Factors of g-measures

Evgeny Verbitskiy
Univ. Leiden / Groningen
The Netherlands

Warwick, April 17, 2012

Binary symmetric channel

Input process $\left\{X_{n}\right\} \mapsto$ output process $\left\{Y_{n}\right\}$

$$
\begin{aligned}
& \mathbb{P}\left(Y_{n}=0 \mid X_{n}=0\right)=\mathbb{P}\left(Y_{n}=1 \mid X_{n}=1\right)=1-\varepsilon \\
& \mathbb{P}\left(Y_{n}=0 \mid X_{n}=1\right)=\mathbb{P}\left(Y_{n}=1 \mid X_{n}=0\right)=\varepsilon
\end{aligned}
$$

Input process $\left\{X_{n}\right\} \mapsto$ Output process $\left\{Y_{n}\right\}$

Question: Take you favorite process (measure), what are the properties/entropy/... of the output process (measure).

Binary Symmetric Markov Process under BSC

$\left\{X_{n}\right\}$ - Markov chain, $X_{n} \in\{-1,1\}$,

$$
\mathbf{P}=\left(\begin{array}{cc}
1-p & p \\
p & 1-p
\end{array}\right)
$$

$\left\{Z_{n}\right\}$ - Bernoulli sequence, $Z_{n}=\{-1,1\}$,

$$
\mathbb{P}\left(Z_{n}=-1\right)=\varepsilon, \quad \mathbb{P}\left(Z_{n}=1\right)=1-\varepsilon
$$

$Y_{n}=X_{n} \cdot Z_{n} \quad \forall n \in \mathbb{Z}$

Binary Symmetric Markov Process under BSC

$\left\{X_{n}\right\}$ - Markov chain, $X_{n} \in\{-1,1\}$,

$$
\mathbf{P}=\left(\begin{array}{cc}
1-p & p \\
p & 1-p
\end{array}\right)
$$

$\left\{Z_{n}\right\}$ - Bernoulli sequence, $Z_{n}=\{-1,1\}$,

$$
\mathbb{P}\left(Z_{n}=-1\right)=\varepsilon, \quad \mathbb{P}\left(Z_{n}=1\right)=1-\varepsilon
$$

$Y_{n}=X_{n} \cdot Z_{n} \quad \forall n \in \mathbb{Z}$
If $\left\{Z_{n}\right\}$ is Markov, we have a Gilbert-Elliot channel.

Equivalently,

$$
Y_{n}=\pi\left(X_{n}^{\mathrm{ext}}\right)
$$

for the Markov chain $\left\{X_{n}^{\text {ext }}\right\}$ with values in

$$
A=\{(1,1),(1,-1),(-1,1),(-1,-1)\}
$$

with

$$
\mathbf{P}^{\mathrm{ext}}=\left(\begin{array}{cccc}
(1-p)(1-\varepsilon) & (1-p) \varepsilon & p(1-\varepsilon) & p \varepsilon \\
(1-p)(1-\varepsilon) & (1-p) \varepsilon & p(1-\varepsilon) & p \varepsilon \\
p(1-\varepsilon) & p \varepsilon & (1-p)(1-\varepsilon) & (1-p) \varepsilon \\
p(1-\varepsilon) & p \varepsilon & (1-p)(1-\varepsilon) & (1-p) \varepsilon
\end{array}\right),
$$

and an obvious deterministic function

$$
\pi: A \rightarrow\{-1,1\}
$$

Equivalently,

$$
Y_{n}=\pi\left(X_{n}^{\mathrm{ext}}\right)
$$

for the Markov chain $\left\{X_{n}^{\text {ext }}\right\}$ with values in

$$
A=\{(1,1),(1,-1),(-1,1),(-1,-1)\}
$$

with

$$
\mathbf{P}^{\mathrm{ext}}=\left(\begin{array}{cccc}
(1-p)(1-\varepsilon) & (1-p) \varepsilon & p(1-\varepsilon) & p \varepsilon \\
(1-p)(1-\varepsilon) & (1-p) \varepsilon & p(1-\varepsilon) & p \varepsilon \\
p(1-\varepsilon) & p \varepsilon & (1-p)(1-\varepsilon) & (1-p) \varepsilon \\
p(1-\varepsilon) & p \varepsilon & (1-p)(1-\varepsilon) & (1-p) \varepsilon
\end{array}\right),
$$

and an obvious deterministic function

$$
\pi: A \rightarrow\{-1,1\}
$$

BSC is a 1-block factor of a Markov process

Information theory BSC is the simplest textbook channel

Statistical mechanics
BSC on lattices $\mathbb{Z}^{d} \Leftrightarrow$ time $t=t(\varepsilon)$ map infinite temperature Glauber dynamics

Probability/Statistics
BSC -> hidden Markov chains
Dynamical Systems
BSC \rightarrow 1-block factor

Information theory BSC is the simplest textbook channel

Statistical mechanics
BSC on lattices $\mathbb{Z}^{d} \Leftrightarrow$ time $t=t(\varepsilon)$ map infinite temperature Glauber dynamics

Probability/Statistics
BSC -> hidden Markov chains
Dynamical Systems
BSC \rightarrow 1-block factor

What happens if you start with a nice process?

