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Binary symmetric channel

Input process {𝑋𝑛} ↦ output process {𝑌𝑛}
..0. 0.
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.

𝜀

.

1 − 𝜀

ℙ(𝑌𝑛 = 0|𝑋𝑛 = 0) = ℙ(𝑌𝑛 = 1|𝑋𝑛 = 1) = 1 − 𝜀
ℙ(𝑌𝑛 = 0|𝑋𝑛 = 1) = ℙ(𝑌𝑛 = 1|𝑋𝑛 = 0) = 𝜀
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Input process {𝑋𝑛} ↦ Output process {𝑌𝑛}

..0. 0.
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𝜀

.

1 − 𝜀

Ques on: Take you favorite process (measure), what
are the proper es/entropy/... of the output process
(measure).
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Binary Symmetric Markov Process under
BSC

☞ {𝑋𝑛} – Markov chain, 𝑋𝑛 ∈ {−1, 1},

𝐏 = 1 − 𝑝 𝑝
𝑝 1 − 𝑝 .

☞ {𝑍𝑛} – Bernoulli sequence, 𝑍𝑛 = {−1, 1},

ℙ(𝑍𝑛 = −1) = 𝜀, ℙ(𝑍𝑛 = 1) = 1 − 𝜀.

☞ 𝑌𝑛 = 𝑋𝑛 ⋅ 𝑍𝑛 ∀𝑛 ∈ ℤ

If {𝑍𝑛} is Markov, we have a Gilbert-Elliot channel.
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Equivalently,
𝑌𝑛 = 𝜋 𝑋ext

𝑛 ,
for the Markov chain 𝑋ext

𝑛 with values in

𝙰 = {(1, 1), (1, −1), (−1, 1), (−1,−1)} ,
with

𝐏ext =
(1 − 𝑝)(1 − 𝜀) (1 − 𝑝)𝜀 𝑝(1 − 𝜀) 𝑝𝜀
(1 − 𝑝)(1 − 𝜀) (1 − 𝑝)𝜀 𝑝(1 − 𝜀) 𝑝𝜀

𝑝(1 − 𝜀) 𝑝𝜀 (1 − 𝑝)(1 − 𝜀) (1 − 𝑝)𝜀
𝑝(1 − 𝜀) 𝑝𝜀 (1 − 𝑝)(1 − 𝜀) (1 − 𝑝)𝜀

,

and an obvious determinis c func on

𝜋 ∶ 𝙰 → {−1, 1}

BSC is a 1-block factor of a Markov process
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Informa on theory
BSC is the simplest textbook channel

Sta s cal mechanics
BSC on la ces ℤ𝑑 ⟺ me 𝑡 = 𝑡(𝜀)map
infinite temperature Glauber dynamics

Probability/Sta s cs
BSC –> hidden Markov chains

Dynamical Systems
BSC –> 1-block factor

What happens if you start with a nice process?
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Side remark: RG method in Stat. Mech.
is used to compute some interes ng quan es
(cri cal exponents).

Spin system {𝜎𝑛 ∶ 𝑛 ∈ ℤ𝑑} governed by Gibbs 𝜇 with
poten al 𝐻0.
Apply renormaliza on: e.g., decima on
New spin system { 𝜎𝑛 ∶ 𝑛 ∈ ℤ𝑑}:

𝜎𝑛 = 𝜎𝑏𝑛, 𝑏 ∈ ℕ, 𝑛 ∈ ℤ𝑑.

Law({𝜎𝑛}) is Gibbs (with poten al 𝐻1).

𝐻0 ↦ 𝐻1

Repeat many mes... [Kadanoff (66), Wilson (75),...]
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Nice measures in 1D

are regular (=GIBBS), and might be
☞ Gibbs in Stat. Mechanics sense (DLR)
☞ Gibbs in Dyn. Systems sense (Bowen)
☞ 𝑔-measure (Keane, one-sided DLR)

... equivalent under strong uniqueness condi ons.

