Central limit theorem for the measure of balls in non-conformal dynamics

Benoit Saussol, joint work with Renaud Leplaideur
Université de Bretagne Occidentale, Brest

April 2012

Warwick

Outline

(1) Fluctuations of the measure of balls

- Introduction
- Hausdorff and pointwise dimension of measures
- The main theorem and its corollaries
(2) Reduction to a non homogeneous sum of random variables
- From balls to cylinders
- Measure of the approximation as a Birkhoff sum
(3) Probabilistic arguments

4 Generalizations and open questions
(5) Application to Poincaré recurrence

Fluctuations of the measure of balls

How the measure behaves at small scales ?

Fluctuations of the measure of balls

Introduction

Hausdorff and pointwise dimension of measures
The main theorem and its corollaries

How the measure behaves at small scales ?

Motivation

For a smooth dynamical system and under suitable conditions, the pointwise dimension of an ergodic measure μ exists

Hausdorff dimension

Motivation

For a smooth dynamical system and under suitable conditions, the pointwise dimension of an ergodic measure μ exists and is related to

- Hausdorff dimension
- entropy
- Lyapunov exponents

Motivation

For a smooth dynamical system and under suitable conditions, the pointwise dimension of an ergodic measure μ exists and is related to

- Hausdorff dimension
- entropy
- Lyapunov exponents

The existence of the pointwise dimension may be viewed as a Law of Large Number,

Motivation

For a smooth dynamical system and under suitable conditions, the pointwise dimension of an ergodic measure μ exists and is related to

- Hausdorff dimension
- entropy
- Lyapunov exponents

The existence of the pointwise dimension may be viewed as a Law of Large Number, it makes sense to ask for a Central Limit Theorem associated to it.

Motivation

For a smooth dynamical system and under suitable conditions, the pointwise dimension of an ergodic measure μ exists and is related to

- Hausdorff dimension
- entropy
- Lyapunov exponents

The existence of the pointwise dimension may be viewed as a Law of Large Number, it makes sense to ask for a Central Limit Theorem associated to it.
Some question related to this have been studied before, but in the conformal case: Law of Iterated Logarithm (Przytycki, Urbanski \& Zdunik, Bhouri \& Heurteaux)

Mc Mullen, Gatzouras \& Peres, Luzia, Barral \& Feng,

Motivation

For a smooth dynamical system and under suitable conditions, the pointwise dimension of an ergodic measure μ exists and is related to

- Hausdorff dimension
- entropy
- Lyapunov exponents

The existence of the pointwise dimension may be viewed as a Law of Large Number, it makes sense to ask for a Central Limit Theorem associated to it.
Some question related to this have been studied before, but in the conformal case: Law of Iterated Logarithm (Przytycki, Urbanski \& Zdunik, Bhouri \& Heurteaux)
Here we will work with non-conformal maps: $\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$
Mc Mullen, Gatzouras \& Peres, Luzia, Barral \& Feng, ...

Dimensions of a measure

Hausdorff dimension of a set A denoted by $\operatorname{dim}_{H} A$
Definition
Hausdorff dimension of a measure μ (Borel probability measure)

$$
\operatorname{dim}_{H} \mu=\inf \left\{\operatorname{dim}_{H} A: \mu(A)=1\right\} .
$$

\square
For any Radon measure μ we have di

Dimensions of a measure

Hausdorff dimension of a set A denoted by $\operatorname{dim}_{H} A$

Definition

Hausdorff dimension of a measure μ (Borel probability measure)

$$
\operatorname{dim}_{H} \mu=\inf \left\{\operatorname{dim}_{H} A: \mu(A)=1\right\} .
$$

Definition

Pointwise dimension of a measure μ

$$
\underline{d}_{\mu}(x)=\liminf _{\varepsilon \rightarrow 0} \frac{\log \mu(B(x, \varepsilon))}{\log \varepsilon}, \quad \bar{d}_{\mu}(x)=\limsup _{\varepsilon \rightarrow 0} \frac{\log \mu(B(x, \varepsilon))}{\log \varepsilon}
$$

Dimensions of a measure

Hausdorff dimension of a set A denoted by $\operatorname{dim}_{H} A$

Definition

Hausdorff dimension of a measure μ (Borel probability measure)

$$
\operatorname{dim}_{H} \mu=\inf \left\{\operatorname{dim}_{H} A: \mu(A)=1\right\} .
$$

Definition

Pointwise dimension of a measure μ

$$
\underline{d}_{\mu}(x)=\liminf _{\varepsilon \rightarrow 0} \frac{\log \mu(B(x, \varepsilon))}{\log \varepsilon}, \quad \bar{d}_{\mu}(x)=\limsup _{\varepsilon \rightarrow 0} \frac{\log \mu(B(x, \varepsilon))}{\log \varepsilon}
$$

Proposition

For any Radon measure μ we have $\operatorname{dim}_{H} \mu=\operatorname{esssup} \underline{d}_{\mu}$.

