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Binary symmetric channel

Input process {X,,} = output process {Y,,}

o —EE> o

-

P(Y,=0|X,=0)=P(Y,=1X,=1)=1—¢
P(Y,=0|X,=1)=P(Y,=1|X,=0)=¢



Input process {X,,} = Output process {Y,}

o — I o

.

Question: Take you favorite process (measure), what
are the properties/entropy/... of the output process
(measure).



Binary Symmetric Markov Process under

BSC

= {X,}—Markov chain, X,, € {—1,1},

p=(17P P
p 1-p
w {Z,}—Bernoulli sequence, Z,, = {—1,1},

P(Z,=-1)=¢ PZ,=1)=1-¢

= Yn:Xn°Zn Vn € Z



Binary Symmetric Markov Process under

BSC

= {X,}—Markov chain, X,, € {—1,1},

p=(17P P
p 1-p
w {Z,}—Bernoulli sequence, Z,, = {—1,1},

P(Z,=-1)=¢ PZ,=1)=1-¢

= Yn:Xn°Zn Vn € Z

If {Z,.} is Markov, we have a Gilbert-Elliot channel.



Equivalently,
Y, = (X9,

for the Markov chain {X;*} with values in

A= {(11 D, @, -1),(-1,1),(-1, _1)};

with
1-pA-¢) (1-p) p(1—¢) pE
pr— | A—p)A—-e) (A-pe pd-—¢) pe
p(1—¢) pE A-pA-¢) (A-p)k|
p(1—e¢) pe A-pA-¢) (A-p)e

and an obvious deterministic function

m:A-{-1,1}



Equivalently,
Y, = (X9,

for the Markov chain {X;*} with values in

A= {(11 D, @, -1),(-1,1),(-1, _1)};

with
1-pA-¢) (1-p) p(1—¢) pE
pr— | A—p)A—-e) (A-pe pd-—¢) pe
p(1—¢) pE A-pA-¢) (A-p)k|
p(1—e¢) pe A-pA-¢) (A-p)e

and an obvious deterministic function
m:A-{-1,1}

BSC is a 1-block factor of a Markov process



Information theory
BSC is the simplest textbook channel

Statistical mechanics
BSC on lattices Z* & timet = t(e) map
infinite temperature Glauber dynamics

Probability/Statistics
BSC —> hidden Markov chains

Dynamical Systems
BSC —> 1-block factor



Information theory
BSC is the simplest textbook channel

Statistical mechanics
BSC on lattices Z* & timet = t(e) map
infinite temperature Glauber dynamics

Probability/Statistics
BSC —> hidden Markov chains

Dynamical Systems
BSC —> 1-block factor

What happens if you start with a nice process?
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Side remark: RG method in Stat. Mech.

is used to compute some interesting quantities
(critical exponents).

Spin system {o,, : n € Zd} governed by Gibbs u with
potential H.

Apply renormalization: e.g., decimation

New spin system {G,,: n € Zd}:

T, =0,, beNnel"
Law({d,,}) is Gibbs (with potential H;).
Hy» H,q

Repeat many times... [Kadanoff (66), Wilson (75),...]
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Nice measures in 1D

are regular (=GIBBS), and might be
1 Gibbs in Stat. Mechanics sense (DLR)
1= Gibbs in Dyn. Systems sense (Bowen)
1= g-measure (Keane, one-sided DLR)
... equivalent under strong uniqueness conditions.



GIBBS notions

1= Gibbs/Statistical Mechanics/ two-sided

HCxolxoo) = 7 exp(~ Y UnCxn)).