8



Nice measures in 1D

are regular (=GIBBS), and might be
☞ Gibbs in Stat. Mechanics sense (DLR)
☞ Gibbs in Dyn. Systems sense (Bowen)
☞ 𝑔-measure (Keane, one-sided DLR)

... equivalent under strong uniqueness condi ons.

8



Nice measures in 1D

are regular (=GIBBS), and might be
☞ Gibbs in Stat. Mechanics sense (DLR)
☞ Gibbs in Dyn. Systems sense (Bowen)
☞ 𝑔-measure (Keane, one-sided DLR)

... equivalent under strong uniqueness condi ons.

8



GIBBS notions
☞ Gibbs/Sta s cal Mechanics/ two-sided

𝜇(𝑥0|𝑥≠0) =
1
𝖹 exp −

Λ∋0
𝑈Λ(𝑥Λ) .

☞ 𝑔-measures/Dynamical Systems/ one-sided

𝜇(𝑥0|𝑥>0) = 𝑔(𝑥0, 𝑥1, …), 𝑔 ∈ 𝐶(𝐴ℤ ), 𝑔 > 0.
☞ Gibbs/Dyn. Systems (Bowen):

∃𝑐, 𝑃 ∈ ℝ,𝜙 ∈ 𝐶(𝐴ℤ )
1
𝑐 ≤

𝜇 [𝑥0…𝑥𝑛]

exp
𝑛
∑
𝑗=0

𝜙(𝜎𝑗𝑥) − (𝑛 + 1)𝑃
≤ 𝑐.
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Relation between different GIBBS notions
☞ R. Fernandez, S. Gallo, G. Maillard (2011):

unique 𝑔-measure which is not two-sided
Gibbs

☞ P. Walters (2005): example of 𝜇 on 𝐴ℤ such that

𝜇+ on 𝐴ℤ , 𝜇− on 𝐴ℤ ,
𝜇+ is a 𝑔-measure, 𝜇− is not.

☞ unknown for the Dyson model

𝐻0(𝜎) = 𝐽
𝑘∈ℤ

𝜎0𝜎𝑘
1 + |𝑘|𝛼 , 𝛼 ∈ (1, 2).

☞ CMMC’s, CCC’s, VLMC’s, uniform mar ngales,
abs.reg. processes
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Markov measures

Theorem. Suppose {𝑋𝑛}𝑛≥0 is a Markov chain with
𝐏 > 0 and ℙ is the invariant measure. Then the
measureℚ = 𝜋∗ℙ = ℙ ∘ 𝜋−1 of the factor process

𝑌𝑛 = 𝜋(𝑋𝑛)
is regular (Gibbs, 𝑔-, CMMC’s, ... ):

𝛽𝑛 ∶= sup
𝑦 ,𝜉,𝜁

ℚ(𝑦0|𝑦𝑛1 , 𝜉
∞
𝑛+1) − ℚ(𝑦0|𝑦𝑛1 , 𝜁

∞
𝑛+1) → 0.

Moreover, there exist 𝐶 > 0 and 𝜃 ∈ (0, 1) such that

𝛽𝑛 ≤ 𝐶𝜃𝑛.
At least 10 proofs⇒ various es mates of 𝜃
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Decay rate for 𝑝 = 0.4, 𝜀 = 0.1

Birch 𝜃𝐵 ≈ 0.99998
Harris 𝜃𝐻 ≈ 0.97223
Baum and Petrie 𝜃𝐵𝑃 = 0.94
Han and Marcus 𝜃𝐻𝑀 = 0.58
Hochwald and Jelenković 𝜃𝐻𝐽 = 0.2
Fernández, Ferrari, and Galves 𝜃𝐹𝐹𝐺 = 0.2
Peres 𝜃𝑃 = 0.2

𝜃𝐻𝐽 = 𝜃𝐹𝐹𝐺 = 𝜃𝑃 = |1 − 2𝑝| = 𝜆2(𝐏) =

lim
𝑛→∞

ℙ(𝑋𝑛 = ⋅|𝑋0 = 1) − ℙ(𝑋𝑛 = ⋅|𝑋0 = −1)

independent of 𝜀
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In fact ...

