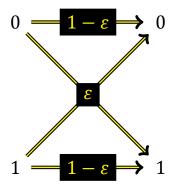
Factors of g-measures

Evgeny Verbitskiy Univ. Leiden / Groningen The Netherlands

Warwick, April 17, 2012

Binary symmetric channel

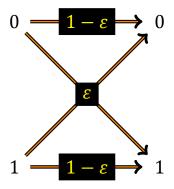
Input process $\{X_n\} \mapsto$ output process $\{Y_n\}$



$$\mathbb{P}(Y_n = 0 | X_n = 0) = \mathbb{P}(Y_n = 1 | X_n = 1) = 1 - \varepsilon$$

$$\mathbb{P}(Y_n = 0 | X_n = 1) = \mathbb{P}(Y_n = 1 | X_n = 0) = \varepsilon$$

Input process $\{X_n\} \mapsto \text{Output process } \{Y_n\}$



Question: Take you favorite process (measure), what are the properties/entropy/... of the output process (measure).

Binary Symmetric Markov Process under BSC

■
$$\{X_n\}$$
 – Markov chain, $X_n \in \{-1, 1\}$,

$$\mathbf{P} = \begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix}.$$

 $\bowtie \{Z_n\}$ – Bernoulli sequence, $Z_n = \{-1, 1\}$,

$$\mathbb{P}(Z_n = -1) = \varepsilon, \quad \mathbb{P}(Z_n = 1) = 1 - \varepsilon.$$

Binary Symmetric Markov Process under BSC

■
$$\{X_n\}$$
 – Markov chain, $X_n \in \{-1, 1\}$,

$$\mathbf{P} = \begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix}.$$

 $\bowtie \{Z_n\}$ – Bernoulli sequence, $Z_n = \{-1, 1\}$,

$$\mathbb{P}(Z_n = -1) = \varepsilon, \quad \mathbb{P}(Z_n = 1) = 1 - \varepsilon.$$

 $P_n = X_n \cdot Z_n \quad \forall n \in \mathbb{Z}$

If $\{Z_n\}$ is Markov, we have a **Gilbert-Elliot** channel.

Equivalently,

$$Y_n = \pi \left(X_n^{\text{ext}} \right)$$
 ,

for the Markov chain $\{X_n^{\text{ext}}\}$ with values in

$$A = \{(1, 1), (1, -1), (-1, 1), (-1, -1)\},\$$

with

$$\mathbf{P}^{\text{ext}} = \begin{pmatrix} (1-p)(1-\varepsilon) & (1-p)\varepsilon & p(1-\varepsilon) & p\varepsilon \\ (1-p)(1-\varepsilon) & (1-p)\varepsilon & p(1-\varepsilon) & p\varepsilon \\ p(1-\varepsilon) & p\varepsilon & (1-p)(1-\varepsilon) & (1-p)\varepsilon \\ p(1-\varepsilon) & p\varepsilon & (1-p)(1-\varepsilon) & (1-p)\varepsilon \end{pmatrix},$$

and an obvious deterministic function

$$\pi: \mathbb{A} \to \{-1, 1\}$$

Equivalently,

$$Y_n = \pi \left(X_n^{\text{ext}} \right)$$
 ,

for the Markov chain $\{X_n^{ext}\}$ with values in

$$A = \{(1, 1), (1, -1), (-1, 1), (-1, -1)\},\$$

with

$$\mathbf{P}^{\text{ext}} = \begin{pmatrix} (1-p)(1-\varepsilon) & (1-p)\varepsilon & p(1-\varepsilon) & p\varepsilon \\ (1-p)(1-\varepsilon) & (1-p)\varepsilon & p(1-\varepsilon) & p\varepsilon \\ p(1-\varepsilon) & p\varepsilon & (1-p)(1-\varepsilon) & (1-p)\varepsilon \\ p(1-\varepsilon) & p\varepsilon & (1-p)(1-\varepsilon) & (1-p)\varepsilon \end{pmatrix},$$

and an obvious deterministic function

$$\pi: \mathbb{A} \to \{-1, 1\}$$

BSC is a 1-block factor of a Markov process

Information theory

BSC is the simplest textbook channel

Statistical mechanics

BSC on lattices $\mathbb{Z}^d \iff time \ t = t(\varepsilon) \ map$ infinite temperature Glauber dynamics

Probability/Statistics BSC -> hidden Markov chains

Dynamical Systems BSC -> 1-block factor Information theory

BSC is the simplest textbook channel

Statistical mechanics

BSC on lattices $\mathbb{Z}^d \iff time \ t = t(\varepsilon) \ map$ infinite temperature Glauber dynamics

Probability/Statistics BSC -> hidden Markov chains

Dynamical Systems BSC -> 1-block factor

What happens if you start with a nice process?

is used to compute some interesting quantities (critical exponents).

is used to compute some interesting quantities (critical exponents).