Side remark: RG method in Stat. Mech.

 is used to compute some interesting quantities(critical exponents).

Side remark: RG method in Stat. Mech.

 is used to compute some interesting quantities (critical exponents).Spin system $\left\{\sigma_{n}: n \in \mathbb{Z}^{d}\right\}$ governed by Gibbs μ with potential H_{0}.

Side remark: RG method in Stat. Mech.

 is used to compute some interesting quantities (critical exponents).Spin system $\left\{\sigma_{n}: n \in \mathbb{Z}^{d}\right\}$ governed by Gibbs μ with potential H_{0}.
Apply renormalization: e.g., decimation New spin system $\left\{\widetilde{\sigma}_{n}: n \in \mathbb{Z}^{d}\right\}$:

$$
\widetilde{\sigma}_{n}=\sigma_{b n}, \quad b \in \mathbb{N}, n \in \mathbb{Z}^{d}
$$

$\operatorname{Law}\left(\left\{\widetilde{\sigma}_{n}\right\}\right)$ is Gibbs (with potential H_{1}).

$$
H_{0} \mapsto H_{1}
$$

Side remark: RG method in Stat. Mech.

 is used to compute some interesting quantities (critical exponents).Spin system $\left\{\sigma_{n}: n \in \mathbb{Z}^{d}\right\}$ governed by Gibbs μ with potential H_{0}.
Apply renormalization: e.g., decimation New spin system $\left\{\widetilde{\sigma}_{n}: n \in \mathbb{Z}^{d}\right\}$:

$$
\widetilde{\sigma}_{n}=\sigma_{b n}, \quad b \in \mathbb{N}, n \in \mathbb{Z}^{d}
$$

$\operatorname{Law}\left(\left\{\widetilde{\sigma}_{n}\right\}\right)$ is Gibbs (with potential H_{1}).

$$
H_{0} \mapsto H_{1}
$$

Repeat many times... [Kadanoff (66), Wilson (75),...]

Nice measures in 1D

are regular (=GIBBS), and might be
Gibbs in Stat. Mechanics sense (DLR)
Gibbs in Dyn. Systems sense (Bowen)
g-measure (Keane, one-sided DLR)
are regular (=GIBBS), and might be
Gibbs in Stat. Mechanics sense (DLR)
Gibbs in Dyn. Systems sense (Bowen)
g-measure (Keane, one-sided DLR)
... equivalent under strong uniqueness conditions.

GIBBS notions

Gibbs/Statistical Mechanics/ two-sided

$$
\mu\left(x_{0} \mid x_{\neq 0}\right)=\frac{1}{Z} \exp \left(-\sum_{\Lambda \ni 0} U_{\Lambda}\left(x_{\Lambda}\right)\right) .
$$

g-measures/Dynamical Systems/ one-sided

$$
\mu\left(x_{0} \mid x_{>0}\right)=g\left(x_{0}, x_{1}, \ldots\right), \quad g \in C\left(A^{\mathbb{Z}_{+}}\right), g>0
$$

Gibbs/Dyn. Systems (Bowen): $\exists c, P \in \mathbb{R}, \phi \in C\left(A^{\mathbb{Z}_{+}}\right)$

$$
\frac{1}{c} \leq \frac{\mu\left(\left[x_{0} \ldots x_{n}\right]\right)}{\exp \left(\sum_{j=0}^{n} \phi\left(\sigma^{j} x\right)-(n+1) P\right)} \leq c
$$

Relation between different GIBBS notions

R. Fernandez, S. Gallo, G. Maillard (2011): unique g-measure which is not two-sided Gibbs
P. Walters (2005): example of μ on $A^{\mathbb{Z}}$ such that

$$
\mu^{+} \text {on } A^{\mathbb{Z}_{\geq 0}}, \quad \mu^{-} \text {on } A^{\mathbb{Z}_{\leq 0}},
$$

μ^{+}is a g-measure, μ^{-}is not.
unknown for the Dyson model

$$
H_{0}(\sigma)=J \sum_{k \in \mathbb{Z}} \frac{\sigma_{0} \sigma_{k}}{1+|k|^{\alpha}}, \quad \alpha \in(1,2)
$$

Relation between different GIBBS notions

R. Fernandez, S. Gallo, G. Maillard (2011): unique g-measure which is not two-sided Gibbs
P. Walters (2005): example of μ on $A^{\mathbb{Z}}$ such that

$$
\mu^{+} \text {on } A^{\mathbb{Z}_{\geq 0}}, \quad \mu^{-} \text {on } A^{\mathbb{Z}_{\leq 0}},
$$

μ^{+}is a g-measure, μ^{-}is not.
unknown for the Dyson model

$$
H_{0}(\sigma)=J \sum_{k \in \mathbb{Z}} \frac{\sigma_{0} \sigma_{k}}{1+|k|^{\alpha}}, \quad \alpha \in(1,2)
$$