Process {𝑌𝑛} ismore random than {𝑋𝑛}.

Memory
decay rate should be strictly smaller than |1 − 2𝑝|.

Note that for 𝜖 = 0,ℚ = ℙ, and decay rate is zero.

Theorem. For all 𝑝, 𝜀 ∈ (0, 1), memory decay rate

𝜃∗ = lim
𝑛

𝛽𝑛

𝛽𝑛 = sup
𝑦 ,𝜉,𝜁

ℚ(𝑦0|𝑦𝑛1 , 𝜉
∞
𝑛+1) − ℚ(𝑦0|𝑦𝑛1 , 𝜁

∞
𝑛+1) → 0.

sa sfies
𝜃∗ < |1 − 2𝑝|.
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Theorem.

2 ⋅ ℚ(𝑦0|𝑦1, 𝑦2, …) = 𝑎0 −
𝑏0

𝑎1 −
𝑏1

𝑎2 −
𝑏2

𝑎3 −…
where for 𝑖 ≥ 0

𝑎𝑖 = 1 + 𝑞𝑖, 𝑏𝑖 = 4𝜀(1 − 𝜀)𝑞𝑖
𝑞𝑖 = (1 − 2𝑝)𝑦𝑖𝑦𝑖+1

PROOF: BSM over BSC = RFIM in 1D.
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Identification of potential
all thermodynamic quan es are real-analy c in 𝜀 .

ℚ(𝑦0|𝑦∞1 ) =
∞

𝑘=0
𝜓𝑘(𝑦∞0 )𝜀𝑘 =

∞

𝑘=0
𝜓𝑘(𝑦𝑘+10 )𝜀𝑘

logℚ(𝑦0|𝑦∞1 ) =
∞

𝑘=0
𝜙𝑘(𝑦∞0 )𝜀𝑘 =

∞

𝑘=0
𝜙𝑘(𝑦𝑘+10 )𝜀𝑘

ℎ(ℚ) = ℎ(ℙ) +
∞

𝑘=1
𝑐𝑘𝜖𝑘

Han-Marcus (2006), Zuk-Domany-Kanter-Aizenman
(2006), Pollico (2011)
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g-measures on full shifts
Suppose 𝑔 ∶ 𝙰ℤ → [0, 1] is con nuous and posi ve.

Defini on. A measure 𝜇 on 𝙰ℤ is a 𝑔-measure if

𝜇(𝑋0 = 𝑥0|𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛, …) = 𝑔(𝑥),

for 𝜇-a.a. 𝑥 = (𝑥0, 𝑥1, … , 𝑥𝑛, …).

Equivalently, for all 𝑓 ∈ 𝐶(𝙰ℤ , ℝ), one has

𝑓(𝑥)𝜇(𝑑𝑥) =
𝑎∈𝙰

𝑓(𝑎𝑥)𝑔(𝑎𝑥) 𝜇(𝑑𝑥)
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𝑔-measures

Posi ve and con nuous func on 𝑔,

var𝑛(𝑔) = sup
𝑥 =�̄�

𝑔(𝑥) − 𝑔(�̄�) → 0 as 𝑛 → ∞.

Theorem (Walters 1975). Con nuous posi ve
normalized func on 𝑔 with summable varia on

∞

𝑛=0
var𝑛(𝑔) < ∞,

admits a unique 𝑔-measure.
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g-measures

Finite range
Markov chains with 𝐏 > 0,

𝐏 = (𝑝𝑖𝑗) with some 𝑝𝑖𝑗 = 0 excluded

Exponen al decay
Hölder con nuous func ons 𝑔

18



Review: renormalization of g-measures

Theorem. If 𝛽𝑛 = var𝑛(𝑔) → 0 sufficiently fast, then
𝜈 = 𝜇 ∘ 𝜋−1 is a 𝑔-measure:

𝜈(𝑦0|𝑦∞1 ) = 𝑔(𝑦)
with

𝛽𝑛 = var𝑛(𝑔) → 0.