Spin system $\{\sigma_n : n \in \mathbb{Z}^d\}$ governed by Gibbs μ with potential H_0 .

is used to compute some interesting quantities (critical exponents).

Spin system $\{\sigma_n : n \in \mathbb{Z}^d\}$ governed by Gibbs μ with potential H_0 .

Apply renormalization: e.g., decimation New spin system $\{\widetilde{\sigma}_n : n \in \mathbb{Z}^d\}$:

$$\widetilde{\sigma}_n = \sigma_{bn}, \quad b \in \mathbb{N}, n \in \mathbb{Z}^d.$$

Law($\{\widetilde{\sigma}_n\}$) is Gibbs (with potential H_1).

$$H_0 \mapsto H_1$$

is used to compute some interesting quantities (critical exponents).

Spin system $\{\sigma_n : n \in \mathbb{Z}^d\}$ governed by Gibbs μ with potential H_0 .

Apply renormalization: e.g., decimation New spin system $\{\widetilde{\sigma}_n : n \in \mathbb{Z}^d\}$:

$$\widetilde{\sigma}_n = \sigma_{bn}, \quad b \in \mathbb{N}, n \in \mathbb{Z}^d.$$

Law($\{\widetilde{\sigma}_n\}$) is Gibbs (with potential H_1).

$$H_0 \mapsto H_1$$

Repeat many times... [Kadanoff (66), Wilson (75),...]

Nice measures in 1D

Nice measures in 1D

are regular (=GIBBS), and might be

- Gibbs in Stat. Mechanics sense (DLR)
- Gibbs in Dyn. Systems sense (Bowen)
- Image: g-measure (Keane, one-sided DLR)

Nice measures in 1D

are regular (=GIBBS), and might be

- Gibbs in Stat. Mechanics sense (DLR)
- Gibbs in Dyn. Systems sense (Bowen)
- ☞ g-measure (Keane, one-sided DLR)
- ... equivalent under strong uniqueness conditions.

GIBBS notions

Gibbs/Statistical Mechanics/ two-sided

$$\mu(x_0|x_{\neq 0}) = \frac{1}{\mathsf{Z}} \exp\Big(-\sum_{\Lambda \ni 0} U_{\Lambda}(x_{\Lambda})\Big).$$

g-measures/Dynamical Systems/ one-sided

$$\mu(x_0|x_{>0}) = g(x_0, x_1, ...), \quad g \in C(A^{\mathbb{Z}_+}), g > 0.$$

Gibbs/Dyn. Systems (Bowen): $\exists c, P \in \mathbb{R}, \phi \in C(A^{\mathbb{Z}_+})$

$$\frac{1}{c} \le \frac{\mu([x_0 \dots x_n])}{\exp\left(\sum\limits_{j=0}^n \phi(\sigma^j x) - (n+1)P\right)} \le c.$$

Relation between different GIBBS notions

- R. Fernandez, S. Gallo, G. Maillard (2011):
 unique g-measure which is not two-sided
 Gibbs
- P. Walters (2005): example of μ on $A^{\mathbb{Z}}$ such that μ^+ on $A^{\mathbb{Z}_{\geq 0}}$, μ^- on $A^{\mathbb{Z}_{\leq 0}}$,

 μ^+ is a *g*-measure, μ^- is **not**. If unknown for the Dyson model

$$H_0(\sigma) = J \sum_{k \in \mathbb{Z}} \frac{\sigma_0 \sigma_k}{1 + |k|^{\alpha}}, \quad \alpha \in (1, 2).$$

Relation between different GIBBS notions

- R. Fernandez, S. Gallo, G. Maillard (2011):
 unique g-measure which is not two-sided
 Gibbs
- P. Walters (2005): example of μ on $A^{\mathbb{Z}}$ such that μ^+ on $A^{\mathbb{Z}_{\geq 0}}$, μ^- on $A^{\mathbb{Z}_{\leq 0}}$,

 μ^+ is a *g*-measure, μ^- is **not**. If unknown for the Dyson model

$$H_0(\sigma) = J \sum_{k \in \mathbb{Z}} \frac{\sigma_0 \sigma_k}{1 + |k|^{\alpha}}, \quad \alpha \in (1, 2).$$

