Suppression of bad news in markets:
Equilibrium analysis of correlated optimal data censors

Adam Ostaszewski, Mathematics Dept.,
London School of Economics.

Joint work with:

30th Nov. 2011, Topics on Control (EPSRC Workshop), Inst. Mathematics,
Warwick University
Alternative Subtitle:

Filtering with selectively censored data (news)

Averaging, bandwagon and quality effects from correlation
Motivation: a disclosure game

1. At the first ‘ex-ante date’ Nature selects a probabilistic strategy (‘action’) \(X \) from a known space of actions. Actions are represented by a family of distributions.

2. At the interim date (a known later date), as a result of an independent draw with some probability \(q \), this action is observed noisily by an agent (‘observer’).

3. At the ‘terminal date’ (a still later date), there is a publicly observed vector of outcomes \(F_i \) dependent on the action \(X \).

The ‘public’ comprises the agents and a disjoint set of principals (e.g. investors).
At the interim date a **pre-assessment**/evaluation of the outcome F_i may be formed from the observation.

What is the disclosure game? What is news? Answer (T for a transform):

$$T_i = T(X, Y_i) = \text{private signal about } X \text{ involving the observer’s noise } Y_i,$$

received at the ‘interim date’ prior to public (common) knowledge of X at the terminal date.

The effect of X is to yield an outcome, e.g. via

$$F_i := f_i \cdot T(X, Z_i) = \text{effect of } X \text{ with uncertainties from } Z_i.$$

Leads to a public interim re-assessment of any disclosed signals from the agents.

This could be the evaluation of some underlying complex system based on partial noisy observation.
The ex-ante assessment is modelled as

$$\mathbb{E}[F_i] = f_i \cdot \mathbb{E}[T(X, Z_i)].$$

Game objective: maximization at the interim date of the re-assessment of F_i.

Disclosure option: opportunity to suppress the reporting of the signal T_i, if

$$\mathbb{E}[F_i \mid \text{report } T_i] < \mathbb{E}[F_i \mid \text{no report/no disclosure}]$$

equivalently, on using $F_i = f_i \cdot T(X, Z_i)$,

$$\mathbb{E}[T(X, Z_i) \mid \text{report } T_i] < \mathbb{E}[T(X, Z_i) \mid \text{ND}],$$

assuming there is a positive probability that the observer is unable to observe T_i.
A basic question: When is a censor γ optimal?

Answer: it is the ‘indifferent censor’ γ: indifference as to reporting when $T = \gamma$.

Note for later that

$$\mathbb{E}[T|\text{ND using } \gamma] := \frac{(1 - q)\mathbb{E}[T] + q\mathbb{E}[T \cdot 1_{T<\gamma}]}{(1 - q) + q\mathbb{E}[1_{T<\gamma}]}$$

We assume:

(i) $0 < q < 1$ and q is public (common) knowledge,

(ii) the observer does not lie, and cannot directly announce credibly absence of an observation.
The Equity-valuation model

Take \(X = Y_0, Y_i, Z_i \) all log-normal with unit-mean, so in stochastic-exponential format:

\[
Y_i = e^{\sigma_i v_i - \frac{1}{2} \sigma_i^2}, \quad \text{for } i = 0, 1, 2, \ldots, n,
\]

with \(v_i \) all independent, standard normal, and

\[
T_i = X Y_i \quad \text{and} \quad F_i = f_i X Z_i.
\]

The observers are called firm-managers and identified with \(Y_i \).

Easy to include individual dependency loading index \(\alpha_i \) of firm \(i \) on \(X \):

\[
T_i = X Y_i \quad \text{and} \quad F_i = f_i X^{\alpha_i} Z_i.
\]
Corollaries of the model:

1. \(T_i = e^{\sigma_0 w_i - \frac{1}{2}\sigma_0^2}, \) with \(\sigma_0 w_i = \sigma_0 v_0 + \sigma_1 v_i \) and \(\sigma_0^2 = \sigma_0^2 + \sigma_1^2. \)

So \(v_0 \) is the only source of all the correlation.

