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Non-equilibrium statistical physics

Goal: macroscopic laws from microscopic dynamics.
Optimally: from Newtonian (Hamiltonian) ones (classical
statphys!)
Strong candidates:

billiard models (quite realistic)

(non-linear) oscillators

Spectacular successes for billiards:

planar diffusion (or super-diffusion); Bunimovich, Chernov,
Sinai ’81, ’91; Young ’98; Sz.-Varjú ’04, ’07; Bálint-Gouëzel
’06; Chernov-Dolgopyat 09 — , Rey-Bellet-Young ’08,
Melbourne-Nicol ’09, Gouëzel ’10, etc., etc.

linear Boltzmann equation for the Lorentz gas (Boldrighini,
Bunimovich, Sinai, ’83)

convergence to equilibrium of Lorentz gas (Krámli-Sz., ’83)
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Derivation of heat equ.
Fourier law of heat conduction

Oscillating interest:
survey until 2000: Bonetto–Lebowitz–Rey-Bellet ’00
Recent wave:

Eckmann-Young ’06: equilibrium measures under
phenomenological assumptions

Gaspard-Gilbert ’08–: model of localized hard disks (balls),
two step approach:

1

derive a mesoscopic master equ.
from the microscopic kinetic equ. of the Hamiltonian model
in the rare (but strong) interaction limit
it is a Markov jump process

2

derive the macroscopic heat equ. ∂tu = ∂x(κ(u)∂xu) from
the mesoscopic master equ.
and determine κ(u)
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Quasi-1D model: 2 cells of the N chain
Periodic scatterers (shaded disks), confined moving disks (white circles)

Figure: Periodic scatterers (shaded disks), confined disks (white circles)
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Parameter choice of G-G,’08.

box size: b; periodic b. c.’s along y -axis

chain length = N;

radius of fixed scatterers (shaded circles) = ρf

radius of moving disks (empty circles) = ρm

condition of confinement: ρf + ρm > b/2

condition of conductivity: ρm > ρcrit =
√

(ρf + ρm)2 − (l/2)2

small parameter ε = ρm − ρcrit

G-G’s trick:

Keep ρf + ρm =: ρ fixed

If ρm = ρcrit , then we have N non-interacting billiards.
Moreover, their phase spaces only depend on ρ!
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Liouville equation

Ernst-Dorfman, ’89: The kinetic equ. for the N-particle density
pN(q1, v1, . . . , qN , vN ; t) is

∂tpN =
N∑

j=1

(
−vj∂qj + Kwall ,j + Cj ,j+1

)
pN

the first two terms on the RHS describe the billiard dynamics
of each disk within its cell (denote wall collision rate by νwall,ε)

the third one: the interaction of neighboring disks provides
energy transfer (denote binary collision rate by νbin,ε)
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Scale separation

G-G ’08-: Scale separation at
ε→ 0, i. e. νwall,ε(∼ νwall ,crit > 0) � νbin,ε → 0

1 they derive a master equation for the density
PN(E1, . . . ,EN ; t) (Ej = v2

j : 1 ≤ j ≤ N)

2 from the master equation they obtain the coefficient of heat
conductivity: κ(T ) =

√
T (T being the temperature)

i. e. the equation ∂tu = C . ∆u3/2.

Our aim: Rigorous theory
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Dynamical approach to step 1

By Hirata-Saussol-Vaienti, ’98 (also Collet-Eckmann, ’06,
Chazotte-Collet ’10): If

a dynamical system (M,T , µ) is mixing in a controlled way
(e. g. α-mixing)

and Aε is a sequence of nice subsets (to avoid e. g.
neighborhoods of periodic points) with limε→0 µ(Aε) = 0

then the successive entrance times of the dynamics into Aε form a
Poisson process on the time scale of µ(Aε)

−1.

For simplicity let N = 2 with free boundary conditions along x-axis.
The model is isomorphic to a 4D semi-dispersing billiard.
It is K-mixing, but no mixing rate is known. (exponential mixing:
Bálint-Tóth, ’08 is for dispersing billiards, only, and, moreover, it is
hypothetical).
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Expected result for 2-disk chain
similarly for N-disks, too

(joint with IP Tóth, work in slow progress)
N = 2, free boundary condition along x-axis. Dynamics:
(Mε = {q1, v1; q2, v2|dist(q1, q2) ≥ 2ρm, v

2
1 + v2

2 = 1},SR, µε).
Denote by 0 < τ1,ε < τ2,ε < . . . successive binary collision times of
the two disks. Then, as ε→ 0