CMMC's, CCC's, VLMC's, uniform martingales, abs.reg. processes

Markov measures

Markov measures

Theorem. Suppose $\left\{X_{n}\right\}_{n \geq 0}$ is a Markov chain with $\mathbf{P}>0$ and \mathbb{P} is the invariant measure. Then the measure $\mathbb{Q}=\pi_{*} \mathbb{P}=\mathbb{P} \circ \pi^{-1}$ of the factor process

$$
Y_{n}=\pi\left(X_{n}\right)
$$

is regular (Gibbs, g-, CMMC's, ...):
$\beta_{n}:=\sup _{y_{0}^{n+1}, \zeta, \zeta}\left|\mathbb{Q}\left(y_{0} \mid y_{1}^{n}, \xi_{n+1}^{\infty}\right)-\mathbb{Q}\left(y_{0} \mid y_{1}^{n}, \zeta_{n+1}^{\infty}\right)\right| \rightarrow 0$.
Moreover, there exist $C>0$ and $\theta \in(0,1)$ such that

$$
\beta_{n} \leq C \theta^{n}
$$

Markov measures

Theorem. Suppose $\left\{X_{n}\right\}_{n \geq 0}$ is a Markov chain with $\mathbf{P}>0$ and \mathbb{P} is the invariant measure. Then the measure $\mathbb{Q}=\pi_{*} \mathbb{P}=\mathbb{P} \circ \pi^{-1}$ of the factor process

$$
Y_{n}=\pi\left(X_{n}\right)
$$

is regular (Gibbs, g-, CMMC's, ...):
$\beta_{n}:=\sup _{y_{0}^{n+1}, \zeta, \zeta}\left|\mathbb{Q}\left(y_{0} \mid y_{1}^{n}, \xi_{n+1}^{\infty}\right)-\mathbb{Q}\left(y_{0} \mid y_{1}^{n}, \zeta_{n+1}^{\infty}\right)\right| \rightarrow 0$.
Moreover, there exist $C>0$ and $\theta \in(0,1)$ such that

$$
\beta_{n} \leq C \theta^{n}
$$

At least 10 proofs \Rightarrow various estimates of θ

Decay rate for $p=0.4, \varepsilon=0.1$

Birch
Harris
Baum and Petrie
Han and Marcus
Hochwald and Jelenković
Fernández, Ferrari, and Galves
Peres
$\theta_{B} \quad \approx 0.99998$
$\theta_{H} \approx 0.97223$
$\theta_{B P}=0.94$
$\theta_{H M}=0.58$
$\theta_{H J}=0.2$
$\theta_{F F G}=0.2$
$\theta_{P}=0.2$
$\theta_{H J}=\theta_{F F G}=\theta_{P}=|1-2 p|=\lambda_{2}(\mathbf{P})=$
$\varlimsup_{n \rightarrow \infty}\left\|\mathbb{P}\left(X_{n}=\cdot \mid X_{0}=1\right)-\mathbb{P}\left(X_{n}=\cdot \mid X_{0}=-1\right)\right\|^{\frac{1}{n}}$

Decay rate for $p=0.4, \varepsilon=0.1$

Birch
Harris
Baum and Petrie
Han and Marcus
Hochwald and Jelenković
Fernández, Ferrari, and Galves
Peres
$\theta_{B} \approx 0.99998$
$\theta_{H} \approx 0.97223$
$\theta_{B P}=0.94$
$\theta_{H M}=0.58$
$\theta_{H J}=0.2$
$\theta_{F F G}=0.2$
$\theta_{P}=0.2$
$\theta_{H J}=\theta_{F F G}=\theta_{P}=|1-2 p|=\lambda_{2}(\mathbf{P})=$
$\varlimsup_{n \rightarrow \infty}\left\|\mathbb{P}\left(X_{n}=\cdot \mid X_{0}=1\right)-\mathbb{P}\left(X_{n}=\cdot \mid X_{0}=-1\right)\right\|^{\frac{1}{n}}$
independent of ε

In fact ...

Process $\left\{Y_{n}\right\}$ is more random than $\left\{X_{n}\right\}$.

Process $\left\{Y_{n}\right\}$ is more random than $\left\{X_{n}\right\}$. Memory decay rate should be strictly smaller than $|1-2 p|$.

In fact ...

Process $\left\{Y_{n}\right\}$ is more random than $\left\{X_{n}\right\}$. Memory decay rate should be strictly smaller than $|1-2 p|$.

Note that for $\epsilon=0, \mathbb{Q}=\mathbb{P}$, and decay rate is zero.

In fact ...

Process $\left\{Y_{n}\right\}$ is more random than $\left\{X_{n}\right\}$. Memory decay rate should be strictly smaller than $|1-2 p|$.

