists and is related to

- Hausdorff dimension
- entropy
- Lyapunov exponents

The existence of the pointwise dimension may be viewed as a Law of Large Number, it makes sense to ask for a Central Limit Theorem associated to it.

Some question related to this have been studied before, but in the conformal case: Law of Iterated Logarithm (Przytycki, Urbanski & Zdunik, Bhouri & Heurteaux)

Here we will work with non-conformal maps: $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ Mc Mullen, Gatzouras & Peres, Luzia, Barral & Feng, ...

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

Dimensions of a measure

Hausdorff dimension of a set A denoted by $\dim_H A$

Definition

Hausdorff dimension of a measure μ (Borel probability measure)

 $\dim_{H} \mu = \inf \{ \dim_{H} A \colon \mu(A) = 1 \}.$

Definition

Pointwise dimension of a measure μ

$$\underline{d}_{\mu}(x) = \liminf_{\varepsilon \to 0} \frac{\log \mu(B(x,\varepsilon))}{\log \varepsilon}, \quad \overline{d}_{\mu}(x) = \limsup_{\varepsilon \to 0} \frac{\log \mu(B(x,\varepsilon))}{\log \varepsilon}$$

Proposition

For any Radon measure μ we have dim_H $\mu = ext{essup } \underline{d}_{\mu}$

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

・白シン ・コン ・コン

Dimensions of a measure

Hausdorff dimension of a set A denoted by $\dim_H A$

Definition

Hausdorff dimension of a measure μ (Borel probability measure)

$$\dim_H \mu = \inf \{ \dim_H A \colon \mu(A) = 1 \}.$$

Definition

Pointwise dimension of a measure μ

$$\underline{d}_{\mu}(x) = \liminf_{\varepsilon \to 0} \frac{\log \mu(B(x,\varepsilon))}{\log \varepsilon}, \quad \overline{d}_{\mu}(x) = \limsup_{\varepsilon \to 0} \frac{\log \mu(B(x,\varepsilon))}{\log \varepsilon}$$

Proposition

For any Radon measure μ we have dim_H $\mu = \text{esssup } \underline{d}_{\mu}$

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

Dimensions of a measure

Hausdorff dimension of a set A denoted by $\dim_H A$

Definition

Hausdorff dimension of a measure μ (Borel probability measure)

$$\dim_{H} \mu = \inf \{ \dim_{H} A \colon \mu(A) = 1 \}.$$

Definition

Pointwise dimension of a measure μ

$$\underline{d}_{\mu}(x) = \liminf_{\varepsilon \to 0} \frac{\log \mu(B(x,\varepsilon))}{\log \varepsilon}, \quad \overline{d}_{\mu}(x) = \limsup_{\varepsilon \to 0} \frac{\log \mu(B(x,\varepsilon))}{\log \varepsilon}$$

Proposition

For any Radon measure μ we have $\dim_{H} \mu = \text{esssup } \underline{d}_{\mu}$.

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

Existence of the pointwise dimension

Theorem (Ledrappier-Young 85)

Let f be a C^2 diffeomorphism of a Riemaniann manifold M and μ be an invariant measure. Then the stable and unstable pointwise dimensions $d^u_{\mu}(x)$ and $d^s_{\mu}(x)$ exists for μ -a.e. $x \in M$.

Theorem (Barreira-Pesin-Schmeling 99)

Assume additionnaly that the measure is hyperbolic (no zero Lyapunov exponents). Then the pointwise dimension $d_{\mu}(x)$ exists for μ -a.e. x and $d_{\mu}(x) = d_{\mu}^{u}(x) + d_{\mu}^{s}(x)$.

Remark

If in addition μ is ergodic then the pointwise dimension d_{μ} is equal to dim_H μ μ -a.e.:

 $\mu(B(x,\varepsilon)) \approx \varepsilon^{\dim_H \mu}.$

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

Existence of the pointwise dimension

Theorem (Ledrappier-Young 85)

Let f be a C^2 diffeomorphism of a Riemaniann manifold M and μ be an invariant measure. Then the stable and unstable pointwise dimensions $d^u_{\mu}(x)$ and $d^s_{\mu}(x)$ exists for μ -a.e. $x \in M$.

Theorem (Barreira-Pesin-Schmeling 99)

Assume additionnaly that the measure is hyperbolic (no zero Lyapunov exponents). Then the pointwise dimension $d_{\mu}(x)$ exists for μ -a.e. x and $d_{\mu}(x) = d_{\mu}^{u}(x) + d_{\mu}^{s}(x)$.

Remark

If in addition μ is ergodic then the pointwise dimension d_{μ} is equal to dim_H μ μ -a.e.:

 $\mu(B(x,\varepsilon)) \approx \varepsilon^{\dim_H \mu}.$

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

Existence of the pointwise dimension

Theorem (Ledrappier-Young 85)

Let f be a C^2 diffeomorphism of a Riemaniann manifold M and μ be an invariant measure. Then the stable and unstable pointwise dimensions $d^u_{\mu}(x)$ and $d^s_{\mu}(x)$ exists for μ -a.e. $x \in M$.

Theorem (Barreira-Pesin-Schmeling 99)

Assume additionnaly that the measure is hyperbolic (no zero Lyapunov exponents). Then the pointwise dimension $d_{\mu}(x)$ exists for μ -a.e. x and $d_{\mu}(x) = d_{\mu}^{u}(x) + d_{\mu}^{s}(x)$.