Denker & Gordin (2000) 𝛽𝑛 = 𝒪(𝑒−𝛼𝑛)
Chazo es & Ugalde (2011) ∑𝑛 𝑛2𝛽𝑛 < ∞
Kempton & Pollico (2011) ∑𝑛 𝑛𝛽𝑛 < ∞
Redig & Wang (2010) ∑𝑛 𝛽𝑛 < ∞
V. (2011) ∑𝑛 𝛽𝑛 < ∞
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Decay rates

☞ If 𝛽𝑛 = 𝒪(𝑒−𝛼𝑛), then

𝛽𝑛 =
𝒪(𝑒−𝛼√𝑛), [𝐶𝑈, 𝐾𝑃]
𝒪(𝑒−𝛼𝑛), [𝐷𝐺, 𝑅𝑊].

☞ If 𝛽𝑛 = 𝒪(𝑛−𝛼), then

𝛽𝑛 =
𝒪(𝑛−𝛼+2), [𝐶𝑈, 𝑅𝑊]
𝒪(𝑛−𝛼+1), [𝐾𝑃]

Problem: Repeated applica on only for exp. decay
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Fibres
𝑋 = 𝙰ℤ , 𝑌 = 𝙱ℤ , 𝜋 ∶ 𝑋 → 𝑌, 𝜈 = 𝜇 ∘ 𝜋−1

For 𝑦 ∈ 𝑌, the fibre over 𝑦 is

𝑋𝑦 = 𝑥 ∈ 𝑋 ∶ 𝜋(𝑥) = 𝑦 .

Defini on. A family of measures 𝜇𝑌 = {𝜇𝑦}𝑦∈𝑌 is
called a family of condi onal measures for 𝜇 on
fibres 𝑋𝑦 if
(a) 𝜇𝑦 is a Borel probability measure on 𝑋𝑦
(b) for all 𝑓 ∈ 𝐿1(𝑋, 𝜇), the map

𝑦 → ∫𝑋 𝑓(𝑥)𝜇𝑦(𝑑𝑥) is measurable and

𝑋
𝑓(𝑥)𝜇(𝑑𝑥) =

𝑌 𝑋
𝑓(𝑥)𝜇𝑦(𝑑𝑥)𝜈(𝑑𝑦).
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Disintegra on Theorem, John von Neumann (1932):
condi onal measures 𝜇𝑌 = {𝜇𝑦}𝑦∈𝑌 on fibres 𝑋𝑦
exist

In modern terms,

𝑋
𝑓(𝑥)𝜇𝑦(𝑑𝑥) = 𝔼 𝑓 𝜋−1𝔅𝑌

𝔼𝑓 = 𝔼 𝔼 𝑓 𝜋−1𝔅𝑌
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Continuity of conditional probabilities
Theorem. Suppose 𝜇 is a 𝑔-measure for some
con nuous posi ve func on 𝑔. Suppose also that
𝜋 ∶ 𝑋 → 𝑌 is such that 𝜇 admits a family of
condi onal measures 𝜇𝑌 = {𝜇𝑦}𝑦∈𝑌 on fibres
{𝑋𝑦}𝑦∈𝑌 such that for every 𝑓 ∈ 𝐶(𝑋,ℝ) the map

𝑦 ↦
𝑋
𝑓(𝑥)𝜇𝑦(𝑑𝑥)

is con nuous on 𝑌 (in the product topology). Then
𝜈 = 𝜇 ∘ 𝜋−1 is a 𝑔-measure on 𝑌 with