Note that for $\epsilon=0, \mathbb{Q}=\mathbb{P}$, and decay rate is zero.
Theorem. For all $p, \varepsilon \in(0,1)$, memory decay rate

$$
\begin{gathered}
\theta^{*}=\varlimsup_{n}\left(\beta_{n}\right)^{\frac{1}{n}} \\
\beta_{n}=\sup _{y_{0}^{n+1}, \xi, \zeta}\left|\mathbb{Q}\left(y_{0} \mid y_{1}^{n}, \xi_{n+1}^{\infty}\right)-\mathbb{Q}\left(y_{0} \mid y_{1}^{n}, \zeta_{n+1}^{\infty}\right)\right| \rightarrow 0
\end{gathered}
$$

satisfies

$$
\theta^{*}<|1-2 p|
$$

Theorem.

$$
2 \cdot \mathbb{Q}\left(y_{0} \mid y_{1}, y_{2}, \ldots\right)=a_{0}-\frac{b_{0}}{a_{1}-\frac{b_{1}}{a_{2}-\frac{b_{2}}{a_{3}-\ldots}}}
$$

where for $i \geq 0$

$$
\begin{aligned}
& a_{i}=1+q_{i}, \quad b_{i}=4 \varepsilon(1-\varepsilon) q_{i} \\
& q_{i}=(1-2 p) y_{i} y_{i+1}
\end{aligned}
$$

Theorem.

$$
2 \cdot \mathbb{Q}\left(y_{0} \mid y_{1}, y_{2}, \ldots\right)=a_{0}-\frac{b_{0}}{a_{1}-\frac{b_{1}}{a_{2}-\frac{b_{2}}{a_{3}-\ldots}}}
$$

where for $i \geq 0$

$$
\begin{aligned}
& a_{i}=1+q_{i}, \quad b_{i}=4 \varepsilon(1-\varepsilon) q_{i} \\
& q_{i}=(1-2 p) y_{i} y_{i+1}
\end{aligned}
$$

PROOF: BSM over BSC = RFIM in 1D.

Identification of potential

 all thermodynamic quantities are real-analytic in ε.$$
\begin{aligned}
\mathbb{Q}\left(y_{0} \mid y_{1}^{\infty}\right) & =\sum_{k=0}^{\infty} \psi_{k}\left(y_{0}^{\infty}\right) \varepsilon^{k}=\sum_{k=0}^{\infty} \psi_{k}\left(y_{0}^{k+1}\right) \varepsilon^{k} \\
\log \mathbb{Q}\left(y_{0} \mid y_{1}^{\infty}\right) & =\sum_{k=0}^{\infty} \phi_{k}\left(y_{0}^{\infty}\right) \varepsilon^{k}=\sum_{k=0}^{\infty} \phi_{k}\left(y_{0}^{k+1}\right) \varepsilon^{k} \\
h(\mathbb{Q}) & =h(\mathbb{P})+\sum_{k=1}^{\infty} c_{k} \epsilon^{k}
\end{aligned}
$$

Han-Marcus (2006), Zuk-Domany-Kanter-Aizenman (2006), Pollicott (2011)

g-measures on full shifts

Suppose $g: A^{\mathbb{Z}_{+}} \rightarrow[0,1]$ is continuous and positive.
Definition. A measure μ on $\mathrm{A}^{\mathbb{Z}_{+}}$is a g-measure if

$$
\mu\left(X_{0}=x_{0} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}, \ldots\right)=g(x),
$$

for μ-a.a. $x=\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right)$.

g-measures on full shifts

Suppose $g: A^{\mathbb{Z}_{+}} \rightarrow[0,1]$ is continuous and positive.
Definition. A measure μ on $\mathrm{A}^{\mathbb{Z}_{+}}$is a g-measure if

$$
\mu\left(X_{0}=x_{0} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}, \ldots\right)=g(x),
$$

for μ-a.a. $x=\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right)$.
Equivalently, for all $f \in C\left(\mathrm{~A}^{\mathbb{Z}_{+}}, \mathbb{R}\right)$, one has

$$
\int f(x) \mu(d x)=\int\left[\sum_{a \in A} f(a x) g(a x)\right] \mu(d x)
$$

g-measures

Positive and continuous function g,

$$
\operatorname{var}_{n}(g)=\sup _{x_{0}^{n}=\bar{x}_{0}^{n}}|g(x)-g(\bar{x})| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Theorem (Walters 1975). Continuous positive normalized function g with summable variation

$$
\sum_{n=0}^{\infty} \operatorname{var}_{n}(g)<\infty,
$$

admits a unique g-measure.

g-measures

Finite range
Markov chains with $\mathbf{P}>0$,

$$
\mathbf{P}=\left(p_{i j}\right) \text { with some } p_{i j}=0 \text { excluded }
$$