Existence of the pointwise dimension

Theorem (Ledrappier-Young 85)

Let f be a C^{2} diffeomorphism of a Riemaniann manifold M and μ be an invariant measure. Then the stable and unstable pointwise dimensions $d_{\mu}^{\mu}(x)$ and $d_{\mu}^{s}(x)$ exists for μ-a.e. $x \in M$.
\square
"rin adiition u is enoodicthen the pointwise dimension di is equal to

Existence of the pointwise dimension

Theorem (Ledrappier-Young 85)

Let f be a C^{2} diffeomorphism of a Riemaniann manifold M and μ be an invariant measure. Then the stable and unstable pointwise dimensions $d_{\mu}^{\mu}(x)$ and $d_{\mu}^{s}(x)$ exists for μ-a.e. $x \in M$.

Theorem (Barreira-Pesin-Schmeling 99)

Assume additionnaly that the measure is hyperbolic (no zero Lyapunov exponents). Then the pointwise dimension $d_{\mu}(x)$ exists for μ-a.e. x and $d_{\mu}(x)=d_{\mu}^{u}(x)+d_{\mu}^{s}(x)$.

[^0]
Existence of the pointwise dimension

Theorem (Ledrappier-Young 85)

Let f be a C^{2} diffeomorphism of a Riemaniann manifold M and μ be an invariant measure. Then the stable and unstable pointwise dimensions $d_{\mu}^{\mu}(x)$ and $d_{\mu}^{s}(x)$ exists for μ-a.e. $x \in M$.

Theorem (Barreira-Pesin-Schmeling 99)

Assume additionnaly that the measure is hyperbolic (no zero Lyapunov exponents). Then the pointwise dimension $d_{\mu}(x)$ exists for μ-a.e. x and $d_{\mu}(x)=d_{\mu}^{u}(x)+d_{\mu}^{s}(x)$.

Remark

If in addition μ is ergodic then the pointwise dimension d_{μ} is equal to $\operatorname{dim}_{H} \mu \mu$-a.e.:

$$
\mu(B(x, \varepsilon)) \approx \varepsilon^{\operatorname{dim}_{H} \mu}
$$

Statement of the result

Theorem

Let $T: \mathbb{T}^{d} \circlearrowleft$ be a $C^{1+\alpha}$ expanding map and μ_{φ} be an equilibrium state of a Hölder potential φ. Suppose that T has skew product structure

Statement of the result

Theorem

Let $T: \mathbb{T}^{d} \circlearrowleft$ be a $C^{1+\alpha}$ expanding map and μ_{φ} be an equilibrium state of a Hölder potential φ. Suppose that T has skew product structure

$$
T\left(x_{1}, \ldots, x_{d}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{1}, x_{2}\right), \ldots, f_{d}\left(x_{1}, \ldots, x_{d}\right)\right) .
$$

and that the sequence of Lyapunov exponents

$$
\lambda_{\mu, i}:=\int \log \left|\frac{\partial f_{i}}{\partial x_{i}}\right| \circ \pi_{i} d \mu_{\varphi}, \quad i=1, \ldots, d
$$

is increasing. Then there exists $\sigma \geq 0$ such that $\log \mu_{\varphi}(B(x, \varepsilon))-\operatorname{dim}_{H} \mu_{\varphi} \log$

Statement of the result

Theorem

Let $T: \mathbb{T}^{d} \circlearrowleft$ be a $C^{1+\alpha}$ expanding map and μ_{φ} be an equilibrium state of a Hölder potential φ. Suppose that T has skew product structure

$$
T\left(x_{1}, \ldots, x_{d}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{1}, x_{2}\right), \ldots, f_{d}\left(x_{1}, \ldots, x_{d}\right)\right) .
$$

and that the sequence of Lyapunov exponents

$$
\lambda_{\mu, i}:=\int \log \left|\frac{\partial f_{i}}{\partial x_{i}}\right| \circ \pi_{i} d \mu_{\varphi}, \quad i=1, \ldots, d
$$

is increasing. Then there exists $\sigma \geq 0$ such that

$$
\frac{\log \mu_{\varphi}(B(x, \varepsilon))-\operatorname{dim}_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}}
$$

converges as $\varepsilon \rightarrow 0$, in distribution, to a random variable $\mathcal{N}\left(0, \sigma^{2}\right)$.
The variance $\sigma^{2}=0$ iff μ_{φ} is absolutely continuous.

