Mixing in a model of heat conduction

Domokos Szasz
Budapest University of Technology

(joint with Alex Grigo and Kostya Khanin)

Ergodic Theory and Dynamical Systems:
Perspectives and Prospects

Warwick, April 17, 2012



Intro
°

Contents

© Intro: Gaspard-Gilbert's two-step approach to derivation of
heat equ.

@ A deterministic model of heat conduction

© Dynamical approach to Step 1

© Mesoscopic stochastic models of energies for Step 2
© Lower bound for spectral gap of generators

@ Reversible product measures

@ Derivation of the heat equation



Intro
]

Non-equilibrium statistical physics

Goal: macroscopic laws from microscopic dynamics.
Optimally: from Newtonian (Hamiltonian) ones (classical
statphys!)
Strong candidates:

@ billiard models (quite realistic)

@ (non-linear) oscillators
Spectacular successes for billiards:

@ planar diffusion (or super-diffusion); Bunimovich, Chernov,
Sinai '81, '91; Young '98; Sz.-Varji '04, '07; Bélint-Gouézel
'06; Chernov-Dolgopyat 09 — , Rey-Bellet-Young '08,
Melbourne-Nicol '09, Gouézel '10, etc., etc.

@ linear Boltzmann equation for the Lorentz gas (Boldrighini,
Bunimovich, Sinai, '83)

@ convergence to equilibrium of Lorentz gas (Krdmli-Sz., '83)



Intro
°

Derivation of heat equ.

Fourier law of heat conduction

Oscillating interest:
survey until 2000: Bonetto—-Lebowitz—Rey-Bellet '00
Recent wave:
@ Eckmann-Young '06: equilibrium measures under
phenomenological assumptions

e Gaspard-Gilbert '08—: model of localized hard disks (balls),
two step approach:

o
@ derive a mesoscopic master equ.
from the microscopic kinetic equ. of the Hamiltonian model
@ in the rare (but strong) interaction limit
@ it is a Markov jump process
(2]

@ derive the macroscopic heat equ. 9:u = Ox(k(u)dxu) from
the mesoscopic master equ.
@ and determine x(u)



Det. mod. of heat transp.

Quasi-1D model: 2 cells of the N chain

Periodic scatterers (shaded disks), confined moving disks (white circles)




Det. mod. of heat transp.
°

Parameter choice of G-G,’08.

@ box size: b; periodic b. c.'s along y-axis
@ chain length = N;
@ radius of fixed scatterers (shaded circles) = pr
@ radius of moving disks (empty circles) = pp,
e condition of confinement: pr + ppm > b/2
e condition of conductivity: p, > = /(pr + pm)2 — (1/2)2
@ small parameter € = p,,, —
G-G's trick:

o Keep pr + pm =: p fixed
o If pm = perit, then we have N non-interacting billiards.
Moreover, their phase spaces only depend on p!



Det. mod. of heat transp.
°

Liouville equation

Ernst-Dorfman, '89: The kinetic equ. for the N-particle density

pN(qla Vi,---5 4N, VN; t) is
N
Otpn = Z (—Vjaqj + Kuwairj + Cjj+1)pn
j=1

@ the first two terms on the RHS describe the billiard dynamics
of each disk within its cell (denote wall collision rate by vy <)

@ the third one: the interaction of neighboring disks provides
energy transfer (denote binary collision rate by 1, )



Det. mod. of heat transp.
°

Scale separation

G-G '08-: Scale separation at
e—0, I e Vwall,s('\’ Vwall crit > 0) > Vbine — 0
© they derive a master equation for the density
: —_ 2. ;
PN(El,...,EN,t) (Ej—\/j.].g_/SN)
© from the master equation they obtain the coefficient of heat
conductivity: k(T) =T (T being the temperature)
i. e. the equation dyu = C . Au¥/2.
Our aim: Rigorous theory



Dyn. appr. Step 1
°

Dynamical approach to step 1

By Hirata-Saussol-Vaienti, '98 (also Collet-Eckmann, '06,
Chazotte-Collet '10): If

@ a dynamical system (M, T, ) is mixing in a controlled way
(e. g. a-mixing)

@ and A. is a sequence of nice subsets (to avoid e. g.
neighborhoods of periodic points) with

then the successive entrance times of the dynamics into A. form a
Poisson process on the time scale of ji(A.)~*.