Useful to refer to \(p_i = 1/\sigma_i^2, \) the \textbf{precision} of \(Y_i. \)

2.

\[\mathbb{E}[F_i|\text{data}] = f_i \mathbb{E}[X|\text{data}]. \]
Noiseless Dye Cutoff: the Censor equation

For $T = X$, i.e. true value rather than a noisy signal is observed

Dye indifference equation, or *Dye Censor Equation* is

$$\gamma = \mathbb{E}[X|ND(\gamma)].$$

It is equivalent to:

$$\lambda(m_X - \gamma) = \mathbb{E}[(\gamma - X)^+], \text{ with odds } \lambda = \frac{1 - q}{q},$$

where

$$\mathbb{E}[(\gamma - X)^+] = \int (\gamma - t)^+ dF_X(t) = \int_{t\leq \gamma} F_X(t) dt.$$
Alternative characterizations of the Dye censor: Minimized valuation consistent with available information:

$$\gamma = \arg \min_{\gamma} \mathbb{E}[X | ND(\gamma)].$$

No-arbitrage valuation: γ such that $\mathbb{E}[X]$ values X consistently with the possibility of further γ-censored information becoming available later.
The hemi-mean function

This put-payoff is valued under an expectation, and we call

\[H_X(\gamma) := \int_{t \leq \gamma} F_X(t) dt, \]

the *hemi-mean function* of \(X \). Since \(H'' = f_X \geq 0 \) that itself is an increasing convex function of \(\gamma \) and so has a smoothed out hockey-stick shape: it looks like the valuation of a call (dual to the put). Examples below! Dye equation standardizes to:

\[\lambda(1 - \gamma) = H_X(\gamma). \]
The Normal Censor

The pink/red intersection identifies the normal Dye censor (here $\lambda = 1$).

A corresponding dual call payoff $(X - x)^+$ is in green.
Location-scale cutoff standardization theorem. For the location and scale family of distributions $\Phi_F\left(\frac{x - \mu}{\sigma}\right)$, with mean μ and variance σ^2, the Dye cutoff $\gamma(\mu, \sigma, \lambda)$ satisfies

$$\gamma(\mu, \sigma, \lambda) = \mu - \sigma \xi(\lambda).$$

So:

$$p_{\text{Low}} < p_{\text{High}} \implies \gamma(p_{\text{Low}}) < \gamma(p_{\text{High}}),$$

i.e. more disclosure from the low-precision firm.

This will be altered by the presence of additional information sources.
Location-scale cutoff standardization theorem. Let \(\Phi_F(x) \) be an arbitrary zero-mean, unit-variance, cumulative distribution for \(F \) defined on \(\mathbb{R} \). For the location and scale family of distributions \(\Phi_F(x-\mu)/\sigma \), with mean \(\mu \) and variance \(\sigma^2 \), the Dye cutoff \(\gamma(\mu, \sigma, \lambda) \) satisfies

\[
\gamma(\mu, \sigma, \lambda) = \mu - \sigma \xi(\lambda), \text{ where } \lambda = \frac{1 - q}{q},
\]

so that

\[
\xi(\lambda) = -\gamma(0, 1, \lambda) < 0
\]

is the cutoff when standardizing to zero mean and unit variance and is a function only of the odds \(\lambda \). The standardized cutoff \(\xi(\lambda) \) is a convex and decreasing function of \(\lambda \) satisfying

\[
\lambda = H_F(-\xi)/\xi,
\]

where \(H_F(x) = \int_{-\infty}^{x} \Phi_F(t)dt \) is the corresponding hemi-mean function.
Black-Scholes Censor

The red-pink intersection identifies the log-normal Dye censor (for $\lambda = 1$).
Green indicates the dual call payoff.
Noisy Dye Cutoff: Estimator-Censor equation

For $T = T(X, Y)$, put

$$\mu_X(t) : = \mathbb{E}[X | T = t],$$

the regression function,

$$S : = \mu_X(T),$$

the estimator, or X^{est}.

Since

$$\mathbb{E}[F] = f_i \mathbb{E}[X],$$

then, provided $\mu_X(.)$ is strictly increasing, the *Dye Equation* holds in the form:

$$\mu_X(\gamma_T) = \gamma_S = E[S | ND(\gamma_S)],$$

where γ_S is the censor for S and γ_T is the equivalent censor for T.
Equivalently, as S is an unbiased estimator of X one has

$$\lambda(m_X - \gamma_S) = H_S(\gamma).$$

By the conditional mean formula (tower law/iterated expectation):

$$\mathbb{E}[S] = \mathbb{E}[\mathbb{E}[X|T]] = \mathbb{E}[X] = m_X.$$

So the hemi-mean function rules OK.
Multi-Censor Equilibrium equation

One has n simultaneous equations corresponding to a simultaneous interim-report date:

$$
\mathbb{E}[X|T_j] = \gamma_j \text{ for all } j = \mathbb{E}[X|ND_i(\gamma)],
$$
with $\gamma = (\gamma_1, \ldots, \gamma_n)$ and $ND_i = \text{only } i \text{ makes no disclosure}.$

