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Fluctuations of the measure of balls
Introduction
H dimension of measures

Motivation

For a smooth dynamical system and under suitable conditions, the
pointwise dimension of an ergodic measure y exists and is related to

@ Hausdorff dimension
@ entropy
@ Lyapunov exponents

The existence of the pointwise dimension may be viewed as a Law of
Large Number, it makes sense to ask for a Central Limit Theorem
associated to it.
Some question related to this have been studied before, but in the
conformal case: Law of Iterated Logarithm (Przytycki, Urbanski &
Zdunik, Bhouri & Heurteaux)

0
0 3
Mc Mullen, Gatzouras & Peres, Luzia, Barral & Feng, ...

Here we will work with non-conformal maps: (
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Dimensions of a measure

Hausdorff dimension of a set A denoted by dimy A

Definition

Hausdorff dimension of a measure . (Borel probability measure)

dimy p = inf{dimy A: u(A) = 1}.
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Hausdorff dimension of a set A denoted by dimy A

Hausdorff dimension of a measure . (Borel probability measure)

dimy p = inf{dimy A: u(A) = 1}.
Pointwise dimension of a measure p
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The main theorem and its s

Dimensions of a measure

Hausdorff dimension of a set A denoted by dimy A

Hausdorff dimension of a measure . (Borel probability measure)

dimy p = inf{dimy A: u(A) = 1}.

Definition

Pointwise dimension of a measure p

B TP Iog,u(B(X,e)) - T |Og,u(B(Xa6))
gu(X) = ||2n_>|6'|f V, d,U'(X) = IIT_S>l6lp V

Proposition

For any Radon measure y1 we have dimy, j1 = esssup d,.
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Existence of the pointwise dimension

Theorem (Ledrappier-Young 85)

Let f be a C? diffeomorphism of a Riemaniann manifold M and 1. be an
invariant measure. Then the stable and unstable pointwise dimensions
di(x) and d;(x) exists for y-a.e. x € M.
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Existence of the pointwise dimension

Theorem (Ledrappier-Young 85)

Let f be a C? diffeomorphism of a Riemaniann manifold M and 1. be an
invariant measure. Then the stable and unstable pointwise dimensions
di(x) and d;(x) exists for y-a.e. x € M.

Theorem (Barreira-Pesin-Schmeling 99)

Assume additionnaly that the measure is hyperbolic (no zero Lyapunov
exponents). Then the pointwise dimension d,,(x) exists for y-a.e. x and
dyu(x) = di(x) + di(x)-
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Introduction
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Existence of the pointwise dimension

Theorem (Ledrappier-Young 85)

Let f be a C? diffeomorphism of a Riemaniann manifold M and 1. be an
invariant measure. Then the stable and unstable pointwise dimensions
di(x) and d;(x) exists for y-a.e. x € M.

Theorem (Barreira-Pesin-Schmeling 99)

Assume additionnaly that the measure is hyperbolic (no zero Lyapunov
exponents). Then the pointwise dimension d,,(x) exists for y-a.e. x and
dyu(x) = di(x) + di(x)-

If in addition yu is ergodic then the pointwise dimension d,, is equal to
dimy p p-a.e.:

H(B(x,e)) ~ e,
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Statement of the result

Let T:T9 & be a C*** expanding map and e be an equilibrium state
of a Hélder potential .
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Fluctuations of the measure of balls

and pointwise dimension of measures
The main theorem and its corollaries

Statement of the result

Let T:T9 & be a C*** expanding map and e be an equilibrium state
of a Holder potential . Suppose that T has skew product structure

T(xa,...,xd) = (A(xa), L, x2), ..o falxt, - - oy Xa))-
and that the sequence of Lyapunov exponents

of;
N fi 1= /Iog‘ax

omidp,, i=1,...,d

is increasing.
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Fluctuations of the measure of balls

fadortf and pointwise dimension of measures
The main theorem and its corollaries

Statement of the result

Let T:T9 & be a C*** expanding map and e be an equilibrium state
of a Holder potential . Suppose that T has skew product structure

T(Xl, 000 ,Xd) = (fl(Xl), fz(Xl,Xg), ceey fd(Xl, 000 ,Xd)).