Remark

If in addition μ is ergodic then the pointwise dimension d_{μ} is equal to $\dim_{H} \mu \ \mu$ -a.e.:

$$\mu(B(x,\varepsilon))\approx \varepsilon^{\dim_{H}\mu}.$$

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

Statement of the result

Theorem

Let $T: \mathbb{T}^d \circlearrowleft$ be a $C^{1+\alpha}$ expanding map and μ_{φ} be an equilibrium state of a Hölder potential φ . Suppose that T has skew product structure

$$T(x_1,\ldots,x_d) = (f_1(x_1), f_2(x_1,x_2),\ldots,f_d(x_1,\ldots,x_d)).$$

and that the sequence of Lyapunov exponents

$$\lambda_{\mu,i} := \int \log \left| \frac{\partial f_i}{\partial x_i} \right| \circ \pi_i d\mu_{\varphi}, \quad i = 1, \dots, d$$

is increasing. Then there exists $\sigma \ge 0$ such that

$$\frac{\log \mu_{\varphi}(B(x,\varepsilon)) - \dim_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}}$$

converges as $\varepsilon \to 0$, in distribution, to a random variable $\mathcal{N}(0, \sigma^2)$ The variance $\sigma^2 = 0$ iff μ_{ω} is absolutely continuous.

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

Statement of the result

Theorem

Let $T: \mathbb{T}^d \circlearrowleft$ be a $C^{1+\alpha}$ expanding map and μ_{φ} be an equilibrium state of a Hölder potential φ . Suppose that T has skew product structure

$$T(x_1,...,x_d) = (f_1(x_1), f_2(x_1,x_2),...,f_d(x_1,...,x_d)).$$

and that the sequence of Lyapunov exponents

$$\lambda_{\mu,i} := \int \log \left| rac{\partial f_i}{\partial x_i}
ight| \circ \pi_i d\mu_{arphi}, \quad i = 1, \dots, d$$

is increasing. Then there exists $\sigma \ge 0$ such that

$$\frac{\log \mu_{\varphi}(B(x,\varepsilon)) - \dim_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}}$$

converges as $\varepsilon \to 0$, in distribution, to a random variable $\mathcal{N}(0, \sigma^2)$ The variance $\sigma^2 = 0$ iff μ_{ω} is absolutely continuous.

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

Statement of the result

Theorem

Let $T: \mathbb{T}^d \circlearrowleft$ be a $C^{1+\alpha}$ expanding map and μ_{φ} be an equilibrium state of a Hölder potential φ . Suppose that T has skew product structure

$$T(x_1,...,x_d) = (f_1(x_1), f_2(x_1,x_2),...,f_d(x_1,...,x_d)).$$

and that the sequence of Lyapunov exponents

$$\lambda_{\mu,i} := \int \log \left| rac{\partial f_i}{\partial x_i}
ight| \circ \pi_i d\mu_{arphi}, \quad i=1,\ldots,d$$

is increasing. Then there exists $\sigma \ge 0$ such that

$$\frac{\log \mu_{\varphi}(B(x,\varepsilon)) - \dim_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}}$$

converges as $\varepsilon \to 0$, in distribution, to a random variable $\mathcal{N}(0, \sigma^2)$. The variance $\sigma^2 = 0$ iff μ_{φ} is absolutely continuous.

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

<ロ> <同> <同> < 回> < 回>

Functional CLT and byproducts

Corollary (Median)

If μ_{φ} is not absolutely continuous then

$$\mu_{arphi}(\mathsf{x}\colon \mu_{arphi}(\mathsf{B}(\mathsf{x},arepsilon)) \leq arepsilon^{\mathsf{dim}_{H}\,\mu_{arphi}}) o 1/2.$$

Theorem (Functional CLT or WIP)

The all process converges in distribution in the Skorohod topology:

$$N_{\varepsilon}(t) := \frac{\log \mu_{\varphi}(B(x,\varepsilon^{t})) - t \dim_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}} \to \sigma W(t)$$

where W is the standard Brownian process.

Several corollaries follow (applying continuous functions of Brownian motion paths): Arc-sine law, Maximum, minimum, etc.

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

イロト イポト イヨト イヨト

Functional CLT and byproducts

Corollary (Median)

If μ_{φ} is not absolutely continuous then

$$\mu_{arphi}(\mathsf{x}\colon \mu_{arphi}(\mathsf{B}(\mathsf{x},arepsilon)) \leq arepsilon^{\mathsf{dim}_{H}\,\mu_{arphi}}) o 1/2.$$

Theorem (Functional CLT or WIP)

The all process converges in distribution in the Skorohod topology:

$$N_{\varepsilon}(t) := \frac{\log \mu_{\varphi}(B(x,\varepsilon^{t})) - t \dim_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}} \to \sigma W(t)$$

where W is the standard Brownian process.

Several corollaries follow (applying continuous functions of Brownian motion paths): Arc-sine law, Maximum, minimum, etc.