CMMC's, CCC's, VLMC's, uniform martingales, abs.reg. processes

Markov measures

Markov measures

Theorem. Suppose $\{X_n\}_{n\geq 0}$ is a Markov chain with $\mathbf{P} > 0$ and \mathbb{P} is the invariant measure. Then the measure $\mathbb{Q} = \pi_* \mathbb{P} = \mathbb{P} \circ \pi^{-1}$ of the factor process

$$Y_n = \pi(X_n)$$

is regular (Gibbs, g-, CMMC's, ...):

$$\beta_{n} := \sup_{y_{0}^{n+1},\xi,\zeta} \left| \mathbb{Q}(y_{0}|y_{1}^{n},\xi_{n+1}^{\infty}) - \mathbb{Q}(y_{0}|y_{1}^{n},\zeta_{n+1}^{\infty}) \right| \to 0.$$

Moreover, there exist C > 0 and $\theta \in (0, 1)$ such that

$$\beta_n \leq C\theta^n$$
.

Markov measures

Theorem. Suppose $\{X_n\}_{n\geq 0}$ is a Markov chain with $\mathbf{P} > 0$ and \mathbb{P} is the invariant measure. Then the measure $\mathbb{Q} = \pi_* \mathbb{P} = \mathbb{P} \circ \pi^{-1}$ of the factor process

$$Y_n = \pi(X_n)$$

is regular (Gibbs, g-, CMMC's, ...):

$$\beta_{n} := \sup_{y_{0}^{n+1},\xi,\zeta} \left| \mathbb{Q}(y_{0}|y_{1}^{n},\xi_{n+1}^{\infty}) - \mathbb{Q}(y_{0}|y_{1}^{n},\zeta_{n+1}^{\infty}) \right| \to 0.$$

Moreover, there exist C > 0 and $\theta \in (0, 1)$ such that

$$\beta_n \leq C\theta^n$$
.

At least 10 proofs \Rightarrow various estimates of θ

11

Decay rate for p = 0.4, $\varepsilon = 0.1$

 ≈ 0.99998 Birch θ_{R} ≈ 0.97223 θ_{H} Harris = 0.94**Baum and Petrie** θ_{RP} = 0.58Han and Marcus θ_{HM} θ_{HI} = 0.2Hochwald and Jelenković = 0.2Fernández, Ferrari, and Galves θ_{FFG} = 0.2Peres θ_{P}

$$\theta_{HJ} = \theta_{FFG} = \theta_P = |1 - 2p| = \lambda_2(\mathbf{P}) = \lim_{n \to \infty} \left\| \mathbb{P}(X_n = \cdot | X_0 = 1) - \mathbb{P}(X_n = \cdot | X_0 = -1) \right\|^{\frac{1}{n}}$$

Decay rate for p = 0.4, $\varepsilon = 0.1$

 ≈ 0.99998 Birch θ_{R} θ_{H} ≈ 0.97223 Harris = 0.94**Baum and Petrie** θ_{RP} = 0.58Han and Marcus θ_{HM} θ_{HI} = 0.2Hochwald and Jelenković = 0.2Fernández, Ferrari, and Galves θ_{FFG} = 0.2Peres θ_{P}

$$\theta_{HJ} = \theta_{FFG} = \theta_P = |1 - 2p| = \lambda_2(\mathbf{P}) = \lim_{n \to \infty} \left\| \mathbb{P}(X_n = \cdot | X_0 = 1) - \mathbb{P}(X_n = \cdot | X_0 = -1) \right\|^{\frac{1}{n}}$$

independent of ε

Process $\{Y_n\}$ is more random than $\{X_n\}$.

Process $\{Y_n\}$ is more random than $\{X_n\}$. Memory decay rate should be strictly smaller than |1 - 2p|.

Process $\{Y_n\}$ is more random than $\{X_n\}$. Memory decay rate should be strictly smaller than |1 - 2p|.

Note that for $\epsilon = 0$, $\mathbb{Q} = \mathbb{P}$, and decay rate is zero.

Process $\{Y_n\}$ is more random than $\{X_n\}$. Memory decay rate should be strictly smaller than |1 - 2p|.

Note that for $\epsilon = 0$, $\mathbb{Q} = \mathbb{P}$, and decay rate is zero.