For simplicity let N = 2 with free boundary conditions along x-axis.
The model is isomorphic to a 4D semi-dispersing billiard.

It is K-mixing, but no mixing rate is known. (exponential mixing:
Balint-Téth, '08 is for dispersing billiards, only, and, moreover, it is
hypothetical).



Dyn. appr. Step 1
°

Expected result for 2-disk chain

similarly for N-disks, too

(joint with IP Téth, work in slow progress)
N = 2, free boundary condition along x-axis. Dynamics:

(ME — {QL Vi, g2, V2|d’.5t(C71, CI2) Z 2Pma V]2 + V22 — 1}7 SR?,U’E)-
Denote by 0 < 71 < 7o < ... successive binary collision times of
the two disks. Then, ase — 0

® (VbineTle, VbineT2,e, - - - ) converges to a Poisson process

® E1(binet), E2(Vpinet) converges to a jump Markov process
on the state space E; + E; = 1 where Ej(t) = %\/J?(t);j =1,2

e the transition kernel k(E;"|E; ) is calculated by verifying
Boltzmann's 'microscopic chaos' property

Note: vpin e ~ const.e3.
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Dyn. appr. Step 1
°

Idea of proof

@ since binary collisions are rare, most of the time the two disks
evolve independently

@ between two binary collisions - with an overwhelming
probability - there is averaging in each of the in-cell, 2D
billiard dynamics

o for these typically long time intervals it is natural to apply
Chernov-Dolgopyat averaging
o for that purpose
e 777 one has to check that for an incoming proper family of
stable pairs, so is the outgoing family 777
e one applies martingale approximation for jump processes (4 la
Dolgopyat-Sz.-Varjd, Duke '09 )



Stoch. appr. Step 2
°

Our approach (with Grigo and Khanin)

© Introduce a (mesoscopic) stochastic model close to that of
GG;

© Find lower bounds for the spectral gap of its generator
(appropriately depending on system size N).

© Establish hydrodynamics limit transition to obtain heat equ.

Appropriate dependence = O(#) for continuous time dynamics.

Existing gap bounds almost exclusively for models with a finite
state-space (like exclusion-like processes).

Continuous state space model: for Kac-model from '56 spectral
gap estimate by Janvresse in '01, only.



Stoch. appr. Step 2
]

A (mesoscopic) stochastic model of energies

State space: x = (x1,...,xy) € RY
Generator £ of the continuous time Markov jump process X(t)
(given on RY) acting on bounded functions A: RY — R is

N-1

LAG) = 7 A1) / P(xi, i1, d) [A(Trox) — A(X)]

where P(x;, xj+1, da) is a probability measure on [0, 1].

The maps T;, model the energy exchange between the

neighboring sites / and i + 1, and are defined by
Tia(xi) = a(xi + xit1)

Tia(xit1) = (1 — a)(xi + xit1)



Stoch. appr. Step 2
.

Remarks

@ Total energy is invariant, i. e.

N
1
857/\/: {XER1| ZNX,':€}
i=1

is invariant wrt dynamics;

e Standing assumptions: for any E, E’ the kernel P(E, E’, da)

© is symmetric wrt 1/2 ;
@ is never equal to (do + 1) (i. e. {7, B} # {E1, B2})
© plus an appropriate condition for A.



Stoch. appr. Step 2
Mesoscopic generator in the GG model, case d =3

Ey

/\(El’ E2) - /\tOf(El + E2) Apart(m

(product!) where

_2r 5+ BV (1-P)

Nior(s) = /s Apar =
() = V/5 o) =g 2
and M
P(x1,xp,da) = P ,da) = P(8,d
(x1, %2, da) (X1 o a) = P(8, da)
with 3 = leﬁ)@ (simple dependence!), where
aN(l—a)

P(3,da) 3 1N\ Gaa—p)
da 23+BV(1-5)




Stoch. appr. Step 2
°

Stick process scaling to the porous medium equ.

Feng-Iscoe-Seppalainen, '96

1 [ -
AG) = E515 [T | 3 1A ) - AR | d
j=+1

where o > 1 and
xx fk#ii+]j
xi—u ifk=i
X,‘+J‘+U Ifk:I+j

u”'?j —_—
X =

This model can be understood as a zero-range energy model
Then the expected limiting equ. is 0;u = const. A(u®), the
nonlinear heat equ. (porous medium equ.) if o # 1.