Exponential decay Hölder continuous functions g

Review: renormalization of g-measures

Theorem. If $\beta_{n}=\operatorname{var}_{n}(g) \rightarrow 0$ sufficiently fast, then $v=\mu \circ \pi^{-1}$ is a \widetilde{g}-measure:

$$
v\left(y_{0} \mid y_{1}^{\infty}\right)=\widetilde{g}(y)
$$

with

$$
\widetilde{\beta_{n}}=\operatorname{var}_{n}(\widetilde{g}) \rightarrow 0
$$

Review: renormalization of g-measures

Theorem. If $\beta_{n}=\operatorname{var}_{n}(g) \rightarrow 0$ sufficiently fast, then $v=\mu \circ \pi^{-1}$ is a \widetilde{g}-measure:

$$
v\left(y_{0} \mid y_{1}^{\infty}\right)=\widetilde{g}(y)
$$

with

$$
\widetilde{\beta}_{n}=\operatorname{var}_{n}(\widetilde{g}) \rightarrow 0
$$

Denker \& Gordin (2000)

$$
\beta_{n}=\mathcal{O}\left(e^{-\alpha n}\right)
$$

Chazottes \& Ugalde (2011) $\quad \sum_{n} n^{2} \beta_{n}<\infty$ Kempton \& Pollicott (2011) $\sum_{n} n \beta_{n}<\infty$ Redig \& Wang (2010)
V. (2011)

$$
\begin{aligned}
& \sum_{n} \beta_{n}<\infty \\
& \sum_{n} \beta_{n}<\infty
\end{aligned}
$$

Decay rates

If $\beta_{n}=\mathcal{O}\left(e^{-\alpha n}\right)$, then

$$
\widetilde{\beta}_{n}= \begin{cases}\mathcal{O}\left(e^{-\widetilde{\alpha} \sqrt{n}}\right), & {[C U, K P]} \\ \mathcal{O}\left(e^{-\widetilde{\alpha} n}\right), & {[D G, R W] .}\end{cases}
$$

Decay rates

If $\beta_{n}=\mathcal{O}\left(e^{-\alpha n}\right)$, then

$$
\widetilde{\beta}_{n}= \begin{cases}\mathcal{O}\left(e^{-\widetilde{\alpha} \sqrt{n}}\right), & {[C U, K P]} \\ \mathcal{O}\left(e^{-\widetilde{\alpha} n}\right), & {[D G, R W] .}\end{cases}
$$

If $\beta_{n}=\mathcal{O}\left(n^{-\alpha}\right)$, then

$$
\widetilde{\beta}_{n}= \begin{cases}\mathcal{O}\left(n^{-\alpha+2}\right), & {[C U, R W]} \\ \mathcal{O}\left(n^{-\alpha+1}\right), & {[K P]}\end{cases}
$$

Decay rates

If $\beta_{n}=\mathcal{O}\left(e^{-\alpha n}\right)$, then

$$
\widetilde{\beta}_{n}= \begin{cases}\mathcal{O}\left(e^{-\widetilde{\alpha} \sqrt{n}}\right), & {[C U, K P]} \\ \mathcal{O}\left(e^{-\widetilde{\alpha} n}\right), & {[D G, R W] .}\end{cases}
$$

If $\beta_{n}=\mathcal{O}\left(n^{-\alpha}\right)$, then

$$
\widetilde{\beta}_{n}= \begin{cases}\mathcal{O}\left(n^{-\alpha+2}\right), & {[C U, R W]} \\ \mathcal{O}\left(n^{-\alpha+1}\right), & {[K P]}\end{cases}
$$

Problem: Repeated application only for exp. decay

Fibres

$$
X=\mathrm{A}^{\mathbb{Z}_{+}}, \quad Y=\mathrm{B}^{\mathbb{Z}_{+}}, \quad \pi: X \rightarrow Y, \quad v=\mu \circ \pi^{-1}
$$

Fibres

$$
X=\mathrm{A}^{\mathbb{Z}_{+}}, \quad Y=\mathrm{B}^{\mathbb{Z}_{+}}, \quad \pi: X \rightarrow Y, \quad v=\mu \circ \pi^{-1}
$$

For $y \in Y$, the fibre over y is

$$
X_{y}=\{x \in X: \pi(x)=y\} .
$$

Fibres

$$
X=\mathrm{A}^{\mathbb{Z}_{+}}, \quad Y=\mathrm{B}^{\mathbb{Z}_{+}}, \quad \pi: X \rightarrow Y, \quad v=\mu \circ \pi^{-1}
$$

For $y \in Y$, the fibre over y is

$$
X_{y}=\{x \in X: \pi(x)=y\} .
$$

Definition. A family of measures $\mu_{Y}=\left\{\mu_{y}\right\}_{y \in Y}$ is called a family of conditional measures for μ on fibres X_{y} if
(a) μ_{y} is a Borel probability measure on X_{y}
(b) for all $f \in L^{1}(X, \mu)$, the map $y \rightarrow \int_{X_{y}} f(x) \mu_{y}(d x)$ is measurable and

$$
\int_{X} f(x) \mu(d x)=\int_{Y} \int_{X_{y}} f(x) \mu_{y}(d x) v(d y)
$$

Disintegration Theorem, John von Neumann (1932): conditional measures $\mu_{Y}=\left\{\mu_{y}\right\}_{y \in Y}$ on fibres X_{y} exist

Disintegration Theorem, John von Neumann (1932): conditional measures $\mu_{Y}=\left\{\mu_{y}\right\}_{y \in Y}$ on fibres X_{y} exist