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

- 4 同 2 4 日 2 4 日 2 4

Functional CLT and byproducts

Corollary (Median)

If μ_{φ} is not absolutely continuous then

$$\mu_{arphi}(\mathsf{x}\colon \mu_{arphi}(\mathsf{B}(\mathsf{x},arepsilon)) \leq arepsilon^{\mathsf{dim}_{H}\,\mu_{arphi}}) o 1/2.$$

Theorem (Functional CLT or WIP)

The all process converges in distribution in the Skorohod topology:

$$N_{\varepsilon}(t) := \frac{\log \mu_{\varphi}(B(x,\varepsilon^{t})) - t \dim_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}} \to \sigma W(t)$$

where W is the standard Brownian process.

Several corollaries follow (applying continuous functions of Brownian motion paths): Arc-sine law, Maximum, minimum, etc.

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

- 4 同 2 4 日 2 4 日 2

Finer structure of the invariant measure

Following Przytycki, Urbanski & Zdunik we get (using functional CLT rather than Law of iterated logarithm)

Corollary

Under the assumptions of the main theorem :

- the measure μ_{φ}
- the Hausdorff measure in dimension $\dim_H \mu_{\varphi}$

are mutually singular iff μ_{φ} is not absolutely continuous wrt Lebesgue.

Fluctuations of the measure of balls

Reduction to a non homogeneous sum of random variables Probabilistic arguments Generalizations and open questions Application to Poincaré recurrence Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

< 6 >

A 35 b

ヨート

Numerical (non-rigorous) illustration for Hénon map I

Fluctuations of the measure of balls

Reduction to a non homogeneous sum of random variables Probabilistic arguments Generalizations and open questions Application to Poincaré recurrence Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

Numerical (non-rigorous) illustration for Hénon map II

 $\log(\mu_{\varphi}(B(x_i,\varepsilon)))/\log(\varepsilon)$ for (30) randomly chosen centers x_i

Fluctuations of the measure of balls

Reduction to a non homogeneous sum of random variables Probabilistic arguments Generalizations and open questions Application to Poincaré recurrence Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

Numerical (non-rigorous) illustration for Hénon map III

Histogram of log($\mu_{\varphi}(B(x, \varepsilon)))/\log(\varepsilon)$ (for $\varepsilon = 0.1$)

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

Notations and steps of the proof

We will do the proof in dimension d = 2. The map is denoted

$$T(x,y) = (f(x),g(x,y)), \quad (x,y) \in \mathbb{T}^2.$$

Projection $\pi(x, y) = x$. Lyapunov exponents

$$\lambda_{\mu_{\varphi}}^{u} = \int \log |f'| \circ \pi d\mu_{\varphi} \, < \, \lambda_{\mu_{\varphi}}^{uu} = \int \log |\frac{\partial g}{\partial y}| d\mu_{\varphi}.$$

Denote the dimension by $\delta := \dim_{H} \mu_{\varphi}$. Set Pressure $P(\varphi) = 0$.

Steps of the proof:

- Replace $N_arepsilon(t)$ by $N_arepsilon'(t)$ defined symbolically: balls o cylinders
- Replace $N'_{\varepsilon}(t)$ by a non-homogeneous Birkhoff sum $N''_{\varepsilon}(t)$
- Abstract probabilistic arguments

Introduction Hausdorff and pointwise dimension of measures The main theorem and its corollaries

Notations and steps of the proof

We will do the proof in dimension d = 2. The map is denoted

$$T(x,y) = (f(x),g(x,y)), \quad (x,y) \in \mathbb{T}^2.$$

Projection $\pi(x, y) = x$. Lyapunov exponents

$$\lambda_{\mu_{\varphi}}^{u} = \int \log |f'| \circ \pi d\mu_{\varphi} \, < \, \lambda_{\mu_{\varphi}}^{uu} = \int \log |\frac{\partial g}{\partial y}| d\mu_{\varphi}.$$

Denote the dimension by $\delta := \dim_{H} \mu_{\varphi}$. Set Pressure $P(\varphi) = 0$.

Steps of the proof:

- Replace $N_{arepsilon}(t)$ by $N_{arepsilon}'(t)$ defined symbolically: balls ightarrow cylinders
- Replace $N'_{\varepsilon}(t)$ by a non-homogeneous Birkhoff sum $N''_{\varepsilon}(t)$
- Abstract probabilistic arguments

From balls to cylinders Measure of the approximation as a Birkhoff sum

A fibered partition

Lemma

There is an invariant splitting $E^u \oplus E^{uu}$ defined μ -a.e. with Lyapunov exponents λ^u and λ^{uu} .

Choose x_0 and y_0 such that $S_0 = \{x_0\} \times \mathbb{T} \cup \mathbb{T} \times \{y_0\}$ is small. Let \mathcal{R}_n be the partition into connected components of $T^{-n}(\mathbb{T}^2 \setminus S_0)$. Let $\mathcal{P}_n = \pi \mathcal{R}_n$. Let $\mathcal{F}_k = \prod_{j=0}^{k-1} f' \circ f^j$ and $G_k = \prod_{j=0}^{k-1} \frac{\partial g}{\partial y} \circ T^k$.

Definition

Let $\varepsilon > 0$. Define

- $n_{\varepsilon}(x,y)$ the largest integer n s.t. $|G_n(x,y)| \varepsilon \leq 1$
- $m_{arepsilon}(x)$ the largest integer m s.t. $|F_m(x)|arepsilon\leq 1$
- multi-temporal approximation of the ball

$$C_{\varepsilon}(x,y) = \mathcal{R}_{n_{\varepsilon}(x,y)}(x,y) \cap \mathcal{P}_{m_{\varepsilon}(x)}(x) \times \mathbb{T}.$$

From balls to cylinders Measure of the approximation as a Birkhoff sum

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ …

э.