Theorem. For all $p, \varepsilon \in (0, 1)$, memory decay rate

$$\theta^* = \overline{\lim_n} \left(\beta_n\right)^{\frac{1}{n}}$$

 $\beta_{n} = \sup_{y_{0}^{n+1},\xi,\zeta} \left| \mathbb{Q}(y_{0}|y_{1}^{n},\xi_{n+1}^{\infty}) - \mathbb{Q}(y_{0}|y_{1}^{n},\zeta_{n+1}^{\infty}) \right| \to 0.$

satisfies

$$\theta^* < |1 - 2p|.$$

Theorem.

$$2 \cdot \mathbb{Q}(y_0 | y_1, y_2, ...) = a_0 - \frac{b_0}{a_1 - \frac{b_1}{a_2 - \frac{b_2}{a_3 - ...}}}$$

where for $i \ge 0$

$$a_i = 1 + q_i, \quad b_i = 4\varepsilon(1 - \varepsilon)q_i$$
$$q_i = (1 - 2p)y_iy_{i+1}$$

Theorem.

$$2 \cdot \mathbb{Q}(y_0 | y_1, y_2, ...) = a_0 - \frac{b_0}{a_1 - \frac{b_1}{a_2 - \frac{b_2}{a_3 - ...}}}$$

where for $i \ge 0$

$$a_i = 1 + q_i, \quad b_i = 4\varepsilon(1 - \varepsilon)q_i$$
$$q_i = (1 - 2p)y_iy_{i+1}$$

PROOF: BSM over BSC = RFIM in 1D.

Identification of potential

all thermodynamic quantities are real-analytic in arepsilon .

$$\mathbb{Q}(y_0|y_1^{\infty}) = \sum_{k=0}^{\infty} \psi_k(y_0^{\infty})\varepsilon^k = \sum_{k=0}^{\infty} \psi_k(y_0^{k+1})\varepsilon^k$$
$$\log \mathbb{Q}(y_0|y_1^{\infty}) = \sum_{k=0}^{\infty} \phi_k(y_0^{\infty})\varepsilon^k = \sum_{k=0}^{\infty} \phi_k(y_0^{k+1})\varepsilon^k$$
$$h(\mathbb{Q}) = h(\mathbb{P}) + \sum_{k=1}^{\infty} c_k \varepsilon^k$$

Han-Marcus (2006), Zuk-Domany-Kanter-Aizenman (2006), Pollicott (2011)

g-measures on full shifts

Suppose $g : \mathbb{A}^{\mathbb{Z}_+} \to [0, 1]$ is **continuous** and **positive**.

Definition. A measure μ on $A^{\mathbb{Z}_+}$ is a *g*-measure if

$$\mu(X_0 = x_0 | X_1 = x_1, \dots, X_n = x_n, \dots) = g(x),$$

for μ -a.a. $x = (x_0, x_1, ..., x_n, ...)$.

g-measures on full shifts

Suppose $g : A^{\mathbb{Z}_+} \to [0, 1]$ is **continuous** and **positive**.

Definition. A measure μ on $A^{\mathbb{Z}_+}$ is a *g*-measure if

$$\mu(X_0 = x_0 | X_1 = x_1, \dots, X_n = x_n, \dots) = g(x),$$

for
$$\mu$$
-a.a. $x = (x_0, x_1, ..., x_n, ...)$.

Equivalently, for all $f \in C(\mathbb{A}^{\mathbb{Z}_+}, \mathbb{R})$, one has

$$\int f(x)\mu(dx) = \int \Big[\sum_{a\in A} f(ax)g(ax)\Big]\mu(dx)$$

g-measures

Positive and continuous function g,

$$\operatorname{var}_n(g) = \sup_{x_0^n = \bar{x}_0^n} \left| g(x) - g(\bar{x}) \right| \to 0 \quad \text{ as } n \to \infty.$$

Theorem (Walters 1975). Continuous positive normalized function *g* with **summable variation**

$$\sum_{n=0}^{\infty} \operatorname{var}_n(g) < \infty,$$

admits a unique *g*-measure.

g-measures

Finite range

Markov chains with $\mathbf{P} > 0$, $\mathbf{P} = (p_{ij})$ with some $p_{ij} = 0$ **excluded**