(νbin,ετ1,ε, νbin,ετ2,ε, . . . ) converges to a Poisson process

E1(νbin,εt),E2(νbin,εt) converges to a jump Markov process
on the state space E1 + E2 = 1 where Ej(t) = 1

2v2
j (t); j = 1, 2

the transition kernel k(E+
1 |E

−
1 ) is calculated by verifying

Boltzmann’s ’microscopic chaos’ property

Note: νbin,ε ∼ const.ε3.
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Idea of proof

since binary collisions are rare, most of the time the two disks
evolve independently

between two binary collisions - with an overwhelming
probability - there is averaging in each of the in-cell, 2D
billiard dynamics

for these typically long time intervals it is natural to apply
Chernov-Dolgopyat averaging

for that purpose

??? one has to check that for an incoming proper family of
stable pairs, so is the outgoing family ???
one applies martingale approximation for jump processes (á la
Dolgopyat-Sz.-Varjú, Duke ’09 )
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Our approach (with Grigo and Khanin)

1 Introduce a (mesoscopic) stochastic model close to that of
GG;

2 Find lower bounds for the spectral gap of its generator
(appropriately depending on system size N).

3 Establish hydrodynamics limit transition to obtain heat equ.

Appropriate dependence = O( 1
N2 ) for continuous time dynamics.

Existing gap bounds almost exclusively for models with a finite
state-space (like exclusion-like processes).
Continuous state space model: for Kac-model from ’56 spectral
gap estimate by Janvresse in ’01, only.
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A (mesoscopic) stochastic model of energies

State space: x = (x1, . . . , xN) ∈ RN
+

Generator L of the continuous time Markov jump process X (t)
(given on RN

+) acting on bounded functions A : RN
+ → R is

LA(x) =
N−1∑
i=1

Λ(xi , xi+1)

∫
P(xi , xi+1, dα) [A(Ti ,αx)− A(x)]

where P(xi , xi+1, dα) is a probability measure on [0, 1].
The maps Ti ,α model the energy exchange between the
neighboring sites i and i + 1, and are defined by

Ti ,α(xi ) = α(xi + xi+1)

Ti ,α(xi+1) = (1− α)(xi + xi+1)
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Remarks

Total energy is invariant, i. e.

Sε,N =
{

x ∈ RN
+|

N∑
i=1

1

N
xi = ε

}
is invariant wrt dynamics;

Standing assumptions: for any E ,E ′ the kernel P(E ,E ′, dα)
1 is symmetric wrt 1/2 ;
2 is never equal to 1

2 (δ0 + δ1) (i. e. {E+
1 ,E

+
2 } 6= {E1,E2})

3 plus an appropriate condition for Λ.
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Mesoscopic generator in the GG model, case d = 3

Λ(E1,E2) = Λtot(E1 + E2) Λpart(
E1

E1 + E2
)

(product!) where

Λtot(s) =
√

s Λpart(β) =
2π

6

1
2 + β ∨ (1− β)√

β ∨ (1− β)

and
P(x1, x2, dα) = P(

x1

x1 + x2
, dα) = P(β, dα)

with β = x1
x1+x2

(simple dependence!), where

P(β, dα)

dα
=

3

2

1 ∧
√

α∧(1−α)
β∧(1−β)

1
2 + β ∨ (1− β)

.
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Stick process scaling to the porous medium equ.
Feng-Iscoe-Seppalainen, ’96

KA(x) = ΣN−1
i=1

1

2

∫ xi

0
uα−2

 ∑
j=±1

[A(xu,i ,j)− A(x)]

 du

where α > 1 and

xu,i ,j
k =


xk if k 6= i , i + j

xi − u if k = i
xi+j + u if k = i + j

This model can be understood as a zero-range energy model
Then the expected limiting equ. is ∂tu = const. ∆(uα), the
nonlinear heat equ. (porous medium equ.) if α 6= 1.
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Goal: Limiting heat equ. in GG model

In the limit as N →∞ and ξ = i/N, t = N2 τ the empirical
process

N∑
i=1

1

N
δXi (t)

should converge to a process with density u(ξ, τ) solving

∂τu(ξ, τ) = ∂ξ(const
√

u(ξ, τ) ∂ξu(ξ, τ))
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L2
πε,N

–spectral gap for reversible πε,N: simple model!

Assume: for every E1,E2 we have Λ(E1,E2) = Λ∗ and
P(E1,E2, dα) = P∗(dα).