Functional CLT and byproducts

Corollary (Median)

If μ_{φ} is not absolutely continuous then

$$
\mu_{\varphi}\left(x: \mu_{\varphi}(B(x, \varepsilon)) \leq \varepsilon^{\operatorname{dim}_{H} \mu_{\varphi}}\right) \rightarrow 1 / 2 .
$$

\square
The all process converges in distribution in the Skorohod topology
where W is the standard Brownian process.
Several corollaries follow (applying continuous functions of Brownian
motion paths): Arc-sine law. Maximum. minimum. etc.

Functional CLT and byproducts

Corollary (Median)

If μ_{φ} is not absolutely continuous then

$$
\mu_{\varphi}\left(x: \mu_{\varphi}(B(x, \varepsilon)) \leq \varepsilon^{\operatorname{dim}_{H} \mu_{\varphi}}\right) \rightarrow 1 / 2
$$

Theorem (Functional CLT or WIP)

The all process converges in distribution in the Skorohod topology:

$$
N_{\varepsilon}(t):=\frac{\log \mu_{\varphi}\left(B\left(x, \varepsilon^{t}\right)\right)-t \operatorname{dim}_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}} \rightarrow \sigma W(t)
$$

where W is the standard Brownian process.
Several corollaries follow (applying continuous functions of Brownian
motion paths): Arc-sine law, Maximum, minimum, etc.

Functional CLT and byproducts

Corollary (Median)

If μ_{φ} is not absolutely continuous then

$$
\mu_{\varphi}\left(x: \mu_{\varphi}(B(x, \varepsilon)) \leq \varepsilon^{\operatorname{dim}_{H} \mu_{\varphi}}\right) \rightarrow 1 / 2
$$

Theorem (Functional CLT or WIP)

The all process converges in distribution in the Skorohod topology:

$$
N_{\varepsilon}(t):=\frac{\log \mu_{\varphi}\left(B\left(x, \varepsilon^{t}\right)\right)-t \operatorname{dim}_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}} \rightarrow \sigma W(t)
$$

where W is the standard Brownian process.
Several corollaries follow (applying continuous functions of Brownian motion paths): Arc-sine law, Maximum, minimum, etc.

Finer structure of the invariant measure

Following Przytycki, Urbanski \& Zdunik we get (using functional CLT rather than Law of iterated logarithm)

Corollary
Under the assumptions of the main theorem :

- the measure μ_{φ}
- the Hausdorff measure in dimension $\operatorname{dim}_{H} \mu_{\varphi}$ are mutually singular iff μ_{φ} is not absolutely continuous wrt Lebesgue.

Fluctuations of the measure of balls

Numerical (non-rigorous) illustration for Hénon map I

Numerical (non-rigorous) illustration for Hénon map II

$\log \left(\mu_{\varphi}\left(B\left(x_{i}, \varepsilon\right)\right)\right) / \log (\varepsilon)$ for (30) randomly chosen centers x_{i}

Numerical (non-rigorous) illustration for Hénon map III

Histogram of $\log \left(\mu_{\varphi}(B(x, \varepsilon))\right) / \log (\varepsilon)$ (for $\left.\varepsilon=0.1\right)$

Notations and steps of the proof

We will do the proof in dimension $d=2$. The map is denoted

$$
T(x, y)=(f(x), g(x, y)), \quad(x, y) \in \mathbb{T}^{2} .
$$

Projection $\pi(x, y)=x$. Lyapunov exponents

$$
\lambda_{\mu_{\varphi}}^{u}=\int \log \left|f^{\prime}\right| \circ \pi d \mu_{\varphi}<\lambda_{\mu_{\varphi}}^{u u}=\int \log \left|\frac{\partial g}{\partial y}\right| d \mu_{\varphi} .
$$

Denote the dimension by $\delta:=\operatorname{dim}_{H} \mu_{\varphi}$. Set Pressure $P(\varphi)=0$.

Steps of the proof:

- Deplace $M^{\prime}(t)$ by $N^{\prime}(t)$ defined symbolically: balls \rightarrow cylinders
- Replace $N_{\varepsilon}^{\prime}(t)$ by a non-homogeneous Birkhoff sum $N_{\varepsilon}^{\prime \prime}(t)$
- Abstract probabilistic arguments

Notations and steps of the proof

We will do the proof in dimension $d=2$. The map is denoted

$$
T(x, y)=(f(x), g(x, y)), \quad(x, y) \in \mathbb{T}^{2}
$$

Projection $\pi(x, y)=x$. Lyapunov exponents

$$
\lambda_{\mu_{\varphi}}^{u}=\int \log \left|f^{\prime}\right| \circ \pi d \mu_{\varphi}<\lambda_{\mu_{\varphi}}^{u u}=\int \log \left|\frac{\partial g}{\partial y}\right| d \mu_{\varphi} .
$$

Denote the dimension by $\delta:=\operatorname{dim}_{H} \mu_{\varphi}$. Set Pressure $P(\varphi)=0$.
Steps of the proof:

- Replace $N_{\varepsilon}(t)$ by $N_{\varepsilon}^{\prime}(t)$ defined symbolically: balls \rightarrow cylinders
- Replace $N_{\varepsilon}^{\prime}(t)$ by a non-homogeneous Birkhoff sum $N_{\varepsilon}^{\prime \prime}(t)$
- Abstract probabilistic arguments

A fibered partition

Lemma

There is an invariant splitting $E^{u} \oplus E^{u u}$ defined μ-a.e. with Lyapunov exponents λ^{u} and $\lambda^{u u}$.