AS0

1= g-measures/Dynamical Systems/ one-sided

u(xolxs0) = g(x0,x1,..), g € C(A™), g > 0.
1= Gibbs/Dyn. Systems (Bowen):

Ic,P € R, ¢ € C(A™)
([0 - %))

< <c.

exp(f} $(o/x) — (n+ 1)P)

j=0

A=



Relation between different GIBBS notions

1= R. Fernandez, S. Gallo, G. Maillard (2011):
unique g-measure which is not two-sided
Gibbs

i P, Walters (2005): example of y on A” such that

Z, - Z<
utonA™°, u onA™,

utis a g-measure, i~ is not.
1= unknown for the Dyson model

Ho(o) = JZ i “€a

10



Relation between different GIBBS notions

1= R. Fernandez, S. Gallo, G. Maillard (2011):
unique g-measure which is not two-sided
Gibbs

i P, Walters (2005): example of y on A” such that

Z, - Z<
utonA™°, u onA™,

utis a g-measure, i~ is not.
1= unknown for the Dyson model

Ho(o) = JZ i “€a

1> CMMC's, CCC’s, VLMC’s, uniform martingales,

abs.reg. processes
10



Markov measures
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Markov measures

11

Theorem. Suppose {X,.}, ., is @ Markov chain with
P > 0 and P is the invariant measure. Then the
measure Q = m,IP = P o r~! of the factor process

Y, =m(X,)
is regular (Gibbs, g-, CMMC's, ... ):

Put= ynggz QW l¥1 €nrt) — Q1YY Coit)| = 0.

Moreover, there exist C > 0 and 8 € (0, 1) such that
B, < Co".



Markov measures

11

Theorem. Suppose {X,.}, ., is @ Markov chain with
P > 0 and P is the invariant measure. Then the
measure Q = m,IP = P o r~! of the factor process

Y, =m(X,)
is regular (Gibbs, g-, CMMC's, ... ):

Put= ynHE( QW l¥1 €nrt) — Q1YY Coit)| = 0.

Moreover, there exist C > 0 and 8 € (0, 1) such that
B, < Co".

At least 10 proofs = various estimates of 6



Decay rate for p =04, e = 0.1

Birch 6 = 0.99998
Harris 6y =~ 097223
Baum and Petrie Ogp =094
Han and Marcus 6yy = 0.58
Hochwald and Jelenkovi¢ Oy =0.2
Fernandez, Ferrari, and Galves Orrc = 0.2
Peres Op = 0.2

On; = Oprg = 0p = |1 —2p| =2A,(P) =
lim [P(X, = |X, = 1) — P(X, = |X, "

n—oo

-1)
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Decay rate for p =04, e = 0.1

Birch

Harris

Baum and Petrie
Han and Marcus

Hochwald and Jelenkovié
Fernandez, Ferrari, and Galves

Peres

0, ~ 0.99998
0, =~ 0.97223

0pp =094
0,y = 0.58
Oy =02
Oprc = 0.2
0, =02

On; = Oprg = 0p = |1 —2p| =2A,(P) =

lim |P(X, =X, = 1) — P(X, =X,

n—oo

5 independent of

1
n

-1)




In fact ...

Process {Y,,} is more random than {X, }.

13



In fact ...

Process {Y,,} is more random than {X, }. Memory
decay rate should be strictly smaller than |1 — 2p|.

13



In fact ...

Process {Y,,} is more random than {X, }. Memory
decay rate should be strictly smaller than |1 — 2p|.

Note that for e = 0, Q = P, and decay rate is zero.
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In

13

fact ...

Process {Y,,} is more random than {X, }. Memory
decay rate should be strictly smaller than |1 — 2p|.

Note that for e = 0, Q = P, and decay rate is zero.

Theorem. For all p, ¢ € (0, 1), memory decay rate

1

=5,

By= sup @Ol $ur1) — QU IV G| = 0.
Yo
satisfies
0" <|1-2p|.
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Theorem.

2 Q(:Vobﬁ»yz' ) = ap —

where fori = 0

a;,=1+4q; b;=4e(1-2¢)q,
q;, =1 —-2p)y Y11
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Theorem.