We call these the *Marginal Dye equations.*
Log-normal Marginal Dye equations

Recall the Estimator version of the Dye equation:

\[\lambda(m_X - \gamma_S) = H_S(\gamma). \]

Conditioning on the other disclosures, yields for some \(K \) and \(\kappa_i = p_i/p \)

\[\mu_X(\gamma_1, \ldots, \gamma_n) = E[X|T_i = \gamma_i \text{ all } i] = K \gamma_1^{\kappa_1} \ldots \gamma_n^{\kappa_n}, \]

(see below). Change of random variable, and change of variable:

\[S := \mu_X(T_1, \gamma_2, \ldots, \gamma_n), \text{ and } s = \mu_X(\gamma, \gamma_2, \ldots, \gamma_n) \]

yields a conditioned format, in which \(m_{S|\gamma_2,\ldots} \) replaces \(m_S \):

\[\lambda(\mathbb{E}[S|\gamma_2,\ldots,\gamma_n] - s) = H_S(s|\gamma_2,\ldots,\gamma_n). \]
Principal findings for the Equity Valuation case:

Preparatory Step. Replace the n firm-managers Y_i by n hypothetical observers/managers \hat{Y}_i which are uncoupled – acting as though all the competitors had vanished – but with refined precision parameters

$$\kappa_i \sigma_{0i} \sqrt{1 - \rho_i^2}, \text{ with } \kappa_i := \frac{p_i}{p} \text{ and } \sigma_{0i}^2 = \sigma_0^2 + \sigma_i^2,$$

and

$$p = p_0 + ... + p_n, \text{ total precision.}$$

Here ρ_i measures the dependence of T_i on the remaining T_j (more properly: **partial co-variance** of w_i on the remaining w_j).
Conclusion. If the corresponding Dye censors for $\hat{T}_i = X\hat{Y}_i$ are $\hat{\gamma}_i$, then the true managers have censors γ_i given by the weighted average:

$$
\log \gamma_i = \frac{\log g_i}{\kappa_{-i}} + \frac{1}{\kappa_0} \left(\frac{\kappa_1}{\kappa_{-1}} \log g_1 + \frac{\kappa_2}{\kappa_{-2}} \log g_2 + \ldots + \frac{\kappa_n}{\kappa_{-n}} \log g_n \right),
$$

with

$$
\kappa_{-i} = p_i/(p - p_i),
$$

and where g_j is the hypothetical firm-j censor.
In fact

\[g_i = \log \left(\hat{\gamma}_{\text{LN}} \left(\lambda_i, \kappa_i \sigma_0, \sqrt{1 - \rho_i^2} \right) L_{-i} \right), \quad \lambda_i = \frac{1 - q_i}{q_i} \]

\[L_{-i} = \exp \left(-\frac{n - 1}{2(p - p_i)} - \frac{1}{2} \right) = \exp \left(\frac{1}{2} \left(\frac{1}{p_{av,-i}} - \frac{1}{p_{av}} \right) \right), \]

where \(L_{-i} \) is a mean adjustment.
Bandwagon effect

Bandwagon Inflator Theorem. The presence of correlation increases the precision parameter of the cutoff and hence raises the cutoff:

\[\hat{\gamma}_{LN}(\lambda_i, \sigma_0) < \hat{\gamma}_{LN}(\lambda_i, \kappa_i \sigma_0) < \hat{\gamma}_{LN} \left(\lambda_i, \kappa_i \sigma_0 \sqrt{1 - \rho_i^2} \right). \]

Proof. Clear since \(\hat{\gamma}_{LN}(\lambda, .) \) is increasing in precision, and also \(\rho_i^2 \) is increasing in \(p_i \).
Estimator-quality effect

Estimator-Quality Theorem. The mean-adjustor for firm i is increasing in p_i with

$$\exp\left(-\frac{1}{2(p - p_i)}\right) < L_i < \exp\left(\frac{1}{2p_{av, -i}}\right),$$

and in particular

$$L_i < L_j \iff p_i < p_j.$$

The adjustor is a strict deflator, i.e. $L_i < 1$, iff p_i is below the sector average, equivalently below the competitor average, i.e.

$$p_i < \frac{p}{n}, \text{ equivalently } p_i < \frac{p - p_i}{n - 1}.$$
Tools:

Basic Tools: Isomorphism. Equity a log-normal variate, but it is easy to move back and forth from log-normal to normal via the isomorphism $\exp : (\mathbb{R}, +) \to (\mathbb{R}_+, \cdot)$

Explicit Normal and Black-Scholes **put-option formulas**.