Choose x_{0} and y_{0} such that $S_{0}=\left\{x_{0}\right\} \times \mathbb{T} \cup \mathbb{T} \times\left\{y_{0}\right\}$ is small. Let \mathcal{R}_{n} be the partition into connected components of $T^{-n}\left(\mathbb{T}^{2} \backslash S_{0}\right)$.
Let $\mathcal{P}_{n}=\pi \mathcal{R}_{n}$.
Let $F_{k}=\prod_{j=0}^{k-1} f^{\prime} \circ f^{j}$ and $G_{k}=\prod_{j=0}^{k-1} \frac{\partial g}{\partial y} \circ T^{k}$.

Definition

Let $\varepsilon>0$. Define

- $n_{\varepsilon}(x, y)$ the largest integer n s.t. $\left|G_{n}(x, y)\right| \varepsilon \leq 1$
- $m_{\varepsilon}(x)$ the largest integer m s.t. $\left|F_{m}(x)\right| \varepsilon \leq 1$
- multi-temporal approximation of the ball

$$
C_{\varepsilon}(x, y)=\mathcal{R}_{n_{\varepsilon}(x, y)}(x, y) \cap \mathcal{P}_{m_{\varepsilon}(x)}(x) \times \mathbb{T}
$$

From balls to cylinders
Measure of the approximation as a Birkhoff sum

The fibered partition \mathcal{R}_{n}

Approximation of the ball

Lemma

There exists a constant $\underline{c}<1$, positive a.e., and a function $\bar{c}_{\varepsilon}>1$, satisfying $\bar{c}_{\varepsilon}=O(|\log \varepsilon|)$ a.e. such that

$$
C_{\underline{C} \varepsilon}(x, y) \subset B((x, y), \varepsilon) \subset C_{\bar{C}_{\varepsilon} \varepsilon} .
$$

Approximation of the ball

Lemma

There exists a constant $\underline{c}<1$, positive a.e., and a function $\bar{c}_{\varepsilon}>1$, satisfying $\bar{c}_{\varepsilon}=O(|\log \varepsilon|)$ a.e. such that

$$
C_{\underline{c} \varepsilon}(x, y) \subset B((x, y), \varepsilon) \subset C_{\bar{C}_{\varepsilon} \varepsilon} .
$$

Step 1

If the process $N_{\varepsilon}^{\prime}(t):=\frac{\log \mu_{\varphi}\left(C_{\varepsilon^{t}}(x, y)\right)-t \delta \log \varepsilon}{\sqrt{-\log \varepsilon}}$ converges in distribution to σW then $N_{\varepsilon}(t)$ also.

Gibbs measure and projections

The measure μ_{φ} is $e^{-\varphi}$-conformal thus $\mu_{\varphi}\left(T^{n_{\varepsilon}} C_{\varepsilon}\right)=\int_{C_{\varepsilon}} e^{-S_{n_{\varepsilon}} \varphi} d \mu_{\varphi}$.

Gibbs measure and projections

The measure μ_{φ} is $e^{-\varphi}$-conformal thus $\mu_{\varphi}\left(T^{n_{\varepsilon}} C_{\varepsilon}\right)=\int_{C_{\varepsilon}} e^{-S_{n_{\varepsilon}} \varphi} d \mu_{\varphi}$. Hence $\log \mu_{\varphi}\left(C_{\varepsilon}\right) \approx S_{n_{\varepsilon}} \varphi+\log \mu_{\varphi}\left(T^{n_{\varepsilon}} C_{\varepsilon}\right)$.

Gibbs measure and projections

The measure μ_{φ} is $e^{-\varphi}$-conformal thus $\mu_{\varphi}\left(T^{n_{\varepsilon}} C_{\varepsilon}\right)=\int_{C_{\varepsilon}} e^{-S_{n_{\varepsilon}} \varphi} d \mu_{\varphi}$. Hence $\log \mu_{\varphi}\left(C_{\varepsilon}\right) \approx S_{n_{\varepsilon}} \varphi+\log \mu_{\varphi}\left(T^{n_{\varepsilon}} C_{\varepsilon}\right)$.
But $T^{n_{\varepsilon}} C_{\varepsilon}(x, y)=\pi^{-1} f^{n_{\varepsilon}} \mathcal{P}_{m_{\varepsilon}}(x)=\pi^{-1} \mathcal{P}_{m_{\varepsilon}-n_{\varepsilon}}\left(f^{n_{\varepsilon}}(x)\right)$.