𝑔(𝑦) = 𝑔((𝑦0, 𝑦1, 𝑦2, …))

=
𝑋 �̄� ∈𝜋 (𝑦 )

𝑔((�̄�0, 𝑥1, 𝑥2, …)) 𝜇𝑦(𝑑𝑥).
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Guiding principle
∃ con nuous family of condi onal measures
𝜇𝑌 = {𝜇𝑦} then 𝜈 = 𝜇 ∘ 𝜋−1 is GIBBS

Remarks:
☞ at most one con nuous family {𝜇𝑦}
☞ for GIBBS 𝜇, the measure 𝜇𝑦 must be GIBBS on

𝑋𝑦 for the same poten al
☞ Hidden Phase Transi ons scenario

𝜈 = 𝜇 ∘ 𝜋−1 is GIBBS if and only if

𝒢(𝑋𝑦, Φ) = 1 ∀𝑦.

☞ HPT’s form an obstruc on to con nuity of {𝜇𝑦}?
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Summable variation
Fibres are nice la ce systems

𝑋𝑦 =
∞

𝑖=0
𝜋−1(𝑦𝑖) =

∞

𝑖=0
𝐴𝑖

For 𝑔-func ons of summable varia on, there exists
a unique GIBBS state (=non-homogeneous
equilibrium state) 𝜇𝑦 for log 𝑔 on 𝑋𝑦.
[Fan-Pollico (2000)]

Con nuity of {𝜇𝑦}: uniform convergence of
fibrewise shi ed Ruelle-Perron-Frobenius operators

𝑃𝑛𝑦ℎ(𝑥) →
𝑋
ℎ 𝜇𝑦(𝑑𝑥) as 𝑛 → ∞
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Construction of 𝜇𝑌 = {𝜇𝑦}
𝜇 is 𝑔-measure, 𝜇(𝑥0|𝑥∞1 ) = 𝑔(𝑥).
Fix 𝑦 ∈ 𝑌; for 𝑛 ∈ ℤ+, define 𝑔𝑦𝑛 ∶ 𝑋𝑦 → ℝ by

𝑔𝑦𝑛(𝑥) = 𝑔(𝑥𝑛, 𝑥𝑛+1, …)
∑

�̄� ∈𝜋 𝑦
∏𝑛−1
𝑘=0 𝑔(�̄�𝑛−1𝑘 𝑥𝑛𝑥+∞𝑛+1)

∑
�̄� ∈𝜋 𝑦

∏𝑛
𝑘=0 𝑔(�̄�𝑛𝑘𝑥+∞𝑛+1)

=
𝜇(𝑥𝑛|𝑦𝑛−10 , 𝑥∞𝑛+1)
𝜇(𝑦𝑛|𝑦𝑛−10 , 𝑥∞𝑛+1)

The more natural choice

𝑔𝑦𝑛(𝑥) =
𝑔(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2, …)
∑

�̄� ∈𝜋 𝑦
𝑔(�̄�𝑛, 𝑥𝑛+1, 𝑥𝑛+2, …)

=
𝜇(𝑥𝑛|𝑥∞𝑛+1)
𝜇(𝑦𝑛|𝑥∞𝑛+1)

26



Define a sequence of averaging operators 𝑃𝑦𝑛

𝑃𝑦𝑛𝑓(𝑥) =
𝑎 ∈𝜋 𝑦

𝐺𝑦
𝑛(𝑎0…𝑎𝑛𝑥𝑛+1…)𝑓(𝑎0…𝑎𝑛𝑥𝑛+1…),

𝐺𝑦
𝑛(𝑥) =

𝑛

𝑘=0
𝑔𝑦𝑛(𝑥)

Operators 𝑃𝑦𝑛 are posi ve and sa sfy 𝑃𝑦𝑛𝟏 = 𝟏.
A probability measure 𝜌 on 𝑋𝑦 is called a
non-homogeneous equilibrium state associated to
𝐺𝑦 = {𝑔𝑦𝑛} if