In modern terms,

$$
\int_{X_{y}} f(x) \mu_{y}(d x)=\mathbb{E}\left(f \mid \pi^{-1} \mathfrak{B}_{Y}\right)
$$

Disintegration Theorem, John von Neumann (1932): conditional measures $\mu_{Y}=\left\{\mu_{y}\right\}_{y \in Y}$ on fibres X_{y} exist

In modern terms,

$$
\begin{gathered}
\int_{X_{y}} f(x) \mu_{y}(d x)=\mathbb{E}\left(f \mid \pi^{-1} \mathfrak{B}_{Y}\right) \\
\mathbb{E} f=\mathbb{E}\left[\mathbb{E}\left(f \mid \pi^{-1} \mathfrak{B}_{Y}\right)\right]
\end{gathered}
$$

Continuity of conditional probabilities Theorem. Suppose μ is a g-measure for some continuous positive function g. Suppose also that $\pi: X \rightarrow Y$ is such that μ admits a family of conditional measures $\mu_{Y}=\left\{\mu_{y}\right\}_{y \in Y}$ on fibres $\left\{X_{y}\right\}_{y \in Y}$ such that for every $f \in C(X, \mathbb{R})$ the map

$$
y \mapsto \int_{X_{y}} f(x) \mu_{y}(d x)
$$

is continuous on Y (in the product topology). Then $v=\mu \circ \pi^{-1}$ is a \widetilde{g}-measure on Y with

$$
\begin{aligned}
\widetilde{g}(y) & =\widetilde{g}\left(\left(y_{0}, y_{1}, y_{2}, \ldots\right)\right) \\
& =\int_{X_{y}}\left[\sum_{\bar{x}_{0} \in \pi^{-1}\left(y_{0}\right)} g\left(\left(\bar{x}_{0}, x_{1}, x_{2}, \ldots\right)\right)\right] \mu_{y}(d x) .
\end{aligned}
$$

Guiding principle
\exists continuous family of conditional measures
$\mu_{Y}=\left\{\mu_{y}\right\}$ then $v=\mu \circ \pi^{-1}$ is GIBBS

Guiding principle
\exists continuous family of conditional measures
$\mu_{Y}=\left\{\mu_{y}\right\}$ then $v=\mu \circ \pi^{-1}$ is GIBBS
Remarks:
at most one continuous family $\left\{\mu_{y}\right\}$
for GIBBS μ, the measure μ_{y} must be GIBBS on X_{y} for the same potential
Hidden Phase Transitions scenario $v=\mu \circ \pi^{-1}$ is GIBBS if and only if

$$
\left|\mathcal{G}\left(X_{y}, \Phi\right)\right|=1 \quad \forall y .
$$

HPT's form an obstruction to continuity of $\left\{\mu_{y}\right\}$?

Summable variation

Fibres are nice lattice systems

$$
X_{y}=\prod_{i=0}^{\infty} \pi^{-1}\left(y_{i}\right)=\prod_{i=0}^{\infty} A_{i}
$$

Summable variation

Fibres are nice lattice systems

$$
X_{y}=\prod_{i=0}^{\infty} \pi^{-1}\left(y_{i}\right)=\prod_{i=0}^{\infty} A_{i}
$$

For g-functions of summable variation, there exists
a unique GIBBS state (=non-homogeneous equilibrium state) μ_{y} for $\log g$ on X_{y}. [Fan-Pollicott (2000)]

Summable variation

Fibres are nice lattice systems

$$
X_{y}=\prod_{i=0}^{\infty} \pi^{-1}\left(y_{i}\right)=\prod_{i=0}^{\infty} A_{i}
$$

For g-functions of summable variation, there exists
a unique GIBBS state (=non-homogeneous equilibrium state) μ_{y} for $\log g$ on X_{y}. [Fan-Pollicott (2000)]

Continuity of $\left\{\mu_{y}\right\}$: uniform convergence of fibrewise shifted Ruelle-Perron-Frobenius operators

$$
P_{y}^{n} h(x) \rightarrow \int_{X_{y}} h \mu_{y}(d x) \quad \text { as } n \rightarrow \infty
$$

Construction of $\mu_{Y}=\left\{\mu_{y}\right\}$

 μ is g-measure, $\mu\left(x_{0} \mid x_{1}^{\infty}\right)=g(x)$.Fix $y \in Y$; for $n \in \mathbb{Z}_{+}$, define $g_{n}^{y}: X_{y} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
g_{n}^{y}(x) & =g\left(x_{n}, x_{n+1}, \ldots\right) \frac{\sum_{0}^{\bar{x}_{n}^{n-1} \in \pi^{-1} y_{0}^{n-1}} \prod_{k=0}^{n-1} g\left(\bar{x}_{k}^{n-1} x_{n} x_{n+1}^{+\infty}\right)}{\sum_{x_{0}^{n} \in \pi^{-1} y_{0}^{n}} \prod_{k=0}^{n} g\left(\bar{x}_{k}^{n} x_{n+1}^{+\infty}\right)} \\
& =\frac{\mu\left(x_{n} \mid y_{0}^{n-1}, x_{n+1}^{\infty}\right)}{\mu\left(y_{n} \mid y_{0}^{n-1}, x_{n+1}^{\infty}\right)}
\end{aligned}
$$