Gibbs measure and projections

The measure μ_{φ} is $e^{-\varphi}$-conformal thus $\mu_{\varphi}\left(T^{n_{\varepsilon}} C_{\varepsilon}\right)=\int_{C_{\varepsilon}} e^{-S_{n_{\varepsilon}} \varphi} d \mu_{\varphi}$. Hence $\log \mu_{\varphi}\left(C_{\varepsilon}\right) \approx S_{n_{\varepsilon}} \varphi+\log \mu_{\varphi}\left(T^{n_{\varepsilon}} C_{\varepsilon}\right)$.
But $T^{n_{\varepsilon}} C_{\varepsilon}(x, y)=\pi^{-1} f^{n_{\varepsilon}} \mathcal{P}_{m_{\varepsilon}}(x)=\pi^{-1} \mathcal{P}_{m_{\varepsilon}-n_{\varepsilon}}\left(f^{n_{\varepsilon}}(x)\right)$.

Theorem (Chazottes-Ugalde 09, Kempton-Pollicott, Verbitsky, ...)

The projection $\pi_{*} \mu_{\varphi}$ is a Gibbs measure for f, for a potential ψ regular (stretched exponential variations).

Gibbs measure and projections

The measure μ_{φ} is $e^{-\varphi}$-conformal thus $\mu_{\varphi}\left(T^{n_{\varepsilon}} C_{\varepsilon}\right)=\int_{C_{\varepsilon}} e^{-S_{n_{\varepsilon}} \varphi} d \mu_{\varphi}$. Hence $\log \mu_{\varphi}\left(C_{\varepsilon}\right) \approx S_{n_{\varepsilon}} \varphi+\log \mu_{\varphi}\left(T^{n_{\varepsilon}} C_{\varepsilon}\right)$.
But $T^{n_{\varepsilon}} C_{\varepsilon}(x, y)=\pi^{-1} f^{n_{\varepsilon}} \mathcal{P}_{m_{\varepsilon}}(x)=\pi^{-1} \mathcal{P}_{m_{\varepsilon}-n_{\varepsilon}}\left(f^{n_{\varepsilon}}(x)\right)$.

Theorem (Chazottes-Ugalde 09, Kempton-Pollicott, Verbitsky, ...)

The projection $\pi_{*} \mu_{\varphi}$ is a Gibbs measure for f, for a potential ψ regular (stretched exponential variations).

Set pressure $P_{f}(\psi)=0$. Since $\log \mu_{\varphi}\left(T^{n_{\varepsilon}} C_{\varepsilon}\right) \approx S_{m_{\varepsilon}-n_{\varepsilon}} \psi \circ f^{n_{\varepsilon}}$ we obtain
Key lemma
We have $\log \mu_{\varphi}\left(C_{\varepsilon}(x, y)\right) \approx S_{n_{\varepsilon}(x, y)}(\varphi-\psi \circ \pi)(x, y)+S_{m_{\varepsilon}(x, y)} \psi \circ \pi(x, y)$

Non-homogeneous Birkhoff sum

The intermediate entropies $h^{u}=h_{\pi_{*} \mu_{\varphi}}(f)$ and $h^{u u}=h_{\mu_{\varphi}}(T)-h_{\pi_{*} \mu_{\varphi}}(f)$ satisfy $h^{u}=-\int \psi \circ \pi d \mu_{\varphi}, h^{u u}=-\int(\varphi-\psi \circ \pi) d \mu_{\varphi}$.

Lemma

Setting $\delta^{u}=h^{u} / \lambda^{u}$ and $\delta^{u u}=h^{u u} / \lambda^{u u}$, the dimension is $\delta=\delta^{u u}+\delta^{u}$.

Non-homogeneous Birkhoff sum

The intermediate entropies $h^{u}=h_{\pi_{*} \mu_{\varphi}}(f)$ and $h^{u u}=h_{\mu_{\varphi}}(T)-h_{\pi_{*} \mu_{\varphi}}(f)$ satisfy $h^{u}=-\int \psi \circ \pi d \mu_{\varphi}, h^{u u}=-\int(\varphi-\psi \circ \pi) d \mu_{\varphi}$.

Lemma

Setting $\delta^{u}=h^{u} / \lambda^{u}$ and $\delta^{u u}=h^{u u} / \lambda^{u u}$, the dimension is $\delta=\delta^{u u}+\delta^{u}$.