Main Tools: Linear regression easily computed via a Hilbert space approach: view $\mathbb{E}[..]$ as a projection and use P the **precision matrix**.

Strategy: Uncoupling the co-dependency and solving the uncoupled censor equations via P.
Some simple algebra: the precision matrix

Put

\[
P_n := \begin{bmatrix}
p_1 & p_2 & \cdots & p_n \\
p_1 & p_2 & \cdots & p_n \\
\vdots & \vdots & \ddots & \vdots \\
p_1 & p_2 & \cdots & p_n
\end{bmatrix}.
\]

and

\[
P_n(x) = P_n - xI.
\]

Recall that for \(\sigma_i^2 \) a variance parameter, \(p_i = 1/\sigma_i^2 \) is the precision parameter.

Proposition 1. For any \(n \), the characteristic function of the matrix \(P_n \) is

\[
\det(P_n - xI) = (-1)^n x^{n-1} (x - p_1 - \cdots - p_n),
\]
Proof. Easy exercise. [Hint: P_n has nullity $n - 1$.]

Proposition 2. For any non-zero parameter q such that $p_q := q + p_1 + \ldots + p_n \neq 0$, the simultaneous system of equations

$$(P_n + qI)x = s,$$

i.e.

$$p_1x_1 + \ldots + (p_i + q)x_i + \ldots + p_nx_n = s_i,$$

has the unique solution

$$x_i = \frac{s_i}{q} + c, \text{ with } c = \frac{1}{qpq}(p_1s_1 + \ldots + p_ns_n).$$
Proof. Easily checked; by Prop. 1, \(\det(P_n + qI) = q^{n-1}(p_1 + \ldots + p_n + q) \neq 0 \), so the solution is unique. \(\square\)
*Example 1: Normal put-option formula

Notation

\[F_X(t) := \Pr[X \leq t] \]

Cases: \(X = u \sim N(0, \sigma^2) \) normal

\[\Phi(t) = F_u(t) := \Pr[u \leq t]. \]

with density \(\varphi(t) = \Phi'(t) \). Here

\[\mathbb{E}[(t - X)^+] = t \Phi \left(\frac{t + \frac{1}{2} \sigma^2}{\sigma} \right) + \varphi(t/\sigma^2). \]
*Example 2: Black-Scholes put-option formula

For X log-normal

$$X = e^{\sigma u - \frac{1}{2} \sigma^2} \text{ with } u \sim N(0, 1),$$

$$\mathbb{E}[(t - X^+)^+] = t \Phi \left(\frac{\log t + \frac{1}{2} \sigma^2}{\sigma} \right) - \Phi \left(\frac{\log t - \frac{1}{2} \sigma^2}{\sigma} \right).$$
Simplification:

Again use the conditional mean formula:

\[
\mathbb{E}[S|\gamma_2, \ldots, \gamma_n] = \mathbb{E}[\mathbb{E}[X|\gamma_2, \ldots, \gamma_n]|\gamma_2, \ldots, \gamma_n], \text{ defn of } S \\
\]

\[
= \mathbb{E}[\mathbb{E}[\mathbb{E}[X|T_1, \gamma_2, \ldots, \gamma_n]|\gamma_2, \ldots, \gamma_n]|\gamma_2, \ldots, \gamma_n], \text{ refine} \\
\]

\[
= \mathbb{E}[KT_1^{\kappa_1}\gamma_2^{\kappa_2}\ldots\gamma_n^{\kappa_n}|\gamma_2, \ldots, \gamma_n], \text{ apply formula} \\
\]

\[
= K\gamma_2^{\kappa_2}\ldots\gamma_n^{\kappa_n} \cdot \mathbb{E}[T_1^{\kappa_1}|\gamma_2, \ldots, \gamma_n].
\]
Theorem (Conditional hemi-mean formula).