The fibered partition \mathcal{R}_n

From balls to cylinders Measure of the approximation as a Birkhoff sum

イロン 不同 とくほう イヨン

3

Approximation of the ball

Lemma

There exists a constant $\underline{c} < 1$, positive a.e., and a function $\overline{c}_{\varepsilon} > 1$, satisfying $\overline{c}_{\varepsilon} = O(|\log \varepsilon|)$ a.e. such that

 $C_{\underline{c}\varepsilon}(x,y) \subset B((x,y),\varepsilon) \subset C_{\overline{c}_{\varepsilon}\varepsilon}.$

Step 1

If the process $N'_{\varepsilon}(t) := \frac{\log \mu_{\varphi}(C_{\varepsilon^{t}}(x, y)) - t\delta \log \varepsilon}{\sqrt{-\log \varepsilon}}$ converges in distribution to σW then $N_{\varepsilon}(t)$ also.

From balls to cylinders Measure of the approximation as a Birkhoff sum

イロン 不同 とくほう イヨン

3

Approximation of the ball

Lemma

There exists a constant $\underline{c} < 1$, positive a.e., and a function $\overline{c}_{\varepsilon} > 1$, satisfying $\overline{c}_{\varepsilon} = O(|\log \varepsilon|)$ a.e. such that

$$C_{\underline{c}\varepsilon}(x,y) \subset B((x,y),\varepsilon) \subset C_{\overline{c}_{\varepsilon}\varepsilon}.$$

Step 1

If the process $N'_{\varepsilon}(t) := \frac{\log \mu_{\varphi}(C_{\varepsilon^{t}}(x, y)) - t\delta \log \varepsilon}{\sqrt{-\log \varepsilon}}$ converges in distribution to σW then $N_{\varepsilon}(t)$ also.

From balls to cylinders Measure of the approximation as a Birkhoff sum

・ロト ・同ト ・ヨト ・ヨト

Gibbs measure and projections

The measure μ_{φ} is $e^{-\varphi}$ -conformal thus $\mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon}) = \int_{C_{\varepsilon}} e^{-S_{n_{\varepsilon}}\varphi} d\mu_{\varphi}$. Hence $\log \mu_{\varphi}(C_{\varepsilon}) \approx S_{n_{\varepsilon}}\varphi + \log \mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon})$. But $T^{n_{\varepsilon}}C_{\varepsilon}(x, y) = \pi^{-1}f^{n_{\varepsilon}}\mathcal{P}_{m_{\varepsilon}}(x) = \pi^{-1}\mathcal{P}_{m_{\varepsilon}-n_{\varepsilon}}(f^{n_{\varepsilon}}(x))$.

Theorem (Chazottes-Ugalde 09, Kempton-Pollicott, Verbitsky, ...)

The projection $\pi_*\mu_{\varphi}$ is a Gibbs measure for f, for a potential ψ regular (stretched exponential variations).

Set pressure $P_f(\psi) = 0$. Since $\log \mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon}) \approx S_{m_{\varepsilon}-n_{\varepsilon}}\psi \circ f^{n_{\varepsilon}}$ we obtain

Key lemma

From balls to cylinders Measure of the approximation as a Birkhoff sum

・ロト ・同ト ・ヨト ・ヨト

Gibbs measure and projections

The measure μ_{φ} is $e^{-\varphi}$ -conformal thus $\mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon}) = \int_{C_{\varepsilon}} e^{-S_{n_{\varepsilon}}\varphi} d\mu_{\varphi}$. Hence $\log \mu_{\varphi}(C_{\varepsilon}) \approx S_{n_{\varepsilon}}\varphi + \log \mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon})$. But $T^{n_{\varepsilon}}C_{\varepsilon}(x, y) = \pi^{-1}f^{n_{\varepsilon}}\mathcal{P}_{m_{\varepsilon}}(x) = \pi^{-1}\mathcal{P}_{m_{\varepsilon}-n_{\varepsilon}}(f^{n_{\varepsilon}}(x))$.

Theorem (Chazottes-Ugalde 09, Kempton-Pollicott, Verbitsky, ...)

The projection $\pi_*\mu_{\varphi}$ is a Gibbs measure for f, for a potential ψ regular (stretched exponential variations).

Set pressure $P_f(\psi) = 0$. Since $\log \mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon}) \approx S_{m_{\varepsilon}-n_{\varepsilon}}\psi \circ f^{n_{\varepsilon}}$ we obtain

Key lemma

From balls to cylinders Measure of the approximation as a Birkhoff sum

<ロ> <同> <同> < 回> < 回>

Gibbs measure and projections

The measure
$$\mu_{\varphi}$$
 is $e^{-\varphi}$ -conformal thus $\mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon}) = \int_{C_{\varepsilon}} e^{-S_{n_{\varepsilon}}\varphi} d\mu_{\varphi}$.
Hence $\log \mu_{\varphi}(C_{\varepsilon}) \approx S_{n_{\varepsilon}}\varphi + \log \mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon})$.
But $T^{n_{\varepsilon}}C_{\varepsilon}(x,y) = \pi^{-1}f^{n_{\varepsilon}}\mathcal{P}_{m_{\varepsilon}}(x) = \pi^{-1}\mathcal{P}_{m_{\varepsilon}-n_{\varepsilon}}(f^{n_{\varepsilon}}(x))$.