and that the sequence of Lyapunov exponents

of;
N fi 1= /Iog‘ax

is increasing. Then there exists o > 0 such that

omidp,, i=1,...,d

log 1, (B(x,€)) — dimy g, loge
V—loge

converges as € — 0, in distribution, to a random variable N'(0, o2).
The variance o = 0 iff j1,, is absolutely continuous.
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dimension of measures
its corollaries

Functional CLT and byproducts

Corollary (Median)

If g, is not absolutely continuous then

fio(x: po(B(x,€)) < edimure) 5 1/2.
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nd pointwise dimension of measures
The main theorem and its corollaries

Functional CLT and byproducts

Corollary (Median)

If g, is not absolutely continuous then

fio(x: po(B(x,€)) < edimure) 5 1/2.

Theorem (Functional CLT or WIP)

The all process converges in distribution in the Skorohod topology:

N(t) = log py, (B(x, ")) — tdimpy py, log e
S V—loge

where W is the standard Brownian process.

— aW(t)
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Fluctuations of the measure of balls

and pointwise dimension of measures
The main theorem and its corollaries

Functional CLT and byproducts

Corollary (Median)

If g, is not absolutely continuous then

fio(x: po(B(x,€)) < edimure) 5 1/2.

Theorem (Functional CLT or WIP)

The all process converges in distribution in the Skorohod topology:

_ log uy(B(x,e")) — tdimy py, loge
N v —loge

where W is the standard Brownian process.

— aW(t)

N-(t) :

Several corollaries follow (applying continuous functions of Brownian
motion paths): Arc-sine law, Maximum, minimum, etc.

Benoit Saussol, joint work with Renaud Leplaideur CLT for pointwise dimension



Fluctuations of the measure of balls

He
The main theorem and its corollaries

nd pointwise dimension of measures

Finer structure of the invariant measure

Following Przytycki, Urbanski & Zdunik we get (using functional CLT
rather than Law of iterated logarithm)

Under the assumptions of the main theorem :

@ the measure i,
@ the Hausdorff measure in dimension dimpy i,

are mutually singular iff ju, is not absolutely continuous wrt Lebesgue.
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Numerical (non-rigorous) illustration for Hénon map |
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Fluctuations of the measure of balls

twise dimension of measures
The main theorem and its corollaries

Numerical (non-rigorous) illustration for Hénon map Il

log (1, (B(xi,€)))/ log(e) for (30) randomly chosen centers x;
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Fluctuations of the measure of balls

dimension of measures
its corollaries
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Histogram of log(,(B(x;€)))/ log(e) (for e = 0.1)
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Fluctuations of the measure of balls

E] orff intwise dimension of measures
The main theorem and its corollaries

Notations and steps of the proof

We will do the proof in dimension d = 2. The map is denoted

T(x,y) = (f(x).&(x,y)), (x,y) €T

Projection m(x, y) = x. Lyapunov exponents
u uu 8g
A :/Iog|f’|o7rdug, < A :/Iog|@|d,u¢.

Denote the dimension by ¢ := dimy p,. Set Pressure P(¢) = 0.
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Fluctuations of the measure of balls

E] orff intwise dimension of measures
The main theorem and its corollaries

Notations and steps of the proof

We will do the proof in dimension d = 2. The map is denoted
T(x,y) = (f(x).g(x.y)), (x,y) € T2
Projection m(x, y) = x. Lyapunov exponents
u uu 8g
A :/Iog|f’|o7rdug, < A :/Iog|@|d,u¢.
Denote the dimension by ¢ := dimy p,. Set Pressure P(¢) = 0.

Steps of the proof:
o Replace N.(t) by N.(t) defined symbolically: balls — cylinders
o Replace N.(t) by a non-homogeneous Birkhoff sum N/ (t)
@ Abstract probabilistic arguments
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Reduction to a non homogeneous sum of random variables

From balls to cylinders
Measure of the approximation as a Birkhoff sum

A fibered partition

There is an invariant splitting EY @ E"" defined p-a.e. with Lyapunov
exponents A" and \'Y.