2 Q(:Vobﬁ»yz' ) = ap —

where fori = 0
a;,=1+4q; b;=4e(1-2¢)q,
q;, =1 —-2p)y Y11

PROOF: BSM over BSC = RFIM in 1D.



|dentification of potential
all thermodynamic quantities are real-analyticin € .

QO,ly9) = Z P O)E = Z POk
log Q,ly?) = 2 b )" = Z B e
hQ) = h(P) + ) cpek
; k

Han-Marcus (2006), Zuk-Domany-Kanter-Aizenman
s (2006), Pollicott (2011)



g-measures on full shifts

Suppose g : A% > [0, 1] is continuous and positive.

Definition. A measure y on A™isa g-measure if
.u(XO = xOIXl =X '"IXn = Xn ) = g(X),

for p-a.a. x = (xg, X1, «-r) Xppy --)-

16



g-measures on full shifts
Suppose g : A% > [0, 1] is continuous and positive.
Definition. A measure y on A™isa g-measure if

.u(XO = xOIXl =X '"IXn = Xn ) = g(X),
for p-a.a. x = (xg, X1, «-r) Xppy --)-

Equivalently, forall f € C(AZ+, R), one has

| reom@n = [ r@ngeo]u

achA

16



g-measures
Positive and continuous function g,

var,(g) = snupn|g(x) — g()'c)| -0 asn— oo,
X0=X0

Theorem (Walters 1975). Continuous positive
normalized function g with summable variation

(o¢]

Z var,(g) < o,

n=0

admits a unique g-measure.

17



g-measures

18

Finite range
Markov chains with P > 0,
P = (pl.j) with some p,; = 0 excluded

Exponential decay
Hoélder continuous functions g



Review: renormalization of g-measures

Theorem. If . = var,(g) — 0 sufficiently fast, then
v =pomn lisag-measure:

v(yoly?) =3()

with .
,Bn = var,(g) — 0.

19



Review: renormalization of g-measures

Theorem. If . = var,(g) — 0 sufficiently fast, then
v =pomn lisag-measure:

v(oly?) =39)
with .
Bn = var,(g) — 0.

Denker & Gordin (2000) g, =0("")
Chazottes & Ugalde (2011) ), n*B, <
Kempton & Pollicott (2011) ). nf, < oo
Redig & Wang (2010) Y, <

V. (2011) Y. B, <o

19



Decay rates
w If g, = 0(e™*"), then

~ | oe®™, [cukP]

n 0(e™), [DG, RW].

20



Decay rates

w If g, = 0(e™*"), then
n O(e—&n),

w If g =0(m™"), then

B, =

20

,vz{ O(e~@M),

_ O(Tl_a+2),
O(Tl_a+1),

[CU,KP]
[DG, RW].

[CU, RW]
[KP]



Decay rates
w If g, = 0(e™*"), then

~ | oe®™, [cukP]
n o™, [DG, RW].

w If g =0(m™"), then

— | om?), [CU,RW]
b = o(n~**Y,  [KP]

Problem: Repeated application only for exp. decay

20



Fibres
X=A% v=B% m:X->Y v=pom
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Fibres
X=A% y=B% m:X->Y v=pom!
For y € Y, the fibre over y is

Xyz{xEX: n(x)zy}.
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Fibres
X=A% y=B% m:X->Y v=pom!
For y € Y, the fibre over y is

Xyz{xEX: n(x)zy}.