Theorem (Chazottes-Ugalde 09, Kempton-Pollicott, Verbitsky, ...)

The projection $\pi_*\mu_{\varphi}$ is a Gibbs measure for f, for a potential ψ regular (stretched exponential variations).

Set pressure $P_f(\psi) = 0$. Since $\log \mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon}) \approx S_{m_{\varepsilon}-n_{\varepsilon}}\psi \circ f^{n_{\varepsilon}}$ we obtain

Key lemma

From balls to cylinders Measure of the approximation as a Birkhoff sum

Gibbs measure and projections

The measure μ_{φ} is $e^{-\varphi}$ -conformal thus $\mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon}) = \int_{C_{\varepsilon}} e^{-S_{n_{\varepsilon}}\varphi} d\mu_{\varphi}$. Hence $\log \mu_{\varphi}(C_{\varepsilon}) \approx S_{n_{\varepsilon}}\varphi + \log \mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon})$. But $T^{n_{\varepsilon}}C_{\varepsilon}(x, y) = \pi^{-1}f^{n_{\varepsilon}}\mathcal{P}_{m_{\varepsilon}}(x) = \pi^{-1}\mathcal{P}_{m_{\varepsilon}-n_{\varepsilon}}(f^{n_{\varepsilon}}(x))$.

Theorem (Chazottes-Ugalde 09, Kempton-Pollicott, Verbitsky, ...)

The projection $\pi_*\mu_{\varphi}$ is a Gibbs measure for f, for a potential ψ regular (stretched exponential variations).

Set pressure $P_f(\psi) = 0$. Since $\log \mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon}) \approx S_{m_{\varepsilon}-n_{\varepsilon}}\psi \circ f^{n_{\varepsilon}}$ we obtain

Key lemma

From balls to cylinders Measure of the approximation as a Birkhoff sum

Gibbs measure and projections

The measure μ_{φ} is $e^{-\varphi}$ -conformal thus $\mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon}) = \int_{C_{\varepsilon}} e^{-S_{n_{\varepsilon}}\varphi} d\mu_{\varphi}$. Hence $\log \mu_{\varphi}(C_{\varepsilon}) \approx S_{n_{\varepsilon}}\varphi + \log \mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon})$. But $T^{n_{\varepsilon}}C_{\varepsilon}(x, y) = \pi^{-1}f^{n_{\varepsilon}}\mathcal{P}_{m_{\varepsilon}}(x) = \pi^{-1}\mathcal{P}_{m_{\varepsilon}-n_{\varepsilon}}(f^{n_{\varepsilon}}(x))$.

Theorem (Chazottes-Ugalde 09, Kempton-Pollicott, Verbitsky, ...)

The projection $\pi_*\mu_{\varphi}$ is a Gibbs measure for f, for a potential ψ regular (stretched exponential variations).

Set pressure $P_f(\psi) = 0$. Since $\log \mu_{\varphi}(T^{n_{\varepsilon}}C_{\varepsilon}) \approx S_{m_{\varepsilon}-n_{\varepsilon}}\psi \circ f^{n_{\varepsilon}}$ we obtain

Key lemma

From balls to cylinders Measure of the approximation as a Birkhoff sum

Non-homogeneous Birkhoff sum

The intermediate entropies
$$h^{u} = h_{\pi_{*}\mu_{\varphi}}(f)$$
 and $h^{uu} = h_{\mu_{\varphi}}(T) - h_{\pi_{*}\mu_{\varphi}}(f)$
satisfy $h^{u} = -\int \psi \circ \pi d\mu_{\varphi}$, $h^{uu} = -\int (\varphi - \psi \circ \pi) d\mu_{\varphi}$.

Lemma

Setting
$$\delta^{u} = h^{u}/\lambda^{u}$$
 and $\delta^{uu} = h^{uu}/\lambda^{uu}$, the dimension is $\delta = \delta^{uu} + \delta^{u}$.

emma

We have
$$-\delta \log \varepsilon \approx \delta^{uu} S_{n_{\varepsilon}} \log \left| \frac{\partial g}{\partial y} \right| + \delta^{u} S_{m_{\varepsilon}} \log |f'|.$$

Set
$$\phi_1 = \varphi - \psi \circ \pi + \delta^{uu} \log \left| \frac{\partial g}{\partial y} \right|$$
 and $\phi_2 = \psi \circ \pi + \delta^u \log |f'|$.

Step 2

If the process $N_{\varepsilon}''(t) := \frac{S_{n_{\varepsilon^t}}\phi_1 + S_{m_{\varepsilon^t}}\phi_2}{\sqrt{-\log \varepsilon}}$ converges in distribution to σW then $N_{\varepsilon}'(t)$ also.

From balls to cylinders Measure of the approximation as a Birkhoff sum

Non-homogeneous Birkhoff sum

The intermediate entropies
$$h^{u} = h_{\pi_{*}\mu_{\varphi}}(f)$$
 and $h^{uu} = h_{\mu_{\varphi}}(T) - h_{\pi_{*}\mu_{\varphi}}(f)$
satisfy $h^{u} = -\int \psi \circ \pi d\mu_{\varphi}$, $h^{uu} = -\int (\varphi - \psi \circ \pi) d\mu_{\varphi}$.