Exponential decay

Hölder continuous functions g

Review: renormalization of g-measures

Theorem. If $\beta_n = \operatorname{var}_n(g) \to 0$ sufficiently fast, then $\nu = \mu \circ \pi^{-1}$ is a \widetilde{g} -measure:

$$\nu(y_0|y_1^\infty) = \widetilde{g}(y)$$

with

$$\widetilde{\beta}_n = \operatorname{var}_n(\widetilde{g}) \to 0.$$

Review: renormalization of g-measures

Theorem. If $\beta_n = \operatorname{var}_n(g) \to 0$ sufficiently fast, then $\nu = \mu \circ \pi^{-1}$ is a \tilde{g} -measure:

$$\nu(y_0|y_1^\infty) = \widetilde{g}(y)$$

with

$$\widetilde{\beta}_n = \operatorname{var}_n(\widetilde{g}) \to 0.$$

Denker & Gordin (2000) Chazottes & Ugalde (2011) Kempton & Pollicott (2011) Redig & Wang (2010) V. (2011)

$$\begin{array}{l} \beta_{n} = \mathcal{O}(e^{-\alpha n}) \\ \sum_{n} n^{2} \beta_{n} < \infty \\ \sum_{n} n \beta_{n} < \infty \\ \sum_{n} \beta_{n} < \infty \\ \sum_{n} \beta_{n} < \infty \end{array}$$

Decay rates

If
$$\beta_n = \mathcal{O}(e^{-\alpha n})$$
, then
 $\widetilde{\beta}_n = \begin{cases} \mathcal{O}(e^{-\widetilde{\alpha}\sqrt{n}}), & [CU, KP] \\ \mathcal{O}(e^{-\widetilde{\alpha}n}), & [DG, RW]. \end{cases}$

Decay rates

If
$$\beta_n = \mathcal{O}(e^{-\alpha n})$$
, then
 $\widetilde{\beta}_n = \begin{cases} \mathcal{O}(e^{-\widetilde{\alpha}\sqrt{n}}), & [CU, KP] \\ \mathcal{O}(e^{-\widetilde{\alpha}n}), & [DG, RW]. \end{cases}$

If
$$\beta_n = \mathcal{O}(n^{-\alpha})$$
, then
 $\widetilde{\beta}_n = \begin{cases} \mathcal{O}(n^{-\alpha+2}), & [CU, RW] \\ \mathcal{O}(n^{-\alpha+1}), & [KP] \end{cases}$

Decay rates

If
$$\beta_n = \mathcal{O}(e^{-\alpha n})$$
, then
 $\widetilde{\beta}_n = \begin{cases} \mathcal{O}(e^{-\widetilde{\alpha}\sqrt{n}}), & [CU, KP] \\ \mathcal{O}(e^{-\widetilde{\alpha}n}), & [DG, RW]. \end{cases}$

If
$$\beta_n = \mathcal{O}(n^{-\alpha})$$
, then
 $\widetilde{\beta}_n = \begin{cases} \mathcal{O}(n^{-\alpha+2}), & [CU, RW] \\ \mathcal{O}(n^{-\alpha+1}), & [KP] \end{cases}$

Problem: Repeated application only for exp. decay

Fibres

$$X = \mathbb{A}^{\mathbb{Z}_+}, \quad Y = \mathbb{B}^{\mathbb{Z}_+}, \quad \pi : X \to Y, \quad \nu = \mu \circ \pi^{-1}$$

Fibres $X = A^{\mathbb{Z}_+}, \quad Y = B^{\mathbb{Z}_+}, \quad \pi : X \to Y, \quad \nu = \mu \circ \pi^{-1}$ For $y \in Y$, the fibre over y is

$$X_y = \{x \in X : \pi(x) = y\}.$$

Fibres $X = A^{\mathbb{Z}_+}, \quad Y = B^{\mathbb{Z}_+}, \quad \pi : X \to Y, \quad \nu = \mu \circ \pi^{-1}$ For $y \in Y$, the fibre over y is $X_{\nu} = \{x \in X : \pi(x) = y\}.$

Definition. A family of measures $\mu_Y = {\{\mu_y\}}_{y \in Y}$ is called a family of **conditional measures** for μ on fibres X_y if

(a)
$$\mu_y$$
 is a Borel probability measure on X_y
(b) for all $f \in L^1(X, \mu)$, the map
 $y \to \int_{X_y} f(x)\mu_y(dx)$ is measurable and
 $\int_X f(x)\mu(dx) = \int_Y \int_{X_y} f(x)\mu_y(dx)\nu(dy).$

Disintegration Theorem, John von Neumann (1932): conditional measures $\mu_Y = {\{\mu_y\}}_{y \in Y}$ on fibres X_y exist Disintegration Theorem, John von Neumann (1932): conditional measures $\mu_Y = {\{\mu_y\}}_{y \in Y}$ on fibres X_y exist