Definition. A family of measures u, = {”y}yey is
called a family of conditional measures for u on
fibres X, if
(a) 1, is a Borel probability measure on X,
(b) forall f € LI(X, W), the map
y - ny f(x)uy(dx) is measurable and

Jreowao = | reom v,

21



22

Disintegration Theorem, John von Neumann (1932):
conditional measures uy, = {i,} ., on fibres X,
exist

yeY
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exist

In modern terms,

| reom, @0 = E(r 7))
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Disintegration Theorem, John von Neumann (1932):
conditional measures u, = {,uy}yey on fibres X,
exist

In modern terms,

| reom, @0 = E(r 7))

Ef = E[E(f |n7'8y)]



Continuity of conditional probabilities
Theorem. Suppose u is a g-measure for some
continuous positive function g. Suppose also that
m : X = Y is such that yu admits a family of
conditional measures u, = {‘uy}er on fibres
{Xy}yEY such that for every f € C(X, R) the map

yo [ Feom, @0
Xy
is continuous on Y (in the product topology). Then
v =pom lisag-measure onY with
g =9y Yy )
~[[ Y 9o D@,

Xy J_COET[_l(yo)
23



24

Guiding principle
3 continuous family of conditional measures
uy = {u,}thenv =po m~!is GIBBS
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Guiding principle
3 continuous family of conditional measures
uy = {u,}thenv =po m~!is GIBBS

Remarks:
1= at most one continuous family {uy}

1= for GIBBS u, the measure p,, must be GIBBS on
X, for the same potential

15 Hidden Phase Transitions scenario
v = uom'is GIBBS if and only if

G, )| =1 vy.

v= HPT’s form an obstruction to continuity of {u }?



Summable variation
Fibres are nice lattice systems

x=[[on=]]a
0 i=0

i=

25



Summable variation
Fibres are nice lattice systems

x,=||=on=][a
0 i=0

i=
For g-functions of summable variation, there exists
a unique GIBBS state (=non-homogeneous

equilibrium state) u,, for logg on X,
[Fan-Pollicott (2000)]
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Summable variation
Fibres are nice lattice systems

x,=||=on=][a
0 i=0

i=
For g-functions of summable variation, there exists
a unique GIBBS state (=non-homogeneous

equilibrium state) u,, for logg on X,
[Fan-Pollicott (2000)]

Continuity of {x }: uniform convergence of
fibrewise shifted Ruelle-Perron-Frobenius operators

Pyh(x) — JX hp,(dx) asn— oo

25



Construction of u, = {1 }
is g-measure, u(xo|x;’) = g(x).
Fixy € Y; forn € Z_, define g, : X, - Rby

Z l_[k Og( n.|_1

=n—1 -1
Xo ET yo

Y\ —
In(¥) = g(Xp, Xn11, ) 2 T, s,
uCrlygTh )
HOL LX)
The more natural choice
90t Xps1 Xz ) BOIX2)
Y9G Xt Xnzo ) MYV, IX2)

X €m 1y,

gn(x) =

26
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Define a sequence of averaging operators P,

PIrO) = D GGy @ty - (@ - Gy -,

ag€n‘1yg
n
G =] |aw
k=0

Operators P% are positive and satisfy Pil = 1.

A probability measure p on X, is called a
non-homogeneous equilibrium state associated to
G" = {gn}if

(P p=p



28

Define a sequence of averaging operators P2, on
C(X,,R)

PYf(x) = Z G (g o @y ) f (g o @sr ),

ag€ntyg
n
G =] |aw
k=0

Operators P>, are positive and satisfy P21 = 1.

A probability measure p on X, is called a
non-homogeneous equilibrium state associated to
G" = {g}if

(P)'p=p,



Uniqueness of g-measures
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Uniqueness of g-measures
Berbee (1987)

n

z exp(— Z var, (log g)) <

n k=0

Johansson & Oberg (2003): square summability ({’2)

Z:(varn(logg))2 <

n

suffices.

29



Uniqueness of g-measures

Berbee (1987)
z exp(— Z var, (log g)) <
n k=0

Johansson & Oberg (2003): square summability ({’2)

Z:(varn(logg))2 <

n

suffices.