Lemma

Setting $\delta^{u} = h^{u}/\lambda^{u}$ and $\delta^{uu} = h^{uu}/\lambda^{uu}$, the dimension is $\delta = \delta^{uu} + \delta^{u}$.

Lemma

We have
$$-\delta \log \varepsilon \approx \delta^{uu} S_{n_{\varepsilon}} \log \left| \frac{\partial g}{\partial y} \right| + \delta^{u} S_{m_{\varepsilon}} \log |f'|.$$

Set $\phi_1 = \varphi - \psi \circ \pi + \delta^{uu} \log \left| \frac{\partial g}{\partial y} \right|$ and $\phi_2 = \psi \circ \pi + \delta^u \log |f'|$.

Step 2

If the process $N_{\varepsilon}''(t) := \frac{S_{n_{\varepsilon^t}} \varphi_1 + S_{m_{\varepsilon^t}} \varphi_2}{\sqrt{-\log \varepsilon}}$ converges in distribution to σW then $N_{\varepsilon}'(t)$ also.

From balls to cylinders Measure of the approximation as a Birkhoff sum

Non-homogeneous Birkhoff sum

The intermediate entropies
$$h^{u} = h_{\pi_{*}\mu_{\varphi}}(f)$$
 and $h^{uu} = h_{\mu_{\varphi}}(T) - h_{\pi_{*}\mu_{\varphi}}(f)$
satisfy $h^{u} = -\int \psi \circ \pi d\mu_{\varphi}$, $h^{uu} = -\int (\varphi - \psi \circ \pi) d\mu_{\varphi}$.

Lemma

Setting
$$\delta^{u} = h^{u}/\lambda^{u}$$
 and $\delta^{uu} = h^{uu}/\lambda^{uu}$, the dimension is $\delta = \delta^{uu} + \delta^{u}$.

Lemma

We have
$$-\delta \log \varepsilon \approx \delta^{uu} S_{n_{\varepsilon}} \log \left| \frac{\partial g}{\partial y} \right| + \delta^{u} S_{m_{\varepsilon}} \log |f'|.$$

Set
$$\phi_1 = \varphi - \psi \circ \pi + \delta^{uu} \log \left| \frac{\partial g}{\partial y} \right|$$
 and $\phi_2 = \psi \circ \pi + \delta^u \log |f'|$.

Step 2

If the process $N_{\varepsilon}''(t) := \frac{S_{n_{\varepsilon^t}}\phi_1 + S_{m_{\varepsilon^t}}\phi_2}{\sqrt{-\log \varepsilon}}$ converges in distribution to σW then $N_{\varepsilon}'(t)$ also.

Weak invariance principle

Set
$$\phi = (\phi_1, \phi_2)$$
. We have $\int \phi d\mu_{\varphi} = 0$. Let
 $\mathcal{Y}_k(t) = \frac{1}{\sqrt{k}} S_{\lfloor kt \rfloor} \phi + Interpolation.$

Let Q be the limiting covariance matrix of $\frac{1}{\sqrt{k}}S_k\phi$.

Theorem (WIP, Folklore*)

The process \mathcal{Y}_k converges in distribution towards a bi-dimensional Brownian motion $\mathcal{B}(t)$ with covariance Q (in particular $\mathcal{B}(t) \sim \mathcal{N}(0, tQ)$).

*immediate from ASIP for vector valued functions [Melbourne, Nicol]

(日) (同) (三) (三)

Weak invariance principle

Set
$$\phi = (\phi_1, \phi_2)$$
. We have $\int \phi d\mu_{\varphi} = 0$. Let
 $\mathcal{Y}_k(t) = \frac{1}{\sqrt{k}} S_{\lfloor kt \rfloor} \phi + Interpolation.$

Let Q be the limiting covariance matrix of $\frac{1}{\sqrt{k}}S_k\phi$.

Theorem (WIP, Folklore*)

The process \mathcal{Y}_k converges in distribution towards a bi-dimensional Brownian motion $\mathcal{B}(t)$ with covariance Q (in particular $\mathcal{B}(t) \sim \mathcal{N}(0, tQ)$).

*immediate from ASIP for vector valued functions [Melbourne, Nicol]

イロト イポト イヨト イヨト

Random change of time

Take
$$a > 1/\lambda^u$$
.
Set $\mathcal{Z}_k(t_1, t_2) = (\mathcal{Y}_{k,1}(t_1), \mathcal{Y}_{k,2}(t_2))$ for $t_1, t_2 \in [0, a]$.
Set $\Gamma(t) = (t/\lambda^{uu}, t/\lambda^u)$.

Definition

Define the random change of time $\Gamma_k(t) = (n_{e^{-kt}}/k, m_{e^{-kt}}/k)$ if both arguments are less than *a*, $\Gamma_k(t) = \Gamma(t)$ otherwise.