In modern terms,

$$\int_{X_{y}} f(x)\mu_{y}(dx) = \mathbb{E}(f \mid \pi^{-1}\mathfrak{B}_{Y})$$

Disintegration Theorem, John von Neumann (1932): conditional measures $\mu_Y = {\{\mu_y\}}_{y \in Y}$ on fibres X_y exist

In modern terms,

$$\int_{X_{y}} f(x)\mu_{y}(dx) = \mathbb{E}(f \mid \pi^{-1}\mathfrak{B}_{Y})$$
$$\mathbb{E}f = \mathbb{E}\Big[\mathbb{E}(f \mid \pi^{-1}\mathfrak{B}_{Y})\Big]$$

Continuity of conditional probabilities Theorem. Suppose μ is a *g*-measure for some continuous positive function *g*. Suppose also that $\pi : X \to Y$ is such that μ admits a family of conditional measures $\mu_Y = {\{\mu_y\}_{y \in Y} \text{ on fibres}}$ ${\{X_y\}_{y \in Y}}$ such that for every $f \in C(X, \mathbb{R})$ the map

$$y\mapsto \int_{X_y}f(x)\mu_y(dx)$$

is continuous on Y (in the product topology). Then $v = \mu \circ \pi^{-1}$ is a \tilde{g} -measure on Y with

$$\widetilde{g}(y) = \widetilde{g}((y_0, y_1, y_2, ...)) = \int_{X_y} \left[\sum_{\overline{x}_0 \in \pi^{-1}(y_0)} g((\overline{x}_0, x_1, x_2, ...)) \right] \mu_y(dx).$$

Guiding principle

\exists continuous family of conditional measures $\mu_Y = {\mu_y}$ then $ν = μ \circ π^{-1}$ is **GIBBS**

Guiding principle

\exists continuous family of conditional measures $\mu_Y = \{\mu_y\}$ then $\nu = \mu \circ \pi^{-1}$ is **GIBBS**

Remarks:

- **at most one continuous** family $\{\mu_{\nu}\}$
- for GIBBS μ , the measure μ_y must be GIBBS on X_y for the same potential
- Hidden Phase Transitions scenario $v = \mu \circ \pi^{-1}$ is GIBBS if and only if

$$\left|\mathcal{G}(X_{y},\Phi)\right|=1\quad\forall y.$$

IPT's form an obstruction to continuity of $\{\mu_y\}$?

Summable variation

Fibres are nice lattice systems

$$X_y = \prod_{i=0}^{\infty} \pi^{-1}(y_i) = \prod_{i=0}^{\infty} A_i$$

Summable variation

Fibres are nice lattice systems

$$X_y = \prod_{i=0}^{\infty} \pi^{-1}(y_i) = \prod_{i=0}^{\infty} A_i$$

For *g*-functions of **summable variation**, there exists a **unique GIBBS** state (=non-homogeneous equilibrium state) μ_y for log *g* on X_y . [Fan-Pollicott (2000)]

Summable variation

Fibres are nice lattice systems

$$X_{y} = \prod_{i=0}^{\infty} \pi^{-1}(y_{i}) = \prod_{i=0}^{\infty} A_{i}$$

For *g*-functions of **summable variation**, there exists a **unique GIBBS** state (=non-homogeneous equilibrium state) μ_y for log *g* on X_y . [Fan-Pollicott (2000)]

Continuity of $\{\mu_y\}$: uniform convergence of fibrewise shifted Ruelle-Perron-Frobenius operators

$$P_y^n h(x) \to \int_{X_y} h \mu_y(dx) \quad \text{as } n \to \infty$$

Construction of $\mu_V = \{\mu_V\}$ μ is *g*-measure, $\mu(x_0|x_1^{\infty}) = g(x)$. Fix $y \in Y$; for $n \in \mathbb{Z}_+$, define $g_n^y : X_y \to \mathbb{R}$ by $g_n^{y}(x) = g(x_n, x_{n+1}, ...) \frac{\sum_{\bar{x}_0^{n-1} \in \pi^{-1} y_0^{n-1}} \prod_{k=0}^{n-1} g(\bar{x}_k^{n-1} x_n x_{n+1}^{+\infty})}{\sum_{\bar{x}_0^n \in \pi^{-1} y_0^n} \prod_{k=0}^n g(\bar{x}_k^n x_{n+1}^{+\infty})}$ $=\frac{\mu(x_n|y_0^{n-1},x_{n+1}^{\infty})}{\mu(y_n|y_0^{n-1},x_{n+1}^{\infty})}$ The more **natural choice** $g_n^{y}(x) = \frac{g(x_n, x_{n+1}, x_{n+2}, ...)}{\sum_{\bar{x}_n \in \pi^{-1}y_n} g(\bar{x}_n, x_{n+1}, x_{n+2}, ...)} = \frac{\mu(x_n | x_{n+1}^{\infty})}{\mu(y_n | x_{n+1}^{\infty})}$