Stoch. appr. Step 2
°

Goal: Limiting heat equ. in GG model

In the limit as N — oo and £ = i/N, t = N? 7 the empirical
process

N .
Z N OXi(t)
i=1
should converge to a process with density u(&, ) solving

Oru(&,7) = O¢(const \/u(§, 1) Ozu(§, 7))



Gap
°

spectral gap for reversible 7 y:

L2

Te,N

Assume: for every E;, E;, we have A\(E;, E;) = A" and
P(E1, Ey, da) = P*(da).

Theorem

If the stationary distribution m. iy of X(t) on Sy is reversible, then

™

o(LF) C (—oo,—%/\* 1 —40B] sin? [ 75| U {0},

where 0 is a simple eigenvalue corresponding to the constant
eigenfunction.




Gap
°

Spectral gap in the general case: Assumptions

Let 7.y be a reversible stationary distribution of £ on S v.
Suppose that there exist a constant A* > 0 and a probability
measure P* such that the following are satisfied:

(i) Rate function A satisfies A(E1, Ez) > A*
(ii) (Doeblin-type) There exists a constant 3 > 0 such that P
satisfies the minorization condition P(Ey, E»,.) > B P*(.)
(iii) The unique stationary distribution 77 5, of £* on S n
(corresponding to A* and P*) is reverS|b|e

(iv) The measures 7 and 7} are uniformly equivalent, i.e.
there exist two constants 0 < C_, < CjN < oo such that
their Radon-Nikodym derivative satisfies

— e, n(dx
Ce,N < xgdxg < C




Spectral gap for £

Then the spectrum of L in Lfré satisfies

™

/\*%[1—40,%*] sin2 [N+2H u{o},

o(L) C (—oo,—ﬁ

CF N
+
Ce,N

where 0 is a simple eigenvalue.

Michiko SASADA, '11 (work in progress):
° % spectral gap for stick models

@ hope to extend methods to our energy exchange model



Rev. Pr. Meas.
°

Description of reversible product measures

Lemma (Reversible product measures and

Let v be a probability measure on R. Then the product
(probability) measure pi(dx) = v(dxi) - - - v(dxy) on RY is
reversible for X(t) (with generator) for some N if and only if it is
reversible for N = 2.




Rev. Pr. Meas.
°

Particular case

Assume that the rate function A and the transition kernel P are of

the form

A(6:3i41) = Aot -+ xi1) Apare ()
Xiy Xj+1) = Ntot\Xi T Xj+1) N\part Xi + X1

x;
P(xi, xis1,d :P<7’,d :P( ,d)
(6 X1, da) Xi + Xit+1 a) p, da

where M

ﬁ:Xi‘i‘Xi—f—l

As seen, they are satisfied in the GG model!



Rev. Pr. Meas.
.

Characterization of rev. product meas., N > 2

Theorem (Reversible product measures)

Suppose: Markov chain on [0, 1] with kernel P(3, da) (the energy
exchange!) has a unique invariant distribution p(.). Suppose also
that Vs > 0 Agor(s) >0 andV 0 < 3 <1 Apare(B) > 0. Then the
product measure p(dx) = v(dxy) - - - v(dxy) is reversible for X(t) if
and only if either of the following two holds:

© (degenerate) There exists € > 0 such that v(dx;) = d(e, dxq).

© (gamma) There exists ¢ > 0 and d > 0 such that

dx x172-1 e_x?l
r(d) 1

p(dB) = dB[B(1 - B)2 !




Rev. Pr. Meas.
°

GG model, d = 3 revisited

In previous theorem Z is the normalizing constant, and

[ ptds) [ P(s.da) vt ) = [ p(ds) [ P(3.da) i(s.0)
for all bounded % : [0,1]* — R.
GG-model, d =3
dx1 X1 Zefx?1
(Xm) . \/: ﬁ
Veoe(ds) = & [fr % . vpan(dB) = dB /B (1 — ﬁ)%

€ €

1
p(da) =da/a(l —«a) /\part Z




Rev. Pr. Meas.
°

Main result for GG, d =3

Corollary

If Ns(s) is replaced by any non-negative continuous function, which
is bounded away from zero, then the following hold for any N and
€.
© The product measure ji(dx) = v(dxy) - - - v(dxn) with
X
v(dxi) = Xm = 2676 is the unique reversible product

measure for X(t).

@ On every S\ there exists a unique stationary distribution
Te,N- This measure is obtained by conditioning p(dx).