The more natural choice

$$
g_{n}^{y}(x)=\frac{g\left(x_{n}, x_{n+1}, x_{n+2}, \ldots\right)}{\sum_{\bar{x}_{n} \in \pi^{-1} y_{n}} g\left(\bar{x}_{n}, x_{n+1}, x_{n+2}, \ldots\right)}=\frac{\mu\left(x_{n} \mid x_{n+1}^{\infty}\right)}{\mu\left(y_{n} \mid x_{n+1}^{\infty}\right)}
$$

Define a sequence of averaging operators P_{n}^{y}

$$
P_{n}^{y} f(x)=\sum_{a_{0}^{n} \in \pi^{-1} y_{0}^{n}} G_{n}^{y}\left(a_{0} \ldots a_{n} x_{n+1} \ldots\right) f\left(a_{0} \ldots a_{n} x_{n+1} \ldots\right),
$$

$$
G_{n}^{y}(x)=\prod_{k=0}^{n} g_{n}^{y}(x)
$$

Operators P_{n}^{y} are positive and satisfy $P_{n}^{y} \mathbf{1}=\mathbf{1}$.
A probability measure ρ on X_{y} is called a non-homogeneous equilibrium state associated to $G^{y}=\left\{g_{n}^{y}\right\}$ if

$$
\left(P_{n}^{y}\right)^{*} \rho=\rho
$$

Define a sequence of averaging operators P_{n}^{y} on $C\left(X_{y}, \mathbb{R}\right)$

$$
P_{n}^{y} f(x)=\sum_{a_{0}^{n} \in \pi^{-1} y_{0}^{n}} G_{n}^{y}\left(a_{0} \ldots a_{n} x_{n+1} \ldots\right) f\left(a_{0} \ldots a_{n} x_{n+1} \ldots\right),
$$

$$
G_{n}^{y}(x)=\prod_{k=0}^{n} g_{n}^{y}(x)
$$

Operators P_{n}^{y} are positive and satisfy $P_{n}^{y} \mathbf{1}=\mathbf{1}$.
A probability measure ρ on X_{y} is called a non-homogeneous equilibrium state associated to $G^{y}=\left\{g_{n}^{y}\right\}$ if

$$
\left(P_{n}^{y}\right)^{*} \rho=\rho,
$$

Uniqueness of g-measures

Uniqueness of g-measures
 Berbee (1987)

$$
\sum_{n} \exp \left(-\sum_{k=0}^{n} \operatorname{var}_{k}(\log g)\right)<\infty
$$

Johansson \& Öberg (2003): square summability $\left(\ell^{2}\right)$

$$
\sum_{n}\left(\operatorname{var}_{n}(\log g)\right)^{2}<\infty
$$

suffices.

Uniqueness of g-measures
 Berbee (1987)

$$
\sum_{n} \exp \left(-\sum_{k=0}^{n} \operatorname{var}_{k}(\log g)\right)<\infty
$$

Johansson \& Öberg (2003): square summability $\left(\ell^{2}\right)$

$$
\sum_{n}\left(\operatorname{var}_{n}(\log g)\right)^{2}<\infty
$$

suffices.
Berger, Hoffman \& Sidoravicius: $\ell^{2+\varepsilon}$ is not enough In ℓ^{2}-case: unknown speed of convergence
$P_{n} f \rightarrow \int f d \mu$

Johansson-Öberg-Pollicott (2010) Generalizes previous results speed of convergence
non-homogeneous version?

Berbee (1987): unique μ_{g} if

$$
\sum_{n} \exp \left(-\sum_{k=0}^{n} \operatorname{var}_{k}(\log g)\right)<\infty
$$

Berbee (1987): unique μ_{g} if

$$
\sum_{n} \exp \left(-\sum_{k=0}^{n} \operatorname{var}_{k}(\log g)\right)<\infty
$$

Moreover, $\mu_{g}=\operatorname{Law}\left(\left\{X_{n}\right\}\right)$, then

$$
X_{n}=f\left(Z_{n}\right)
$$

for some Markov process $\left\{Z_{n}\right\}$.

functions of Markov chains with $\mathbf{P} \geq 0$
 ... are not necessarily GIBBS!

Walters-van den Berg example

$$
X_{n}= \pm 1, \quad X_{n} \sim B(p, 1-p), \quad p \neq \frac{1}{2}
$$

Process $Y_{n}=X_{n} \cdot X_{n+1}$ is really bad

functions of Markov chains with $\mathbf{P} \geq 0$... are not necessarily GIBBS!