(𝑃𝑦𝑛)∗𝜌 = 𝜌
27



Define a sequence of averaging operators 𝑃𝑦𝑛 on
𝐶(𝑋𝑦, ℝ)

𝑃𝑦𝑛𝑓(𝑥) =
𝑎 ∈𝜋 𝑦

𝐺𝑦
𝑛(𝑎0…𝑎𝑛𝑥𝑛+1…)𝑓(𝑎0…𝑎𝑛𝑥𝑛+1…),

𝐺𝑦
𝑛(𝑥) =

𝑛

𝑘=0
𝑔𝑦𝑛(𝑥)

Operators 𝑃𝑦𝑛 are posi ve and sa sfy 𝑃𝑦𝑛𝟏 = 𝟏.

A probability measure 𝜌 on 𝑋𝑦 is called a
non-homogeneous equilibrium state associated to
𝐺𝑦 = {𝑔𝑦𝑛} if

(𝑃𝑦𝑛)∗𝜌 = 𝜌,
28



Uniqueness of g-measures

Berbee (1987)

𝑛
exp −

𝑛

𝑘=0
var𝑘(log 𝑔) < ∞

Johansson & Öberg (2003): square summability (ℓ2)

𝑛
var𝑛(log 𝑔)

2
< ∞

suffices.

Berger, Hoffman & Sidoravicius: ℓ2+𝜀 is not enough
In ℓ2-case: unknown speed of convergence
𝑃𝑛𝑓 → ∫𝑓 𝑑𝜇

29



Uniqueness of g-measures
Berbee (1987)

𝑛
exp −

𝑛

𝑘=0
var𝑘(log 𝑔) < ∞

Johansson & Öberg (2003): square summability (ℓ2)

𝑛
var𝑛(log 𝑔)

2
< ∞

suffices.

Berger, Hoffman & Sidoravicius: ℓ2+𝜀 is not enough
In ℓ2-case: unknown speed of convergence
𝑃𝑛𝑓 → ∫𝑓 𝑑𝜇

29



Uniqueness of g-measures
Berbee (1987)

𝑛
exp −

𝑛

𝑘=0
var𝑘(log 𝑔) < ∞

Johansson & Öberg (2003): square summability (ℓ2)

𝑛
var𝑛(log 𝑔)

2
< ∞

suffices.

Berger, Hoffman & Sidoravicius: ℓ2+𝜀 is not enough
In ℓ2-case: unknown speed of convergence
𝑃𝑛𝑓 → ∫𝑓 𝑑𝜇

29



Johansson–Öberg–Pollico (2010)
☞ Generalizes previous results
☞ speed of convergence

non-homogeneous version?
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Berbee (1987): unique 𝜇𝑔 if

𝑛
exp −

𝑛

𝑘=0
var𝑘(log 𝑔) < ∞

Moreover, 𝜇𝑔 =Law {𝑋𝑛} , then

𝑋𝑛 = 𝑓(𝑍𝑛)

for some Markov process {𝑍𝑛}.
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functions of Markov chains with 𝐏 ≥ 0
... are not necessarily GIBBS!

Walters-van den Berg example

𝑋𝑛 = ±1, 𝑋𝑛 ∼ 𝐵(𝑝, 1 − 𝑝), 𝑝 ≠ 1
2,

Process 𝑌𝑛 = 𝑋𝑛 ⋅ 𝑋𝑛+1 is really bad

𝑌𝑛 = 𝜙(𝑋∗
𝑛), where {𝑋∗𝑛} is a Markov chain

𝐏 =
𝑝 1 − 𝑝 0 0
0 0 𝑝 1 − 𝑝
𝑝 1 − 𝑝 0 0
0 0 𝑝 1 − 𝑝

.
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☞ Dynamical Systems Approach (Walters, 1986)
𝜋 is finite-to-one: |𝑋 | = 2
𝜈 = 𝐵(𝑝, 1 − 𝑝) ∘ 𝜋 = 𝐵(1 − 𝑝, 𝑝) ∘ 𝜋
𝜈 is not GIBBS for any nice 𝜓.