\[\mathbb{E}[T_1^{\kappa_1}|T_2, \ldots, T_n] = L_{-1} T_2^{\bar{h}_2^{\kappa_2}} \cdots T_n^{\bar{h}_n^{\kappa_n}}, \]

where, with \(p = p_0 + \ldots + p_n \) the total precision,

\[L_{-1} = \exp \left(\frac{n - 1}{2(p - p_1)} \right) \exp \left(-\frac{n}{2p} \right), \text{ and } \bar{h}_j = \frac{p_j}{p - p_1}, \text{ for } j > 1. \]

Proof uses conditional mean formula and yields \(L_{-1} = K_{-1}/K \).
Uncoupling Theorem

Uncoupling Theorem. The substitution

\[y_1 = \frac{\gamma_1^{\kappa_1}}{L - \gamma_2^{\kappa_2}} \cdots \gamma_{n}^{\kappa_n} \]

reduces the marginal Dye equation, namely

\[\lambda_1 (\mathbb{E}[X|\gamma_2, \ldots, \gamma_n] - \mu_X(\gamma, \gamma_2, \ldots, \gamma_n)) = \int_{t_1<\gamma_1} \left[\mu_X(\gamma_1, \gamma_2, \ldots, \gamma_n) - \mu_X(t_1, \gamma_2, \ldots, \gamma_n) \right] dF_{T_1}(t_1|\gamma_2, \ldots, \gamma_n), \]

to the standard form

\[\lambda_1(1 - y_1) = H_{LN}(y_1, \kappa_1 \sigma_{01} \sqrt{1 - \rho_1^2}), \]

where \(1 - \rho_1^2 \) is the partial covariance, or Schur complement, of \(w_1 \) given \(w_1, \ldots, w_n \).
Notational convention for shifting from LN to N

\[\eta_i = \log Y_i + \frac{1}{2} \sigma_i^2 = \sigma_i \nu_i \] the underlying normal variate, etc
Background: a little linear regression

Proposition (Geometric weighted-average)

\[E[X | T_1 = t_1, \ldots, T_n = t_n] = K t_1^{\kappa_1} \cdots t_n^{\kappa_n}, \text{ with } \kappa_i = \frac{p_i}{p}, \text{ and } \]

\[K = e^{2p} = \exp \left(\frac{1}{2p_{av}} \right) t_1^{\kappa_1} \cdots t_n^{\kappa_n}, \text{ with } p_{av} := \frac{p_0 + \cdots + p_n}{n}. \]

Sketch Proof. Put \(\xi = \log X, \tau_i = \log T_i \) (+ take off constants), do classical linear regression with normal variates, transform back via \(\exp \), finally compute the constant \(K \) using the tower law.
Remarks. 1. The preceding shows why log-normals are as easy as normals.

2. The normal regression arguments need only P, so some simple algebra.
Reprise: a little linear regression

Lemma (Arithmetic weighted-average). One has

\[\mathbb{E}[\xi|\tau_1, \tau_2] = \kappa_1 \tau_1 + \ldots + \kappa_n \tau_n, \text{ with } \kappa_i = \frac{p_i}{p}. \]

Proof. Method: write

\[\xi^{\text{est}} = \mathbb{E}[\xi|\tau_1, \ldots, \tau_n] = \kappa_1 \tau_1 + \ldots + \kappa_n \tau_n. \]

By the conditional mean formula,

\[\mathbb{E}[\tau_1 \xi^{\text{est}}] = \mathbb{E}[\tau_1 \mathbb{E}[\xi|\tau_1, \ldots, \tau_n]] = \mathbb{E}[\mathbb{E}[\tau_1 \xi | \tau_1, \ldots, \tau_n]] \\
= \mathbb{E}[\tau_1 \xi] \]
Recall, v_i independent so $E[v_i v_j] = \delta_{ij}$ and

$$\tau_i = (v_0 + v_i)$$

Compute to obtain

$$\mathbb{E}[\tau_1 \xi^{\text{est}}] = \mathbb{E}[\tau_1 \xi]$$

equivalent to:

$$\kappa_1(\sigma_0^2 + \sigma_1^2) + \kappa_2\sigma_0^2 + \ldots + \kappa_n\sigma_0^2 = \sigma_0^2.$$

Setting $k_i = \kappa_i/p_i$, obtain

$$k_1(p_0 + p_1) + k_2p_2 + \ldots + k_np_n = 1.$$

More generally,

$$k_1p_1 + \ldots + k_i(p_0 + p_i) + \ldots + k_np_n = 1.$$

Solution now obviously: $k_i = 1/(p_0 + \ldots + p_n)$.
Covariance: the Hilbert space view