© The spectrum o(L) of the generator L acting on L72T€’ ., satisfies

o(L) C (—oo,—c sin [/v 2“ u {0}

for some constant C, which may depend on the choice of Not.



Methods
°

Main parts of proof

@ Comparison

@ Gap bound for simple model



Methods
.

Comparison method 1

Then the associated Dirichlet form
Den(A) = /TI'E,N(dX) A(x) [-LA](x)

is defined for all A € L2

7.y and has the representation

1N1

= - Ten(dX) AN(xi, xiv1) | P(xi, Xiv1, de) [A(T;.ax)—A(X)]? .
PWEY ) [ Plaxisn )~AX)]



Methods
°

Comparison method 2

The basic idea to prove convergence rates for X(t) is to compare
the spectral gap of its generator £ to that of a simple reference
process. In order to distinguish these two generators we use a
superscript

N—-1
LAAX) =N / P*(da) [A(Tj.ax) — AX)]
i=1

N-1

Din(A) = 5 [ mial(d) YA [ P(da) [ATiax) ~ AP

i=1

to denote the invariant measure, the generator and the
corresponding Dirichlet form of the reference process.



Methods
.

Spectral gap in the general case: Assumptions

Let 7.y be a reversible stationary distribution of £ on S v.
Suppose that there exist a constant A* > 0 and a probability
measure P* such that the following are satisfied:

(i) Rate function A satisfies A(E1, Ez) > A*
(ii) (Doeblin-type) There exists a constant 3 > 0 such that P
satisfies the minorization condition P(Ey, E»,.) > B P*(.)
(iii) The unique stationary distribution 77 5, of £* on S n
(corresponding to A* and P*) is reverS|b|e

(iv) The measures 7 and 7} are uniformly equivalent, i.e.
there exist two constants 0 < C_, < CjN < oo such that
their Radon-Nikodym derivative satisfies

— e, n(dx
Ce,N < xgdxg < C




Methods
.

Comparison method 3

Since we assume reversibility, the generator is self-adjoint, and
hence we have the following variational characterization

DE,N(A)

Goon s AELr L, Vargy(A
Var. n(A) € Lz y» Varen( )750}

~ = inf {
of the spectral gap v of L acting on L72re ,» Where Varc y(A)
denotes the variance of A with respect to 7 .

D¢, n(A) can be bounded from below by using (i)-(iv), and
Vare y(A) from above by using (iv).



Hydr. limit
°

Hydrodynamical limit: simple cases

O If A= const. and P(8,da) = P(da)
(in fact, P(da) need not be abs. cont.)
then the limiting equation is

oru=C Au;

Q If A(E1, E2) = E1 + E2 and P(a) = 6y 5, then the limiting
equation is

Oru(€,m) = 0e(C u(€, 7) deu(€, 7)) = C/2 AuP(€,7)



Summary

© Introduced a mesoscopic stochastic model close to GG model

© Formulated conditions ensuring appropriate lower bound (%)
for spectral gap in terms of N

© Now one can attack hydrodynamic limit (a la Varadhan).
BUT: it is a non-gradient system! (except for toy models)

Q Tasks:

e Prove hydrodynamic limit

e Improve conditions, in particular, on bdedness away from 0 of
A (numerical evidence!)

e Return to Sz.-Téth-approach



Vaserstein-distance

Recall that the definition of the Vaserstein-p distance is
po(in,v) = jnf [ED(X, YPl> andset  p(u,v) = pa(ps,v)
~p
Y~v

where 1 and v are two probability measures on a compact metric
space (S, d).

We will be using p = 2.

Furthermore, for p = 1 the duality

p(p,v) = inf Ed(X,Y) = sup  (u(f)—v(f))
if:l; . Lip(f)<1

follows by the Kantorovich-Rubinstein theorem.



Proof of convergence in Vaserstein-2 distance cont’d

Proposition (Rate of convergence in Vaserstein-2 distance)

Let U(t) and U'(t) be any two Markov chains generated by L on
Se,n- Then

p2(U(E), U(9) < p2(U(0),U(0) exp ( — 511~ 403] sin® [ |¢)

§eN\/Hexp(—%[1—4a,23] sin? {NLH} t>

holds for all t.

o If 0,2; < %, then there exists a unique stationary distribution
Te,n on each Sc .

@ This rate of convergence is again O(N~2), and thus optimal.
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