☞ Sta s cal Mechanics (van den Berg)

𝜈(1|𝑦1… , 𝑦𝑛) =
𝑎𝜆𝑆 + 𝑏
𝑐𝜆𝑆 + 𝑑

, 𝑎
𝑐 ≠

𝑏
𝑑,

and |𝜆| < 1 and

𝑆𝑛 = 𝑦1 + 𝑦1𝑦2 +…+ 𝑦1𝑦2…𝑦𝑛.
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☞ Chazo es-Ugalde (2003) [MC]
☞ Han–Marcus (2006) [MC]
☞ Kempton (2011)
☞ Yoo (2010) [MC]
☞ Method based on uniqueness of

non-homogeneous equilibrium states also
works.

☞ Seemingly similar results in
Sta s cs/Informa on Theory [MC]

34



Subshifts of finite type

𝑋 ⊆ 𝙰ℤ is a subshi of finite type (or, TMC) defined
by 0/1matrix𝑀 of size |𝐴| × |𝐴|

𝑋 = 𝑥 ∈ 𝐴ℤ ∶ 𝑀(𝑥𝑛, 𝑥𝑛+1) = 1 ∀𝑛 ≥ 0 .

35



Non-homogeneous subshifts of finite type
☞ sequence of finite sets {𝑆𝑛}
☞ sequenceℳ= {𝑀𝑛} of 0/1matrices of size

|𝑆𝑛| × |𝑆𝑛+1|
☞ non-homogeneous subshi of finite type

𝑋ℳ = 𝑥 = (𝑥𝑛) ∈ 𝑆𝑛 ∶ 𝑀𝑛(𝑥𝑛, 𝑥𝑛+1) > 0

Irreducibility condi on: There exists 𝑘 > 0 such that

𝑛+𝑘

𝑖=𝑛
𝑀𝑖 > 0 ∀𝑛.
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Irreducible SFT 𝑋𝑀 admits a unqiue 𝑔-measure for a
posi ve con nuous func on 𝑔 ∶ 𝑋𝑀 → ℝ of
summable varia on.

Fan-Pollico : true for irreducible non-homogeneous
SFT’s.

Require fibres to be irreducible non-homogeneous
SFT’s.
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Prospects and perspectives

Preserva on of GIBBS property in 𝑑 = 1. Proofs -
rely on something which could work in ℤ𝑑 as well,
- go in the the direc on of HPT.

Preserva on for specific poten als.

Theory of hidden GIBBS processes.

Prac cal implica ons of being non-GIBBS.

Not necessarily symbolic systems
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No hidden phase transitions
van Enter, Fernandez, Sokal: 7 step plan
☞ if ∀𝑦, |𝒢𝑋 (Φ)| = 1 ⇒ 𝜈 ∈ 𝒢𝑌;
☞ if ∃𝑦, |𝒢𝑋 (Φ)| > 2 ⇒ 𝜈∉𝒢𝑌.

True in all known cases!
ℤ𝑑 vs ℤ: easy to organize phase-transi ons
Poten alΦ, inverse temperature 𝛽 (𝛽 < 𝛽𝑐(Φ)):

|𝒢𝑋(𝛽Φ)| = 1

Condi oning on image spins can lower the
temperature beyond the cri cal value,

|𝒢𝑋 (𝛽Φ)| > 2

39



No hidden phase transitions
van Enter, Fernandez, Sokal: 7 step plan
☞ if ∀𝑦, |𝒢𝑋 (Φ)| = 1 ⇒ 𝜈 ∈ 𝒢𝑌;
☞ if ∃𝑦, |𝒢𝑋 (Φ)| > 2 ⇒ 𝜈∉𝒢𝑌.
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