Theorem

If the stationary distribution πε,N of X(t) on Sε,N is reversible, then

σ(L∗) ⊂
(
−∞,−1

2
Λ∗ [1− 4σ2

P ] sin2
[ π

N + 2

]]
∪ {0} ,

where 0 is a simple eigenvalue corresponding to the constant
eigenfunction.
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Spectral gap in the general case: Assumptions

Let πε,N be a reversible stationary distribution of L on Sε,N .
Suppose that there exist a constant Λ? > 0 and a probability
measure P? such that the following are satisfied:

(i) Rate function Λ satisfies Λ(E1,E2) ≥ Λ?

(ii) (Doeblin-type) There exists a constant β > 0 such that P
satisfies the minorization condition P(E1,E2, .) ≥ β P?(.)

(iii) The unique stationary distribution π?
ε,N of L? on Sε,N

(corresponding to Λ? and P?) is reversible.

(iv) The measures πε,N and π?
ε,N are uniformly equivalent, i.e.

there exist two constants 0 < C−ε,N ≤ C+
ε,N <∞ such that

their Radon-Nikodym derivative satisfies

C−ε,N ≤
πε,N(dx)
π?

ε,N(dx) ≤ C+
ε,N .
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Spectral gap for L

Theorem

Then the spectrum of L in L2
πε,N

satisfies

σ(L) ⊂
(
−∞,−β

C−ε,N

C+
ε,N

Λ? 1

2
[1− 4σ2

P? ] sin2
[ π

N + 2

]]
∪ {0} ,

where 0 is a simple eigenvalue.

Michiko SASADA, ’11 (work in progress):
C
N2 spectral gap for stick models

hope to extend methods to our energy exchange model
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Description of reversible product measures

Lemma (Reversible product measures and system size)

Let ν be a probability measure on R+. Then the product
(probability) measure µ(dx) = ν(dx1) · · · ν(dxN) on RN

+ is
reversible for X(t) (with generator) for some N if and only if it is
reversible for N = 2.
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Particular case

Assume that the rate function Λ and the transition kernel P are of
the form

Λ(xi , xi+1) = Λtot(xi + xi+1) Λpart

( xi

xi + xi+1

)
P(xi , xi+1, dα) = P

( xi

xi + xi+1
, dα

)
= P

(
β, dα

)
where

β =
xi

xi + xi+1

As seen, they are satisfied in the GG model!
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Characterization of rev. product meas., N ≥ 2

Theorem (Reversible product measures)

Suppose: Markov chain on [0, 1] with kernel P(β, dα) (the energy
exchange!) has a unique invariant distribution p(.). Suppose also
that ∀s > 0 Λtot(s) > 0 and ∀ 0 < β < 1 Λpart(β) > 0. Then the
product measure µ(dx) = ν(dx1) · · · ν(dxN) is reversible for X(t) if
and only if either of the following two holds:

1 (degenerate) There exists ε > 0 such that ν(dx1) = δ(ε, dx1).

2 (gamma) There exists ε > 0 and d > 0 such that

ν(dx1) =
dx1

ε

[x1

ε

] d
2
−1 e−

x1
ε

Γ(d
2 )

p(dβ) = dβ [β (1− β)]
d
2
−1 Γ(d)

Γ(d
2 )2

Λpart
1

Z
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GG model, d = 3 revisited

In previous theorem Z is the normalizing constant, and∫
p(dβ)

∫
P(β, dα)ψ(α, β) =

∫
p(dβ)

∫
P(β, dα)ψ(β, α)

for all bounded ψ : [0, 1]2 → R.

GG-model, d = 3

ν(dx1) =
dx1

ε

√
x1

ε

2 e−
x1
ε

√
π

νtot(ds) =
ds

ε

[s

ε

]2 e−
s
ε

2
, νpart(dβ) = dβ

√
β (1− β)

8

π

p(dα) = dα
√
α (1− α)

8

π
Λpart(α)

1

Z
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Main result for GG, d = 3

Corollary

If Λs(s) is replaced by any non-negative continuous function, which
is bounded away from zero, then the following hold for any N and
ε.

1 The product measure µ(dx) = ν(dx1) · · · ν(dxN) with

ν(dx1) = dx1
ε

√
x1
ε

2 e−
x1
ε√

π
is the unique reversible product

measure for X(t).

2 On every Sε,N there exists a unique stationary distribution
πε,N . This measure is obtained by conditioning µ(dx).

3 The spectrum σ(L) of the generator L acting on L2
πε,N

satisfies

σ(L) ⊂
(
−∞,−C sin2

[ π

N + 2

]]
∪ {0}

for some constant C, which may depend on the choice of Λtot .