Let $eta\colon C([0,1],\mathbb{R}^2) o C([0,1],\mathbb{R})$ defined by $eta(u)=u_1+u_2$

- $N_{e^{-k}}''(t) \approx \beta(\mathcal{Z}_k \circ \Gamma_k)(t)$
- Γ_k converges in probability to the deterministic Γ and Z_k converges in distribution to B
- thus $(\mathcal{Z}_k, \Gamma_k)$ converges in distribution to (\mathcal{B}, Γ)
- β continuous preserves the convergence in distribution

Random change of time

Take
$$a > 1/\lambda^u$$
.
Set $\mathcal{Z}_k(t_1, t_2) = (\mathcal{Y}_{k,1}(t_1), \mathcal{Y}_{k,2}(t_2))$ for $t_1, t_2 \in [0, a]$.
Set $\Gamma(t) = (t/\lambda^{uu}, t/\lambda^u)$.

Definition

Define the random change of time $\Gamma_k(t) = (n_{e^{-kt}}/k, m_{e^{-kt}}/k)$ if both arguments are less than *a*, $\Gamma_k(t) = \Gamma(t)$ otherwise.

Let $\beta \colon C([0,1],\mathbb{R}^2) \to C([0,1],\mathbb{R})$ defined by $\beta(u) = u_1 + u_2$

- $N_{e^{-k}}''(t) \approx \beta(\mathcal{Z}_k \circ \Gamma_k)(t)$
- Γ_k converges in probability to the deterministic Γ and Z_k converges in distribution to B
- thus $(\mathcal{Z}_k, \Gamma_k)$ converges in distribution to (\mathcal{B}, Γ)
- β continuous preserves the convergence in distribution

Random change of time

Take
$$a > 1/\lambda^u$$
.
Set $\mathcal{Z}_k(t_1, t_2) = (\mathcal{Y}_{k,1}(t_1), \mathcal{Y}_{k,2}(t_2))$ for $t_1, t_2 \in [0, a]$.
Set $\Gamma(t) = (t/\lambda^{uu}, t/\lambda^u)$.

Definition

Define the random change of time $\Gamma_k(t) = (n_{e^{-kt}}/k, m_{e^{-kt}}/k)$ if both arguments are less than *a*, $\Gamma_k(t) = \Gamma(t)$ otherwise.

Let $\beta \colon C([0,1],\mathbb{R}^2) \to C([0,1],\mathbb{R})$ defined by $\beta(u) = u_1 + u_2$

- $N_{e^{-k}}''(t) \approx \beta(\mathcal{Z}_k \circ \Gamma_k)(t)$
- Γ_k converges in probability to the deterministic Γ and Z_k converges in distribution to B
- thus $(\mathcal{Z}_k, \Gamma_k)$ converges in distribution to (\mathcal{B}, Γ)
- β continuous preserves the convergence in distribution

Random change of time

Take
$$a > 1/\lambda^u$$
.
Set $\mathcal{Z}_k(t_1, t_2) = (\mathcal{Y}_{k,1}(t_1), \mathcal{Y}_{k,2}(t_2))$ for $t_1, t_2 \in [0, a]$.
Set $\Gamma(t) = (t/\lambda^{uu}, t/\lambda^u)$.

Definition

Define the random change of time $\Gamma_k(t) = (n_{e^{-kt}}/k, m_{e^{-kt}}/k)$ if both arguments are less than *a*, $\Gamma_k(t) = \Gamma(t)$ otherwise.

Let $\beta \colon C([0,1],\mathbb{R}^2) \to C([0,1],\mathbb{R})$ defined by $\beta(u) = u_1 + u_2$

- $N_{e^{-k}}''(t) \approx \beta(\mathcal{Z}_k \circ \Gamma_k)(t)$
- Γ_k converges in probability to the deterministic Γ and Z_k converges in distribution to B
- thus $(\mathcal{Z}_k, \Gamma_k)$ converges in distribution to (\mathcal{B}, Γ)
- eta continuous preserves the convergence in distribution

Random change of time

Take
$$a > 1/\lambda^u$$
.
Set $\mathcal{Z}_k(t_1, t_2) = (\mathcal{Y}_{k,1}(t_1), \mathcal{Y}_{k,2}(t_2))$ for $t_1, t_2 \in [0, a]$.
Set $\Gamma(t) = (t/\lambda^{uu}, t/\lambda^u)$.

Definition

Define the random change of time $\Gamma_k(t) = (n_{e^{-kt}}/k, m_{e^{-kt}}/k)$ if both arguments are less than *a*, $\Gamma_k(t) = \Gamma(t)$ otherwise.

Let $\beta \colon C([0,1],\mathbb{R}^2) o C([0,1],\mathbb{R})$ defined by $\beta(u) = u_1 + u_2$

- $N_{e^{-k}}''(t) \approx \beta(\mathcal{Z}_k \circ \Gamma_k)(t)$
- Γ_k converges in probability to the deterministic Γ and Z_k converges in distribution to B
- thus $(\mathcal{Z}_k, \Gamma_k)$ converges in distribution to (\mathcal{B}, Γ)
- eta continuous preserves the convergence in distribution

Random change of time

Take
$$a > 1/\lambda^u$$
.
Set $\mathcal{Z}_k(t_1, t_2) = (\mathcal{Y}_{k,1}(t_1), \mathcal{Y}_{k,2}(t_2))$ for $t_1, t_2 \in [0, a]$.
Set $\Gamma(t) = (t/\lambda^{uu}, t/\lambda^u)$.