Recall that each w_i has mean-zero and that

$$
\mathbb{E}[w_i w_i] = 1, \quad \text{and} \quad \mathbb{E}[w_i w_j] = \frac{\sigma_0^2}{\sigma_{0i} \sigma_{0j}} > 0.
$$

So any combination of w_1, \ldots, w_n has mean zero, i.e. they span a vector space W. For $w, w' \in W$ write

$$
\langle w, w' \rangle := \text{cov}(w, w') = \mathbb{E}[ww'].
$$

This is an inner product (so W is a Hilbert space under $\langle ., . \rangle$) iff the following covariance matrix is non-singular

$$
Q = (\rho_{ij}) \text{ where } \rho_{ij} = \mathbb{E}[w_i w_j].
$$
It turns out that Q is related to the precision matrix.

Theorem. *For* $p_i > 0$ *the covariance matrix is non-singular and*

$$
det Q = (p_0 + p_1) \ldots (p_0 + p_m) \det [P + p_0 I]
$$

$$
= \bar{p} p_0^{m-1} (p_0 + p_1) \ldots (p_0 + p_m).
$$
Appendix: the Schur complement: 1

Aim: find the variance of $\mathbb{E}[w_i|w_j \forall j \neq i]$. NB. Requires first to solve e.g.

$$\mathbb{E}[w_n|w_1, \ldots, w_{n-1}] = \sum_{j<n} \beta_j w_j.$$

Answer: put $\tilde{Q}_i = Q$ omitting the i-th row and column; likewise, $\tilde{\rho}_i = i$-th row $(\rho_{i1}, \ldots, \rho_{in})$ omitting i-th entry.

The Schur complement (of \tilde{Q}_i in Q) is given by

$$\rho_{ii} - \tilde{\rho}_i \tilde{Q}_i^{-1} \tilde{\rho}_i^T.$$
Putting

\[\rho_i := \sqrt{\bar{\rho}_i \bar{Q}_i^{-1} \bar{\rho}_i^T}, \]

the Schur complement becomes

\[1 - \rho_i^2. \]

(This notation permits specialization to the \(n = 2 \) case to yield \(\bar{Q}_i = (1) \) and \(\bar{\rho}_i = (\rho) \), so that \(\rho_i = \rho = \rho_{12} \).)

The conditional distribution of \(w_i \) given all the \(w_j \) for \(j \neq i \) is normal with variance given by the Schur complement.
The Schur complement: 2

Consider the distribution of \(\mathbb{E}[T_n|T_1, \ldots, T_{n-1}] \), or equivalently that of \(E[w_n|w_1, \ldots, w_{n-1}] \). Recall that

\[
T_i = e^{\sigma_0 i w_i - \frac{1}{2} \sigma_0^2}, \quad \text{with} \quad \sigma_0 i w_i = \sigma_0 w_0 + \sigma_i v_i.
\]

Put

\[
w_n^{n-1} = \mathbb{E}[w_n|w_1, \ldots, w_{n-1}] = \sum_{j<n} \beta_j w_j.
\]

Then, by definition and by the conditional mean formula,

\[
\rho_{in} = \mathbb{E}[w_i w_n] = \mathbb{E}[w_i w_n^{n-1}] = \sum_{j<n} \beta_j \rho_{ij}.
\]

We solve the system of \(m := n - 1 \) equations for \(i < n \)

\[
\sum_{j<n} \rho_{ij} \beta_j = \rho_{in},
\]
or, in matrix form with \(\tilde{\rho}_n := (\rho_{1n}, \ldots, \rho_{n-1,n}) \)

\[
Q_{n-1}\beta = \tilde{\rho}_n,
\]

by computing explicitly \(\beta = Q_{n-1}^{-1}\tilde{\rho}_n \). Here we have denoted the principal submatrix of the covariance matrix \(Q_n \) by:

\[
Q_{n-1} = (\rho_{ij})_{i,j<n}.
\]

Using the precision matrix one may easily find the \(\beta_j \) explicitly. WE have an important corollary.
Monotonicity Theorem (Own precision refined by presence of others) The Schur complement

\[1 - \rho_n^2, \]

corresponding to conditioning \(w_n \) on \(w_1, \ldots, w_{n-1} \) as a factor in the conditional variance, acts to increase the precision; increasing the precision of the competitors refines one’s own conditional precision. Indeed, one has the explicit formula with \(m = n - 1 \) and \(\bar{p} = p - p_n = p_0 + \ldots + p_{n-1}, \)

\[
\rho_n^2 = \frac{p_m}{p_0\bar{p}(p_0 + p_m)} \left[\sum_{i=1}^{m} p_i(\bar{p} - p_i) + \sum_{i<j\leq m} (p_i + p_j) \sqrt{\frac{p_i p_j}{(p_0 + p_i)(p_0 + p_j)}} \right],
\]

which is increasing in \(p_i \) for each \(i < n \), and so the Schur complement itself decreases with \(p_i \).
In fact one has:

Theorem 1. Provided all the precisions p_i are finite and positive, the regression equations

$$E[w_n|w_1, \ldots, w_{n-1}] = \beta_1 w_1 + \ldots + \beta_{n-1} w_{n-1},$$

which are equivalent to the solution of the system $Q_{n-1} \beta = \tilde{\rho}_n$, have non-singular matrix Q_{n-1} and the equivalent system of equations, for $i = 1, 2, \ldots, m =: n - 1$,

$$\rho_{i1} \beta_1 + \ldots + \beta_i + \ldots = \rho_{in},$$

has the unique solution:

$$\beta_i = \frac{p_i + p_0}{p} \rho_{in}.$$
In the setting of the Uncoupling Theorem, the equations

\[\gamma_i^{\kappa_i} = \tilde{\gamma}_i L_{-i} \prod_{j \neq i} \gamma_j^{\bar{h}_j^{i} - \kappa_j}, \]

imply

\[x_i - \sum_{j \neq i} \bar{h}_j^i \ x_j = B_i := \frac{1}{\kappa_i} \log (\tilde{\gamma}_i L_{-i}) = \frac{p}{p_i} \log (\tilde{\gamma}_i L_{-i}), \]

with

\[x_i = \log \gamma_i. \]
Proof. Cross-multiply take logs and note

\[
\bar{h}_j^i \kappa_i = \bar{h}_j^i - \kappa_j
\]

\[
= \frac{p_j}{p - p_i} - \frac{p_j}{p} = p_j \frac{p - (p - p_i)}{p(p - p_i)} = \frac{p_i}{p} \frac{p_j}{p - p_i}.
\]

The more revealing re-statement is

\[
(k_i - 1)x_i + \sum_{j \neq i} \kappa_j x_j = b_i := \frac{(p_i - p)}{p_i} \log (\gamma_i L_{-i}).
\]
Conditional hemi-mean formula

The following identifies the hemi-mean function.

Theorem (Conditional hemi-mean formula).

\[
\mathbb{E}[T_1^{\kappa_1}|T_2, \ldots, T_n] = L_{-1}T_2^{\bar{h}_2-\kappa_2} \cdots T_n^{\bar{h}_n-\kappa_n}, \text{ where } L_{-1} = \exp\left(\frac{n - 1}{2(p - p_1)}\right) \exp\left(-\frac{n}{2p}\right)
\]

and \(\bar{h}_j = \frac{p_j}{p - p_1}, \) for \(j > 1. \)

Hence, for any \(\gamma, \)

\[
\mathbb{E}[T_1^{\kappa_1}1_{T_1<\gamma}|(T)_{-1}] = L_{-1} \prod_{j>1} T_j^{\bar{h}_j-\kappa_j} \Phi_{\text{LN}}(\gamma^{\kappa_1}/L_{-1} \prod_{j>1} T_j^{\bar{h}_j-\kappa_j}, \kappa_1\sigma_{01}\sqrt{1 - \rho_1^2}).
\]
Proof. The random variable $S = T_1^{\kappa_1}$ has mean $m = m(\kappa_1, \sigma_{01})$ and volatility $\kappa_1 \sigma_{01}$. Hence, by the Exponent Effect Theorem,

$$H_S(\gamma^{\kappa}) = m H_{LN}(\gamma^{\kappa_1}/m, \kappa_1 \sigma_{01}).$$

The distribution of S conditional on $T_2 = t_2, \ldots, T_2 = t_n$ (for any t_2, \ldots, t_n) has a mean $\xi = \xi_{-1}$ (depending on t_2, \ldots, t_n to be determined below) and a volatility $\kappa_1 \sigma_{01} \sqrt{1 - \rho_n^2}$, with $1 - \rho_n^2$ the ‘Schur complement’ of T_n in (T_2, \ldots, T_n), because that is the effect on normal variates of conditioning (see Bingham & Fry (2010)).
Thus putting $\eta = \eta_{-1} := m\xi_{-1}$ we have for any $\gamma > 0$ that