Define a sequence of **averaging operators** P_n^y

$$P_n^{y} f(x) = \sum_{a_0^n \in \pi^{-1} y_0^n} G_n^{y} (a_0 \dots a_n x_{n+1} \dots) f(a_0 \dots a_n x_{n+1} \dots),$$
$$G_n^{y} (x) = \prod_{k=0}^n g_n^{y} (x)$$

Operators P_n^y are positive and satisfy $P_n^y \mathbf{1} = \mathbf{1}$. A probability measure ρ on X_y is called a **non-homogeneous equilibrium state associated to** $G^y = \{g_n^y\}$ if

$$(P_n^y)^*\rho = \rho$$

Define a sequence of *averaging operators* P_n^y on $C(X_y, \mathbb{R})$

$$P_n^{y} f(x) = \sum_{a_0^n \in \pi^{-1} y_0^n} G_n^{y} (a_0 \dots a_n x_{n+1} \dots) f(a_0 \dots a_n x_{n+1} \dots),$$

$$G_n^{\mathcal{Y}}(x) = \prod_{k=0}^n g_n^{\mathcal{Y}}(x)$$

Operators P_n^{γ} are positive and satisfy $P_n^{\gamma} \mathbf{1} = \mathbf{1}$.

A probability measure ρ on X_y is called a **non-homogeneous equilibrium state associated to** $G^y = \{g_n^y\}$ if $(P_n^y)^* \rho = \rho.$

Uniqueness of g-measures

Uniqueness of g-measures Berbee (1987)

$$\sum_{n} \exp\Bigl(-\sum_{k=0}^{n} \operatorname{var}_{k}(\log g)\Bigr) < \infty$$

Johansson & Öberg (2003): square summability (ℓ^2)

$$\sum_{n} \left(\operatorname{var}_{n}(\log g) \right)^{2} < \infty$$

suffices.

Uniqueness of g-measures Berbee (1987)

$$\sum_{n} \exp\Bigl(-\sum_{k=0}^{n} \operatorname{var}_{k}(\log g)\Bigr) < \infty$$

Johansson & Öberg (2003): square summability (ℓ^2)

$$\sum_{n} \left(\operatorname{var}_{n}(\log g) \right)^{2} < \infty$$

suffices.

29

Berger, Hoffman & Sidoravicius: $\ell^{2+\varepsilon}$ is not enough In ℓ^2 -case: unknown speed of convergence $P_n f \rightarrow \int f d\mu$ Johansson-Öberg-Pollicott (2010)

- Generalizes previous results
- speed of convergence

non-homogeneous version?

Berbee (1987): unique μ_g if

$$\sum_{n} \exp\Bigl(-\sum_{k=0}^{n} \operatorname{var}_{k}(\log g)\Bigr) < \infty$$

Berbee (1987): unique μ_g if

$$\sum_{n} \exp\Bigl(-\sum_{k=0}^{n} \operatorname{var}_{k}(\log g)\Bigr) < \infty$$

Moreover,
$$\mu_g = \text{Law}(\{X_n\})$$
, then
 $X_n = f(Z_n)$

for some Markov process $\{Z_n\}$.

functions of Markov chains with $P \ge 0$... are not necessarily GIBBS!

Walters-van den Berg example

$$X_n = \pm 1$$
, $X_n \sim B(p, 1-p)$, $p \neq \frac{1}{2}$,
Process $Y_n = X_n \cdot X_{n+1}$ is really bad

1

functions of Markov chains with $P \ge 0$... are not necessarily GIBBS!

Walters-van den Berg example

$$X_n = \pm 1$$
, $X_n \sim B(p, 1-p)$, $p \neq \frac{1}{2}$,
Process $Y_n = X_n \cdot X_{n+1}$ is really bad

 $Y_n = \phi(X_n^*)$, where $\{X_n^*\}$ is a Markov chain

$$\mathbf{P} = \begin{pmatrix} p & 1-p & 0 & 0\\ 0 & 0 & p & 1-p\\ p & 1-p & 0 & 0\\ 0 & 0 & p & 1-p \end{pmatrix}$$

Dynamical Systems Approach (Walters, 1986)

•
$$\pi$$
 is finite-to-one: $|X_{\gamma}| = 2$

•
$$v = B(p, 1-p) \circ \pi^{-1} = B(1-p, p) \circ \pi^{-1}$$

• ν is not GIBBS for any **nice** ψ .