Definition

Define the random change of time $\Gamma_k(t) = (n_{e^{-kt}}/k, m_{e^{-kt}}/k)$ if both arguments are less than *a*, $\Gamma_k(t) = \Gamma(t)$ otherwise.

Let $\beta \colon C([0,1],\mathbb{R}^2) o C([0,1],\mathbb{R})$ defined by $\beta(u) = u_1 + u_2$

- $N_{e^{-k}}''(t) \approx \beta(\mathcal{Z}_k \circ \Gamma_k)(t)$
- Γ_k converges in probability to the deterministic Γ and Z_k converges in distribution to B
- thus $(\mathcal{Z}_k, \Gamma_k)$ converges in distribution to (\mathcal{B}, Γ)
- β continuous preserves the convergence in distribution

Generalizations

The method can be applied to

- conformal expanding maps
- surface diffeomorphisms
- some non uniformly expanding maps

Some questions are left

• The general case of non-conformal but uniformly hyperbolic systems

< 同 > < 三 > < 三 >

• Even if CLT does not hold in a given nonuniformly hyperbolic system, there can be a non-trivial limiting distribution

Generalizations

The method can be applied to

- conformal expanding maps
- surface diffeomorphisms
- some non uniformly expanding maps

Some questions are left

• The general case of non-conformal but uniformly hyperbolic systems

< 同 > < 三 > < 三 >

 Even if CLT does not hold in a given nonuniformly hyperbolic system, there can be a non-trivial limiting distribution

Generalizations

The method can be applied to

- conformal expanding maps
- surface diffeomorphisms
- some non uniformly expanding maps

Some questions are left

• The general case of non-conformal but uniformly hyperbolic systems

イヨト イヨト イヨト

• Even if CLT does not hold in a given nonuniformly hyperbolic system, there can be a non-trivial limiting distribution

Application: log-normal fluctuations of return time

Let $\tau_{\varepsilon}(x) = \min\{k \ge 1 : d(T^k(x), x) < \varepsilon\}$ be the first ε -return time.

Corollary (log-normal fluctuations of first return time ($\sigma \neq 0$))

$$\frac{\log \tau_{\varepsilon}(x) + \dim_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}} \to \mathcal{N}(0, \sigma^{2}).$$

Log-normal fluctuations for repetition time of first *n*-symbols known: Collet, Galves and Schmitt : exponential law for hitting time + CLT for information function (Gibbsian source).

Kontoyannis : strong approximation + ASIP for information function.

Proof.

(1) If (T, μ) mixes rapidly Lipschitz observables and d_{μ} exists then $\tau_{\varepsilon}(x) \approx \varepsilon^{-\dim_{H}\mu} \mu$ -a.e. [Rousseau-S 10]. Refine so that log-normal fluctuations are preserved: strong approximation. (2) CLT for measure of balls (the main theorem) (1) and (2) gives the result by Slutsky theorem.

Application: log-normal fluctuations of return time

Let $\tau_{\varepsilon}(x) = \min\{k \ge 1 : d(T^k(x), x) < \varepsilon\}$ be the first ε -return time.

Corollary (log-normal fluctuations of first return time ($\sigma \neq 0$))

$$\frac{\log \tau_{\varepsilon}(\mathbf{x}) + \dim_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}} \to \mathcal{N}(0, \sigma^{2}).$$

Log-normal fluctuations for repetition time of first *n*-symbols known: Collet, Galves and Schmitt : exponential law for hitting time + CLT for information function (Gibbsian source).

Kontoyannis : strong approximation + ASIP for information function.

Proof.

(1) If (\mathcal{T}, μ) mixes rapidly Lipschitz observables and d_{μ} exists then $\tau_{\varepsilon}(x) \approx \varepsilon^{-\dim_{H} \mu} \mu$ -a.e. [Rousseau-S 10]. Refine so that log-normal fluctuations are preserved: strong approximation. (2) CLT for measure of balls (the main theorem) (1) and (2) gives the result by Slutsky theorem.

Application: log-normal fluctuations of return time

Let $\tau_{\varepsilon}(x) = \min\{k \ge 1 : d(T^k(x), x) < \varepsilon\}$ be the first ε -return time.

Corollary (log-normal fluctuations of first return time ($\sigma \neq 0$))

$$\frac{\log \tau_{\varepsilon}(x) + \dim_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}} \to \mathcal{N}(0, \sigma^{2}).$$

Log-normal fluctuations for repetition time of first *n*-symbols known: Collet, Galves and Schmitt : exponential law for hitting time + CLT for information function (Gibbsian source).

Kontoyannis : strong approximation + ASIP for information function.

Proof.

(1) If (*T*, μ) mixes rapidly Lipschitz observables and d_μ exists then τ_ε(x) ≈ ε^{-dim_H μ} μ-a.e. [Rousseau-S 10]. Refine so that log-normal fluctuations are preserved: strong approximation.
 (2) CLT for measure of balls (the main theorem)
 (1) and (2) gives the result by Slutsky theorem.

Numerical (non-rigorous) illustration for Hénon map IV

 $\log(\tau_{\varepsilon}(x_i))/\log(\varepsilon)$ for (30) randomly chosen centers x_i

Numerical (non-rigorous) illustration for Hénon map V

Histogram of $\log(\tau_{\varepsilon}(x_i)) / \log(\varepsilon)$ (for $\varepsilon = 0.1$)