$$H_{S|t_2...}(\gamma^{k_1}) = E[(\gamma^{k_1} - T_1^{k_1})1_{T_1 < \gamma}|T_2 = t_2, ..., T_n = t_n]$$

$$= m\xi H_{LN}(\gamma^{k_1}/m\xi, \kappa_1\sigma_{01}\sqrt{1 - \rho_n^2})$$

$$= \gamma^{k_1}\Phi_N \left(\frac{\log(\gamma^{k_1}/\eta) + \frac{1}{2}\kappa_1^2\sigma_{01}^2\rho_n}{\kappa_1\sigma_{01}\sqrt{1 - \rho_n^2}} \right)$$

$$- \eta\Phi_N \left(\frac{\log(\gamma^{k_1}/\eta) - \frac{1}{2}\kappa_1^2\sigma_{01}^2\rho_n}{\kappa_1\sigma_{01}\sqrt{1 - \rho_n^2}} \right).$$

(CH)

This leaves open the determination of the ‘constant’ $\eta = \eta_{-1}$. But minus the second term has the value

$$E[T_1^{k_1}1_{T_1 < \gamma}|T_2 = t_2, ..., T_n = t_n].$$
So taking the limit as $\gamma \to +\infty$ we obtain

$$\eta = \eta_{-1} = E[T_1^{\kappa_1} | T_2 = t_2, \ldots, T_n = t_n].$$

Now, by the conditional mean formula, with

$$\bar{h}_i = \bar{h}_i^1 = \frac{p_i}{p - p_1}$$

$$H^{-1}t_2^{\bar{h}_2} \ldots t_n^{\bar{h}_n} = E[X | T_2 = t_2, \ldots, T_n = t_n]$$

$$= E[E[X | T_1, T_2 = t_2, \ldots, T_n = t_n] | T_2 = t_2, \ldots, T_n = t_n]$$

$$= E[K \alpha T_1^{\kappa_1} t_2^{\kappa_2} \ldots t_n^{\kappa_n} | T_2 = t_2, \ldots, T_n = t_n]$$

$$= K t_2^{\kappa_2} \ldots t_n^{\kappa_n} E[T_1^{\kappa_1} | T_2 = t_2, \ldots, T_n = t_n]$$
and so

\[
\eta_{-1} = (H_{-1}K^{-1})h_{2-k_2}...h_{n-k_n} \\
= \exp \left(\frac{n - 1}{2(p_0 + p_2 + ... + p_n)} \right) \exp \left(-\frac{n}{2p} \right) h_{2-k_2}...h_{n-k_n} \\
= \exp \left(\frac{n - 1}{2(p - p_1)} \right) \exp \left(-\frac{n}{2p} \right) h_{2-k_2}...h_{n-k_n},
\]

as required. The rests is now clear from (CH) above.
Postscript: Log-normal vs normal: standardization

Normal x with mean m and variance σ^2 transforms to $v = (x - m)/\sigma \sim N(0, 1)$, i.e. zero-mean unit-variance. Note the moment generating function for $x \sim N(0, 1)$ is

$$E[e^{sx}] = e^{\frac{1}{2}s^2}.$$

General log-normal

$$X = m x e^{\sigma x - \frac{1}{2}\sigma^2} \text{ with } x \sim N(0, 1).$$

Consider now the power transformation $Y = X^{\kappa}$ for $0 < \kappa < 1$, then with $s = \kappa \sigma$

$$Y = e^{\kappa \sigma x - \frac{1}{2}\kappa \sigma^2} = e^{\frac{1}{2}\kappa(\kappa - 1)\sigma^2} e^{sx - \frac{1}{2}s^2}$$

$$= e^{\frac{1}{2}\kappa(\kappa - 1)\sigma^2} Z.$$
That is, the new variable has reduced mean

\[m = m(\kappa, \sigma) := e^{\frac{1}{2}(\kappa-1)\sigma^2}. \]

(Smart reason: derive this from from Ito’s Lemma! via the second derivative of \(y^\kappa \).)

Log-normal \(X \) with mean \(m_X \) and variance \(\sigma^2 \) transforms using \(\kappa = 1/\sigma \) to \(Y = X^\kappa \) with unit variance and mean

\[m_Y = m_X e^{\frac{1}{2}(1-\sigma)} \]

and so we arrive at \(Z = X^\kappa/m_Y = (Y/m_Y) \sim LN(1, 1) \), i.e. unit-mean unit-variance.