Intro Det. mod. of heat transp. Dyn. appr. Step 1 Stoch. appr. Step 2 Gap Rev. Pr. Meas. Methods Hydr. limit Summary

Main parts of proof

1 Comparison

2 Gap bound for simple model
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Comparison method 1

Then the associated Dirichlet form

Dε,N(A) =

∫
πε,N(dx) A(x) [−LA](x)

is defined for all A ∈ L2
πε,N

, and has the representation

=
1

2

N−1∑
i=1

∫
πε,N(dx) Λ(xi , xi+1)

∫
P(xi , xi+1, dα) [A(Ti ,αx)−A(x)]2 .
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Comparison method 2

The basic idea to prove convergence rates for X(t) is to compare
the spectral gap of its generator L to that of a simple reference
process. In order to distinguish these two generators we use a
superscript ?

L?A(x) = Λ?
N−1∑
i=1

∫
P?(dα) [A(Ti ,αx)− A(x)]

D?
ε,N(A) =

1

2

∫
π?

ε,N(dx)
N−1∑
i=1

Λ?

∫
P?(dα) [A(Ti ,αx)− A(x)]2

to denote the invariant measure, the generator and the
corresponding Dirichlet form of the reference process.
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Spectral gap in the general case: Assumptions

Let πε,N be a reversible stationary distribution of L on Sε,N .
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(i) Rate function Λ satisfies Λ(E1,E2) ≥ Λ?

(ii) (Doeblin-type) There exists a constant β > 0 such that P
satisfies the minorization condition P(E1,E2, .) ≥ β P?(.)
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(corresponding to Λ? and P?) is reversible.
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ε,N are uniformly equivalent, i.e.
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ε,N .
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Comparison method 3

Since we assume reversibility, the generator is self-adjoint, and
hence we have the following variational characterization

γ = inf
{ Dε,N(A)

Varε,N(A)
: A ∈ L2

πε,N
, Varε,N(A) 6= 0

}
of the spectral gap γ of L acting on L2

πε,N
, where Varε,N(A)

denotes the variance of A with respect to πε,N .

Dε,N(A) can be bounded from below by using (i)-(iv), and
Varε,N(A) from above by using (iv).
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Hydrodynamical limit: simple cases

1 If Λ ≡ const. and P(β, dα) = P(dα)
(in fact, P(dα) need not be abs. cont.)

then the limiting equation is

∂tu = C ∆u;

2 If Λ(E1,E2) = E1 + E2 and P(α) = δ1/2, then the limiting
equation is

∂τu(ξ, τ) = ∂ξ(C u(ξ, τ) ∂ξu(ξ, τ)) = C/2 ∆u2(ξ, τ)
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Summary

1 Introduced a mesoscopic stochastic model close to GG model

2 Formulated conditions ensuring appropriate lower bound ( 1
N2 )

for spectral gap in terms of N

3 Now one can attack hydrodynamic limit (à la Varadhan).
BUT: it is a non-gradient system! (except for toy models)

4 Tasks:

Prove hydrodynamic limit
Improve conditions, in particular, on bdedness away from 0 of
Λ (numerical evidence!)
Return to Sz.-Tóth-approach
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Vaserstein-distance

Recall that the definition of the Vaserstein-p distance is

ρp(µ, ν) = inf
X∼µ
Y∼ν

[ED(X ,Y )p]
1
p and set ρ(µ, ν) ≡ ρ1(µ, ν)

where µ and ν are two probability measures on a compact metric
space (S,d).

We will be using p = 2.

Furthermore, for p = 1 the duality

ρ(µ, ν) = inf
X∼µ
Y∼ν

Ed(X ,Y ) = sup
f : Lip(f )≤1

(µ(f )− ν(f ))

follows by the Kantorovich-Rubinstein theorem.
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Proof of convergence in Vaserstein-2 distance cont’d

Proposition (Rate of convergence in Vaserstein-2 distance)

Let U(t) and U′(t) be any two Markov chains generated by L̂ on
Sε,N . Then

ρ2(U(t),U′(t)) ≤ ρ2(U(0),U′(0)) exp
(
− 1

2
[1− 4σ2

P ] sin2
[ π

N + 2

]
t
)

≤ εN
√

N − 1 exp
(
− 1

2
[1− 4σ2

P ] sin2
[ π

N + 2

]
t
)

holds for all t.

If σ2
P <

1
4 , then there exists a unique stationary distribution

πε,N on each Sε,N .

This rate of convergence is again O(N−2), and thus optimal.
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