. . . 2+¢ .
Berger, Hoffman & Sidoravicius: £~ is not enough
2
In £”-case: unknown speed of convergence

Pof = [ fdu

29
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Johansson—Oberg—Pollicott (2010)
1= Generalizes previous results
1= speed of convergence

non-homogeneous version?
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Berbee (1987): unique K, if

n

z exp(— z vary(log g)) < o0

n k=0
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Berbee (1987): unique K, if

n

z exp(— z vary(log g)) < o0

n k=0
Moreover, i, =Law ({Xn}), then

Xn = f(Zn)

for some Markov process {Z,,}.



functions of Markov chains with P > 0
... are not necessarily GIBBS!

Walters-van den Berg example

1
Xn:ilt Xn~B(p'1_p)' p'_'tz'
Process Y, = X,, - X,,41 is really bad

32



functions of Markov chains with P > 0
... are not necessarily GIBBS!

Walters-van den Berg example

1
Xn:i]-t Xn~B(p'1_p)' p'_'tz'

Process Y, = X,, - X,,41 is really bad

Y, = ¢(X,), where {X,} is a Markov chain

p 1—-p 0 0
p— 0 0 p 1-p

p 1-p 0 0

0 0 p 1-p

32
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1= Dynamical Systems Approach (Walters, 1986)
7 is finite-to-one: |X, | = 2
v=B(p1-p)en ' =B(1—-pp)en
v is not GIBBS for any nice 1.

1
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1= Dynamical Systems Approach (Walters, 1986)
7 is finite-to-one: |X, | = 2
v=B(p1-p)en ' =B(1—-pp)en
v is not GIBBS for any nice 1.

1

1= Statistical Mechanics (van den Berg)

a)lS" +b a
1/(1|y1 ...,yn) = .

) b
A+ d d’

and [A] < 1 and

Spn=y,ty Yy, + .ty y, ..y,
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B R B B B

B

Chazottes-Ugalde (2003) [MC]
Han—Marcus (2006) [MC]
Kempton (2011)

Yoo (2010) [MC]

Method based on uniqueness of
non-homogeneous equilibrium states also
works.

Seemingly similar results in
Statistics/Information Theory [MC]



Subshifts of finite type

X < A% is a subshift of finite type (or, TMC) defined
by 0/1 matrix M of size |A| X |A]|

X = {x eA™ . M(x,xpe1) =1 VYn2= 0}.

35



Non-homogeneous subshifts of finite type

1= sequence of finite sets {S,,}

= sequence M = {M, } of 0/1 matrices of size
|Sn| X |Sn+1|
15> non-homogeneous subshift of finite type

XM = {X = (xn) € nsn : Mn(xn' xn+1) > O}
Irreducibility condition: There exists k > 0 such that

nMi >0 vn

i=n

36



37

Irreducible SFT X, admits a ungiue g-measure for a
positive continuous function g : X, —» R of
summable variation.
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Fan-Pollicott: true for irreducible non-homogeneous
SFT’s.



37

Irreducible SFT X, admits a ungiue g-measure for a
positive continuous function g : X, —» R of
summable variation.

Fan-Pollicott: true for irreducible non-homogeneous
SFT’s.

Require fibres to be irreducible non-homogeneous
SFT’s.



Prospects and perspectives

Preservation of GIBBS property in d = 1. Proofs -
rely on something which could work in 7% as well,
- goin the the direction of HPT.

Preservation for specific potentials.
Theory of hidden GIBBS processes.
Practical implications of being non-GIBBS.

Not necessarily symbolic systems

38



No hidden phase transitions
van Enter, Fernandez, Sokal: 7 step plan

= if Vy, |ng(CD)| =1 = VEG,
wif 3y, |Gy (P >2 = VEG,.
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No hidden phase transitions

39

van Enter, Fernandez, Sokal: 7 step plan
= if Vy, |ng(CD)| =1 = VEG,
wif 3y, |Gy (P >2 = VEG,.

True in all known cases!
7% vs Z: easy to organize phase-transitions
Potential @, inverse temperature B (B < B.(®)):

1Gx(BP)| =1

Conditioning on image spins can lower the
temperature beyond the critical value,

Gy, (B®)| > 2