Lemma

We have $-\delta \log \varepsilon \approx \delta^{u u} S_{n_{\varepsilon}} \log \left|\frac{\partial g}{\partial y}\right|+\delta^{u} S_{m_{\varepsilon}} \log \left|f^{\prime}\right|$.
\square
If the process $N_{s}^{\prime \prime}(t):=\frac{S_{\varepsilon_{t}} \phi_{1}+S_{m_{e^{t}} \phi_{2}}}{}$ converges in distribution to σW

Non-homogeneous Birkhoff sum

The intermediate entropies $h^{u}=h_{\pi_{*} \mu_{\varphi}}(f)$ and $h^{u u}=h_{\mu_{\varphi}}(T)-h_{\pi_{*} \mu_{\varphi}}(f)$ satisfy $h^{u}=-\int \psi \circ \pi d \mu_{\varphi}, h^{u u}=-\int(\varphi-\psi \circ \pi) d \mu_{\varphi}$.

Lemma

Setting $\delta^{u}=h^{u} / \lambda^{u}$ and $\delta^{u u}=h^{u u} / \lambda^{u u}$, the dimension is $\delta=\delta^{u u}+\delta^{u}$.

Lemma

We have $-\delta \log \varepsilon \approx \delta^{u u} S_{n_{\varepsilon}} \log \left|\frac{\partial g}{\partial y}\right|+\delta^{u} S_{m_{\varepsilon}} \log \left|f^{\prime}\right|$.
Set $\phi_{1}=\varphi-\psi \circ \pi+\delta^{u u} \log \left|\frac{\partial g}{\partial y}\right|$ and $\phi_{2}=\psi \circ \pi+\delta^{u} \log \left|f^{\prime}\right|$.
Step 2
If the process $N_{\varepsilon}^{\prime \prime}(t):=\frac{S_{n_{\varepsilon} t} \phi_{1}+S_{m_{\varepsilon} t} \phi_{2}}{\sqrt{-\log \varepsilon}}$ converges in distribution to σW then $N_{\varepsilon}^{\prime}(t)$ also.

Weak invariance principle

Set $\phi=\left(\phi_{1}, \phi_{2}\right)$. We have $\int \phi d \mu_{\varphi}=0$. Let

$$
\mathcal{Y}_{k}(t)=\frac{1}{\sqrt{k}} S_{\lfloor k t\rfloor} \phi+\text { Interpolation. }
$$

Let Q be the limiting covariance matrix of $\frac{1}{\sqrt{k}} S_{k} \phi$.

Weak invariance principle

Set $\phi=\left(\phi_{1}, \phi_{2}\right)$. We have $\int \phi d \mu_{\varphi}=0$. Let

$$
\mathcal{Y}_{k}(t)=\frac{1}{\sqrt{k}} S_{\lfloor k t\rfloor} \phi+\text { Interpolation. }
$$

Let Q be the limiting covariance matrix of $\frac{1}{\sqrt{k}} S_{k} \phi$.

Theorem (WIP, Folklore*)

The process \mathcal{Y}_{k} converges in distribution towards a bi-dimensional Brownian motion $\mathcal{B}(t)$ with covariance Q (in particular $\mathcal{B}(t) \sim \mathcal{N}(0, t Q))$.
*immediate from ASIP for vector valued functions [Melbourne, Nicol]

Random change of time

Take $a>1 / \lambda^{u}$.
Set $\mathcal{Z}_{k}\left(t_{1}, t_{2}\right)=\left(\mathcal{Y}_{k, 1}\left(t_{1}\right), \mathcal{Y}_{k, 2}\left(t_{2}\right)\right)$ for $t_{1}, t_{2} \in[0, a]$.
Set $\Gamma(t)=\left(t / \lambda^{u u}, t / \lambda^{u}\right)$.

Definition

Define the random change of time $\Gamma_{k}(t)=\left(n_{e^{-k t}} / k, m_{e^{-k t}} / k\right)$ if both arguments are less than $a, \Gamma_{k}(t)=\Gamma(t)$ otherwise.

- Γ_{k} converges in probability to the deterministic Γ and \mathcal{Z}_{k} converges in distribution to \mathcal{B}
- thus $\left(\mathcal{Z}_{k}, \Gamma_{k}\right)$ converges in distribution to (\mathcal{B}, Γ)
- β continuous preserves the convergence in distribution

Random change of time

Take $a>1 / \lambda^{u}$.
Set $\mathcal{Z}_{k}\left(t_{1}, t_{2}\right)=\left(\mathcal{Y}_{k, 1}\left(t_{1}\right), \mathcal{Y}_{k, 2}\left(t_{2}\right)\right)$ for $t_{1}, t_{2} \in[0, a]$.
Set $\Gamma(t)=\left(t / \lambda^{u u}, t / \lambda^{u}\right)$.