Choose xp and yp such that Sp = {xo} x TUT X {yo} is small.
Let R, be the partition into connected components of T~"(T?\ Sp).
Let P, = mR,.

Let Fy = Hj;(,l flofland G, = HJ/_:OI %5 o Tk

Definition
Let € > 0. Define
@ n.(x,y) the largest integer ns.t. |G,(x,y)le <1

@ mg(x) the largest integer m s.t. |Fn(x)le <1

@ multi-temporal approximation of the ball

CE(X-,Y) - Rni(x.y)(xv)/) N /me(x)(x) x T.



Reduction to a non homogeneous sum of random variables q
From balls to cylinders

the approximation as a Birkhoff sum

The fibered partition R,

] \
k

|

|
K
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Reduction to a non homogeneous sum of random variables q
From balls to cylinders

Measure of the approximation as a Birkhoff sum

Approximation of the ball

There exists a constant ¢ < 1, positive a.e., and a function ¢. > 1,
satisfying €. = O(|loge|) a.e. such that

CQE(Xay) C B((Xa)/)7€) C CEEE-
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Reduction to a non homogeneous sum of random variables

From balls to cylinders
Measure of the approximation as a Birkhoff sum

Approximation of the ball

There exists a constant ¢ < 1, positive a.e., and a function ¢. > 1,
satisfying €. = O(|loge|) a.e. such that

CQE(Xay) C B((Xa)/)7€) C CEEE-

| A

Step 1

_ log py(Cet(x,y)) — téloge
B v —loge

distribution to oW then N_(t) also.

If the process N.(t) : converges in
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Reduction to a non homogeneous sum of random variables _ R _
From balls to cylinders

Measure of the approximation as a Birkhoff sum

Gibbs measure and projections

-,

The measure i, is e~ #-conformal thus p,(T" C.) = [, e >=?dp,,.
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Reduction to a non homogeneous sum of random variables _ R _
From balls to cylinders

Measure of the approximation as a Birkhoff sum

Gibbs measure and projections

The measure 11, is e~ ?-conformal thus (T C.) = [ e~

Hence log 11,(C.) = Sp ¢ + log p(T™ C).

<Pdg.
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Reduction to a non homogeneous sum of random variables _ R _
From balls to cylinders

Measure of the approximation as a Birkhoff sum

Gibbs measure and projections

The measure 11, is e~ ?-conformal thus (T C.) = [ e~

Hence log 11,(C.) = Sp ¢ + log p(T™ C).
But T Co(x,y) = 7 " P (x) = 7 1P _n. (£ (x)).

<Pdg.
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Reduction to a non homogeneous sum of random variables

From balls to cylinders
Measure of the approximation as a Birkhoff sum

Gibbs measure and projections

The measure p, is e~ ?-conformal thus p,(T" C.) = fCE e 5=du,.
Hence log 11,(C.) = Sp ¢ + log p(T™ C).
But T Co(x,y) = 7 " P (x) = 7 1P _n. (£ (x)).

Theorem (Chazottes-Ugalde 09, Kempton-Pollicott, Verbitsky, ...)

The projection T, is a Gibbs measure for f, for a potential 1) regular
(stretched exponential variations).
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Reduction to a non homogeneous sum of random variables

From balls to cylinders
Measure of the approximation as a Birkhoff sum

Gibbs measure and projections

The measure p, is e~ ?-conformal thus p,(T" C.) = fCE e 5=du,.
Hence log 11,(C.) = Sp ¢ + log p(T™ C).
But T Co(x,y) = 7 " P (x) = 7 1P _n. (£ (x)).

Theorem (Chazottes-Ugalde 09, Kempton-Pollicott, Verbitsky, ...)

The projection T, is a Gibbs measure for f, for a potential 1) regular
(stretched exponential variations).

Set pressure Pr(1)) = 0. Since log i, (T™ C.) =~ Spm_—n. 1 o £ we obtain

We have 10 11, (Co(x, ¥)) & S ) (= 10 7)(X,¥) + S ()t 0(x, ¥)
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Reduction to a non homogeneous sum of random variables

From balls to cylinders
Measure of the approximation as a Birkhoff sum

Non-homogeneous Birkhoff sum

The intermediate entropies h” = hr . (f) and h* = h, (T) — hy, ()
satisfy h* = —/1/} omdp,, h" = —/(<p —tpom)du,.