Dynamical Systems Approach (Walters, 1986)

$$\pi$$
 is finite-to-one: $|X_y| = 2$

■
$$\nu = B(p, 1-p) \circ \pi^{-1} = B(1-p, p) \circ \pi^{-1}$$

• ν is not GIBBS for any **nice** ψ .

Statistical Mechanics (van den Berg)

$$\nu(1|y_1\dots,y_n) = \frac{a\lambda^{S_n} + b}{c\lambda^{S_n} + d}, \quad \frac{a}{c} \neq \frac{b}{d},$$

and $|\lambda| < 1$ and

$$S_n = y_1 + y_1 y_2 + \dots + y_1 y_2 \dots y_n.$$

- Chazottes-Ugalde (2003) [MC]
- Han–Marcus (2006) [MC]
- 🖙 Kempton (2011)
- 🖙 Yoo (2010) [MC]
- Method based on uniqueness of non-homogeneous equilibrium states also works.
- Seemingly similar results in Statistics/Information Theory [MC]

Subshifts of finite type

 $X \subseteq A^{\mathbb{Z}_+}$ is a subshift of finite type (or, TMC) defined by 0/1 matrix M of size $|A| \times |A|$

$$X = \{ x \in A^{\mathbb{Z}_+} : M(x_n, x_{n+1}) = 1 \quad \forall n \ge 0 \}.$$

Non-homogeneous subshifts of finite type

- sequence of finite sets $\{S_n\}$
- sequence $\mathcal{M} = \{M_n\}$ of 0/1 matrices of size $|S_n| \times |S_{n+1}|$
- non-homogeneous subshift of finite type

$$X_{\mathcal{M}} = \{ x = (x_n) \in \prod S_n : M_n(x_n, x_{n+1}) > 0 \}$$

Irreducibility condition: There exists k > 0 such that

$$\prod_{i=n}^{n+k} M_i > 0 \quad \forall n.$$

Irreducible SFT X_M admits a unque g-measure for a positive continuous function $g: X_M \to \mathbb{R}$ of summable variation.

Irreducible SFT X_M admits a unque g-measure for a positive continuous function $g: X_M \to \mathbb{R}$ of summable variation.

Fan-Pollicott: true for irreducible non-homogeneous SFT's.

Irreducible SFT X_M admits a unque g-measure for a positive continuous function $g: X_M \to \mathbb{R}$ of summable variation.

Fan-Pollicott: true for irreducible non-homogeneous SFT's.

Require fibres to be irreducible non-homogeneous SFT's.

Prospects and perspectives

Preservation of GIBBS property in d = 1. Proofs rely on something which could work in \mathbb{Z}^d as well, - go in the the direction of HPT.

Preservation for specific potentials.

Theory of hidden GIBBS processes.

Practical implications of being non-GIBBS.

Not necessarily symbolic systems

No hidden phase transitions van Enter, Fernandez, Sokal: 7 step plan

$$\text{if } \forall y, |\mathcal{G}_{X_{y}}(\Phi)| = 1 \quad \Rightarrow \quad \nu \in \mathcal{G}_{Y}; \\ \text{if } \exists y, |\mathcal{G}_{X_{y}}(\Phi)| > 2 \quad \Rightarrow \quad \nu \notin \mathcal{G}_{Y}.$$

No hidden phase transitions van Enter, Fernandez, Sokal: 7 step plan

$$\text{if } \forall y, |\mathcal{G}_{X_{y}}(\Phi)| = 1 \quad \Rightarrow \quad \nu \in \mathcal{G}_{Y};$$

$$\text{ if } \exists y, |\mathcal{G}_{X_y}(\Phi)| > 2 \quad \Rightarrow \quad \nu \notin \mathcal{G}_{Y}.$$

True in all known cases!

 \mathbb{Z}^d vs \mathbb{Z} : easy to organize phase-transitions Potential Φ , inverse temperature β ($\beta < \beta_c(\Phi)$):

$$|\mathcal{G}_{X}(\beta \Phi)| = 1$$

Conditioning on image spins can lower the temperature beyond the critical value,

$$|\mathcal{G}_{X_{y}}(\beta \Phi)| > 2$$