Walters-van den Berg example

$$
X_{n}= \pm 1, \quad X_{n} \sim B(p, 1-p), \quad p \neq \frac{1}{2}
$$

Process $Y_{n}=X_{n} \cdot X_{n+1}$ is really bad
$Y_{n}=\phi\left(X_{n}^{*}\right)$, where $\left\{X_{n}^{*}\right\}$ is a Markov chain

$$
\mathbf{P}=\left(\begin{array}{cccc}
p & 1-p & 0 & 0 \\
0 & 0 & p & 1-p \\
p & 1-p & 0 & 0 \\
0 & 0 & p & 1-p
\end{array}\right)
$$

(T) Dynamical Systems Approach (Walters, 1986)

- π is finite-to-one: $\left|X_{y}\right|=2$
- $v=B(p, 1-p) \circ \pi^{-1}=B(1-p, p) \circ \pi^{-1}$
- v is not GIBBS for any nice ψ.

Dynamical Systems Approach (Walters, 1986)

- π is finite-to-one: $\left|X_{y}\right|=2$
- $v=B(p, 1-p) \circ \pi^{-1}=B(1-p, p) \circ \pi^{-1}$
- v is not GIBBS for any nice ψ.

Statistical Mechanics (van den Berg)

$$
v\left(1 \mid y_{1} \ldots, y_{n}\right)=\frac{a \lambda^{S_{n}}+b}{c \lambda^{S_{n}}+d}, \quad \frac{a}{c} \neq \frac{b}{d},
$$

and $|\lambda|<1$ and

$$
S_{n}=y_{1}+y_{1} y_{2}+\ldots+y_{1} y_{2} \ldots y_{n}
$$

Chazottes-Ugalde (2003) [MC]
Han-Marcus (2006) [MC]
Kempton (2011)
Yoo (2010) [MC]
Method based on uniqueness of non-homogeneous equilibrium states also works.

Seemingly similar results in Statistics/Information Theory [MC]

Subshifts of finite type

$X \subseteq A^{\mathbb{Z}_{+}}$is a subshift of finite type (or, TMC) defined by $0 / 1$ matrix M of size $|A| \times|A|$

$$
X=\left\{x \in A^{\mathbb{Z}_{+}}: \quad M\left(x_{n}, x_{n+1}\right)=1 \quad \forall n \geq 0\right\}
$$

Non-homogeneous subshifts of finite type

sequence of finite sets $\left\{S_{n}\right\}$
sequence $\mathcal{M}=\left\{M_{n}\right\}$ of $0 / 1$ matrices of size

$$
\left|S_{n}\right| \times\left|S_{n+1}\right|
$$

non-homogeneous subshift of finite type

$$
X_{\mathcal{M}}=\left\{x=\left(x_{n}\right) \in \prod S_{n}: \quad M_{n}\left(x_{n}, x_{n+1}\right)>0\right\}
$$

Irreducibility condition: There exists $k>0$ such that

$$
\prod_{i=n}^{n+k} M_{i}>0 \quad \forall n .
$$

Irreducible SFT X_{M} admits a unqiue g-measure for a positive continuous function $g: X_{M} \rightarrow \mathbb{R}$ of summable variation.

Irreducible SFT X_{M} admits a unqiue g-measure for a positive continuous function $g: X_{M} \rightarrow \mathbb{R}$ of summable variation.

Fan-Pollicott: true for irreducible non-homogeneous SFT's.

Irreducible SFT X_{M} admits a unqiue g-measure for a positive continuous function $g: X_{M} \rightarrow \mathbb{R}$ of summable variation.

Fan-Pollicott: true for irreducible non-homogeneous SFT's.

Require fibres to be irreducible non-homogeneous SFT's.

Prospects and perspectives

Preservation of GIBBS property in $d=1$. Proofs rely on something which could work in \mathbb{Z}^{d} as well,

- go in the the direction of HPT.

Preservation for specific potentials.
Theory of hidden GIBBS processes.
Practical implications of being non-GIBBS.
Not necessarily symbolic systems

No hidden phase transitions

van Enter, Fernandez, Sokal: 7 step plan

$$
\begin{aligned}
& \text { if } \forall y,\left|\mathcal{G}_{X_{y}}(\Phi)\right|=1 \Rightarrow v \in \mathcal{G}_{Y} ; \\
& \text { if } \exists y,\left|\mathcal{G}_{X_{y}}(\Phi)\right|>2 \Rightarrow v \mathcal{G}_{Y} .
\end{aligned}
$$

No hidden phase transitions

van Enter, Fernandez, Sokal: 7 step plan

$$
\begin{aligned}
& \text { if } \forall y,\left|\mathcal{G}_{X_{y}}(\Phi)\right|=1 \quad \Rightarrow \quad v \in \mathcal{G}_{Y} ; \\
& \text { if } \exists y,\left|\mathcal{G}_{X_{y}}(\Phi)\right|>2 \Rightarrow \quad v \in \mathcal{G}_{Y} .
\end{aligned}
$$

True in all known cases!
\mathbb{Z}^{d} vs \mathbb{Z} : easy to organize phase-transitions Potential Φ, inverse temperature $\beta\left(\beta<\beta_{c}(\Phi)\right)$:

$$
\left|\mathcal{G}_{X}(\beta \Phi)\right|=1
$$

Conditioning on image spins can lower the temperature beyond the critical value,

$$
\left|\mathcal{G}_{X_{y}}(\beta \Phi)\right|>2
$$