Setting 6% = h" /A" and §“* = h““/\"“, the dimension is § = 6" + &Y.
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Reduction to a non homogeneous sum of random variables

From balls to cylinders
Measure of the approximation as a Birkhoff sum

Non-homogeneous Birkhoff sum

The intermediate entropies h” = hr . (f) and h* = h, (T) — hy, ()
satisfy h* = —/1/} omdp,, h" = —/(<p —tpom)du,.

Setting 0" = h" /A" and 6" = h" /A", the dimension is 6 = 6" + §“.

We have —dloge ~ §““S,_log ‘%‘ + 64Sp,_ log |f'].
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Reduction to a non homogeneous sum of random variables

From balls to cylinders
Measure of the approximation as a Birkhoff sum

Non-homogeneous Birkhoff sum
The intermediate entropies h” = hr . (f) and h* = h, (T) — hy, ()
satisfy h* = —/1/} omdp,, h" = —/(<p —tpom)du,.

Setting 6% = h" /A" and §“* = h““/\"“, the dimension is § = 6" + &Y.

We have —dloge ~ §““S,_log ‘%‘ + 64Sp,_ log |f'].

5et¢1:¢_¢w+5""|og|g—§ and ¢y =1 o7 + 6" log [f’.

. SnEI (/51 + Smsf 02
v —loge

Benoit Saussol, joint work with Renaud Leplaideur CLT for pointwise dimension

If the process N (t) :
then N.(t) also.

converges in distribution to c W




Probabilistic arguments

Weak invariance principle

Set ¢ = (¢1, ¢2). We have [ ¢du, = 0. Let
Vi(t) = iStktjqf) + Interpolation.

Vk

Let Q be the limiting covariance matrix of ﬁSkd).
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Probabilistic arguments

Weak invariance principle

Set ¢ = (¢1, ¢2). We have [ ¢du, = 0. Let

1
Yi(t) = —=S| k| ¢ + Interpolation.

Vk

Let Q be the limiting covariance matrix of ﬁSkd).

Theorem (WIP, Folklore*)

The process Yy converges in distribution towards a bi-dimensional
Brownian motion B(t) with covariance Q (in particular

B(t) ~ N(0,tQ)).

*immediate from ASIP for vector valued functions [Melbourne, Nicol]
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Probabilistic arguments

Random change of time

Take a > 1/A".

Set Zy(t1, t2) = (Vk1(t1), Yk 2(t2)) for t1, ta € [0, a].
Set ['(t) = (t/A", t/AY).

Definition

Define the random change of time 'y(t) = (ne—«/k, mo—« / k) if both
arguments are less than a, ',(t) = ['(t) otherwise.
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Probabilistic arguments

Random change of time

Take a > 1/A".

Set Zk(tl, tz) = (yk71(f1),yk72(t2)) for t1, 6 € [0, a].
Set ['(t) = (t/A", t/AY).

Definition

Define the random change of time 'y(t) = (ne—«/k, mo—« / k) if both
arguments are less than a, ',(t) = ['(t) otherwise.

Let 3: C([0,1],R?) — C([0,1],R) defined by B(u) = u1 + uy
Step 3
o NI (t) = B(ZkoTi)(t)
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Random change of time

Take a > 1/A".

Set Zk(tl, tz) = (yk71(f1),yk72(t2)) for t1, 6 € [0, a].
Set ['(t) = (t/A", t/AY).

Definition

Define the random change of time 'y(t) = (ne—«/k, mo—« / k) if both
arguments are less than a, ',(t) = ['(t) otherwise.

Let 3: C([0,1],R?) — C([0,1],R) defined by B(u) = u1 + uy
Step 3

o N (t) = B(ZioTi)(t)
o [y converges in probability to the deterministic [ and Z converges
in distribution to B
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Probabilistic arguments

Random change of time

Take a > 1/A".
Set Zk(tl, tz) = (yk71(f1),yk72(t2)) for t1, 6 € [0, a].
Set ['(t) = (t/A", t/AY).