Definition

Define the random change of time $\Gamma_{k}(t)=\left(n_{e^{-k t}} / k, m_{e^{-k t}} / k\right)$ if both arguments are less than $a, \Gamma_{k}(t)=\Gamma(t)$ otherwise.

Let $\beta: C\left([0,1], \mathbb{R}^{2}\right) \rightarrow C([0,1], \mathbb{R})$ defined by $\beta(u)=u_{1}+u_{2}$

Step 3

- $N_{e^{-k}}^{\prime \prime}(t) \approx \beta\left(\mathcal{Z}_{k} \circ \Gamma_{k}\right)(t)$

Random change of time

Take $a>1 / \lambda^{u}$.
Set $\mathcal{Z}_{k}\left(t_{1}, t_{2}\right)=\left(\mathcal{Y}_{k, 1}\left(t_{1}\right), \mathcal{Y}_{k, 2}\left(t_{2}\right)\right)$ for $t_{1}, t_{2} \in[0, a]$.
Set $\Gamma(t)=\left(t / \lambda^{u u}, t / \lambda^{u}\right)$.

Definition

Define the random change of time $\Gamma_{k}(t)=\left(n_{e^{-k t}} / k, m_{e^{-k t}} / k\right)$ if both arguments are less than $a, \Gamma_{k}(t)=\Gamma(t)$ otherwise.

Let $\beta: C\left([0,1], \mathbb{R}^{2}\right) \rightarrow C([0,1], \mathbb{R})$ defined by $\beta(u)=u_{1}+u_{2}$

Step 3

- $N_{e^{-k}}^{\prime \prime}(t) \approx \beta\left(\mathcal{Z}_{k} \circ \Gamma_{k}\right)(t)$
- Γ_{k} converges in probability to the deterministic Γ

Random change of time

Take $a>1 / \lambda^{u}$.
Set $\mathcal{Z}_{k}\left(t_{1}, t_{2}\right)=\left(\mathcal{Y}_{k, 1}\left(t_{1}\right), \mathcal{Y}_{k, 2}\left(t_{2}\right)\right)$ for $t_{1}, t_{2} \in[0, a]$.
Set $\Gamma(t)=\left(t / \lambda^{u u}, t / \lambda^{u}\right)$.

Definition

Define the random change of time $\Gamma_{k}(t)=\left(n_{e^{-k t}} / k, m_{e^{-k t}} / k\right)$ if both arguments are less than $a, \Gamma_{k}(t)=\Gamma(t)$ otherwise.

Let $\beta: C\left([0,1], \mathbb{R}^{2}\right) \rightarrow C([0,1], \mathbb{R})$ defined by $\beta(u)=u_{1}+u_{2}$

Step 3

- $N_{e^{-k}}^{\prime \prime}(t) \approx \beta\left(\mathcal{Z}_{k} \circ \Gamma_{k}\right)(t)$
- Γ_{k} converges in probability to the deterministic Γ and \mathcal{Z}_{k} converges in distribution to \mathcal{B}

Random change of time

Take $a>1 / \lambda^{u}$.
Set $\mathcal{Z}_{k}\left(t_{1}, t_{2}\right)=\left(\mathcal{Y}_{k, 1}\left(t_{1}\right), \mathcal{Y}_{k, 2}\left(t_{2}\right)\right)$ for $t_{1}, t_{2} \in[0, a]$.
Set $\Gamma(t)=\left(t / \lambda^{u u}, t / \lambda^{u}\right)$.

Definition

Define the random change of time $\Gamma_{k}(t)=\left(n_{e^{-k t}} / k, m_{e^{-k t}} / k\right)$ if both arguments are less than $a, \Gamma_{k}(t)=\Gamma(t)$ otherwise.

Let $\beta: C\left([0,1], \mathbb{R}^{2}\right) \rightarrow C([0,1], \mathbb{R})$ defined by $\beta(u)=u_{1}+u_{2}$

Step 3

- $N_{e^{-k}}^{\prime \prime}(t) \approx \beta\left(\mathcal{Z}_{k} \circ \Gamma_{k}\right)(t)$
- Γ_{k} converges in probability to the deterministic Γ and \mathcal{Z}_{k} converges in distribution to \mathcal{B}
- thus $\left(\mathcal{Z}_{k}, \Gamma_{k}\right)$ converges in distribution to (\mathcal{B}, Γ)

Random change of time

Take $a>1 / \lambda^{u}$.
Set $\mathcal{Z}_{k}\left(t_{1}, t_{2}\right)=\left(\mathcal{Y}_{k, 1}\left(t_{1}\right), \mathcal{Y}_{k, 2}\left(t_{2}\right)\right)$ for $t_{1}, t_{2} \in[0, a]$.
Set $\Gamma(t)=\left(t / \lambda^{u u}, t / \lambda^{u}\right)$.