Definition

Define the random change of time 'y(t) = (ne—«/k, mo—« / k) if both
arguments are less than a, ',(t) = ['(t) otherwise.

Let 3: C([0,1],R?) — C([0,1],R) defined by B(u) = u1 + uy
Step 3
o NI (t) = B(ZkoTi)(t)

o [y converges in probability to the deterministic [ and Z converges
in distribution to B

o thus (Zx, k) converges in distribution to (B,T)
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Probabilistic arguments

Random change of time

Take a > 1/A".
Set Zk(tl, tz) = (yk71(f1),yk72(t2)) for t1, 6 € [0, a].
Set ['(t) = (t/A", t/AY).

Definition

Define the random change of time 'y(t) = (ne—«/k, mo—« / k) if both
arguments are less than a, ',(t) = ['(t) otherwise.

Let 3: C([0,1],R?) — C([0,1],R) defined by B(u) = u1 + uy
Step 3

o N (t) = B(ZioTi)(t)
o [y converges in probability to the deterministic [ and Z converges
in distribution to B

o thus (Zx, k) converges in distribution to (B,T)

@ [3 continuous preserves the convergence in distribution ]
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Generalizations and open questions

Generalizations

The method can be applied to
@ conformal expanding maps

@ surface diffeomorphisms
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Generalizations and open questions

Generalizations

The method can be applied to
@ conformal expanding maps
@ surface diffeomorphisms

@ some non uniformly expanding maps
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Generalizations and open questions

Generalizations

The method can be applied to
@ conformal expanding maps
@ surface diffeomorphisms
@ some non uniformly expanding maps
Some questions are left
@ The general case of non-conformal but uniformly hyperbolic systems

@ Even if CLT does not hold in a given nonuniformly hyperbolic
system, there can be a non-trivial limiting distribution
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Application to Poincaré recurrence

Application: log-normal fluctuations of return time

Let 7-(x) = min{k > 1: d(T*(x), x) < €} be the first e-return time.

Corollary (log-normal fluctuations of first return time (o # 0))

log 7= (x) + dimy p, loge 9
— N(0,0°).
V/—loge 0,57
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Application to Poincaré recurrence

Application: log-normal fluctuations of return time

Let 7-(x) = min{k > 1: d(T*(x), x) < €} be the first e-return time.

Corollary (log-normal fluctuations of first return time (o # 0))

log 7= (x) + dimy p, loge 9
— N(0,0°).
v—loge (0,57

Log-normal fluctuations for repetition time of first n-symbols known:
Collet, Galves and Schmitt : exponential law for hitting time + CLT for
information function (Gibbsian source).

Kontoyannis : strong approximation 4+ ASIP for information function.
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Application to Poincaré recurrence

Application: log-normal fluctuations of return time

Let 7-(x) = min{k > 1: d(T*(x), x) < €} be the first e-return time.

Corollary (log-normal fluctuations of first return time (o # 0))

log 7= (x) + dimy p, loge

v—loge

Log-normal fluctuations for repetition time of first n-symbols known:
Collet, Galves and Schmitt : exponential law for hitting time + CLT for
information function (Gibbsian source).

Kontoyannis : strong approximation 4+ ASIP for information function.

— N(0,0?).

(1) If (T, 1) mixes rapidly Lipschitz observables and d,, exists then

T.(x) ~ e~ dimit 3 e [Rousseau-S 10]. Refine so that log-normal
fluctuations are preserved: strong approximation.

(2) CLT for measure of balls (the main theorem)

(1) and (2) gives the result by Slutsky theorem. O

Benoit Saussol, joint work with Renaud Leplaideur CLT for pointwise dimension



Application to Poincaré recurrence

Numerical (non-rigorous) illustration for Hénon map IV

log(7=(x;))/ log(e) for (30) randomly chosen centers x;



Application to Poincaré recurrence

Numerical (non-rigorous) illustration for Hénon map V
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Histogram of log(7-(x;))/ log(¢) (for e = 0.1)
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