Definition

Define the random change of time $\Gamma_{k}(t)=\left(n_{e^{-k t}} / k, m_{e^{-k t}} / k\right)$ if both arguments are less than $a, \Gamma_{k}(t)=\Gamma(t)$ otherwise.

Let $\beta: C\left([0,1], \mathbb{R}^{2}\right) \rightarrow C([0,1], \mathbb{R})$ defined by $\beta(u)=u_{1}+u_{2}$

Step 3

- $N_{e^{-k}}^{\prime \prime}(t) \approx \beta\left(\mathcal{Z}_{k} \circ \Gamma_{k}\right)(t)$
- Γ_{k} converges in probability to the deterministic Γ and \mathcal{Z}_{k} converges in distribution to \mathcal{B}
- thus $\left(\mathcal{Z}_{k}, \Gamma_{k}\right)$ converges in distribution to (\mathcal{B}, Γ)
- β continuous preserves the convergence in distribution

Generalizations

The method can be applied to

- conformal expanding maps
- surface diffeomorphisms

Generalizations

The method can be applied to

- conformal expanding maps
- surface diffeomorphisms
- some non uniformly expanding maps

Generalizations

The method can be applied to

- conformal expanding maps
- surface diffeomorphisms
- some non uniformly expanding maps

Some questions are left

- The general case of non-conformal but uniformly hyperbolic systems
- Even if CLT does not hold in a given nonuniformly hyperbolic system, there can be a non-trivial limiting distribution

Application: log-normal fluctuations of return time

Let $\tau_{\varepsilon}(x)=\min \left\{k \geq 1: d\left(T^{k}(x), x\right)<\varepsilon\right\}$ be the first ε-return time.
Corollary (log-normal fluctuations of first return time $(\sigma \neq 0)$)

$$
\frac{\log \tau_{\varepsilon}(x)+\operatorname{dim}_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}} \rightarrow \mathcal{N}\left(0, \sigma^{2}\right) .
$$

[^1]
Application: log-normal fluctuations of return time

Let $\tau_{\varepsilon}(x)=\min \left\{k \geq 1: d\left(T^{k}(x), x\right)<\varepsilon\right\}$ be the first ε-return time.
Corollary (log-normal fluctuations of first return time $(\sigma \neq 0)$)

$$
\frac{\log \tau_{\varepsilon}(x)+\operatorname{dim}_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}} \rightarrow \mathcal{N}\left(0, \sigma^{2}\right)
$$

Log-normal fluctuations for repetition time of first n-symbols known: Collet, Galves and Schmitt : exponential law for hitting time + CLT for information function (Gibbsian source).
Kontoyannis : strong approximation + ASIP for information function.

Application: log-normal fluctuations of return time

Let $\tau_{\varepsilon}(x)=\min \left\{k \geq 1: d\left(T^{k}(x), x\right)<\varepsilon\right\}$ be the first ε-return time.
Corollary (log-normal fluctuations of first return time $(\sigma \neq 0)$)

$$
\frac{\log \tau_{\varepsilon}(x)+\operatorname{dim}_{H} \mu_{\varphi} \log \varepsilon}{\sqrt{-\log \varepsilon}} \rightarrow \mathcal{N}\left(0, \sigma^{2}\right)
$$

Log-normal fluctuations for repetition time of first n-symbols known: Collet, Galves and Schmitt : exponential law for hitting time + CLT for information function (Gibbsian source).
Kontoyannis : strong approximation + ASIP for information function.

Proof.

(1) If (T, μ) mixes rapidly Lipschitz observables and d_{μ} exists then $\tau_{\varepsilon}(x) \approx \varepsilon^{-\operatorname{dim}_{H} \mu} \mu$-a.e. [Rousseau-S 10]. Refine so that log-normal fluctuations are preserved: strong approximation.
(2) CLT for measure of balls (the main theorem)
(1) and (2) gives the result by Slutsky theorem.

Numerical (non-rigorous) illustration for Hénon map IV

$\log \left(\tau_{\varepsilon}\left(x_{i}\right)\right) / \log (\varepsilon)$ for (30) randomly chosen centers x_{i}

Numerical (non-rigorous) illustration for Hénon map V

Histogram of $\log \left(\tau_{\varepsilon}\left(x_{i}\right)\right) / \log (\varepsilon)$ (for $\left.\varepsilon=0.1\right)$

[^0]: Remark
 If in addition μ is ergodic then the pointwise dimension d_{μ} is equal to
 $\operatorname{dim}_{H} \mu \mu$-a.e.

[^1]: Log-normal fluctuations for repetition time of first n-symbols known: Collet, Galves and Schmitt : exponential law for hitting time + CLT for information function (Gibbsian source) Kontoyannis : strong approximation + ASIP for information function

